湘教版中考数学知识点总结归纳Word版

合集下载

(完整word版)湘教版九年级数学上册知识点总结简洁重点的

(完整word版)湘教版九年级数学上册知识点总结简洁重点的

九(上)数学知识点覃勉第一章一元二次方程一元二次方程:只含有一个未知数x的整式方程,并且都可以化作ax2+bx+c=0(a,b,c为常数,a≠0)的形式。

(2)一元二次方程的一般式及各系数含义一般式:ax2+bx+c=0(a,b,c为常数,a≠0),其中,a是二次项系数,b是一次项系数,c是常数项。

2、分解因式法3、配方法4、公式法(1)求根公式:b2-4ac≥0时,x=a acb b24 2-±-(2)求一元二次方程的一般式及各系数的含义一、将方程化为一元二次方程的一般ax2+bx+c=0(a,b,c为常数,a≠0);二、计算b2-4ac 的值,当b2-4ac≥0时,方程有实数根(>0有两个实数根,=0两个相等实数根).当b²-4ac <0时,方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。

第三章图形的相似1、线段的比一般地,在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段2、比例的基本性质如果a/b=c/d,那么ad=bc.3、相似三角形的性质和判定角对应相等,且三条边对应成比例的两个三角形叫作相似三角形.如果△A′B′C′与△ABC相似,且A′,B′,C′分别与A,B,C对应,那么记作△A′B′C′∽△ABC,读作“△A′B′C′相似于△ABC”.相似三角形的对应边的比k叫作相似比判定定理1三边对应成比例的两个三角形相似.判定定理2两角对应相等的两个三角形相似.判定定理3两边对应成比例且夹角相等的两个三角形相似。

相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方4、相似多边形把对应角相等, 并且对应边成比例的两个多边形叫作相似多边形. 相似多边形的对应边的比k 叫作相似比.相似多边形周长的比等于相似比, 相似多边形面积的比等于相似比的平方. 取定一点O, 把图形上任意一点P 对应到射线OP (或它的反向延长线)上 一点P ′ , 使得线段OP ′与OP 的比等于常数k(k > 0), 点O 对应到它自身, 这种变换叫作位似变换 , 点O 叫作位似中心, 常数k 叫作位似比, 一个图形经过位似变换得到的图形叫作与原图形位似的图形.从位似变换和位似的图形的定义立即得出:两个位似的图形上每一对对应点都与位似中心在一条直线上,并且新图形与原图形上对应点到位似中心的距离之比等于位似比. 5、相似多边形的性质性质1 相似多边形的对应边成比例 性质2 相似多边形的对应角相等.性质3 相似多边形周长的比等于相似比, 相似多边形面积的比等于相似 比的平方.6、相似多边形的判定对应角相等, 对应边成比例的两个多边形相似.第四章、解直角三角形锐角三角函数的概念 如图,在△ABC 中,∠C=90°c asin =∠=斜边的对边A Ac bcos =∠=斜边的邻边A Ab atan =∠∠=的邻边的对边A A Aabcot =∠∠=的对边的邻边A A A锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 锐角三角函数的取值范围:0≤sin α≤1,0≤cos α≤1,tan α≥0. 锐角三角函数之间的关系(1)平方关系1cos sin 22=+A A(2)倒数关系tanA •tan(90°—A)=1 (3)弦切关系 tanA=A Acos sin cotA=AA sin cos (4)互余关系sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) 特殊角的三角函数值α sin αcos αtan αcot α30° 12 3233345° 22 221160°3212333说明:锐角三角函数的增减性,当角度在0°~90°之间变化时. (1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) (4)余切值随着角度的增大(或减小)而减小(或增大)九下 一、反比例函数反比例函数及其图象的性质1.函数解析式:() 2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大.(2)图象的位置和性质: 与坐标轴没有交点 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.二、二次函数 ✧ 相关概念及定义二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

