完整版相交线与平行线复习知识点总结2
2023年相交线与平行线知识点归纳总结

《相交线与平行线》知识点总结一: 相交线(1)相交线旳定义两条直线交于一点, 我们称这两条直线相交.相对旳, 我们称这两条直线为相交线.(2)两条相交线在形成旳角中有特殊旳数量关系和位置关系旳有对顶角和邻补角两类.(3)在同一平面内, 两条直线旳位置关系有两种: 平行和相交(4)对顶角: 有一种公共顶点, 并且一种角旳两边分别是另一种角旳两边旳反向延长线, 具有这种位置关系旳两个角, 互为对顶角.∠1和∠3, ∠2和∠4是对顶角.(5)邻补角:只有一条公共边,它们旳另一边互为反向延长线,具有这种关系旳两个角,互为邻补角.如图:∠1和∠2,∠2和∠3是邻补角.(6)对顶角旳性质:对顶角相等.(如图∠1=∠3, ∠2=∠4)(7)邻补角旳性质:邻补角互补, 即和为180°.(如图∠1+∠2=180°)(8)邻补角、对顶角成对出现, 在相交直线中, 一种角旳邻补角有两个. 邻补角、对顶角都是相对与两个角而言, 是指旳两个角旳一种位置关系. 它们都是在两直线相交旳前提下形成旳。
二、垂线(1)、垂线旳定义: 当两条直线相交所成旳四个角中, 有一种角是直角时, 就说这两条直线互相垂直, 其中一条直线叫做另一条直线旳垂线, 它们旳交点叫做垂足.如图, OD⊥AB, 垂足为O(2)、垂线旳性质过一点有且只有一条直线与已知直线垂直.注意: “有且只有”中, “有”指“存在”, “只有”指“唯一”“过一点”旳点在直线上或直线外都可以。
(3)、垂线段: 从直线外一点引一条直线旳垂线, 这点和垂足之间旳线段叫做垂线段.(4)垂线段旳性质: 垂线段最短.对旳理解此性质, 垂线段最短, 指旳是从直线外一点到这条直线所作旳垂线段最短. 它是相对于这点与直线上其他各点旳连线而言.(如图, PA,PB,PC等线段中, PO最短)(4)、点到直线旳距离(如图, PO旳长)(1)点到直线旳距离:直线外一点到直线旳垂线段旳长度, 叫做点到直线旳距离.(2)点到直线旳距离是一种长度, 而不是一种图形, 也就是垂线段旳长度, 而不是垂线段.它只能量出或求出, 而不能说画出, 画出旳是垂线段这个图形.三、平行线1.在同一平面内, 两条直线旳位置关系有两种: 平行和相交.(1)平行线旳定义:在同一平面内,不相交旳两条直线叫平行线.记作: a∥b;读作: 直线a平行于直线b.(2)同一平面内, 两条直线旳位置关系: 平行或相交, 对于这一知识旳理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说, 指旳是它们所在旳直线.(3)平行公理:通过直线外一点, 有且只有一条直线与这条直线平行.如图, 过点P只有直线a 与直线b 平行(4)平行公理中要精确理解“有且只有”旳含义.从作图旳角度说, 它是“能但只能画出一条”旳意思.(5)平行公理旳推论:假如两条直线都与第三条直线平行, 那么这两条直线也互相平行.如图, 假如a∥c, b∥c, 那么a∥c2.同位角、内错角、同旁内角(1)同位角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳同侧, 并且在第三条直线(截线)旳同旁, 则这样一对角叫做同位角.例如∠1和∠5,∠3和∠7,∠4和∠8,∠2和∠6.(2)内错角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳之间, 并且在第三条直线(截线)旳两旁, 则这样一对角叫做内错角. 例如∠3和∠5, ∠4和∠6.(3)同旁内角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳之间, 并且在第三条直线(截线)旳同旁, 则这样一对角叫做同旁内角。
相交线与平行线的知识点

相交线与平行线的知识点一、相交线。
1. 邻补角。
- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
- 性质:邻补角互补,即它们的和为180°。
例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。
2. 对顶角。
- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
- 性质:对顶角相等。
如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。
3. 垂直。
- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
二、平行线。
1. 平行线的定义。
- 在同一平面内,不相交的两条直线叫做平行线。
用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。
2. 平行公理及推论。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果a∥b,b∥c,那么a∥c。
3. 平行线的判定。
- 同位角相等,两直线平行。
例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。
- 内错角相等,两直线平行。
如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。
- 同旁内角互补,两直线平行。
当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。
4. 平行线的性质。
- 两直线平行,同位角相等。
若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。
期末复习第二章《相交线与平行线》知识点及试题

2012~2013学年期末复习第二章《相交线与平行线》知识点一、相交线1、在同一平面内,两条直线的位置关系有 相交 和 平行 两种;2、互为余角:如果两个角的和是 90°,那么称这两个角互为余角;例如:23°角的余角为 余角的性质: 同角或等角的余角相等 ;3、互为补角:如果两个角的和是 180°,那么称这两个角互为补角;例如:32°角的补角为 补角的性质: 同角或等角的补角相等 ;4、对顶角:具有公共顶点,并且角的两边互为反向延长线的两个角叫做对顶角; 对顶角的性质: 对顶角相等 ;例题:如图1所示,直线AB 与CD 相交于O 点,OE ⊥AB ,则∠BOD 的余角是 ; ∠BOD 的补角是 ;∠BOD 的对顶角是 ;5、垂线:⑴定义:两条直线相交成四个角,如果有一个角是直角,则称这两条直线互相垂直,其中的一条直线叫另一条直线的垂线,它们的交点叫垂足。
如图2所示,如果有∠BOC=90°,则CD ⊥AB ⑵性质:①唯一性:平面内,过一点 有且只有 一条直线与已知直线垂直。
②直线外一点与直线上各点连接的所有线段中, 垂线段最短 。
⑶点到直线的距离:过直线外的一点作直线的垂线,则 垂线段 的 长度 叫做这一点到这条直线的距离二、平行线A BD O EC图1O ABCD图21、定义:在同一平面内, 不相交 的两条直线叫做平行线。
2、基本性质:①唯一性:过直线外一点 有且只有 一条直线与已知直线平行; ②传递性:平行于 同一条直线 的两条直线也互相平行; 3、“三线八角”:如右图,两直线AB 、CD 同时被第三条直线l 所截,共构成八个小于平角的角,习惯上,我们把直线l 叫做 截线 ;把直线AB 、CD 叫做 被截线 ;⑴同位角:在截线的同侧,并且在被截线的同一方向的两个角叫同位角;如上图的∠1与∠2; ⑵内错角:在截线的异侧,并且夹在两被截线内部的两个角叫内错角;如上图的∠2与∠7等; ⑶同旁内角:在截线同侧,并且夹在两被截线内部的两个角叫同旁内角;如上图的∠2与∠5等; 4、平行线的判定:(重点)⑴同位角相等,两直线平行;符号语言如下: ⑵内错角相等,两直线平行;符号语言如下:⑶同旁内角互补,两直线平行;符号语言如下:3、平行线的性质:(重点)⑴两直线平行,同位角相等;符号语言如下: ⑵两直线平行,内错角相等;符号语言如下:⑶两直线平行,同旁内角互补;符号语言如下:已知平行用性质, 说明平行用判定!a 1 bc2 ∵∠1=∠3∴a ∥b (内错角相等,两直线平行)a 1b c4∵∠1+∠4=180° ∴a ∥b (同旁内角互补,两直线平行) ∵∠1=∠2∴a ∥b (同位角相等,两直线平行)∵a ∥b∴∠1=∠2 (两直线平行,同位角相等)a 1 bc4 a 1bc 3 ∵a ∥b∴∠1+∠4=180°(两直线平行,同旁内角互补)a1b c 2 a 1bc3 ∵a ∥b ∴∠1=∠3 (两直线平行,内错角相等)①2121②12③12④2012~2013学年七(下)期末复习试题——第二章《相交线与平行线》一、选择题:1.下列所示的四个图形中,1∠和2∠是同位角...的是( )A. ②③B. ①②③C. ①②④D. ①④2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠C. DCE D ∠=∠D.180=∠+∠ACD D3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A. 第一次向左拐30,第二次向右拐30 B. 第一次向右拐50,第二次向左拐130 C. 第一次向右拐 50,第二次向右拐 130 D. 第一次向左拐 50,第二次向左拐130 4.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直。
(完整版)相交线与平行线复习知识点总结

