磁场中的动态圆问题分析

合集下载

带电粒子在磁场中运动放缩圆和旋转圆

带电粒子在磁场中运动放缩圆和旋转圆
M
P
2r
2r
r
O
O
O
Q
rN
Q
Q 答案:MN ( 3 1)r
练、如图,真空室内存在方向垂直纸面向里,大小B=0.6T
的匀强磁场,内有与磁场方向平行的板ab,在距ab距离
为l=16cm处,有一点状的放射源S向各个方向发射α粒子,
α粒子的速度都是v=3.0×106 m/s,已知 α粒子的电荷与质
量之比q/m= 5.0×107 C/kg ,现只考虑在图纸平面中运动
带电粒子在磁场中运动
--------放缩圆和旋转圆
轨迹圆的缩放
• 当粒子的入射速度方向一 定而大小可变时,粒子做 圆周运动的圆心一定在粒 子在入射点所受洛伦兹力 的方向上,半径R不确定, 利用圆规作出一系列大小 不同的内切圆.从圆的动 态中发现临界点。
例1、如图所示,一足够长的矩形区域abcd内充满方 向垂直纸面向里的、磁感应强度为B的匀强磁场,在
PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。 现从点O以同一速率将相同的带负电粒子向纸面内各个不 同的方向射出,它们均做半径为r的匀速圆周运动,求带 电粒子打在边界PQ上的范围(粒子的重力不计)。
分析:从O点向各个方向发射的粒子在磁场中做匀速圆周
运动的半径r相P 同,O为这些轨迹P圆周的公共点。
场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入 磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使 粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应
如何(以v0与oa的夹角表示)?最大偏转角多大?
解析: R =mv/Bq=5×10-2m > r
说明:半径确定时,通过的弧越
B v0

专题06 带电粒子在磁场中运动的动态圆模型--高考物理模型法之情景模型法(解析版)2020年高考物理

专题06 带电粒子在磁场中运动的动态圆模型--高考物理模型法之情景模型法(解析版)2020年高考物理

一模型界定本模型主要是指带电粒子在磁场中做匀速圆周运动时,由于粒子的速度不同、入射位置不同等因素而引起粒子在磁场中运动轨迹的差异,从而在有界磁场中形成不同的临界状态与极值问题的一类物理情景.二模型破解1. 处理“带电粒子在匀强磁场中的圆周运动”的基本知识点(i)圆心位置的确定①利用速度的垂线;②利用弦的中垂线;③利用两速度方向夹角的角平分线;④利用运动轨迹的半径大小.具体来说,如图1所示:①已知两位置的速度,分别过两位置作速度的垂线,交点处为运动轨迹的圆心②已知一点的速度与另一点的位置,过已知速度的点作该点速度的垂线,再作两点连线的中垂线,交点处为运动轨迹的圆心③已知一点的速度与另一不知位置的点的速度方向,过已知速度的点作该点速度的垂线,再作两速度夹角的平分线,交点处为运动轨迹的圆心④已知一点的速度与粒子运动的轨迹半径,过该点作速度的垂线,再在垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑤已知不知位置的两点的速度方向与粒子运动的轨迹半径,作两速度的夹角平分线,再在平分线上取一点,使其到两已知两已知速度所在直线间的距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心⑥已知一不知位置的点的速度方向与粒子运动的轨迹半径,可确定粒子运动的轨迹圆心位置在与该速度所在直线相平行且距离等于轨迹半径的直线上⑦已知运动轨迹上三点的位置,连接其中两点所得任两条弦,作此两条弦的中垂线,交点处为运动轨迹的圆心⑧已知运动轨迹上两点的位置与粒子运动的轨迹半径,作连接两已知点所得弦的中垂线,再在中垂线上取一点,使其到已知点间距离等于粒子运动的轨迹半径,该点即为运动轨迹的圆心(ii)两个重要几何关系①粒子速度的偏向角ϕ等于回旋角θ,并等于AB 弦与切线的夹角(弦切角α)的2倍,即:ϕ=θ=2α=ωt.②相对的弦切角θ相等,与相邻的弦切角'θ互补,即πθθ=+'(iii)两个重要的对称性①如图2所示,带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等;②如图3所示,在圆形磁场区域内,沿径向射入的粒子,必沿径向射出;不沿半径射入的粒子必不沿半径射出,但速度方向与入射点、出射点所在半径之间的夹角相等,入射速度与出射速度的交点、轨迹圆的圆心、磁场区域圆的圆心都在弧弦的中垂线上.(iV)两类重要的临界状态与极值条件①刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切②当粒子运动的速率一定(即在磁场中运动的轨迹半径一定)时,通过的弧长越长,转过的圆心角越大,粒子在有界匀强磁场中运动的时间越长.由图1可以看到,Rl 22sin =θ,粒子在磁场中转过一个劣弧时,对应的弦长越长,转过的圆心角越大,运动时间越长;粒子在磁场中转过一个优弧时则相反.2.动态圆的问题处理方法(i)旋转"半圆"法处理速率相同的动态圆问题如图4所示,对于大量的同种粒子,从空间同一位置以相同的速率υ沿不同的方向垂直..进入某匀强磁场时,由于速度方向的差异,引起粒子在空间运动轨迹的不同,它们在空间运动的基本特征是:①所有粒子运动的轨迹半径qBmv R =相同 ②所有粒子运动轨迹平面都在垂直于磁场的同一平面内③所有粒子运动轨迹的圆心都在以入射点为圆心、R 为半径的圆周上④所有粒子的运动轨迹所覆盖的空间区域是以入射点为圆心、2R 圆形区域○5同一时刻射入的粒子在经过相同时间t ∆后,每个粒子速度方向改变的角度(偏向角)ϕ、转过的圆心角度α相同,t m qB ∆⋅==ϕα;到入射点的距离l 相同,即位于以射点为圆心、以l 为半径的同一圆周上,其中2sin 2αR l =。

