18粉体成型的基本方法和过程
材料工程基础-第六章 粉末材料的成形与固结
P0—初始接触应力 ρ—相对密度
θ0—(1-ρ) a=[ρ2(ρ-ρ0)]/θ0
成形方法
压力成形
增塑成形
浆料成形
模压成形 三轴压制 等静压成形 高能成形 挤压成形 扎膜成形 楔形压制 注射成形 车坯成形
注浆成形 热压铸成形 流延法成形 压力渗滤 凝胶铸模成形 直接凝固成形
二、压力成形 1、 模压成形
压力成形
增塑成形
挤压成形 扎膜成形 楔形压制 注射成形 车坯成形
浆料成形
二、增塑成形
1、挤压(挤出)成形: 利用压力把具有塑性的粉料通
过模具挤出来成形的,模具的形状就是成形坯体的形状。
单螺杆挤出机示意图
通心粉
➢ 2、轧膜成形(滚压或辊压成形)
将粉体和粘结剂、溶剂等置于置于轧辊上混 炼,使之混合均匀,伴随吹风,溶剂逐步挥发, 形成一层厚膜; 调整轧辊间距, 反复轧制,可制 得薄片坯料。
2、 粉末在压力下的运动行为
成形工艺主要有: 刚性模具中粉末的压制(模压) 弹性封套中粉末的等静压 粉末的板条滚压 粉末的挤压
受力过程的三个阶段
第一阶段:首先粉末颗粒发生重排; 第二阶段:颗粒发生弹塑性变形; 第三阶段:颗粒断裂。
压坯密度与压制压力的关系
在压制过程中,随着压力的增加,粉 体的密度增加、气孔率降低。人们对压 力与密度或气孔率的关系进行了大量的 研究,试图在压力与相对密度之间推导 出定量的数学公式。目前已经提出的压 制压力与压坯密度的定量公式(包括理 论公式和经验公式)有几十种之多,表 中所示为其中一部分。
成形的理论基础 粉末的工艺性能 粉末在压力下的运动行为 成形方法
一、成形的理论基础
1、粉体的堆积与排列
晶胞 BCC
材料制备技术-粉末冶金
热模锻优势:
① 粉末冶金制件精度比精锻高;
① 可制造大型零件;
② 粉末锻造节省材料、重量控制精 ② 锻件力学性能比烧结粉
确、可无非边锻造,也能制造形状较 末冶金零件高,但与粉末
复杂制件;
锻造件相当;
③ 粉末锻造只需一副成形模具和一 ③ 可制造形状复杂程度较
副锻模;热锻需两副以上锻模、一副 高的制品。
挤压(extrusion)、轧制(rolling)、拉拔(drawing)、 冲压(punching)、锻造(forging)
PM(Powder Metallurgy) 粉末冶金法 制粉(powder making)压型(pressing) 烧结(sintering)
粉末冶金特点及与其他成形工艺的比较
现代粉末冶金发展的三个重要标志:
• 1909年制造电灯钨丝的技术成功(W粉成形、烧结、锻打、 拉丝);1923年硬质合金研制成功。 • 20世纪30年代,多孔含油轴承成功;相继发展铁基机械零件 • 向新材料、新工艺发展:20世纪40年代,金属陶瓷、弥散强 化材料(如烧结铝);60年代末~70年代初,粉末高速钢、粉 末高温合金,粉末锻造技术已能生产高强度零件。
4) 成型性 Formation ability
定义:粉末压制后,压坯保持既定形状的能力 用压坯强度 表示
意义: 压坯加工能力,加工形状复杂零件的可能性 影响因素:颗粒之间的啮合与间隙
a 不规则颗粒,颗粒间连接力强, 成型性好 b 颗粒越小,成型性越好;
与压缩性影响后果相反,必须综合考虑
2.2 粉末制备方法
3) 压缩性 Compressive ability
(1) 定义: 粉末被压紧的能力,表示方法是:在恒定压 力下(30t/inch2)粉末压坯的密度
粉末锻造成型工艺过程
粉末锻造成型工艺是一种利用金属粉末进行成型的工艺。
其主要过程包括以下几个步骤:
1. 原料准备:选择适当的金属粉末作为原料,并根据产品要求进行筛选和混合。
通常会添加一定量的润滑剂和增塑剂,以提高粉末的流动性和成型性能。