第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)1、相交线的概念:在同一平面内,如果两条直线只有一个 点,那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.5.1.2垂线(详见课本第3-5页)1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,其中一条直线叫做另一条直线的 ,它们的交点叫做 .2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .(通常把 的两直线看成一条直线)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:AB CD 14321A BC DO 图2 OD C BA 图1 图5图6 21OC B A图3图4 623 4 5 78 9BA D EC13、平行线的表示方法平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,记作AB ∥CD ,读作AB 平行于CD .4、平行线的画法:5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)1、平行线的判定方法:(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角 ,两直线 .(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角 ,两直线 .(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角 ,两直线 .(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.AD EBC 1 2图7 D C BA a b c 图8A EG B C F H D图10 性质判定性质性质判定判定A D BE CF 图12A B C DEF1 2 34自我检测1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )2.同一平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为邻补角的两个角的平分线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.7.设a 、b 、c 为同一平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,ab bc ⊥⊥,则a 与c 的位置关系是_________; c)若//a b ,b c ⊥,则a 与c 的位置关系是________.8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______∴EP ∥_____.( )13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小; ⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。
精编版平行线与相交线知识点整理总复习

精编版平行线与相交线知识点整理总复习平行线与相交线是几何学中重要的概念,它们在平面几何、解析几何以及立体几何中都有广泛的应用。
下面对平行线与相交线的相关知识点进行整理总复习。
一、平行线的定义与性质:1.定义:在平面上的两条直线,如果它们没有交点,就称为平行线。
2.平行线的判定方法:(1)同一条直线上的两条直线,如果与另一条直线平行,则它们互相平行。
(2)用直角板判定法:如果两直线上各取一点P和Q,再通过P、Q各画一条与给定直线垂直的直线,则这两条垂直线相交的点连同P、Q四点是否共线,如果共线,则给定直线与这两条垂直线平行;否则,不平行。
(3)用平行线定理判定:如果两直线上各取一点P和Q,并通过Q画一条与给定直线平行的线段,则通过P和平行线段的直线相交的点与P、Q、两直线上平行线段的两个端点是否共线,如果共线,则给定直线与平行线段平行;否则,不平行。
3.平行线性质:(1)平行线具有等斜率。
(2)平行线的判定是对称的,即如果直线l与直线m平行,那么直线m与直线l也平行。
(3)平行线的传递性。
(4)平行线的交线和倾斜度。
(5)两个平行线与同一直线的交线上的对应角相等。
(6)两个平行线分别与同一直线的两条截线上的对应角相等。
二、相交线与交角的定义与性质:1.定义:在平面上的两条直线如果有一个交点,就称为相交线。
2.存在且唯一:平面上任意两条不平行的直线都有一个且仅有一个交点。
如果两条直线有两个或多个交点,则它们必定重合。
3.交角的定义:两条相交线之间的夹角。
三、平行线与相交线的相关知识点:1.平行线的判定与构造:可以通过几何推理来判定两条直线是否平行,也可以通过构造垂直线段或平行线段等方法来构造平行线。
2.平行线于直线的夹角:直线与平行线的夹角为0度。
3.平行线与截线的夹角:一条直线与平行线的截线上的各个角的和等于180度。
4.形成平行线的条件:如果两个直线分别与一条第三条直线相交,在交点两侧所夹的内角或外角相等,则这两个直线平行。
平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳一、平行线的定义平行线是在同一个平面上,永远也不会相交的两条直线。
平行线的特点是它们的斜率相等,且不相交。
若两条直线平行,则可表示为l,m。
平行线的性质:1.平行线具有等于90°的斜角。
2.平行线与同一条直线垂直的直线也是平行线。
这一性质被称为垂直平行线定理。
3.如果一条直线与两条平行线相交,则它与另一条平行线的交角与第一条直线与第二条直线的交角相等。
4.平行线的反身性质:如果l,m,则m,l。
二、平行线的判定方法1.高度差法:通过计算两线间的垂直距离和斜率判断是否平行。
2.点斜式法:通过两点确定的直线斜率相等来判定。
3.斜率法:两直线斜率相等,则平行。
4.三角形内角和法:若两直线被一条直线所截,则截线两侧内角和相等,则平行。
三、相交线的定义相交线是指在同一个平面上,会相交的两条或更多条直线。
相交线两两相交于一点,称之为交点。
相交线的性质:1.相交线之间的交角之和等于180°,即交角互补。
2.两条相交线总有一对互为垂直的直线。
3.相交线的交点称为顶点,可以通过顶点来判断直线相交的情况,包括内角和外角。
四、平行线与相交线的关系1.平行线切割相交线定理:当一条直线与两条平行线相交时,它切割的两条平行线与该直线所夹的两对内角互补。
2.内错角定理:当两条平行线被一条截线相交时,直线截线所夹的内错角相等。
3.同位角定理:同位角为同侧的内角,当两直线被另一直线切割时,同位角相等。
4.外错角定理:当两条平行线被一条截线相交时,直线截线所夹的外错角互补。
五、应用举例1.在平行四边形中,对角线互相平分。
2.平行线截割三角形:当一条线段与两条平行线相交时,它将三角形切割成两个面积相等的三角形。
3.测量高度:通过测量两个平行线之间的垂直距离来确定垂直高度。
4.道路设计:在公路设计中,平行线可以将车道分隔开,并引导交通流向。
在几何学中,平行线与相交线是解决问题和证明定理中经常用到的概念。
相交线与平行线知识点整理