高考物理一轮复习(新高考版2(粤冀渝湘)适用) 第10章 专题强化19 动态圆问题

高考物理一轮复习(新高考版2(粤冀渝湘)适用) 第10章 专题强化19 动态圆问题

例4 (2020·全国卷Ⅲ·18)真空中有一匀强磁场,磁场边界为两个半径分
别为a和3a的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图5
所示.一速率为v的电子从圆心沿半径方向进入磁场.已知电子质量为m,
电荷量为e,忽略重力.为使该电子的运动被限制在图中实线圆围成的区
域内,磁场的磁感应强度最小为
03
题型四 “磁聚焦”模型
1.带电粒子的会聚 如图6甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆 形磁场区域,如果轨迹圆半径与磁场圆半径相等(R=r),则所有的带电 粒子将从磁场圆的最低点B点射出.(会聚) 证 明 : 四 边 形 OAO′B 为 菱 形 , 必 是平行四边形,对边平行,OB必平 行 于 AO′( 即 竖 直 方 向 ) , 可 知 从 A 点发出的带电粒子必然经过B点.
距 A 点的竖直距离 L2= R2-(d-R)2= 33d,
所以粒子在 PQ 边界射出的区域长度为 L=L1+L2=233d, 因为 R<d,所以粒子在 MN 边界射出区域的长度为 L′=2R =43d, 故两区域长度之比为 L∶L′=233d∶43d= 3∶2, 故C正确,A、B、D错误.
03Βιβλιοθήκη 3.常见的几种临界情况 (1)直线边界 最长时间:弧长最长,一般为轨迹与直线边界相切. 最短时间:弧长最短(弦长最短),入射点确定,入射点和出射点连线与 边界垂直. 如图1,P为入射点,M为出射点.
图1
(2)圆形边界:公共弦为小圆直径时,出现极值,即: 当运动轨迹圆半径大于圆形磁场半径时,以磁场直径的两端点为入射 点和出射点的轨迹对应的圆心角最大. 当运动轨迹圆半径小于圆形磁场半径时,则以轨迹圆直径的两端点为 入射点和出射点的圆形磁场对应的圆心角最大.

带电粒子在磁场中的运动动态圆法课件

带电粒子在磁场中的运动动态圆法课件
应用潜力。
探索动态圆法与其他物理方法的结合, 以解决更复杂、更广泛的物理问题。
开发基于动态圆法的计算机模拟软件, 为实验研究和工程应用提供更准确、更
便捷的工具。
THANKS
感谢观看
稳定性
动态圆在磁场中的运动是稳定的 ,只要洛伦兹力与向心力平衡, 带电粒子就会做稳定的圆周运动 。
05
动态圆法在物理实验中的应用
实验原理和步骤
• 实验原理:动态圆法是一种通过观察带电粒子在磁场中的运动 轨迹来研究磁场特性的实验方法。通过改变磁场强度或粒子速 度,可以观察到轨迹圆半径的变化,从而得到磁场与粒子运动 之间的关系。
课程目标和意义
掌握动态圆法的基本原理和计算 方法,能够运用动态圆法解决实
际问题。
理解带电粒子在磁场中运动的物 理机制,提高对电磁学原理的理
解和应用能力。
通过学习动态圆法,培养学生的 逻辑思维和数学分析能力,为进 一步学习物理学和相关领域打下
基础。
02
带电粒子在磁场中的基本性质
电荷在磁场中的受力
在等离子体物理实验中,动态圆法也 被用来研究等离子体的特性和行为。
在粒子加速器、回旋加速器、核聚变 装置等实验设备中,需要利用动态圆 法来研究带电粒子的运动轨迹和行为。
04
带电粒子在磁场中的动态圆运动
动态圆在磁场中的受力分析
洛伦兹力
带电粒子在磁场中受到的力称为洛伦兹力,其方向由左手定则确定,大小为$F = qvBsintheta$,其中$q$是带电粒子的电荷量,$v$是速度,$B$是磁感应 强度,$theta$是速度与磁感应强度的夹角。
实验结果和结论
实验结果
通过动态圆法实验,可以观察到带电粒子在磁场中的运动轨迹呈现圆形,并且随着磁场强度的增加或粒子速度的 减小,轨迹圆的半径逐渐减小。实验结果与理论值基本一致。