2. 压制成型:将混合好的金属粉末放入特制的模具中,然后通过压力机进行压制。
压制过程中,金属粉末会被紧密地压实,形成一定形状的坯料。
3. 粉末预处理:压制成型后的坯料通常会进行一定的预处理,包括去除润滑剂和增塑剂,以及进行退火处理,以提高坯料的力学性能和成形性能。
4. 粉末锻造:将经过预处理的坯料放入特制的锻造模具中,然后通过锻造机进行锻造。
锻造过程中,坯料会受到一定的压力和温度作用,使其发生塑性变形,最终形成所需的产品形状。
5. 后处理:锻造成型后的产品通常需要进行一定的后处理,包括除去表面的氧化物和污染物,以及进行热处理、机械加工和表面处理等,以提高产品的性能和外观质量。
总的来说,粉末锻造成型工艺是一种将金属粉末通过压制和锻造等工艺步骤,以实现金属材料成型的工艺。
它可以制造出复杂形状的零件,并具有高精度、高强度和良好的表面质量等优点,因此在航空航天、汽车、机械等领域有广泛的应用。
陶瓷原位凝固胶态成形基本原理及工艺过程
陶瓷原位凝固胶态成形基本原理及工艺过程陶瓷作为一种重要的结构和功能材料,被广泛应用于化工、冶金、电子、机械、航空、航天、生物等各个领域。
陶瓷材料成型是为了得到内部均匀和高密度的坯体,提高成型技术是制备高性能陶瓷材料的关键步骤。
不同形态的陶瓷粉体应用不同的成型方法。
如何选择适宜的成型方法,主要取决于对陶瓷材料的性能要求和陶瓷粉体的自身性质(如颗粒尺寸、分布、表面积),下面小编简要介绍几种陶瓷材料成型工艺。
陶瓷材料成型工艺主要分为胶态成型工艺、固体无模成型工艺、气相成型工艺等。
认识陶瓷材料成型工艺一、胶态成型工艺1、挤压成型挤压成型是指将陶瓷粉体、粘结剂、润滑剂等与水均匀混合,然后将塑性物料挤压出刚性模具即可得到管状、柱状、板状以及多孔柱状成型体。
挤压成型优点是:工艺过程简单、适合工业化生产。
缺点是:物料强度低、容易变形,并可能产生表面凹坑和起泡、开裂以及内部裂纹等缺陷。
挤压成型广泛应用于传统耐火材料如炉管、护套管以及一些电子材料的成型生产。
2、压延成型压延成型是指将陶瓷粉体、添加剂和水混合均匀,然后将塑性物料经两个相向转到滚柱压延,而成为板状素坯的成型方法。
压延法成型优点是:密度高,适于片状、板状物件的成型。
3、注射成型陶瓷注射成型是借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成型的,成型之后再把高聚物脱除。
注射成型优点是:可成型形状复杂的部件,并且具有高的尺寸精度和均匀的显微结构。
缺点是:模具设计加工成本和有机物排除过程中的成本比较高。
目前,注射成型新技术主要有水溶液注射成型和气相辅助注射成型。
(1)水溶液注射成型水溶液注射成型采用水溶性的聚合物作为有机载体,很好的解决了脱脂问题。
水溶液注射成型技术优点是:自动化控制水平高,而且成本低。
(2)气体辅助注射成型气体辅助注射成型是把气体引入聚合物熔体中而使成型过程更容易进行。
适合于腐蚀性流体和高温高压下流体的陶瓷管道成型。
4、注浆成型注浆成型工艺是利用石膏模具的吸水性,将制得的陶瓷粉体浆料注入多孔质模具,由模具的气孔把浆料中的液体吸出,而在模具中留下坯体。
粉体制备流程
粉体制备流程粉体制备是将原料粉末通过一定的加工工艺,制备成符合要求的粉末产品的过程。
粉体制备在多个领域都有应用,比如材料科学、化学工程、制药工程等。
下面将详细介绍粉体制备的一般步骤和流程。
1. 原料准备•首先需要准备所需的原料,原料可以是固态物质、液态物质或气态物质。
原料的选择应根据所需制备的粉末特性和用途来确定。
•对于固态原料,要确保其颗粒大小和形状均匀、无结块,并且符合所需粉末的要求。
•对于液态原料,要确保其纯度高、稳定性好,并且符合所需粉末的要求。
2. 破碎和分散•如果原料是固态物质,通常需要进行破碎和分散的处理。