相交线与平行线知识点整理相交线和平行线是几何学中常见的概念,对于理解和解决空间几何问题非常重要。
本文将对相交线与平行线的基本概念、性质和应用进行整理。
一、相交线的基本概念1. 相交线:两条线段或线相交的现象称为相交线。
2. 相交点:两条线段或线相交的点称为相交点。
3. 直线:两个不同点之间的所有点都是直线上的点。
直线无限延伸,没有起始和终止点。
4. 射线:起点固定,延伸方向唯一的直线部分,一个点和一条直线组成的图形。
二、相交线的性质1. 相交线的两条直线面对面相互穿过,相交点只有一个。
2. 相交线的两条射线面对面相互穿过,起始点相同,相交点朝向不同。
3. 相交线的两条直线分割了平面成为四个部分,称为四个角落。
三、平行线的基本概念1. 平行线:在同一个平面内,永远不会相交的线段或直线称为平行线。
2. 平行线的符号:两条平行线的符号是“||”,例如AB || CD表示线段AB与CD平行。
3. 平行关系:如果一条直线与平面内的另外两条直线都平行,那么这两条直线互相平行。
四、平行线的判定方法1. 对应角相等法则:如果两条直线被一条交线切割,且相邻两个内角互为对应角相等,则这两条直线平行。
2. 同位角相等法则:如果两条直线被一条交线切割,且同侧内角互为同位角相等,则这两条直线平行。
3. 平行线的性质:平行线的两条直线之间的距离是相等的,平行线的两个内角互为对应角相等,同位角相互等。
五、相交线与平行线的应用1. 几何证明:相交线和平行线是几何证明中常用的重要工具,可用于证明两条线段、线性、平面等之间的关系。
2. 高中数学题解:相交线与平行线的概念和性质经常在高中数学题目中出现,掌握这些知识点有助于解决相关题目。
3. 实际应用:相交线和平行线的知识在日常生活和工程设计中有广泛的应用,例如建筑设计中的平行道路规划、交通信号灯的设置等。
综上所述,相交线与平行线是几何学中的重要概念,掌握相交线的基本概念以及平行线的判定方法和性质对于解决几何问题至关重要。
平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳平行线与相交线是几何学中非常基础且重要的概念。
它们在很多几何证明和定理中都占据重要地位。
本文将对平行线与相交线的相关概念、性质和应用进行总结与归纳,帮助读者理解和掌握这些知识点。
一、平行线的概念和判定平行线是指在同一个平面内永远不会相交的直线。
平行线的概念可以通过以下方式进行判定:1. 法则一:两条直线被一条横截线所截,且内、外两侧交角相等,则这两条直线是平行线。
2. 法则二:两条直线被平行于它们的横截线所截,对应角相等,则这两条直线是平行线。
3. 法则三:两条直线的斜率相等时,它们是平行线。
二、平行线的性质1. 平行线具有传递性:如果直线a与直线b平行,直线b与直线c 平行,那么直线a与直线c也平行。
2. 平行线具有对应角相等性质:当两条平行线被横截线所截时,对应角相等。
3. 平行线具有同位角相等性质:当两条平行线被平行于它们的横截线所截时,同位角相等。
三、相交线的概念和性质相交线是指在同一个平面内相互交叉或相交的直线。
相交线的性质如下:1. 相交线的交点称为顶点,顶点两侧的角分别称为锐角、钝角或直角。
2. 相交线形成的两组对应角相等,即共鸣。
3. 相交线形成的补角相等,即一个角是另一个角的补角,它们的和等于90°。
四、平行线与相交线的应用1. 平行线与相交线在平面几何证明中经常被应用。
例如,证明两条直线平行时常常使用平行线公理和对应角相等的性质。
2. 平行线与相交线在解决实际问题中也起到重要作用。
例如,在建筑工程中,通过平行线和相交线可以确定物体的垂直、水平方向,从而保证建筑结构的稳定性和安全性。
3. 平行线与相交线还与三角形的性质有密切关系。
在研究三角形的内部角度和边的关系时,平行线与相交线的性质常常用来辅助推导和证明。
综上所述,平行线与相交线是几何学中重要的概念。
通过掌握平行线与相交线的概念、判定、性质和应用,可以帮助我们更好地理解和应用几何学知识,提高问题解决能力和证明能力。
中考数学中的平行线与相交线性质总结

中考数学中的平行线与相交线性质总结平行线与相交线是中考数学中的重要概念,它们之间存在一系列的性质和规律。
本文将对平行线与相交线的性质进行总结。
一、同位角性质在平行线与相交线形成的图形中,同位角有以下性质:1. 同位角互等性质:当两条平行线被一条相交线切割时,同位角相等。
2. 内错角互补性质:当两条平行线被一条相交线切割时,内错角互补,即它们的和为180度。
二、对顶角性质当两条平行线被一条相交线切割时,形成的对顶角具有以下性质:1. 对顶角互等性质:对顶角相等。
2. 对顶角补角性质:对顶角的补角也相等。
三、内错角性质当两条平行线被一条相交线切割时,内错角有以下性质:1. 内错角互补性质:内错角互补,即它们的和为180度。
2. 内错角对位性质:内错角的对位角也互补。
四、同旁内角和性质当两条平行线被一条相交线切割时,同旁内角和有以下性质:1. 同旁内角和等于180度:同旁内角和等于180度。
五、平行线与平行线的性质两条平行线之间的性质如下:1. 平行线具有传递性质:如果有两条平行线,其中一条与第三条线平行,则第一条线也与第三条线平行。
2. 平行线与自身平行:每一条线都与自身平行。
六、平行线与相交线的角性质1. 同位角相等性质:两条相交线与平行线所形成的同位角相等。
2. 内错角互补性质:两条相交线与平行线所形成的内错角互补。
3. 对位角相等性质:两条相交线与平行线所形成的对位角相等。
综上所述,平行线与相交线在中考数学中具有一系列的性质。
在解题过程中,我们可以利用这些性质进行推理和计算,从而快速解决问题。
熟练掌握平行线与相交线的性质,能够提高中考数学的应试能力。
因此,对这些性质进行总结和理解是非常重要的。
总之,平行线与相交线性质是中考数学中的重要内容,通过对其性质的总结,我们可以更好地应用它们解决各类问题。
在备考中考数学时,要牢记这些性质,并灵活运用于解题过程中。
只有充分理解和熟练掌握平行线与相交线的性质,才能在考试中取得好成绩。
平行线与相交线知识点总结

平行线与相交线知识点总结平行线与相交线是几何学中的重要概念,它们在解决几何问题和证明几何定理中起着重要作用。
在本文中,我将对平行线与相交线的知识点进行总结,希望能够帮助读者更好地理解和应用这些概念。
一、平行线的定义和性质平行线是指在同一个平面内永远不相交的直线。
根据平行线的定义,我们可以得到以下性质:1. 平行线具有传递性,即如果两条直线分别与一条第三条直线平行,则这两条直线也平行。
2. 平行线具有对称性,即如果一条直线与另一条直线平行,则另一条直线也与第一条直线平行。
3. 平行线与同一条直线相交的两条直线,被称为平行线的转角线,转角线上的两个内角互为对应角,且对应角相等。
二、相交线的定义和性质相交线是指在同一个平面内交于一点的两条直线。
相交线的性质如下:1. 相交线的交点被称为交点,交点所在的直线称为交线。
2. 相交线的两个内角互为对应角,且对应角相等。
3. 相交线的两个外角互为对应角,且对应角相等。
4. 相交线的两个内角和等于180度,即它们是补角。
三、平行线与相交线的关系平行线与相交线之间存在着一些重要的关系:1. 两条平行线被一条交线相交时,所成的对应角、内错角、同旁内角都相等。
2. 两条平行线被一条交线相交时,所成的同旁外角互为补角。
3. 平行线与同一条直线相交时,所成的内错角互为补角。
四、平行线与相交线的应用平行线与相交线的概念在几何学中有广泛的应用,下面举几个例子:1. 平行线的应用:在建筑设计中,我们常常需要根据已知的平行线来确定墙体、地板等的位置。
此外,在计算机图形学中,平行线的概念也被广泛应用于线的渲染和显示算法中。
2. 相交线的应用:在交通规划中,我们常常需要通过相交线来确定道路的交叉口、转弯处等位置。
此外,在计算机图形学中,相交线的概念也被广泛应用于多边形的裁剪和填充算法中。
平行线与相交线是几何学中的重要概念,它们具有一些特定的定义和性质。
了解和掌握这些知识点,对于解决几何问题和证明几何定理具有重要的意义。
相交线与平行线知识点总结