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明.一、最值问题的解题关键——抓弦长1.求最长时间的问题例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与Oa 的夹角 表示)最长运动时间多长?小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大.2 .求最小面积的问题例2 一带电质点的质量为m,电量为q,以平行于Ox 轴的速度v从y轴上的a点射人如图3 所示第一象限的区域.为了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小面积,重力忽略不计.小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长.二、汇聚发散问题的解题关键——抓半径当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律;规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。

洛伦兹力边界以及动态圆

洛伦兹力边界以及动态圆

带电粒子在匀强磁场中的运动1.两种方法定圆心方法一:已知入射点、入射方向和出射点、出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示)。

方法二:已知入射方向和入射点、出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示)。

2.几何知识求半径利用平面几何关系,求出轨迹圆的可能半径(或圆心角),求解时注意以下几个重要的几何特点:(1)粒子速度的偏向角(φ)等于圆心角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt 。

(2)直角三角形的应用(勾股定理)。

找到AB 的中点C ,连接OC ,则△AOC 、△BOC 都是直角三角形。

3.两个观点算时间观点一:由运动弧长计算,t =lv (l 为弧长); 观点二:由旋转角度计算,t =α360°T ⎝⎛⎭⎫或t =α2πT 。

4.三类边界磁场中的轨迹特点 (1)直线边界:进出磁场具有对称性。

(2)平行边界:存在临界条件。

(3)圆形边界:等角进出,沿径向射入必沿径向射出。

类型(一)直线边界问题[例1](多选)如图所示,一单边有界磁场的边界上有一粒子源,以与水平方向成θ角的不同速率,向磁场中射入两个相同的粒子1和2,粒子1经磁场偏转后从边界上A点出磁场,粒子2经磁场偏转后从边界上B点出磁场,OA=AB,则()A.粒子1与粒子2的速度之比为1∶2B.粒子1与粒子2的速度之比为1∶4C.粒子1与粒子2在磁场中运动的时间之比为1∶1D.粒子1与粒子2在磁场中运动的时间之比为1∶2[解析]粒子进入磁场时速度的垂线与OA的垂直平分线的交点为粒子1在磁场中做圆周运动的圆心,同理,粒子进入磁场时速度的垂线与OB的垂直平分线的交点为粒子2在磁场中做圆周运动的圆心,由几何关系可知,两个粒子在磁场中做圆周运动的半径之比为r1∶r2=1∶2,由r=m vqB可知,粒子1与粒子2的速度之比为1∶2,A项正确,B项错误;由于粒子在磁场中做圆周运动的周期均为T=2πmqB,且两粒子在磁场中做圆周运动的轨迹所对的圆心角相同,因此粒子在磁场中运动的时间相同,即C项正确,D项错误。

带电粒子在磁场中的运动

带电粒子在磁场中的运动

带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。

带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。

无论何种情况,其关键均在圆心、半径的确定上。

1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。

方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。

2. 求半径圆心确定下来后,半径也随之确定。

一般可运用平面几何知识来求半径的长度。

3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。

4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。

临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。

一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。

做a、b点速度的垂线,交点O1即为轨迹圆的圆心。

图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。

动态圆模型

动态圆模型

“动态圆”模型的应用带电粒子在磁场中的运动经常涉及动态圆。

常见的动态圆模型有两种,往往都还涉及边界(极值)问题。

模型1如图1,一束带负电的粒子以初速度垂直进入匀强磁场,若初速度方向相同,大小不同,所有粒子运动轨迹的圆心都在垂直于初速度的直线上,速度增大时,轨道半径随着增大,所有粒子的轨迹组成一组动态的内切圆。

模型2如图2,一束带负电的粒子以初速度垂直进入匀强磁场,若初速度大小相同,方向不同,则所有粒子运动的轨道半径相同,但不同粒子的圆心位置不同,其共同规律是:所有粒子的圆心都在以入射点为圆心,以轨道半径为半径的圆上,从而可以找出动态圆的圆心轨迹。