(完整word版)湘教版初中数学知识点总复习资料

(完整word版)湘教版初中数学知识点总复习资料

教材知识梳理•系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组) 第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)第三单元函数第9讲平面直角坐标系与函数第10讲一次函数第11讲反比例函数的图象和性质3.反比例函数的图象特征4.待定系数(1)(2)(3)由两条曲线组成,叫做双曲线;图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.k例:若(a,b)在反比例函数y 的图x象上,则(-a,- b)在该函数图象上.(填在"、"不在")只需要知道双曲线上任意一点坐标,设函数解析式,代入求岀反比例函数系数k即可.知识点二:反比例系数的几何意义及与一次函数的综合k(1)意义:从反比例函数y= x(k工0图象上任意一点向x轴和y轴作垂线,垂线5.系数k的与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:几何意义3 & crw-H(1 )确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性, 可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.6.与一次函(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解数的综合(3) 在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可也可逐一选项判断、排除.(4) 比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定岀解集的范围.知识点三:反比例函数的实际应用,般步(1题意找岀自变量与因变量之间的乘积关系;(2设岀函数表达式;(3) 依题意求解函数表达式;(4) 根据反比例函数的表达式或性质解决相关问题第12讲二次函数的图象与性质例:已知反比例函数图象过点(一3,-1),则它的解析式是y=3/x.失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k < 0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比3 3例函数解析式为:y 至yx—涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义. 例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:& AOC=S △ OPE> S A BOD.知识点一:二次函数的概念及解析式关键点拨与对应举例1. 一次函数的定义形如y= ax2+ bx+ c (a,b,c是常数,a丰0的函数,叫做二次函数.例:如果函数y=(a- 1)x2是二次函数,那么a的取值范围是a工2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h) 2+k(a工0),其中二次函数的顶点坐标是(上也);③交点式:y=a(x-x 1)(x-x 2),其中X1,X2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质第16讲等腰、等边及直角三角形第17讲相似三角形分割 那么线段AB 被点C 黄金分割.其中点 C 叫做线段AB 的黄金分割 ----------------- 1 ------- 1点,AC 与AB 的比叫做黄金比. A C B害9,那么较长线段长为 5冬-1)cm .知识点二:相似三角形的性质与判定F(1)两角对应相等的两个三角形相似 (AAA). 如图,若/ A = Z D ,/ B = Z 丘,则厶ABC AB CE5.相似 三角 形的 判定 DEF.(2) 两边对应成比例,且夹角相等的两个三 角形相似. 如图,若/ A = Z D , AC AB nt ————,则△ ABC^A DEF.DF DE(3) 三边对应成比例的两个三角形相似•女口AB AC BC 图,右 ,则厶AB3A DEF. DE DF EF DB FA_ FBi CE _判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(1)对应角相等,对应边成比例. 6.相似 三角形的 性质 7.相似三 角形的 基本模 型 ⑵周长之比等于相似比,面积之比等于 相似比的平方•(3)相似三角形对应高的比、 对应角平分线的比和对应中线的比等于 相似比•IIA DABffCD B E知识点一:锐角三角函数的定义 1.锐角三 角函数 正弦: sinA —余弦: cosA =正切: tanA — 斜边 Z A 的对边 a 斜边 cZ A 的邻边 b c 度数三角函数sinA例:⑴已知△ ABC DEF , △ ABC 的周长 为3, △ DEF 的周长为2,则厶ABC 与厶DEF 的面积之比为9: 4.(2)如图,DE // BC ,AF 丄 BC, 已知 S A ADE:S △ ABC=1:4, 则 AF:AG =1 : 2.2.特殊角 的三角函 数值cosAtanA知识点二:解直角三角形DB△ BOE®ACFD第18讲解直角三角形Z A 的对边_ a ZA 的邻边=b .C --------- 5 -------------------30°_3 245° 60°-2 2_2 2(1 )熟悉利用利用相似求解问题的基本图 形,可以迅速找到解题思路,事半功倍 . (2)证明等积式或者比例式的一般方法:经常把等积式化为比例式, 把比例式的四条 线段分别看做两个三角形的对应边.然后, 通过证明这两个三角形相似,从而得出结 果.关键点拨与对应举例根据定义求三角函数值时, 一定根据题目图形来理解, 严格按照三角函数 的定义求解,有时需要通过辅助线来 构造直角三角形.(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;⑵将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3) 选择合适的边角关系式,使运算简便、准确;(4) 得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.第五单元四边形第19讲多边形与平行四边形知识点一:多边形关键点拨与对应举例1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n—3)条对角线,并且这些对角线把多边形分成了(n —2)个三角形;n边形对角线条数为n n 3.2多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解.例:(1) 若一个多边形的内角和为1440°,则这个多边形的边数为10.(2) 从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为丸边形.2.多边形的内角和、外角和(1 )内角和:n边形内角和公式为(n —2) 180 °(2)外角和:任意多边形的外角和为360°.3.正多边形(1 )定义:各边相等,各角也相等的多边形.n 2 180°(2)正n边形的每个内角为nn ,每一个外角为360 ° /n.(3 )正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点二:平行四边形的性质4.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法:3.解直角三角形的概念在直角三角形中,除直角外,一共有五个兀素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.(1)三边之间的关系:a2+ b2= c2;(2)锐角之间的关系:/ A +Z B = 90°4.解直角三角形的(3)边角之间的关系: a _ . f bsinA = =cosB=:, cosA = sinB=;, c c常用关系atan A=-. b 知识点三:解直角三角形的应用科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦•例:在Rt △ ABC中,已知a=5,sinA=30 °,贝U c=10,b=5.5.仰角、俯角、坡度、坡角和方向角(1) 仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2) 坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用a表示,则有i= tan a (如图②)(3) 方向角:平面上,通过观察点O作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点0出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角. (如图③)解直角三角形中“双直角三角形”的基本模型:(1) 叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤(1) 5.平行四边形的性质D C(3)(4)边:两组对边分别平行且相等.即AB // CD 且AB = CD, BC // AD 且AD = BC. 角:对角相等,邻角互补.即/ BAD =Z BCD,/ ABC =Z ADC ,/ ABC +Z BCD = 180。