相交线与平行线知识点总结下面是大学生小编为大家分享有关相交线与平行线知识点总结,欢迎大家阅读与学习!1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角,。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与性质对顶角的性质:对顶角相等。
17.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳平行线与相交线是几何学中的重要概念,它们在解决直线与平面关系、求解角度、证明定理等问题中起着关键作用。
以下是对平行线与相交线相关知识点的总结与归纳。
一、平行线与相交线的定义平行线:在一个平面内,如果两条直线没有交点,且在这个平面内无论延长多长都不会相交,那么这两条直线称为平行线。
相交线:在一个平面内,如果两条直线在某一点相交,那么这两条直线称为相交线。
二、平行线的性质1. 平行线之间的距离相等:平行线在任意两点之间的距离都相等。
2. 平行线的倾斜角相等:如果两条直线分别与一条横线交于两个平行线上的点,那么这两条平行线的倾斜角相等。
3. 平行线与平面的交点:如果一直线与两条平行线在同一平面内相交,那么它将与这两条平行线在同侧的点分别成比例。
三、平行线与角度的关系1. 同位角:当两条平行线被一条相交线切割时,同位角的对应角是相等的。
即形成的对应角、内错角、同位角互相相等。
2. 内错角:当两条平行线被一条相交线切割时,内错角的对应角是相等的。
3. 全等三角形与平行线:如果两个三角形的对应边相等,且它们的其中一边平行,那么这两个三角形全等。
因此,对应角也相等。
四、平行线的证明方法1. 使用基本等式:例如,利用垂直线与平行线的性质,可以通过等式推导来证明平行线的存在。
2. 利用反证法:即通过假设给定的命题不成立,然后推导出矛盾来证明平行线的存在。
五、平行线与相交线的应用1. 证明几何定理:平行线与相交线常用于证明几何定理,如平行线分割三角形、平行线夹角定理等。
2. 结合实际问题:平行线与相交线的概念也可以在日常生活与工作中得到应用,如建筑设计、地理测量、交通规划等。
综上所述,平行线与相交线是几何学中的重要概念,掌握了这些知识点,我们可以更好地解决直线与平面关系、求解角度、证明定理等问题。
在学习与应用过程中,我们还可以采用不同的证明方法,灵活运用平行线与相交线的性质,丰富几何学的研究与实践。
初一七年级下册数学相交线与平行线的知识点

开学已经有几天了,新的第一章知识掌握的怎么样了呢?这一单元主要是概念和性质定理一定要理解清楚,可以在这篇文章梳理一下,一定能帮到你!一、相交线1.邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
应该结合图形进行记忆。
如图,PO⊥AB,同P 到直线AB 的距离是PO 的长。
PO 是垂线段。
PO 是点P 到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。
相交线与平行线知识点大全

相交线与平行线知识点大全一、基础概念1.相交线:当两条线在空间中有一个交点时,我们称它们为相交线。
2.平行线:当两条线在空间中没有任何交点时,我们称它们为平行线。
3.直线:无限延伸的一维物体。
二、相交线的性质1.两条相交线的交点只有一个。
2.相交线的交点与每条线上的点都是共线的。
3.直线与平面的交点是一个点或直线。
三、平行线的性质1.平行线的斜率相等。
2.平行线之间的距离是始终相等的。
3.平行线在任意一点上的两个角相等。
4.如果两条线与一条平行线的交点的两个内角相等,则这两条线平行。
四、判断相交线与平行线的方法1.观察交线的边长关系:如果两条线段相等,则这两条线段平行。
2.观察角度关系:如果两个角的对角线相等且一个角是直角,则这两条线段平行。
3.观察线段的斜率关系:如果两条线段的斜率相等,则这两条线段平行。
4.观察线段的方程:如果两条线段的方程满足平行线的定义,则这两条线段平行。
五、平行线的判定定理1.垂直平行线定理:如果一条线段与两条平行线相交,且这两条交线是垂直的,则这两条平行线是垂直平行线。
2.异面直线平行定理:如果两条异面直线有一条平行于每条还是的直线,则这两条直线平行。
3.平行线的等价定理:如果两条直线与一条平行线平行,则这两条直线平行。
六、平行线的性质定理1.平行线的平移定理:平行线的平移仍为平行线。
2.平行线的垂直定理:平行线与同一平面内的垂直线垂直。
七、平行线与角的关系1.平行线对应角定理:如果一条直线与两条平行线相交,那么对应的内角和对应的外角是互补的。
2.平行线夹角定理:如果两条平行线被一条截断,那么所截断的两条线上的对应角相等。
3.平行线内角定理:如果一条直线与两条平行线相交,那么内角的和是180度。
以上是关于相交线与平行线的知识点的详细介绍,相交线与平行线是基础几何概念,掌握这些知识点,可以帮助我们更好地理解和应用直线之间的关系。
相交线与平行线知识点总结及例题解析

相交线与平行线知识点总结、例题解析知识点1【相交线】在同一平面内,不重合的两条直线的位置关系有两种:平行和相交1、相交线相交线的定义:两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.知识点2【对顶角和邻补角】两条相交线在形成的角中有对顶角和邻补角两类,它们具有特殊的数量关系和位置关系。
1、邻补角(1)邻补角的概念:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角.如图,∠1与∠2有一条公共边OD,它们的另一条边OA、OB互为反向延长线,则∠1与∠2互为邻补角(2)邻补角的性质:邻补角互补,即和为180°。
例如:若∠1与∠2互为邻补角,则∠1+∠2=180°注意:①互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角;②相交的两条直线会产生4对邻补角。
2、对顶角(1)对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.如图,∠3与∠4有一个公共顶点O,并且∠3的两边OB、OC分别是∠4的两边OA、OD的反向延长线,则∠1与∠2互为对顶角.(2)对顶角的性质:对顶角相等.注意:两条相交的直线,会产生2对对顶角。
3、邻补角、对顶角成对出现,在相交直线中,一个角对顶角只有一个,但邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.注意:如果多条直线相交于同一点,那么产生的邻补角的数量是对顶角的2倍。
【例题1】如图所示,∠1的邻补角是( )A、∠BOCB、∠BOE和∠AOFC、∠AOFD、∠BOC和∠AOF【解析】】据相邻且互补的两个角互为邻补角进行判断,∠1是直线AB、EF相交于点O形成的角,所以它的邻补角与直线CD无关,即它的邻补角是∠BOE和∠AOF,故选B【答案】B【例题2】下面四个图形中,∠1与∠2是邻补角的是( )【答案】D【例题3】如图所示,∠1和∠2是对顶角的图形有( )A、1个B、2个C、3个D、4个【解析】考察对顶角的概念【答案】A【例题4】下列说法中:①因为∠1与∠2是对顶角,所以∠1=∠2;②因为∠1与∠2是邻补角,所以∠1=∠2;③因为∠1与∠2不是对顶角,所以∠1≠∠2;④因为∠1与∠2不是邻补角,所以∠1+∠2≠180,其中正确的有________ (填序号)【解析】对顶角、邻补角【答案】①【例题5】如图1,直线AB、CD、EF都经过点O,图中有几对对顶角?几对邻补角?【解析】考察对顶角的概念。
相交线与平行线考点及题型总结

相交线与平行线考点及题型总结第一节 相交线一、知识要点:(一)当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。
(二)余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l 十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A +∠B =180°,则∠A 、∠B 互补;反过来,若∠A 、∠B 互补,则∠A +∠B =180°.②同角或等角的补角相等.如果∠A +∠C =180°,∠A +∠B =180°,则∠B =∠C .6、对顶角的性质:对顶角相等.(三)垂直:相交的一种特殊情况是垂直,两条直线交角成90 。
1、经过直线外一点,作直线垂线,有且只有一条; 2、点到直线上各点的距离中,垂线段最短。
(四)两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):1、同位角:没有公共顶点的两个角,它们在直线AB,CD 的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;2、内错角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的两旁(即位置交错),这样的一对角叫做内错角;3、同旁内角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的同旁,这样的一对角叫做同旁内角;二、题型分析: 题型一:列方程求角例1:一个角的余角比它的补角的21少20°.则这个角为 ( ) A 、30° B 、40° C 、60° D 、75° 答案:B分析:若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解 求解:设这个角为x ,则这个角的余角是90°-x ,补角是180°-x .则根据题意,得21(180°-x )-(90°-x )=20° ; 解得:x =40°. 故应选B . 说明:处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.习题演练:1、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A 、42138、 B 、都是10 C 、42138、或4210、 D 、以上都不对 答案:A分析:两个条件可以确定两个角互补,列方程即可解得A 。
相交线与平行线最全知识点