使用时应注意各圆的绕向。

例1.如图所示,在圆形区域内存在一垂直于纸面向里的匀强磁场,一束速率各不相同的质子从A点沿圆形磁场的半径方向射入磁场。

关于质子在该磁场内的运动情况,下列说法正确的是()A.运动时间越长的,其轨迹越长B.运动时间越长的,其射出磁场时的速率越大C.运动时间越长的,其轨迹对应的圆心角越大D.运动时间越长的,其速度方向的偏转角越大解析:该题考查动态圆的模型1.质子沿半径方向射入,沿另一半径方向射出,轨迹半径r=,偏转角等于圆心角θ=2arctan =2arctan ,偏转时间t==·arctan .由此可得偏转时间越长,圆心角越大,运动速率越小,选项C.D正确.答案:CD例2.如图甲所示,宽h=2 cm的有界匀强磁场的纵向范围足够大,磁感应强度的方向垂直纸面向里。

现有一群带正电的粒子从O点以相同的速率,从平面内的各个方向射入磁场。

若粒子在磁场中做匀速圆周运动的轨迹半径r均为5 cm,不计粒子的重力,则()A.右边界:-4 cm<y<4 cm内有粒子射出B.右边界:y>4 cm和y<-4 cm内有粒子射出C.左边界:y>8 cm内有粒子射出D.左边界:0<y<8 cm内有粒子射出解析:该题考查动态圆的模型2。

作出如图乙所示的示意图,由几何关系可得:临界点距x轴的间距y==4 cm。

有界磁场区域偏转问题汇总

有界磁场区域偏转问题汇总

直线线边界平行边界圆形边界磁场径向射入,径向射出结论:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短磁聚焦和磁发散磁发散磁聚焦当磁场圆半径R 与轨迹圆半径r 相等时,平行于切线,聚焦于切点最小面积当粒子圆半径R>磁场圆半径r时,粒子在磁场中运动最长时间为弦长对应时间当粒子圆半径R<磁场圆半径r时,粒子在磁场中运动时磁场圆与轨迹圆的交线为粒子圆的直径时,粒子离开磁场时位置距出发点最远动态圆的半径不变,绕圆上一点旋转,此时动态圆的原心为一半径为R的圆。

对应问题类型为:一群粒子以同一速率沿各个方向入射动态圆的半径发生变化,从圆上一点向外扩张。

这类问题抓住两个要点:①刚好穿出磁场边界的条件是带电粒子在磁场中的运动轨迹与边界相切②不管速率变化还是一定,圆周角越大,对应时间越长粒子与边界的范围问题三角形边界多解性问题正方形边界一、带电粒子在圆形磁场中的运动结论1:对准圆心射入,必定沿着圆心射出结论2:对准圆心射入,速度越大,偏转角和圆心角都越小,运动时间越短。

结论3:运动半径相同(v相同)时,弧长越长对应时间越长。

结论4:磁场圆的半径与轨迹圆的半径相同时,“磁会聚”与“磁扩散”题型一、对准圆心射入例1 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示。

磁场方向垂直于圆面。

磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点而打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少?要点提示如图所示例2:在圆形区域的匀强磁场的磁感应强度为B,一群速率不同的质子自A点沿半径方向射入磁场区域,如图所示,已知该质子束中在磁场中发生偏转的最大角度为1060,圆形磁场的区域的半径为R,质子的质量为m,电量为e,不计重力,则该质子束的速率范围是多大?要点提示变1.在圆形区域内有垂直纸面向里的匀强磁场.从磁场边缘A点沿半径方向射人一束速率不同的质子,对这些质子在磁场中的运动情况的分析中,正确的是:A.运动时间越长的,在磁场中通过的距离越长B.运动时间越短的,其速率越大C.磁场中偏转角越小的,运动时间越短D.所有质子在磁场中的运动时间都相等参考答案 BC题型二、偏离圆心射入(定圆旋转法)定圆旋转带电粒子从坐标原点以大小不变而方向变化的速度射入匀强磁场中,把其轨迹连续起来观察可认为是一个半径不变的定圆,根据速度方向的变化以入射点为轴在旋转例1 如图所示,磁感应强度为B的匀强磁场垂直于纸面向里,PQ为该磁场的右边界线,磁场中有一点O到PQ的距离为r。