这可以通过机械碾磨、研磨等方法来实现。
•目的是将原料块破碎成颗粒较小的粉末,并且使得粉末分散均匀。
3. 混合和均质•粉体制备过程中,通常需要将多种原料进行混合,以得到所需的成分组合和均匀性。
•常用的混合设备有双轴混合机、容器倾斜式混合机、环保式混合机等。
•混合过程中,要控制混合时间、混合速度和混合温度,以确保混合均匀。
4. 加工和成型•经过混合的原料通常需要进行进一步的加工和成型,以得到所需的产品形态。
•加工和成型的方法有很多种,比如干压制、湿压制、注射成型等,具体的选择要根据原料性质和产品要求来确定。
5. 干燥和烧结•加工和成型后的粉末通常需要进行干燥和烧结的处理。
•干燥的目的是除去粉末中的水分,提高粉末的密实度。
•烧结是指将粉末在高温下加热,使其颗粒间形成金属键或键合,提高粉末的力学性能和化学稳定性。
6. 表面处理•在一些应用中,粉末的表面性质对最终产品的性能有重要影响。
•表面处理方法有很多种,比如涂覆、喷涂、渗透等,具体的选择要根据表面需求来确定。
•表面处理的目的是改善粉末的应用性能,比如提高粉末的润湿性、抗腐蚀性等。
7. 品质检测•粉体制备过程中,需要对产品进行品质检测,以确保产品符合要求。
•常用的品质检测方法有颗粒度分析、比表面积测试、粉末流动性测试、化学成分分析等。
•品质检测的结果将指导后续工艺的优化和改进。
粉末材料的制备成形与固结课件
三、化学气相沉积类型
热分解法
CH4气 C固 2H2气
热分解法中最为典型的就是羰基物热分解,它是一 种由金属羰基化合物加热分解制取粉末的方法,整 个过程的关键环节就是制备金属羰基化合物MeCOn
第一步:合成羰基镍
Ni固 4CO NiCO4 (气)
第二步:羰基镍热分解
NiCO4 (气) Ni 4CO
§7.2.2 物理制粉法
雾化法 蒸发凝聚法
一、 雾化制粉法
雾化法是一种典型的物理制粉方法, 是通过高压雾化介质,如气体或水强烈 冲击液流,或通过离心力使之破碎、冷 却凝固来实现的。
雾化机理
雾化 聚并 凝固
过程一:大的液珠当受到外力冲击的瞬间,破碎成 数个小液滴,假设在破碎瞬间液体温度不变,则液 体的能量变化可近似为液体的表面能增加。
➢ 离心雾化法
离心雾化法是借助离心力的作用将液态 金属破碎为小液滴,然后凝固为固态粉 末颗粒的方法。1974年,首先由美国提 出旋转电极雾化制粉法,后来又发展了 旋转锭模、旋转园盘等离心雾化方法。
旋转电极法
旋转锭模法(又称旋转坩埚法):
旋转盘法
旋转轮法
旋转杯
旋转网
雾化制粉的一些特性
按能量输入方式来划分,物理蒸发冷凝法可分为以下几种
•电阻加热方式 •等离子体加热方式 •激光加热方式 •电子束加热方式 •高频感应加热方式
§7.2.3 化学制粉法
化学气相沉积法 化学还原法 电化学制粉法
气相沉积制粉是通过某种形式 的能量输入,使气相物质发生气— 固相变或气相化学反应,生成金属 或陶瓷粉体。
绪论
绪论
颗粒
粉体
绪论
➢一次颗粒(单个颗粒):指内部没有空 隙的致密材料。
压制成型技术及其理论
颗粒承受的应力达到了颗粒的屈服极限时,颗粒发生塑性变形。外力卸 掉后,颗粒的变形仍然保存。 断裂
颗粒承受的应力达到了颗粒的断裂强度时,颗粒发生破裂。但压制应力 一般没有达到使颗粒破裂的程度。
孔隙率/%
粉末的韧性对压制性能的影响
60
50
40
1
30
20
2
10
50 100 150 200 250 300
1
排列(颗粒重排), 使拱桥效应破坏,
填充密度提高。
4
3
干压成型示意图(单向压) 1,阴模;2,上模冲; 3,下模冲;4,粉料
颗粒位移的几种形式
第3步:粉末变形
压力增大到一定程度时,颗粒产生变形。随压力增大,颗 粒依次以三种机制变形:
弹性变形 颗粒承受的应力达到了颗粒的弹性极限时,颗粒发生弹性变形。外力卸