相交线与平行线最全知识点1.平行线的定义:在平面上,如果两条直线在平面内没有交点,那么它们就是平行线。
记作AB,CD。
2.平行线性质:-平行线朝向差:平行线的两个方向向量相等。
-平行线对应角相等:如果两条平行线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-平行线的内错性:如果一条直线与一对平行线相交,那么对这两条平行线上的任意一点A及其在第一条直线上的任意一点B,有AB,CD。
-平行线的传递性:如果两条直线都与第三条直线平行,那么这两条直线也平行。
3.相交线的定义:在平面上,如果两条直线的方向向量不相等,那么它们就是相交线。
4.相交线性质:-相交线对应角相等:如果两条相交线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-相交线的交点:两条相交线的交点是它们的唯一交点。
-相交线的截距恒等:如果两条相交线与同一直线相交,那么它们在这条直线上的截距相等。
5.平行线与垂直线:-平行线与垂直线的性质:平行线与同一直线的垂线垂直;平行线的两个垂线方向向量相等。
-平行线的判定:如果两条直线的垂直方向向量相等,那么它们是平行线。
-直线倾斜角度和斜率:平行线的倾斜角度相等,斜率(如果存在)相等;垂直线的倾斜角度之和为90度,其中一个倾斜角度为负倾斜角度的倒数。
6.平行线的判定:-两条直线判定法:如果两条直线的倾斜角度相等,那么它们是平行线。
-点斜式判定法:如果一条直线的斜率k和一点在直线上,那么直线的方程为y-y1=k(x-x1);如果两条直线的斜率相等且截距不相等,那么它们是平行线。
- 截距式判定法:如果一条直线的方程为y = kx + b,那么它与直线y = kx + b1平行当且仅当b = b17.平行线的应用:-常见图形的平行线特性:矩形的对边平行,对角线相等;平行四边形的对边平行且相等,对角线互相平分。
-平行线在解题中的应用:根据平行线的性质,可以解决一些几何问题,如求证两条线段平行、证明一个四边形是平行四边形等。
第二章 相交线与平行线