最完整湘教版初中数学知识点归纳

最完整湘教版初中数学知识点归纳

最完整湘教版初中数学知识点归纳
一、整数和有理数
1.整数的概念和表示方法
2.整数的加法和减法运算
3.整数的乘法和除法运算
4.有理数的概念和表示方法
5.有理数的加法和减法运算
6.有理数的乘法和除法运算
二、代数式与等式
1.代数式的概念和表示方法
2.代数式的加减法运算
3.代数式的乘法运算
4.代数式的除法运算
5.等式的概念和性质
6.等式的变形与解方程
三、变量与函数
1.变量的概念和应用
2.一元一次方程的解法
3.一元一次方程组的解法
4.二次根式的概念和性质
5.二次根式的运算
6.一元二次方程的解法
四、图形的性质与变换
1.直线、线段和射线的概念
2.角的概念和性质
3.三角形的性质和分类
4.四边形的性质和分类
5.圆的概念和性质
6.图形的平移、旋转和对称
五、图形的计量
1.长度的计量和单位换算
2.面积的计算和单位换算
3.体积的计算和单位换算
4.直角三角形的边长关系
5.圆的周长和面积计算
六、相似与全等
1.相似图形的概念和性质
2.相似三角形的判定条件
3.相似三角形的性质和运用
4.全等图形的概念和判定
5.全等三角形的性质和运用
七、统计与概率
1.数据的收集和整理
2.数据的统计和分析
3.数据的表示和解读
4.概率的概念和计算
以上是湘教版初中数学知识点的一个精华版归纳。