磁场中的动态圆问题

磁场中的动态圆问题

磁场中的动态圆问题一、粒子特点:入射粒子速度的方向相同,速度的大小不同,或者是B 的大小变化,从而造成轨迹圆的半径不同。

如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大.或者磁感应强B 越小,运动半径也越大。

可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线CO 上.解决方法:放缩圆法。

粒子的轨迹圆的的圆心轨迹为一条线段,利用圆规作图,不断改变圆心位置找到符合要求的轨迹圆。

例:(多选)如图2所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点,一个带正电的粒子(重力忽略不计)若从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od 成30°角的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是( )图2A.该带电粒子不可能刚好从正方形的某个顶点射出磁场B.若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能是23t 0C.若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是t 0D.若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是53t 0解析 带电粒子以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场,则知带电粒子的运动周期为T =2t0.作出粒子从O 点沿纸面以与Od 成30°角的方向射入恰好从各边射出的轨迹,如图所示发现粒子不可能经过正方形的某顶点,故A 正确;作出粒子恰好从ab 边射出的临界轨迹③④,(从ab 边射出意思是不从ad 边出,就是和ad 边相切,与ab 边相切)由几何关系知圆心角不大于150°,在磁场中经历的时间不大于512个周期,即56t 0;圆心角不小于60°,在磁场中经历的时间不小于16个周期,即13t 0,故B 正确;作出粒子恰好从bc 边射出的临界轨迹②③,由几何关系知圆心角不大于240°,在磁场中经历的时间不大于23个周期,即43t 0;圆心角不小于150°,在磁场中经历的时间不小于512个周期,即56t 0,故C 正确;若该带电粒子在磁场中经历的时间是56个周期,即53t 0.粒子轨迹的圆心角为θ=53π,速度的偏向角也为53π,根据几何知识得知,粒子射出磁场时与磁场边界的夹角为30°,必定从cd 边射出磁场,故D 错误.答案 ABC例2、如图所示,在边长为2a 的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m 、电荷量为-q (q >0)的带电粒子(重力不计)从AB 边的中心O 以速度v 进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB 边的夹角为60°,若要使粒子能从AC 边穿出磁场,则匀强磁场磁感应强度的大小B 需满足( )A.B >3mv3aqB.B <3mv 3aqC.B >3mv aqD.B <3mvaq答案 B解析 若粒子刚好达到C 点时,其运动轨迹与AC 相切,如图所示,则粒子运动的半径为r 0=atan 30°=3a .由qvB =mv 2r 得r =mvqB,粒子要能从AC 边射出,粒子运行的半径应满足r >r 0,解得B <3mv3aq,选项B 正确.3、(多选)(2018·湖北省十堰市调研)如图12所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B ,其边界为一边长为L 的正三角形(边界上有磁场),A 、B 、C 为三角形的三个顶点.今有一质量为m 、电荷量为+q 的粒子(不计重力),以速度v =3qBL4m从AB 边上的某点P 既垂直于AB 边又垂直于磁场的方向射入磁场,然后从BC 边上某点Q 射出.若从P 点射入的该粒子能从Q 点射出,则( )A .PB <1+34L B .PB <2+34L C .QB ≤34L D .QB ≤12L答案 BD解析 粒子在磁场中运动的轨迹如图所示:粒子在磁场中的运动轨迹半径为r =mv Bq ,因此可得r =34L ,当入射点为P 1,圆心为O 1,且此刻轨迹正好与BC 相切时,PB 取得最大值,若粒子从BC 边射出,根据几何关系有PB <P 1B =2+34L ,A错误,B 正确;当运动轨迹为弧P 2Q 时,即O 2Q 与AB 垂直时,此刻QB 取得最大值,根据几何关系有QB =rsin 60°=12L ,所以有QB ≤12L ,C 错误,D 正确.二、粒子特点:入射粒子速度的方向不相同,速度的大小相同。

动态圆的原理

动态圆的原理

动态圆的原理带电粒子垂直进入磁场,不计重力,带电粒子将在磁场中做圆周运动,如果是一个有界磁场,带电粒子将做部分圆周圆周运动,关于入射速度变化时,有以下三种常用的动态圆模型。

一、放缩圆法,粒子源发射出的粒子速度方向一定,大小不同,由于圆周运动速度越大,轨迹半径越大,从入射点放大或者缩小圆的半径,画出轨迹,寻找临界条件来解决问题。

二、旋转圆法,粒子源发射的粒子,速度大小一定,方向不同,那么带电粒子运动的圆心将在以入射点为圆心,圆周运动为半径为半径的圆周上,即就是轨迹圆圆心共圆,以入射点为定点,对这个等圆进行旋转,从而找到临界条件。

三、平移圆法,粒子入射点在同一直线上,并且速度大小一定,方向一定,故这点带电粒子轨迹圆圆心是共线的,半径也是相同的,通过平移入射点,从而找到临界条件。

总之,动态圆是磁场章节难点,只有通过一定量代表性题目训练,去感知三种方法的应用,才可以达到融会贯通的效果。

地球磁场起源之谜:1. 谜题重重的地磁场地球是一个天然的大磁体,无论在陆地、海洋,还是天空,都能够感受到地磁场的存在。

我国古人很早以前就对地磁现象有所认识,中国古代四大发明之一的指南针,就是利用磁针在地磁场中的指极性制成的。

现在科学家们已基本掌握了地磁场的分布与变化规律,但是,对于地磁场的起源问题,学术界却一直没有找到一个令人满意的答案。

目前,关于地磁场起源的假说归纳起来可分为两大类,第一类假说是以现有的物理学理论为依据;第二类假说则独辟蹊径,认为对于地球这样一个宇宙物体,存在着不同于现有已知理论的特殊规律。