第二章相交线与平行线2.1两条直线的位置关系第1课时对顶角、余角和补角基础题知识点1相交线与平行线1.在同一平面内两条直线的位置关系可能是( )A.相交B.平行C.平行或相交D.平行且相交2.如果点P在直线a上,也在直线b上,但不在直线c上,且直线a,b,c两两相交,那么符合以上条件的图形是( )A B C D知识点2对顶角3.(2017·西安期中)如图所示,∠1和∠2是对顶角的是( )A B C D4.如图,三条直线相交于点O,已知∠AOE=40°,∠DOE=100°,则∠COB=( )A.140°B.100°C.60°D.40°5.如图是一把剪刀,其中∠1=40°,则∠2=40°,其理由是 .6.如图,直线AB和CD相交于点O,OE平分∠DOB,∠AOC=40°,则∠DOE= .7.直线AB,CD相交于点O,∠1=35°,∠2=75°,求∠EOB的度数.知识点3余角和补角8.如果α与β互为余角,那么( )A.α+β=180°B.α-β=180°C.α-β=90°D.α+β=90°9.如图,∠1+∠2=( )A.60°B.90°C.110°D.180°10.下面角的图示中,可能与34°互补的是( )11.(2016·茂名)已知∠A=100°,那么∠A的补角为 .12.若∠A+∠B=180°,∠B+∠C=180°,则∠A=∠C, _____________13.(2017·西安期中)若一个角的补角是这个角的余角的3倍,则这个角为多少度?中档题14.如图,直线AB,CD,EF相交于点O,则∠1+∠2+∠3的度数等于( )A.90°B.150°C.180°D.210°15.(2016·成都校级期中)∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A.35°B.45°C.55°D.65°16.平面内有两两相交的三条直线,若三条直线最多有m个交点,最少有n个交点,则m+n等于( )A.1B.2C.3D.417.如图所示,直线a,b,c两两相交,∠1=3∠3,∠2=75°,则∠4= .18.如图,将一副三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是19.如图,要测量两堵围墙所形成的∠AOB的度数,但人不能进入围墙内,如何测量?20.如图所示,l1,l2,l3相交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.21.如图,直线AB,CD相交于点O,OE是∠COB的平分线,已知∠EOF=90°,∠AOD=70°.(1)求∠BOE的度数;(2)OF平分∠AOC吗?为什么?综合题22.观察如图所示的各角,寻找对顶角(不含平角).(1)图1中有2对对顶角,图6对对顶角,图3中有对对顶角;(2)若有n对对顶角(用含n的式子表示);(3)若有2 018条直线相交于一点,共有对对顶角.第2课时垂直基础题知识点1垂直的定义1.如图,OA⊥OB,若∠1=35°,则∠2的度数是( )A.35°B.45°C.55°D.70°2.如图,平面内三条直线相交于点O,∠1=30°,∠2=60°,直线AB与直线CD的关系是( )A.平行B.垂直C.重合D.以上均有可能3.如图,一棵小树生长时与地面所成的角∠1=80°,它的根深入泥土,如果根和小树在同一条直线上,那么∠2等于 .4.(2016·太原期中)如图,已知OA⊥OB,∠1与∠2互补,试说明:OC⊥OD.知识点2画垂线5.如图,点P是∠AOB的边OB上的一点.(1)过点P画OA的垂线,垂足为H;(2)过点P画OB的垂线,交OA于点C.解:如图所示.知识点3垂线的性质6.如图,在线段PA,PB,PC,PD中,最短的是( )A.PAB.PBC.PCD.PD7.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个8.(2016·太原期中)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是知识点4点到直线的距离9.(2016·成都期中)点到直线的距离是( )A.点到直线的垂线段的长度B.点到直线的垂线段C.点到直线的垂线D.点到直线上一点的连线10.下列图形中,线段PQ的长表示点P到直线MN的距离的是( )11.如图,已知AC⊥BC,CD⊥AB于点D,AC=3,BC=4,则点B到直线AC的距离等于4,点C到直线AB的垂线段是线段中档题12.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是( )A B C D13.如图,在△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是( )A.2.5B.3C.4D.514.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D,当AB与CD垂直时,他跳得最远.15.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为 .16.如图所示,O 是直线AB 上一点,∠AOC =13∠BOC,OC 是∠AOD 的平分线.(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由..17.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD.(1)图中∠AOF 的余角是 把符合条件的角都填出来); (2)图中除直角相等外,还有相等的角,请写出三对:(3)①如果∠AOD=160°.那么根据对顶角相等可得∠BOC= ; ②如果∠AOD=4∠EOF,求∠EOF 的度数.综合题18.在直线AB 上任取一点O ,过点O 作射线OC ,OD ,使OC⊥OD.当∠AOC=30°时,试求∠BOD 的度数. 解:①当OC ,OD 在直线AB 同侧时,如图1,∠BOD =90°-30°=60°;图1 图2②当OC ,OD 在直线AB 异侧时,如图2,∠AOD =90°-30°=60°,∠BOD =180°-∠AOD=120°. 所以∠BOD 的度数是60°或120°.2.2 探索直线平行的条件第1课时利用同位角判定两直线平行及平行公理基础题知识点1认识同位角1.下列图中,∠1与∠2是同位角的是( )A B C D2.如图,直线MN分别交直线AB,CD于点E,F,其中,∠AEF的对顶角是∠BEM,∠BEF的同位角是____.知识点2同位角相等,两直线平行3.(2017·绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°4.如图,能够判断直线AB∥CD的条件可以是( )A.∠1=∠4B.∠3=∠2C.∠1=∠3D.∠4=∠25.如图所示,用相同直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为 .6.如图所示,请你添加一个条件,使得AD∥BC,你添加的条件为7.补全下列推理过程:如图,已知BD平分∠ABC,∠1=25°,∠2=50°.试说明:ED∥BC.知识点3平行公理8.过直线l外一点A作l的平行线,可以作( )A.1条B.2条C.3条D.4条9.如果a∥b,b∥c,那么a∥c,这个推理的依据是( )A.等量代换B.经过直线外一点,有且只有一条直线与已知直线平行C.平行线的定义D.平行于同一直线的两直线平行10.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是11.如图,P,Q分别是直线EF外两点.(1)过点P画直线AB∥EF,过点Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?中档题12.已知在同一平面内的直线l1,l2,l3,如果l1⊥l2,l2⊥l3,那么l1与l3的位置关系是( )A.平行B.相交C.垂直D.以上全不对13.如图,直线a,b与直线c分别交于点M,N,∠1=120°,∠2=30°.若使直线a平行于直线b,可将直线a绕点M逆时针旋转( )A.120°B.60°C.30°D.无法确定14.下列说法中正确的个数是( )①过一点一定有一条直线与已知直线平行;②一条直线的平行线有无数条;③两条不相交的直线叫做平行线;④与一条直线平行的直线只有一条.A.0B.1C.2D.315.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有16.如图,直线AB,CD被直线GH所截,且∠AEG=∠CFG,EM,FN分别平分∠AEG和∠CFG.试说明:EM∥FN.17.一辆货车在仓库装满货物准备运往超市,驶出仓库门口后开始向东行驶,途中向右拐了50°角,接着向前行驶,走了一段路程后,又向左拐了50°角,如图所示.(1)此时汽车和原来的行驶方向相同吗?你的根据是什么?(2)如果汽车第二次向右拐的角度是40°或70°,此时汽车和原来的行驶方向相同吗?你的根据是什么?综合题18.(1)若直线a1⊥a2(2)若直线a1⊥a2)(3)现在有2 018a1与a2 018的位置关系.第2课时利用内错角或同旁内角判定两直线平行基础题知识点1认识内错角、同旁内角1.(2017·玉林)如图,直线a,b被直线c所截,则∠1与∠2是( )A.同位角B.内错角C.同旁内角D.邻补角2.下列图形中,∠1与∠2是同旁内角的是( )3.是直线,被直线知识点24.A.∠C C.∠C=∠ABC5.AB∥CD,需要添加一个条件,这个条件可以是6.如图,=∠3.试说明:AB∥CD.知识点3同旁内角互补,两直线平行7.(2016·赤峰)如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则( C )A.AB∥BCB.BC∥CDC.AB∥CDD.AB与CD相交8.如图,已知∠1=120°,要使直线a∥b,则需要具备另一个条件( )A.∠2=60°B.∠2=110°C.∠2=100°D.∠3=100°9.如图,下列说法中,正确的是( )A.∠A+∠D=180°,所以AD∥BCB.∠C+∠D=180°,所以AB∥CDC.∠A+∠D=180°,所以AB∥CDD.∠A+∠C=180°,所以AB∥CD10.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于 .11.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.中档题12.如图所示,l是l1与l2的截线,找出∠1的同位角,标上∠2,找出∠1的同旁内角,标上∠3,则∠1,∠2,∠3正确的位置图为( )13.(2017·深圳)下列选项中,哪个不可以得到l1∥l2( )(15)A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°14.若∠1与∠2是两直线被第三条直线所截形成的内错角,则∠1与∠2关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都有可能15.如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC,DB中,相互平行的线段有( )16.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC 成立的条件是( )A.①②B.③④C.②④D.①③④17.(2016·淄博)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.18.如图所示,光线从空气射入水中,再射出空气中,如果∠1=∠2,∠3=∠4,请你用所学的知识判断光线a,b 是否平行,并说明理由.综合题19.如图所示,已知∠BED=∠B+∠D,试说明AB与CD的位置关系.周周练(2.1~2.2)一、选择题(每小题3分,共24分)1.下面四个图中,∠1=∠2一定成立的是( )A BC D2.如图,已知点O是直线AB上一点,∠1=65°,则∠2的度数是( )A.25°B.65°C.105°D.115°3.如图,点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB大小为( )A.36°B.54°C.64°D.72°4.如图,下列各语句中,错误的语句是( )A.∠ADE与∠B是同位角B.∠BDE与∠C是同旁内角C.∠BDE与∠AED是内错角D.∠BDE与∠DEC是同旁内角5.(2016·成都期中)下列说法正确的是( )A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c6.体育课上,老师测量跳远成绩的依据是( )A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( )A.点B到AC的垂线段是线段CAB.CD和AB互相垂直C.AC与BC互相垂直D.线段AC的长度是点A到BC的距离8.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°二、填空题(每小题4分,共24分)9.已知∠α=35°40′,则∠α的余角为,补角为 .10.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B到AC的距离为 .11.如图,已知∠1+∠2=100°,则∠3= .12.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是 .13.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由 _____________________14.