在学习中应重点理解和掌握这些知识点,通过练习题巩固理解,并注重解题方法和思维的培养,以提高数学解题能力。

湘教版数学初三知识点总结

湘教版数学初三知识点总结

湘教版数学初三知识点总结一、有理数1. 有理数的概念有理数是指可以表示为两个整数的比值(分母不为零)的数,包括正整数、负整数、零。

2. 有理数的性质(1)有理数的加法和乘法封闭性两个有理数的和或积仍是有理数。

(2)有理数的加法和乘法交换律、结合律有理数的加法和乘法满足交换律和结合律。

(3)有理数加法逆元和乘法逆元任何有理数的相反数仍是有理数;非零有理数的倒数仍是有理数。

(4)有理数大小比较两个有理数的大小比较可以通过其表示数的大小及符号来确定。

(5)有理数的乘法有理数相乘,符号相同得正,符号不同得负。

(6)有理数的除法有理数相除,可以先化简成乘法,再进行运算。

二、整式与因式1. 整式的概念整式是由数字、字母和它们的积、商以及和所组成的代数式。

2. 整式的加减法整式的加减法符合交换律和结合律,可以将同类项合并。

3. 整式的乘法利用分配律将整式相乘,然后合并同类项。

4. 整式的因式(1)根据其计算结果分解;(2)根据其特殊的代数式分解;(3)根据构造公式分解;(4)根据取公因式分解。

三、方程与不等式1. 一元一次方程(1)解一元一次方程应注意合并同类项、去括号、去分母、移项和因式分解等。

(2)解一元一次方程应注意检验解的合理性,并讨论求解情况。

2. 一元二次方程(1)利用因式分解法、配方法、求根公式等方法解一元二次方程。

(2)解一元二次方程时应特别注意讨论解的存在性和范围。

3. 一元一次不等式(1)解一元一次不等式需要注意方程的倍增、分组、图解等方法。

(2)解一元一次不等式时应特别注意小心细致的过程和范围的讨论。

4. 一元一次方程与不等式利用方程的性质和解法,能够解决一些实际问题。

四、平面图形与几何变换1. 图形的概念及分类二维图形包括直线、射线、线段、角、多边形、圆等。

2. 三角形(1)三角形的基本性质三角形内角和为180°,三角形两边之和大于第三边,三角形两角之差小于第三角。

(2)三角形的分类根据边和角的性质,三角形可分为等边三角形、等腰三角形、直角三角形、等腰直角三角形、普通三角形等。

初中湘教版数学知识点总结归纳

初中湘教版数学知识点总结归纳

初中湘教版数学知识点总结归纳一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。

- 有理数的运算:加法、减法、乘法、除法、乘方。

- 有理数的性质:交换律、结合律、分配律。

2. 整式与分式- 整式的概念:由数和字母的有限次幂的和或差组成。

- 单项式与多项式:单项式是只有一个项的整式,多项式是多个单项式的和。

- 整式的加减:合并同类项。

- 整式的乘法:分配律的应用。

- 乘法公式:平方差公式、完全平方公式。

- 分式的概念:分子和分母都是整式的有理式。

- 分式的运算:乘除法、加减法、化简。

3. 代数方程- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。

- 二元一次方程组:含有两个未知数,每个未知数的次数都为1的方程组。

- 解方程的基本方法:代入法、消元法、加减法。

4. 函数- 函数的概念:从一个数集到另一个数集的映射。

- 函数的表示:解析式、图象、表格。

- 线性函数:y=kx+b,其中k为斜率,b为截距。

- 函数的性质:定义域、值域、单调性、奇偶性。

二、几何1. 平面几何- 点、线、面的基本性质。

- 角的概念:邻角、对角、同位角、内角、外角。

- 三角形:分类(锐角、直角、钝角三角形)、性质(三角形的内角和为180度)。

- 四边形:平行四边形、矩形、菱形、正方形的性质和计算。

- 圆的基本性质:圆心、半径、直径、弦、弧、切线。

2. 几何图形的变换- 平移:图形沿直线移动。

- 旋转:图形绕一点旋转一定角度。

- 轴对称:图形关于某条直线对称。

- 相似与全等:相似比、全等条件。

3. 解析几何- 坐标系:平面直角坐标系、点的坐标。

- 距离与斜率:两点间的距离公式、斜率的概念及计算。

- 直线的方程:点斜式、斜截式、两点式、一般式。

- 圆的方程:标准式、一般式。

三、统计与概率1. 统计- 数据的收集与整理:普查、抽样、频数分布表。

- 描述性统计量:平均数、中位数、众数、方差、标准差。

- 概率的初步认识:随机事件、概率的定义。

湘教版中考数学知识点总结归纳

湘教版中考数学知识点总结归纳

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1>有理数有理数:①整数T正整数/0/负整数②分数T正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0 (原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数犬于0,负数小于0,正数犬于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是Oo两个负数比较犬小,绝对值犬的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得Oo③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幕,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X 的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A ,那么这个数X 就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

(完整)初中数学总结(湘教版),推荐文档

(完整)初中数学总结(湘教版),推荐文档

七年级上第一章有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等 第二章代数式考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

第三章 一元一次方程考点一、一元一次方程的概念 (6分)1、方程含有未知数的等式叫做方程。

完整word版湘教版中考数学知识点总结归纳良心出品必属

完整word版湘教版中考数学知识点总结归纳良心出品必属

加法:①同号相加,取相同的符号,把绝对值相加。

②异号相初中数学知识点总结加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

一、基本知识减法:减去一个数,等于加上这个数的相反数。

㈠、数与代数乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任、数与式:A何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

、有理数1除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

负整数有理数:①整数→正整数/0/的积的运算叫做乘方,乘方的结果叫AN个相同因数乘方:求负分数②分数→正分数/ 叫次数。

叫底数,N幂,A,选(原点)数轴:①画一条水平直线,在直线上取一点表示0混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数括号里的。

轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数 2、实数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这无理数:无限不循环小数叫无理数两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的就,那么这个正数XX的平方等于A平方根:①如果一个正数两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左就X的平方等于A,那么这个数叫做A的算术平方根。

②如果一个数X ,负数小于0,正数大于负数。

0边的大。

正数大于负数没有平的平方根为0//0A的平方根。

③一个正数有2个平方根叫做绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该叫做被开方数。

叫做开平方,的平方根运算,其中A方根。

④求一个数A负数的绝对值是他的相反数、②正数的绝对值是他的本身、数的绝对值。

A就叫做A 的立方等于,那么这个数XX立方根:①如果一个数的绝对值是00。

两个负数比较大小,绝对值大的反而小。

负数的立方根是负00的立方根。

②正数的立方根是正数、的立方根是、有理数的运算:22- 1数。

湖南中考数学复习资料(湘教版)

湖南中考数学复习资料(湘教版)

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00,πφa a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