压力/MPa
不同粉料的压缩性能 1,二氧化钍粉;2,镁粉
随着压力的增加, 粉体成型坯的孔隙率降 低;在同样压力下,镁 粉压坯中的孔隙率明显 低于二氧化钍粉压坯, 即镁坯料更容易压制。
粉末的压制理论简介
(一)基本定义
➢ 密度
= 质量/体积(g/cm3)
➢ 比容
= 1/ (cm3/g)
➢ 相对密度
(2)理想均匀压缩条件下粉末颗粒的位移规律
实际粉末颗粒层数取决于粉末体的高度H 和粉末的平
均粒度。设粉末的平均粒度为φ,粉末体高度为H,则粉
末体内颗粒层数的极限值为:。
n H
又 因为 n >> 1, 所以 n - 1 ≈ n,则
d
(dn
dn' )
H h n 1
H h n
粉末冶金原理第三部分 粉末成形技术
2 研究对象
材料设计的概念
工程应用(服役情况)→性能要求→材料 性能(经济性)设计→微观结构设计→材 质类型、加工工艺设计
研究粉末类型、加工工艺参数与材料 微观结构及部件几何性能间的关系
研究粉末冶金加工过程中 的相关工程科学问题 即研究粉末成形与烧结过 程中的工程科学问题
第一部分
4) 制粒 pelletizing or granulating 细小颗粒或硬质粉末 为了成形添加成形剂 改善流动性添加粘结剂 进行自动压制或压制形状较复杂的大 型P/M制品 粉末结块 原理 借助于聚合物的粘结作用将若干细小 颗粒形成团粒
减小团粒间的摩擦力 大幅度降低颗粒运动时的摩 擦面积 制粒方法 擦筛制粒 旋转盘制粒 挤压制粒 喷雾干燥
非模压成形 冷、热等静压,注射成形,粉 末挤压, 粉末轧制,粉浆浇注,无模成 型,喷射成 形,爆炸成形等
第一章 粉末压制 Powder Pressing or Compaction
§1 压制前粉末料准备 1) 还原退火 reducing and annealing 作用: 降低氧碳含量,提高纯度 消除加工硬化,改善粉末压制 性能(前者亦然)
2.2 弹性后效 Springback 反致密化现象 压坯脱出模腔后尺寸胀大 的现象 残留内应力释放的结果 弹性后效与残留应力相关 压制压力 粉末颗粒的弹性模量
粉末粒度组成(同一密度) 颗粒形状 颗粒表面氧化膜 粉末混合物的成份 石墨含量
3 压坯强度 Green strength
2.2 大程度应变的处理 自然应变 ε =∫LLodL/L=ln(L/Lo) 若压坯的受压面积固定不变, 则 ε =-ln[(V-Vm)/(Vo-Vm)] =ln{[(ρ mρ o)ρ ]/[(ρ m-ρ )ρ o]}
粉体材料工艺学
粉体材料工艺学全文共四篇示例,供读者参考第一篇示例:粉体材料工艺学是研究粉末冶金、陶瓷、涂料等领域中粉末加工的工艺过程和技术的学科。
粉末材料广泛应用于各种工业和科学领域,具有许多优点,如高表面积、较高的强度、耐腐蚀性和耐磨损性等。
粉体材料工艺学在现代工业中具有重要的地位。
一、粉末冶金粉末冶金是利用金属、合金或其他材料的微细粉末作为原料,通过成形、烧结和热处理等工艺形成制品的一种制造方法。
在粉末冶金中,粉末颗粒的尺寸通常控制在几微米至几十微米之间,同时也可以通过合金化、添加增强相等手段改善产品的性能。
粉末冶金具有原料利用率高、能耗低、成形精确等优点,被广泛应用于汽车、航空航天、电子等领域。
1.1 粉末制备粉末制备是粉末冶金的第一步,其质量直接影响到后续工艺的成品质量。
粉末制备方法主要有机械研磨、化学法和高能球磨等。
高能球磨是一种通过金属球和容器之间的摩擦来实现粉末制备的方法,能够获得粒径更小、形貌更均匀的粉末。
1.2 成形和烧结在粉末冶金中,成形和烧结是关键的工艺步骤。
成形可以通过压制、注射成形等方式实现,烧结是将密实和连续的粉末颗粒通过加热使之结合成坚硬的形体。
烧结是粉末冶金中最重要的工艺步骤之一,影响着成品的密度、力学性能等。