属于第一类假说的有旋转电荷假说。

它假定地球上存在着等量的异性电荷,一种分布在地球内部,另一种分布在地球表面,电荷随地球旋转,因而产生了磁场。

这一假说能够很自然地通过电与磁的关系解释地磁场的成因。

但是,这个假说却有一个致命缺点,首先它不能解释地球内外的电荷是如何分离的;其次,地球负载的电荷并不多,由它产生的磁场是很微弱的,根据计算,如果要想得到地磁场这样的磁场强度,地球的电荷储量需要扩大1亿倍才行,理论计算和实际情况出入很大。

第57课时 磁场中的动态圆模型 [重难突破课]

第57课时 磁场中的动态圆模型 [重难突破课]
匀速圆周运动的周期为T= ,根据A选项分析,粒子轨迹所对应的圆心角度

°

为90°,则有t=
T= ,故B正确;从AB中点射入的粒子,其轨迹为上面

°

所分析的粒子轨迹向下平移r- r,得到此轨迹圆的圆心在A点的正下方,由几


何关系可知,离开磁场时的位置与A点的距离必然小于轨迹半径r,即 ,故C

类似地可知Ⅳ区域的阴影部分面积为
目录
SⅣ=2×










根据对称性可知Ⅱ中的匀强磁场面积为
SⅡ =




答案(3)













目录

(多选)如图所示,半径为R、磁感应强度为B的圆
形匀强磁场,MN是一竖直放置的足够长的感光板。
射点的切线方向平行
向平行

目录
【典例4】 (2021·湖南高考)带电粒子流的磁聚焦和磁控束是薄膜材料制备
的关键技术之一。带电粒子流(每个粒子的质量为m、电荷量为+q)以初速度v
垂直进入磁场,不计重力及带电粒子之间的相互作用。对处在xOy平面内的粒
子,求解以下问题。
目录
(1)如图(a),宽度为2r1的带电粒子流沿x轴正方向射入圆心为A(0,r1)、
目录
解析:CD

带电粒子在磁场中的运动半径r= =d,选项A错误;设从某处E

进入磁场的粒子,其轨迹恰好与AC相切(如图所示),则E点距A点的距离为
2d-d=d,粒子在距A点0.5d处射入,会进入Ⅱ区域,选项B错误;粒子在距A

带电粒子在磁场中运动放缩圆和旋转圆

带电粒子在磁场中运动放缩圆和旋转圆
场B=0.2T,一带正电粒子以速度v0=106m/s的从a点处射入
磁场,该粒子荷质比为q/m=108C/kg,不计重力。若要使
粒子飞离磁场时有最大的偏转角,其入射时粒子的方向应 如何(以v0与oa的夹角表示)?最大偏转角多大? 解析: R =mv/Bq=5×10-2m > r
说明:半径确定时,通过的弧越
0
解:R1+R1sin30º = L/2 得R1 = L/3 R2- R2cos60º = L/2 得:R2 = L。
qBL ≥v0≥ m
qBL 3m
a
b
R1
O
q v 0
R2 B c
d
轨迹圆的旋转
• 当粒子的入射速度大小 一定而方向不确定时, 从不同方向入射的粒子 的轨迹圆都一样大,只 是位置绕入射点发生了 旋转,从定圆的动旋转 中发现临界点
如图,水平放置的平板MN上方有方向垂直于纸面向里的 匀强磁场,磁感应强度为B,许多质量为m,带电量为 +q的粒子,以相同的速率 v 沿位于纸面内的各个方向, 由小孔O射入磁场区域,不计重力,不计粒子间的相互 影响。下列图中阴影部分表示带电粒子可能经过的区域, 其中R=mv/qB,哪个图是正确的?( A )
总结:带电粒子在磁场中运动旋转圆和放缩圆
• 1、定圆心:方法 • 2、算半径:
利用v⊥R 利用弦的中垂线
几何法求半径 向心力公式求半径
• 3、从圆的动态中发现临界点。
例、如图,环状匀强磁场围成的中空区域内有自由运动的带
电粒子,但由于环状磁场的束缚,只要速度不很大,都
不会穿出磁场的外边缘。设环状磁场的内半径为R1=0.5m ,外半径为 R2=1.0m,磁场的磁感应强度 B=1.0T,若被