初中数学知识点总结湘教版

初中数学知识点总结湘教版

初中数学知识点总结湘教版一、数与代数1. 数的基本概念- 自然数、整数、有理数和无理数的定义及其性质。

- 整数的四则运算规则及其应用。

- 分数的意义、性质和运算。

- 小数的意义、性质和运算。

2. 代数表达式- 字母表示数的概念。

- 单项式和多项式的定义及运算。

- 代数式的基本变形,如合并同类项、分配律等。

3. 一元一次方程与不等式- 一元一次方程的建立、解法及其应用。

- 不等式的概念和基本性质。

- 一元一次不等式的解法和解集表示。

4. 二元一次方程组- 二元一次方程组的建立。

- 代入法和消元法解二元一次方程组。

- 理解方程组的解及解集的含义。

5. 函数的初步认识- 函数的概念及其表示方法。

- 线性函数、二次函数的图像和性质。

- 函数的基本运算,如函数的和、差、积、商等。

二、几何1. 图形初步- 点、线、面、体的基本概念。

- 直线、射线、线段的性质和区别。

- 角的概念、分类及其性质。

2. 平面图形- 平行线的性质和判定。

- 三角形的分类、性质和内角和定理。

- 四边形的分类、性质和对角线关系。

- 圆的基本性质、圆周角定理和垂径定理。

3. 几何变换- 平移、旋转、轴对称等基本几何变换。

- 通过几何变换解决图形的相似和全等问题。

4. 空间图形- 空间图形的基本概念和性质。

- 立体图形的表面积和体积计算。

- 棱柱、棱锥、圆柱、圆锥的结构特征。

三、统计与概率1. 统计- 数据的收集、整理和描述。

- 频数、频率的意义和计算。

- 统计图表的绘制和解读,如条形图、折线图、饼图等。

2. 概率- 随机事件的概念和分类。

- 概率的初步认识和计算。

- 通过实验和模拟理解概率的基本概念。

四、实践与应用1. 数学实践活动- 结合实际问题进行数学建模。

- 运用所学数学知识解决实际问题。

2. 数学应用题- 一元一次方程和不等式的应用。

- 二元一次方程组在实际问题中的应用。

- 函数知识在解决实际问题中的应用。

以上是湘教版初中数学的主要知识点总结,涵盖了数与代数、几何、统计与概率以及实践与应用四个方面。

初中数学湘教版知识点总结

初中数学湘教版知识点总结

初中数学湘教版知识点总结一、整数与有理数1. 整数的概念整数包括正整数、负整数和零,表示为......2. 整数的加法整数的加法包括同号数相加、异号数相加,以及加法交换律、结合律......3. 整数的减法整数的减法可以通过加法的逆运算来实现,例如a-b=a+(-b)......4. 整数的乘法整数的乘法也包括同号数相乘、异号数相乘,以及乘法交换律、结合律......5. 整数的除法整数的除法同样也可以通过乘法的逆运算来实现,例如a÷b=a×(1/b)......6. 有理数的概念有理数包括整数和分数,在数轴上可以表示为有限小数或循环小数......7. 有理数的比较有理数的比较可以通过数轴上的位置来确定大小关系,也可以通过化简、通分等方法来比较大小......二、整式与方程1. 代数式代数式是由变量和数的运算符号组成的符号串,可分为单项式、多项式、恒等式......2. 整式整式是由代数式经过加、减和乘运算得到的式子,根据乘法交换律和结合律可以进行展开和化简操作......3. 方程方程是表示两个代数式相等的式子,可以通过变形、消元等方法解得未知数......4. 一元一次方程一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程......5. 二元一次方程组二元一次方程组是指含有两个未知数的一次方程组,通过消元、代入等方法可以解得未知数的值......三、图形的认识1. 点、线和面图形由点、线和面组成,可以通过这些基本要素来构建各种图形......2. 直线、射线和线段直线是由点无限延伸而成,射线是由点有一个方向延伸而成,线段是由有限个点构成的线段......3. 角角是由两条射线共同起点构成的几何图形,可以通过度数来表示大小......4. 三角形三角形是由三条边和三个角构成的图形,可以根据边长、角度大小等属性进行分类......5. 四边形四边形是由四条边和四个角构成的图形,可以根据边长、对角线长度等属性进行分类......四、比例1. 比例的概念比例是指两个量之间的对应关系,可以用等号表示为a:b=c:d......2. 比例的性质比例具有重要性质,如比例中各个比例项的积相等、比例中的对应项成比例、比例可逆等......3. 比例的应用比例广泛应用于实际生活中,如用比例来解决生活中的问题、制作比例尺模型等......五、数的运算1. 分数的加减分数的加减可以通过找到公共分母、通分等方法来实现,然后进行数的加减运算......2. 分数的乘除分数的乘除可以通过找到公共倍数、通分等方法来实现,然后进行数的乘除运算......3. 分数的化简分数的化简是指将分子分母的公因数约去,使得分数的值不变而更简便......六、数据的处理1. 平均数平均数是指一组数值的总和除以其个数所得的值,可以用来表示数值的集中趋势......2. 中位数中位数是指一组数值按大小顺序排列后正中间的数,可以用来表示数值的集中趋势......3. 众数众数是指一组数值中出现频次最多的数,可以用来表示数值的集中趋势......七、统计与概率1. 数据的收集与整理数据的收集与整理是指对一组数据进行采集、整理、分类、汇总等操作,以便后续的统计运算......2. 错误数据的处理错误数据是指在数据收集过程中产生的错误值,可以通过排除或更正的方式来处理......3. 概率的概念概率是指在一次试验中某一事件发生的可能性,可以通过频率、古典概率等方法来计算......八、平面与立体图形1. 平面图形平面图形是指位于同一平面中的图形,包括多边形、圆、椭圆、直线、曲线等......2. 立体图形立体图形是指具有厚度、体积的图形,包括立方体、长方体、正方体、棱锥、棱柱、圆柱、圆锥、球体等......3. 图形的相似与全等图形的相似是指对应角相等、对应边成比例,图形的全等是指对应边相等、对应角相等......九、乘法和因式分解1. 一次多项式一次多项式是指多项式中的最高次项的次数为一,可以表示为y=kx+b......2. 二次根式二次根式是指形如√a、√(a+√b)、(√a+√b)/c等形式的根式......3. 乘法定理乘法定理是指两个多项式相乘后展开的规律,可以化简为每一项与每一项相乘的和......4. 因式分解因式分解是指将一个多项式拆解为两个或多个因式的乘积,可以用来求多项式的零点、化简等......以上就是初中数学湘教版的知识点总结。