1.3 热处理热处理是粉末冶金中的最后一步工艺,通过控制加热和冷却过程,调整制品的组织结构和性能。
常见的热处理工艺包括固溶处理、淬火和回火等。
热处理可以提高制品的硬度、强度和韧性,使其具有更好的性能。
二、陶瓷陶瓷是一种非金属材料,具有耐高温、耐腐蚀、绝缘等特性,在电子、航空航天、建筑等领域有广泛应用。
陶瓷材料制品的主要成形方法包括挤压、成型和注射成型等。
瓷粉是陶瓷制品的主要原料,其质量和成形性能对产品的质量起着关键作用。
瓷粉的制备方式有干法和湿法两种,其中湿法制备是通过将原料与溶剂混合成浆料,再经过干燥形成瓷粉。
陶瓷的成形和烧结工艺相对于金属材料更为复杂,因为陶瓷材料具有较高的烧结温度和较大的收缩率。
材料化学9粉体材料及其制备技术
颗粒当量径:将颗粒以某种等量关 系转化为球形,相应得到的球的直 径称为颗粒的当量径。
颗粒当量径的定义及计算公式
1. 等体积球当量径:与颗粒具有相同体积的
球的直径
dV
3
6V
2. 等表面积球当量径:与颗粒具有相同表面
积的球的直径
dS
S
3. 比表面积球当量径:与颗粒具有相同的比
纳米磁性金属的磁化率是普通金属的20倍,饱和磁矩则是 普通的二分之一。
一些纳米颗粒的导电性能明显改善,甚至成为 高 TC 的超导体。
颗粒大小的表征
颗粒大小和形状是粉体材料最重要的物性表征量 。
颗粒的大小一般用粒径来表示。在分析粉体的粒 径时,应明确单颗粒粒径与颗粒聚集体 (粉末) 粒径的含义以及它们之间的区别
激光粉体粒度分析仪原理
激光粒度仪已经商品化,市场上主要 机型的量测范围大致是 0.05 ~ 10 m
粉体粒径也可以用光学显微镜直接量测
将粉体样品均匀平铺在光学显微镜的视场 内进行观察,可以近似确定粉体的粒径及 其分布,测试范围大致在 0.5 ~ 100 微米。
目前显微镜分析法得到了很大的改进:现 代电子技术与显微镜方法相结合,用摄像 机拍摄经显微镜放大的颗粒图像,图像信 号进入计算机内存后,计算机自动地对颗 粒的形貌特征和粒度进行分析和计算
注意这一公式中含有两个自 由变量。为实现筛网的标准 化,人们制定了一些规则。
主模系列 副模系列
根据以上规则,就可以得到一个标准筛系列: 32,42,48, 60,65,80,100,115,150,170,
200,270,325,400 目。 其中最细的是 400 目筛,孔径为 0.038 mm。
陶瓷粉体的制备流程固相法
陶瓷粉体的制备流程固相法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!陶瓷粉体固相法制备流程。
1. 原料选择和预处理,选择合适的陶瓷原料,并将其研磨成细粉。
粉体的加工工艺流程
粉体的加工工艺流程粉体加工工艺流程通常包括原料准备、粉体制备、成型、烧结、表面处理等环节。
下面将详细介绍每个环节的工艺流程。
1. 原料准备粉体加工的第一步是准备原料。
原料通常是金属、陶瓷、塑料等物质的粉末。
在原料准备过程中,需要根据产品的要求和特性准确控制原料的成分、粒度和形状。
原料准备阶段包括原料的筛分、混合和配比。
筛分是指将原料粉末按照一定的粒度范围进行分类,以保证最终产品的均匀性和稳定性。
混合和配比则是将不同成分的原料粉末按照一定的比例进行混合,以获得符合要求的配方。
2. 粉体制备粉体制备是将原料粉末通过一系列的机械或化学方法进行加工,以获得具有一定形状和粒度的粉体。
常见的粉体制备方法包括球磨、溶剂法、喷雾干燥等。
球磨是一种常用的粉体制备方法,通过在球磨机内对原料粉末进行机械研磨,使粉末颗粒逐渐细化和均匀。
溶剂法是一种将原料溶解在溶剂中,然后通过蒸发的方式得到粉末的方法。
喷雾干燥是一种将溶液或浆料通过喷雾喷入热风中,溶剂迅速蒸发,形成粉末的方法。