2025高考物理总复习“平移圆”“放缩圆”“旋转圆”“磁聚焦”和“磁发散”模型

2025高考物理总复习“平移圆”“放缩圆”“旋转圆”“磁聚焦”和“磁发散”模型

垂直ab射入磁场,已知所有粒子均从圆弧边界射出,其中M、N是圆弧边界上的两
点,不计粒子间的相互作用和重力。则下列说法正确的是( D )
A.粒子带负电荷
B.从M点射出粒子的速率一定大于从N点射出粒子的速率
C.从M点射出的粒子在磁场中运动的时间一定小于从N点
射出的粒子在磁场中运动的时间

D.粒子在磁场中的最短运动时间为
界定
0
将一半径为R= 的圆以入射点为圆心进行旋转,从而探索粒子的临
方法 界条件,这种方法称为“旋转圆”法
考向一 “平移圆”模型
典题1 如图所示,边长为L的正方形有界匀强磁场ABCD,带电粒子从A点沿
AB方向射入磁场,恰好从C点飞出磁场;若带电粒子以相同的速度从AD的
中点P垂直AD射入磁场,从DC边的M点飞出磁场(M点未画出)。设粒子从A
小为B1。空间中z轴正方向垂直于xOy平面向外,x轴上过D点(4d,0,0)放置一足够
大且垂直于x轴的粒子收集板PQ,PQ与yOz平面间有一沿x轴正方向的匀强电场,
电场强度大小为E。x轴上过C点(d,0,0)垂直于x轴的平面MN与PQ间存在沿x轴
负方向的匀强磁场,磁感应强度大小为B2。在xOy平面内的-2R≤x≤-R区域内,有大
定。综上所述,D正确,A、B、C错误。
考向三 “旋转圆”模型
典题3 (多选)(2024河南郑州模拟)如图所示,在直角坐标系xOy的第一象限内存在磁
感应强度大小为B、方向垂直纸面向里的匀强磁场,在y轴上S处有一粒子源,它可向
右侧纸面内各个方向射出速率相等的质量均为m、电荷量均为q的同种带电粒子,
所有粒子射出磁场时离S最远的位置是x轴上的P点。已知 OP= 3 =

2025高考物理总复习用“动态圆”思想处理临界、极值问题

2025高考物理总复习用“动态圆”思想处理临界、极值问题

粒子源发射速度大小、方向一定,入射点不同但在同一直
适用条件
线上的同种带电粒子进入匀强磁场时,它们做匀速圆周运
动的半径相同,若入射速度大小为v0,则半径R=mqBv0,如图 所示
考点一 “平移圆”
带电粒子在磁场中做匀速圆周运动的圆心在同一直线上, 轨迹圆圆心共线
该直线与入射点的连线平行
界定方法
将半径为 R=mqBv0 的圆进行平移,从而探索粒子的临界 条件,这种方法叫“平移圆”法
< 考点三 >
“放缩圆”
考点三 “放缩圆”
粒子源发射速度方向一定、大小不同的同种带电粒子进入匀 适用条件 强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半
径随速度的示(图中只画出粒子带正电的情景),速度v越大,运动 半径也越大。可以发现这些带电粒子射入磁场后,它们运动 轨迹的圆心在垂直初速度方向的直线PP′上 轨迹圆圆 心共线
mv qL
C.在磁场中运动时间最长的粒子将从OB之间离开磁场
√D.粒子在磁场中运动的最长时间小于
πL 3v
考点二 “旋转圆”
根据牛顿第二定律 qvB=mvr2,解得 B=2qmLv,故 A、B 错误; 粒子轨迹如图所示,由图可知,粒子在磁场 中运动时间最长时,轨迹与AC边相切,在磁 场中运动时间最长的粒子将从AD之间离开磁 场,C错误;
第十一章
磁场
第 专题强化:用“动态圆”
4 课
思想处理临界、极值问题

目标 1.进一步掌握带电粒子在有界磁场中运动的临界、极值问题。 要求 2.会用平移圆法、旋转圆法、放缩圆法分析临界问题。

考点一 “平移圆”


考点二 “旋转圆”

考点三 “放缩圆”

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动解题方法及经典例题

带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。

求3〕〕匀强磁场的磁感应强度B和射出点的坐标。

〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:磁场中动态圆问题是高中物理的难点,圆轨迹的变化规律的确定是难中之难,本文就动态圆问题进行总结归类,分确定入射点和速度大小,不确定速度方向;确定入射点和速度方向,不确定速度大小;确定入射速度,不确定入射点三种模型进行归类总结,旨在为以后的解题提供帮助。