(完整word版)湘教版九年级数学上册知识点总结简洁重点的

(完整word版)湘教版九年级数学上册知识点总结简洁重点的

九(上)数学知识点覃勉相似三角形周长的比等于相似比, 相似三角形面积的比等于相似比的平方第一章一兀二次方程一元二次方程:只含有一个未知数 x 的整式方程,并且都可以化作 ax 2+bx+c=0(a,b,c 为常数, 0)的形式。

(2 )一元二次方程的一般式及各系数含义一般式:ax 2+bx+c=0(a,b,c 为常数,a * 0),其中,a 是二次项系数,b 是一次项系数,c 是 常数项。

2、 分解因式法3、 配方法4、 公式法 (1 )求根公式: b .b 2 4acx=—2a(2)求一元二次方程的一般式及各系数的含义 一、将方程化为一元二次方程的一般ax 2+bx+c=0(a,b,c 为常数,a * 0);二、计算 b-4ac的值,当b 2-4ac > 0时,方程有实数根(> 0有两个实数根,=0两个相等实数根)•当b2-4ac v 0时,方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。

第三章图形的相似1、 线段的比一般地, 在四条线段中, 如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫作成比例线段2、 比例的基本性质如果a / b = c / d,那么ad = be. 3、 相似三角形的性质和判定角对应相等,且三条边对应成比例的两个三角形叫作相似三角形.如果△A'E'C '与AAEC 相似,且A', E', C'分别与A, B, C 对应, 那么记作△A'B'C's^ABC, 读作“△A'B'C '相似于AABC” .相 似三角形的对应边的比k 叫作相似比判定定理1 三边对应成比例的两个三角形相似. 判定定理2 两角对应相等的两个三角形相似 •判定定理3 两边对应成比例且夹角相等的两个三角形相似。

b 2-4ac > 0 时,4、 相似多边形把对应角相等, 并且对应边成比例的两个多边形叫作相似多边形. 相似多边形的对应边的比k叫作相似比.相似多边形周长的比等于相似比, 相似多边形面积的比等于相似比的平方.取定一点O,把图形上任意一点P对应到射线OP(或它的反向延长线)上一点P ',使得线段OP '与OP 的比等于常数k (k > 0),点O 对应到它自身, 这种变换叫作位似变换 ,点O 叫作位似中心, 常数k 叫作位似比, 一个图形经过位似 变换得到的图形叫作与原图形位似的图形•从位似变换和位似的图形的定义立即得出:两个位似的图形上每一对对应点都与位似中心在一条直线上, 并且新图形与原图形上对应点到位似中心的距离之比等于位似比. 5、 相似多边形的性质性质1相似多边形的对应边成比例 性质2相似多边形的对应角相等. 性质3相似多边形周长的比等于相似比, 相似多边形面积的比等于相似比的平方.6、 相似多边形的判定对应角相等, 对应边成比例的两个多边形相似.第四章、解直角三角形锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做 /A 的锐角三角函数锐角三角函数的取值范围: O W sin a< 1, 0< COS aW 1, tan a 》0.锐角三角函数之间的关系(1) 平方关系sin 2 A cos 2 A 1(2) 倒数关系如图,在△ ABC 中,/ C=90°sin AA 的对边斜边cos AA 的邻边斜边tan AA 的对边A 的邻边 cotAA 的邻边 A 的对边/A 的邻辺NR 的時边tan A?ta n(90 —A)=1(3)弦切关系sin A 仆cos A ta nA= cotA=-cos A si nA(4)互余关系sinA=cos(90 —A), cosA=sin(90 —A)tanA=cot(90 —A), cotA=tan(90 —A)特殊角的三角函数值a sin a cos a tan a cot a30°1273pF45°孚孚1160°"2-12矣T(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)(4)余切值随着角度的增大(或减小)而减小(或增大)阳越小,图象的弯曲度越大.九下(2)图象的位置和性质: 与坐标轴没有交点当上>0时,图象的两支分别位于一、三象限;在每个象限内, y 随x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.、二次函数相关概念及定义二次函数的概念:一般地,形如 y ax' bx c ( a , b , c 是常数,a 0 )的函数,叫做二 次函数。