已知长方形ABCD中,∠ADB=20°,现将这一长方形纸片沿AF折叠,则当折痕AF与AB的夹角∠BAF为时,AB′∥BD.三、解答题(共52分)15.(8分)一个角的补角比这个角的余角的3倍大10°,求这个角的度数.16.(12分)如图,完成下列推理过程.(1)已知∠1=108°,∠2=72°,由∠1+∠2=108°+72°=180°,可得AB∥CD,根据是同旁内角互补,两直线平行;(2)已知∠1=108°,∠3=108°,由∠1=108°=∠3,可得AB∥CD,根据是同位角相等,两直线平行;17.(10分)(2016·江西)如图,直角三角形ABC中,∠ACB=90°,将直角三角形ABC向下翻折,使点A与点C重合,折痕为DE,试说明:DE∥BC.18.(10分)如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线l1∥l2吗?为什么?19.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72°,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系并说明理由.2.3平行线的性质第1课时平行线的性质基础题知识点1两直线平行,同位角相等1.(2017·海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为( )A.45°B.60°C.90°D.120°2.(2017·沈阳)如图,AB∥CD,∠1=50°,∠2的度数是( )A.50°B.100°C.130°D.140°3.(2016·济宁)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=50°,那么∠2的度数是( )A.20°B.30°C.40°D.50°4.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM= .知识点2两直线平行,内错角相等5.(2016·桂林)如图,直线a∥b,c是截线,∠1的度数是( )A.55°B.75°C.110°D.125°6.如图,AB∥CD,∠CDE=140°,则∠A的度数为( )A.140°B.60°C.50°D.40°7.(2017·通辽)如图,CD平分∠ECB,且CD∥AB.若∠A=36°,则∠B=°.8.(2016·郑州期末)如图所示,一艘船从A点出发,沿东北方向航行至B点,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于 .知识点3两直线平行,同旁内角互补9.如图,∠1=65°,CD∥EB,则∠B的度数为( )A.65°B.105°C.110°D.115°10.(2016·成都期中)如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°11.如图,直线AB∥CD,∠1=95°,∠4=70°,则∠3=85°,∠2= .中档题12.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60°B.120°C.150°D.180°13.(2017·枣庄)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( ) A.15° B.22.5° C.30° D.45°14.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为( )A.互余B.相等C.互补D.不等15.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,则∠GFB为度.(用关于α的代数式表示)16.(2016·绥化)如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C= .17.(2017·重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.18.如图,在三角形ABC中,DE∥AC,DF∥AB.试问:∠A+∠B+∠C=180°这个结论成立吗?若成立,试写出推理综合题19.如图1,2,3图1中,∠B图2中,∠B图3中,∠B°.通过以上练习和你的发现,依次类推,若AB∥CD,则∠B+∠E1+…+∠E n+∠D=第2课时平行线性质与判定的综合基础题知识点1综合运用平行线的性质与判定进行计算或说理1.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点.若∠1=50°,则∠2等于( )A.60°B.50°C.40°D.30°2.(2017·宿迁)如图,直线a,b被直线c,d所截.若∠1=80°,∠2=100°,∠3=85°,则∠4度数是( )A.80°B.85°C.95°D.100°3.(2017·恩施)如图,若∠A+∠ABC=180°,则下列结论正确的是( )A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠2=∠44.如图,∠1=∠2,∠A=60°,则∠ADC=5.如图,BC∥DE,∠E+∠B=180°,则AB和EF的位置关系为 .6.(2016·成都期中)已知:如图所示,AB∥DC,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC.试说明:ED∥BF.7.如图,已知∠B+∠BCD=180°,∠B=∠D.请你观察图形,写出∠E和∠DFE满足什么数量关系?并说明理由.知识点2利用平行线的性质与判定解决实际问题8.(2017·邵阳)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为( )A.120°B.100°C.80°D.60°9.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东 .10.一条建设中的高速公路要穿过一山体开挖一条隧道,甲、乙两工程队分别从山体两侧的A,B两点同时开工,现甲队从A点测得道路的走向是北偏东55°,为了不浪费人力、物力,问乙队在B点处应该按∠β等于多少度开挖,才能够保证隧道准确接通?中档题11.如图所示,下列条件不能判定直线a∥b的是( )A.∠1=∠2B.∠3=∠4C.∠1=∠4D.∠4+∠5=180°12.已知∠1=120°,∠2=60°,∠3+∠4=180°,如图所示,则在结论:①a∥b;②a∥c;③b∥c;④∠3=∠2中,正确的个数是( )A.1B.2C.3D.413.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A=120°,第二次拐的角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C等于( )A.120°B.130°C.140°D.150°14.如图,在三角形ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3= .15.如图,直线l1∥l2,∠α=∠β,∠1=40°,则 .16.如图,按下面方法折纸,然后解答问题:若∠1=40°,你能求出∠2的度数吗?试着做一做.17.如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?综合题18.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.小专题(三) 利用平行线的性质求角度【教材母题】如图,AC∥ED,AB∥FD,∠A=64°,求∠EDF的度数.【利用平行线的性质求角度时,先要找准待求角与已知角之间的位置关系,再利用平行线的性质、角之间的等量代换求出待求角的度数.1.如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,求∠3的度数.2.如图,EF∥BC,AC平分∠BAF,∠B=80°,求∠C的度数.3.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F.已知∠2=20°,求∠1的度数.4.如图,已知a∥b,∠1=50°,∠2=90°,试求∠3的度数.5.已知AB∥DE,∠B=60°,且 CM平分∠DCB,CM⊥CN,垂足为C,求∠NCE的度数.6.如图,AB∥CD,∠B=120°,EF是∠CEB的平分线,FG∥HD,求∠EDH的度数.7.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.8.如图,∠B,∠D的两边分别平行.(1)在图1中,∠B与∠D的数量关系是什么?为什么?(2)在图2中,∠B与∠D的数量关系是什么?为什么?(3)由(1)(2)可得结论:(4)应用:若两个角的两边两两互相平行,其中一个角比另一个角的2倍少30°,求这两个角的度数.图1 图22.4 用尺规作角基础题知识点1尺规作图的意义1.尺规作图是指( )A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具2.下列关于尺规的功能说法不正确的是( )A.直尺的功能是:在两点间连接一条线段,将线段向两方向延长B.直尺的功能是:可作平角和直角C.圆规的功能是:以任意长为半径,以任意点为圆心作一个圆D.圆规的功能是:以任意长为半径,以任意点为圆心作一段弧3.A.B.C.D.在射线OP知识点24.A.B.C.以∠AOBD.5.(2017·随州)OA,OB于点E,FA.以点FB.以点FC.以点ED.以点E6.求作一个角等于已知角∠AOB,如图,根据图形,写出作法.作法:(1)作射线O′B′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长(或OD的长)为半径画弧,交O′B′于点D′;(4)以点D′为圆心,以CD的长为半径画弧,交前面的弧于点C′;(5)过点C′作射线O′A′.∠A′O′B′就是所求作的角.解:作出的∠β如图所示.8.如图,已知∠AOB,点P在OA上,请以P为顶点,PA为一边作∠APC=∠O.(不写作法,但必须保留作图痕迹)解:如图.中档题9.如图,用尺规作图:“过点C作CN∥OA”,其作图依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角相等,两直线平行D.同旁内角互补,两直线平行10.已知∠1和∠2如图所示,用尺规作图画出∠AOB=∠1+∠2,保留作图痕迹.11.(2016·太原期中)如图,已知∠α和直角∠AOB,在∠AOB的内部以点O为顶点作∠β,使∠β=90°-∠α.(要求:尺规作图,不写作法,保留作图痕迹)章末复习(二) 相交线与平行线基础题知识点1对顶角、余角、补角1.下列各图中,∠1与∠2互为补角的是( )A B C D2.如图,如果∠AOB=∠COD=90°,那么∠1=∠2,这是根据( )A.直角都相等B.C.D.3.如果∠A=354.如图,直线a, .知识点25.(2016·淄博),垂足分别为点A,D,则图中能表示点到直线距离的线段共有( )A.2条条 D6.(2016·南通),OE⊥AB,∠COE=7.如图所示,想在河堤两岸搭建一座桥,搭建方式最短的是,理由是知识点3平行公理8.如图,直线a∥c,∠1=∠2,那么直线b,c的位置关系是 .知识点4平行线的性质与判定9.如图,∠1=∠B,∠2=25°,则∠D等于( )A.25°B.30°C.45°D.50°10.(2016·百色)如图,直线a,b被直线c所截,下列条件能使a∥b的是( )A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠711.如图,给出了过直线外一点画已知直线的平行线方法,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等12.已知:如图,AD∥BE,∠1=∠2,试说明:∠A=∠E.知识点5尺规作图13.如图,利用尺规,在三角形ABC的边AC上方作∠CAD=∠ACB,并说明:AD∥CB.(尺规作图要求保留作图痕迹,不写作法)解:如图所示.因为∠DAC=∠ACB,所以AD∥CB.中档题14.(2017·安徽)直角三角板和直尺如图放置.若∠1=20°,则∠2的度数为( )A.60°B.50°C.40°D.30°(15)15.如图,已知∠AEF=∠EGH,AB∥CD,则下列判断中不正确的是( )A.∠AEF=∠EFDB.AB∥GHC.∠BEF=∠EGHD.GH∥CD16.(2017·锦州)一小区大门的栏杆如图所示,当栏杆抬起时,BA垂直于地面AE,CD平行于地面AE,则∠ABC+∠BCD 的度数为( )A.180°B.270°C.300°D.360°17.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图1~4),从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.图1 图2 图3 图4A.①②B.②③C.③④D.①④18. 如图所示,AD∥EF∥BC,AC∥EN,则图中与∠1相等的角有个.19.如图,在三角形ABC中,CD⊥AB,垂足为点D,点E在BC上,EF⊥AB,垂足为点F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数.综合题20.已知AB∥CD.(1)如图1,若∠ABE=30°,∠BEC=148°,求∠ECD的度数;(2)如图2,若CF∥EB,CF平分∠ECD,试探究∠ECD与∠ABE之间的数量关系,并说明.。
(完整版)相交线与平行线知识点