关键词:磁场;动态圆;带电粒子
带电粒子在磁场中的动态圆问题是近几年高考的热点。

这类题目的难点在于带电粒子在磁场中运动轨迹的圆心在变化。

解这类题目的关键是准确找出符合题意的临界轨迹圆弧,基本方法是找圆心、画圆、求半径、定时间。

下面分几种模型进行阐述:
模型一:确定入射点和速度大小,不确定速度方向
如图所示,磁场中P点有带正电粒子,以相等速度V沿各个方向射入磁场中。

1.找圆心方法
以P点为圆心,R长为半径画圆,圆周上各点即为所求圆心O。

2.模型特征
(1)各动态圆圆心轨迹为圆。

(2)各动态圆均相交于同一点P。

(3)在纸面内,各粒子所能打到的区域是以2R为半径的圆(包络面)。

(4)各动态圆周期T相同。

3.例题分析
(1)如图,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里。

许多质量为m、带电量为+q的粒子以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域。

不计重力,不计粒子间的相互影响。

下列图中阴影部分表示带电粒子可能经过的区域,其中哪个图是正确的()。

解:如图所示,圆心轨迹是以O为圆心,半径为R的一个圆弧,右边界是沿ON方向出射的粒子轨迹包围的部分,左边界是2R为半径的圆的包络线,所以正确答案是A。

模型二:确定入射点和速度方向,不确定速度大小
如图所示,磁场中P点,不同速度的带正电的粒子沿水平方向射出。

1.找圆心方法
带电粒子射入磁场的方向不变,大小变化,则所有粒子运动轨迹的圆心都在垂直于初速度的直线上。

2.模型特征
(1)各动态圆圆心轨迹为直线。

(2)各动态圆的半径R不同。

(3)各动态圆均相交于同一点P。

(4)各动态圆周期T相同。

3.例题分析
如图甲所示,有一横截面为正方形的匀强磁场区域,正方形的边长为L,磁场的磁感强度为B,一带电粒子从ad边的中点O与ad边成q=30°角且垂直于磁场方向射入.若该带电粒子所带电量为q,质量为m(不计重力),则该带电粒子在磁场中飞行的最长时间是多少?若要使带电粒子飞行的时间最长,带电粒子的速度必须满足什么条件?
解:如图乙所示,垂直初速度方向的虚线为圆心轨迹,圆心角最大时飞行时间最长,根据图分析可得,当圆轨迹与上边界相切时,圆心角最大为300°,速度再小一些时将从ad 边射出,此时的圆心角也是300°。

由几何关系可得:
所以,要使带电粒子的飞行时间最长,带电粒子的速度必须满足
模型三:确定入射速度,不确定入射点
带电粒子以相同大小的速度和方向射入有界磁场。

1.找圆心方法
带电粒子射入磁场速度的方向大小不变,半径R确定,则所有粒子运动轨迹的圆心都在垂直于初速度的方向上,离入射点距离为R。

2.模型特征
(1)各动态圆的半径R相同。

(2)圆心在垂直初速度方向上且离入射点为R的位置。

(3)若磁场边界为直线,则圆心轨迹也为直线。

(4)若磁场边界为圆,则圆心轨迹也为圆。

3.例题分析
如图所示,长方形abcd长ad=0.6 m,宽ab=0.3 m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25 T。

一群不计重力,质量m=3′10-7kg,电荷量q=+2×10-3 C的带电粒子以速度v=5×l02 m/s 沿垂直于ad方向且垂直于磁场射人磁场区域,则( )。

A.从Od边射入的粒子,出射点全部分布在Oa边
B.从aO边射入的粒子,出射点全部分布在ab边
C.从Od边射入的粒子,出射点分布在Oa边和ab边
D.从aO边射入的粒子,出射点分布在ab边和be边
解:带电粒子射入磁场中的速度不变,半径相同,可得出圆心轨迹在直线ad上,且
并得到一组动态圆(如图所示),答案:D。

如图所示,x轴正方向水平向右,y轴正方向竖直向上,在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场,在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒,发射时,这束带电微粒分布在0<y<2R的区间内。

已知重力加速度大小为g。

(1)从A点射出的带电微粒平行于x轴进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小和方向。

(2)请指出这束带电微粒与x轴相交的区域,并说明理由。

解:(1)由题意得,带电粒子在磁场中的半径为R,由qvb=mv2/R,
可得:B=mv/qR,磁场方向垂直纸面向外。

(2)这束带电微粒都通过坐标原点。

从任一点水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于入射点正下方的O′点,如图所示,这束带电微粒进入磁场后的圆心轨迹是如图所示半圆弧,此圆的圆心是坐标原点为O。

所以,这束带电微粒都是通过坐标原点后离开磁场的。

以上是带电粒子在磁场中运动的几种模型,如果能建立模型,掌握各种模型的特点和分析方法,将会使动态圆问题轻松得解。

作者单位:浙江省宁海县正学中学
邮政编码:315614。

相关文档
最新文档