九年级数学湘教版知识点

九年级数学湘教版知识点

九年级数学湘教版知识点一、整数与有理数整数表示及其运算1. 整数的概念整数是由正整数、零和负整数组成的数集,用表示。

2. 整数的运算(1) 加法运算:整数与整数相加的结果仍然是整数。

(2) 减法运算:整数与整数相减的结果仍然是整数。

(3) 乘法运算:整数与整数相乘的结果仍然是整数。

(4) 除法运算:整数之间可以进行除法运算,商不一定是整数,但可以是有理数。

有理数的表示及其运算1. 有理数的概念有理数是可以表示为两个整数之比的数,包括整数、分数和小数。

2. 有理数的运算(1) 加法运算:有理数与有理数相加的结果仍然是有理数。

(2) 减法运算:有理数与有理数相减的结果仍然是有理数。

(3) 乘法运算:有理数与有理数相乘的结果仍然是有理数。

(4) 除法运算:有理数之间可以进行除法运算,商不一定是有理数,但可以是无理数。

二、平面图形与立体图形平面图形的性质1. 正多边形正多边形是指所有边相等、所有角相等的多边形。

2. 直线和平行线(1) 直线是由无数个点连在一起而成的,不存在拐弯。

(2) 平行线是指两条直线在同一个平面上永不相交的线。

立体图形的性质1. 三视图立体图形的三视图包括俯视图、主视图和左视图,可以用来全面了解立体图形的结构和形状。

2. 立体图形的展开图立体图形的展开图是将其各个面展开为一个平面图形,便于计算和构造。

三、比例与相似比例的概念及性质1. 比例的概念比例是指两个数或量之间的相等关系,可以用等号(=)表示。

2. 比例的性质(1) 两个比例相等的四个数依次对应相等。

(2) 如果两个比例的两个对应项分别相等,则这两个比例相等。

相似的概念及判定1. 相似的概念相似是指两个图形形状相同,但大小不一样。

2. 判定相似的条件(1) 对应角相等:两个相似图形的对应角相等。

(2) 对应边成比例:两个相似图形的对应边成比例。

四、一次函数与一元一次方程一次函数与图像1. 一次函数的概念一次函数是指函数的表达式为,其中和为常数。

湘教初中数学知识点总结

湘教初中数学知识点总结

湘教初中数学知识点总结湘教版初中数学知识点总结一、数与代数1. 有理数- 有理数的定义:整数和分数统称为有理数。

- 有理数的分类:正有理数、负有理数和零。

- 有理数的运算:加法、减法、乘法、除法和乘方。

2. 整数- 整数的性质:加法交换律、结合律;乘法交换律、结合律、分配律。

- 素数与合数:素数是只能被1和自身整除的大于1的整数;合数是除了1和自身外还有其他因数的整数。

3. 分数与小数- 分数的基本性质:分数的分子和分母同时乘以或除以同一个非零数,分数的值不变。

- 小数的四则运算:小数的加法、减法、乘法和除法。

4. 代数式- 单项式与多项式:单项式是只含有乘法运算的代数式;多项式是由若干个单项式通过加减法组成的代数式。

- 代数式的加减运算:合并同类项。

- 代数式的乘法运算:单项式与单项式、单项式与多项式、多项式与多项式的乘法。

5. 一元一次方程- 方程的解法:移项、合并同类项、系数化为1。

- 实际问题中的一元一次方程:根据问题描述列出方程并求解。

6. 二元一次方程组- 方程组的解法:代入法、消元法。

- 线性方程组的应用:根据实际问题列出方程组并求解。

7. 不等式- 不等式的性质:基本性质,如不等式的两边同时加上或减去同一个数,不等号方向不变。

- 一元一次不等式:解法,包括移项、合并同类项、系数化为1。

- 一元一次不等式的解集:表示方法,如区间表示法。

二、几何1. 平面图形- 点、线、面的基本性质。

- 角的定义和分类:邻角、对顶角、同位角等。

- 三角形的性质和分类:等边三角形、等腰三角形、直角三角形和一般三角形。

- 四边形的性质和分类:平行四边形、矩形、菱形、正方形和梯形。

2. 图形的变换- 平移:图形沿直线移动,大小和形状不变。

- 旋转:图形绕一点旋转一定角度,大小和形状不变。

- 轴对称:图形关于某条直线对称。

3. 圆的基本性质- 圆的定义:平面上所有与定点等距离的点的集合。

- 圆的半径、直径、弦、弧、切线等基本概念。

湘教版数学初三知识点归纳

湘教版数学初三知识点归纳

湘教版数学初三知识点归纳一、代数与函数代数与函数是初中数学的重点内容之一。

在初三阶段,学生需要进一步学习代数与函数的知识,包括多项式函数、一次函数与二次函数的性质、函数的图像与解析式等。

1.多项式函数多项式函数是由常数与变量的乘积相加而成的函数。

常见的多项式函数有一次多项式函数和二次多项式函数。

学生需要了解多项式函数的定义、次数、系数等概念,以及多项式函数的运算法则。

2.一次函数一次函数是形如y = kx + b的函数,其中k和b是常数。

学生需要掌握一次函数的斜率和截距的概念,能够根据函数图像或已知条件确定函数的解析式。

另外,学生还需要熟练运用一次函数进行实际问题的解答。

3.二次函数二次函数是形如y = ax^2 + bx + c的函数,其中a、b和c是常数。