第五章《相交线与平行线》知识点1.相交线同一平面中,两条直线的位置有两种情况:相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角:∠1,∠2,∠3,∠4;邻补角:其中∠1和∠2有一条公共边,且他们的另一边互为反向延长线。
像∠1和∠2这样的角我们称他们互为邻补角;对顶角:∠1和∠3有一个公共的顶点O,并且∠1的两边分别是∠3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;∠1和∠2互补,∠2和∠3互补,因为同角的补角相等,所以∠1=∠3。
所以,对顶角相等垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足。
垂线相关的基本性质:(1)经过一点有且只有一条直线垂直于已知直线;(2)连接直线外一点与直线上各点的所有线段中,垂线段最短;(3)从直线外一点到直线的垂线段的长度,叫做点到直线的距离。
2.平行线:在同一个平面内永不相交的两条直线叫做平行线。
平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。
3.同一个平面中的三条直线关系:三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点。
(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决;(2)有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。
)直线AB,CD平行,被第三条直线EF所截。
这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系:*同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;*内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;*同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:两直线平行,被第三条直线所截,同位角相等;两直线平行,被第三条直线所截,内错角相等两直线平行,被第三条直线所截,同旁内角互补。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页) 1、 相交线的概念:在同一平面内,如果两条直线只有一个 _______________ 点,A D 那么这两条直线叫做相交线,公共点称为两条直线的交点
如图1所示,直线AB 与直线CD 相交于点0. 2、 对顶角的概念:若一个角的两条边分别是另一个角的两条边的
那么这两个角叫做对顶角. 如图2所示,/ 1与/ 3、/ 2与/ 4都是对顶角.
3、 对顶角的性质: 对顶角 _________ .
4、 邻补角的概念:如果把一个角的一边 ____________ 延长,这条反向延长线与这个
角的另一边构成一个角,此时就说这两个角互为邻补角 如图3所示,/ 1与/ 2互为邻补角,由平角定义可知/ 5.1.2 1、 垂线的概念:当两条直线相交所成的四个角中,有一个角是 其中一条直线叫做另一条直线的 __________ ,它们的交点叫做 2、 垂线的性质 (1) (垂直公理)性质1:在同一平面内,经过直线外或直线上一点, 有且只有
_______ 条直线与已知直线垂直,即过一点有且只有 _____________ 条直线与已知直线 __________ . B
(2) (垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短
.即垂线段最 3、 点到直线的距离:直线外一点到这条直线的 _____________ 线段的长度,叫做点到直线的 __________ . 如图5所示,I 的垂线段P0的长度叫做点P 到 直线I 的距离. 4、 垂线的画法(工具:三角板或量角器)
画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上, ⑵二移:移动三角尺使一点落在它的另一边直角边
上,
⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线 5.1.3 同位角、内错角、同旁内角 (详见课本第 1、三线八角 两条直线被第
延长线, C 图1 C 图2 A 图3 1 + / 2 = 180° . 垂线(详见课本第 _____ 角时,就说这两条直线互相 3-5 页)
条直线所截形成
如图5,直线a,b 被直线l 所截 ①/ 1与/ 5在截线 l 的同侧, ②/ 5与/ 3在截线
I 的两旁 错角是“ Z'型 ③/ 5与/4在截线 I 的同侧, 6-7
页) P
a 个角,它们构成了同位角、内错角与同旁内角
同在被截直线 a,b 的上方,叫做 4
申图5
角(位置相同)同位角是“' F ”型
(交错),在被截直线a,b 之间(内),叫做 角(位置在内且交错)内
在被截直线 a,b 之间(内),叫做 角.同旁内角是“ U”型
2、如何判别三线八角 判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线” 有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把
图形补全.如上图6 5.2.1 平行线(详见课本第11-12页) 1、 平行线的概念:在同一平面内,不 ____________ 的两条直线叫做平行线. 2、 两条直线的位置关系 在同一平面内,两条直线的位置关系只有两种:⑴ (通常把 ______ 的两直线看成一条直线)
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:
:⑵
C
B
6
图6 D
4
3、 平行线的表示方法 平行用“ _______ ”表示,如图 记作AB// CD 读作 AB 平行于
4、 平行线的画法:
5、 平行线的基本性质
(1) 平行公理:经过直线 _
7所示,直线 AB 与直线CD 平行,
CD
一点,有且只有 _________ 条直线与已知直线 条直线平行,那么这两条直线也 平行线的判定(详见课本第12-14页) (2) 平行推理:如果两条直线都和第 5.2.2 1、平行线的判定方法: (1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角 ________________ ,两直线 ________ . 2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 内错角 ______________ ,两直线 ________ . 3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 同旁
内角 _____________ ,两直线 ________ .
.如上图8所示
(2) 判定 简称:
(3) 判定
简称: B
D
(4) 平行线的概念:同一平面内,如果两条直线没有交点(不 _________________ ),那么两直线平行.
(5) ____________________________________________________ 两条直线都和第三条直线平行』么这两条直线 ______________________________________________________________ .(平行于同一条直线的两条直线也 ___________ (6)
在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 ________ .(垂直于同一条直 线的两条直线 ________ ) 5.3.1 1、 平行线的性质: 平行线的性质(详见课本第18-19页)
(1 )两条平行线被第三条直线所截,同位角相等 (2 )两条平行线被第三条直线所截,内错角相等 (3 )两条平行线被第三条直线所截,同旁内角互补 2、 两条平行线的距离 如图10,直线 AB // CD ,EF 丄AB 于E ,EF 丄CD 简记:两直线_ 简记:两直线_ .简记:两直线 ,同位角_ ,内错角_ ,同旁内角 F, 则称线段EF 的长度为两平行线 AB 与CD 间的距离. 3、 平行线的性质与判定是互逆的关系 : 性质 ① 两直线平行I 窃 性质
②
两直线平行1 = 判定 同位角相等; 内错角相等; 5.3.2 A □o "'1
B
n L n r 1
图10 性质
③两直线平行1 = 1同旁内角互补. 判定
命题、定理(详见课本第20页) 1、 命题的概念: ______ 一件事情的语句,叫做命题 . 2、 命题的组成:每个命题都是 __________ 、 _____ 两部分组成.(1 )题设是 已知事项 ______ 的事项.
3、 命题的表述句式:命题常写成“ ............. , _______ •' 果”开始的部分是 ________ ,用“那么”开始的部分是 5.4平移(详见课本第28-29页) 1、 平移变换的概念:把一个图形 _________ 沿某一 ________方向移动,会得到一个新图形的平移变换 . 2、 平移的特征:①大小: ______ ; ②形状: ________ ; ③位置: _________ ; ④对应点的连线: __________ 且 (1) 经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等 的形状与大小都没有发生变化 . (2) 经过平移后,对应点所连的线段平行(或在同一直线上)且相等 . 事项; (2)结论是由 ”的形式.具有这种形式的命题中,用“如
自我检测
1.
如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.(
)
2.
同一平面内,一条直线不可能与两条相交直线都平行 .(
3. 两条直线被第三条直线所截,内错角的对顶角一定相等
4.
互为邻补角的两个角的平分线互相垂直 .( )
5. 两条直线都与同一条直线相交,这两条直线必相交.(
说明理由.
10.如图,AB // DE ,试问/ B 、/ E 、/ BCE 有什么关系.
解:/ B +/ E=Z BCE 过点C 作CF // AB ,
又 V AB/ DE ,AB // CF ,
即/ B +/ E=Z BCE .
.( 6.如右下图,BC AC ,CB 8cm, AC 6cm, AB
10cm,那么点A 到BC 的距离是
,点B 至y AC 的距离是
,点A 、B 两点的距离是
,点C 到AB 的距离是
7.设 a 、 b 、c 为同一平面上三条不同直线,
a) 若a//b,b//c ,则a 与c 的位置关系是 b) 若a b,b c ,则a 与c 的位置关系是 若a//b ,b c ,■则a 与c 的位置关系是
/ FOD = 28°,求/ COE 、/ AOE 、/ AOG 的度数.
9.如图,
AOC 与 BOC 是邻补角,OD 、OE 分别是 AOC 与 BOC 的平分线,试判断OD 与OE 的位置关系,并
c
O , AB 丄CD ,OG 平分/ AOE ,
11.⑴如图,已知/ 1 = Z 2 求证:a / b.⑵直线a//b,求证:
12.阅读理解并在括号内填注理
由:
如图,已知AB// CD,/ 1 =Z 2,试说明EP //
FQ.
AB //
CD,
MEB = / MFD (
又vZ
/•Z MEB-Z 1 = Z MFD -Z 2, (
即Z MEP =
•/ EP
//
13.已知DB // FG //
EC,
A是FG上一点,Z ABD = 60°,Z ACE= 36°,AP平分Z BAC,求:⑴Z BAC的大小;
⑵Z PAG的大小
14.如
图,
ABC, AD BC 于D, E为AB上一点,EF BC 于F, DG // BA交CA 于G.求证1 2.
已知
15.已知:如图Z 1 = Z 2,Z C= ZD,问Z A与Z F相等吗?试说明理由.。