学生需要了解二次函数的图像特点,包括抛物线的开口方向、顶点坐标等。

此外,学生还需要学习二次函数的性质,如零点、对称轴等。

二、几何与空间几何与空间是初中数学的另一个重点内容。

在初三阶段,学生会学习三角形、四边形、圆等图形的性质与运算,以及空间几何的相关知识。

1.三角形三角形是最简单的几何图形之一,学生需要掌握三角形的定义、分类、性质等。

此外,学生还需要学习三角形的周长、面积计算方法,以及利用三角形的性质解决实际问题。

2.四边形四边形是由四条线段连接的图形,学生需要了解四边形的分类、性质等。

在学习四边形的过程中,学生需要掌握四边形的周长、面积计算方法,以及利用四边形的性质解决实际问题。

3.圆圆是由一条曲线围成的图形,学生需要了解圆的定义、性质等。

在学习圆的过程中,学生需要学习圆的直径、半径、周长、面积的计算方法,以及利用圆的性质解决实际问题。

三、数据与统计数据与统计是初中数学的另一个重要内容。

在初三阶段,学生会进一步学习数据的收集、整理和分析方法,以及统计的基本概念和方法。

1.数据的整理与分析学生需要学习数据的收集、整理和分析方法,包括频数表、频率表、条形图、折线图等。

湖南中考数学复习资料(湘教版)

湖南中考数学复习资料(湘教版)

中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00,πφa a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a叫实数a的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

湘教版初中数学知识点总结

湘教版初中数学知识点总结

湘教版初中数学知识点总结一、数与代数1. 有理数- 有理数的概念与性质- 有理数的加法、减法、乘法、除法运算- 有理数的乘方与开方- 绝对值的概念及性质- 有理数的比较大小2. 整数- 整数的概念- 整数的四则运算- 整数的性质,如奇数、偶数、质数、合数等3. 分数与小数- 分数的表示法、性质和运算- 小数的表示法、性质和运算- 分数与小数的相互转换4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘法、除法运算- 代数式的因式分解5. 一元一次方程- 方程的概念及解法- 一元一次方程的解法- 方程的应用题6. 二元一次方程组- 二元一次方程组的概念- 代入法与消元法解二元一次方程组 - 二元一次方程组的应用题7. 不等式与不等式组- 不等式的概念与性质- 一元一次不等式的解法- 一元一次不等式的解集表示- 不等式组的解法8. 函数- 函数的概念及表示方法- 正比例函数与反比例函数- 一次函数与二次函数的图像与性质 - 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质与圆周角2. 几何图形的计算- 面积与体积的计算公式- 三角形、四边形与圆的面积计算 - 长方体、正方体与圆柱的体积计算3. 相似与全等- 全等三角形的判定条件- 相似三角形的判定条件- 相似多边形与相似比4. 解析几何- 坐标系的概念与应用- 直线的方程表示- 圆的方程表示- 坐标系中的几何问题求解5. 三角函数- 三角函数的定义- 三角函数的基本关系- 三角函数的图像与性质- 三角函数的应用三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 统计图表的绘制与解读,如条形图、折线图、饼图等 - 统计量的概念,如平均数、中位数、众数、方差等2. 概率- 概率的基本概念- 随机事件的概率计算- 概率的加法公式与乘法公式- 条件概率与独立事件的概念以上是湘教版初中数学的主要知识点总结,涵盖了初中数学的核心内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结一、基本知识㈠、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X 的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母的分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。

那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X 轴的交点。

也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。

在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y 是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X 〈0时,Y的值随X值的增大而减少。

㈡空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

相关文档
最新文档