3. 成型成型是将粉末通过压制、注射或挤压等方法,将其压缩成具有一定形状和尺寸的坯料。
压制是最常见的成型方法,将粉末放入模具中,通过机械或液压的方式施加一定的压力,将粉末压制成坯料。
注射成型是将粉末和粘结剂混合后注入模具中,然后在一定温度下使其固化成为坯料。
挤压成型是将粉末在高压下挤出成型。
4. 烧结烧结是将成型后的粉体坯料在一定温度下进行加热,使其颗粒间发生物理或化学变化,获得具有一定密度和强度的成品。
烧结的温度和时间取决于原料的性质和成品的要求,通常在控制气氛下进行。
烧结后的成品通常具有较高的密度和强度,并且具有一定的化学稳定性。
5. 表面处理表面处理是将烧结后的成品进行涂覆、喷涂、镀层等方法,以改善其表面性能和功能。
涂覆是将涂料或油漆涂覆在成品表面,以提高其耐磨、耐腐蚀等性能。
喷涂是将粉末材料通过喷枪喷涂在成品表面,形成一层涂层。
镀层是将金属或其他材料的薄层镀覆在成品表面,以提高其导电、导热等性能。
成型过程
其他注浆成型方法
• 压力注浆 • 真空注浆 • 离心注浆
流延成型方法(Tape-Casting)
• 又称刮刀成型(Doctor-blading) • 将合适粘度的陶瓷注浆流到移动的传送带上,用可 调高度的刮刀将浆料铺展并具有一定的厚度,在表 面张力的作用下,形成表面光滑的坯料,随即干燥 、卷轴、冲片、打孔,获得薄片陶瓷坯体。 • 可制备um-mm厚的陶瓷片
模压成型过程
• 模压致密化过程3阶段:
1. 二次颗粒重排 2. 二次颗粒变形、破碎 3. 一次颗粒弹性变形
• 二次颗粒的强度要适中, 强度过低不利于颗粒重排 、压力传递及气体的排除 ;过硬没有完全破碎,颗 粒间空隙过大,密度低。
成形体断面显微形貌
• 原来球形粉体在压力作用下变 形,具有较高的堆积密度。有 些已形成一次颗粒的密堆状态 ,但是,大多数二次颗粒没有 完全破坏,二次颗粒间的缝隙 明显。
• 气流粉碎
球磨
• 在圆筒形球磨机内, 加入陶瓷粉料、球磨 介质(球或圆柱)和 水。球磨机转动时, 球与粉料撞击、研磨
,达到粉碎与混料的
作用
行星磨
• 粉体、研磨介质、 水放在球磨罐中, 球磨罐像行星一样 同时进行自转与公 转运动,研磨与混 料效率高
搅拌磨
• 粉体、小球、水在磨 中受到机械搅拌,主 要是研磨作用,适用 于超细粉
气流粉碎
• 利用在高速气流中运动 时粉体颗粒自身的相互 碰撞进行粉碎,适用于 超细粉碎。 • 污染少
干压成型
• 模压成型:将粉体放入金属模具内,上 下方向加压,使粉体堆积密度提高而成 型。 • 超细粉流动性能差,成型性能差 • 造粒:喷雾干燥造粒
喷雾干燥
• 将陶瓷浆料雾化至高温热风干燥室 内,浆料雾滴下落过程中干燥结束 ,形成几十微米的球形二次颗粒。 • 喷雾干燥粉体流动性好; • 通过添加粘结剂,可调节粉体的强 度适当
粉体制备的流程
粉体制备的流程粉体制备是一种重要的工艺过程,广泛应用于各个领域,包括材料科学、制药、食品工业、电子制造等。
它涉及将原料粉末转化为所需的颗粒形态和大小,以满足不同应用的要求。
本文将深入探讨粉体制备的流程,从原料选择到最终产品的制备,以及其中涉及的关键步骤和技术。
第一部分:原料选择在粉体制备的起始阶段,原料的选择至关重要。
原料通常是固体,可以是金属、陶瓷、聚合物或复合材料。
关键因素包括原料的纯度、粒度分布和化学性质。
原料的选择将在很大程度上影响最终产品的性能和质量。
第二部分:粉体特性分析在制备粉体之前,必须对原料进行详尽的特性分析。
这包括粒度分布、形状、表面积、密度、化学成分等参数的测定。
这些数据将有助于确定适当的加工方法和条件。
第三部分:研磨和粉碎粉体制备的下一步是通过研磨和粉碎过程将原料转化为所需的粉末。
这可以通过多种设备和方法来实现,包括球磨机、研磨机、粉碎机等。
研磨的目标是实现所需的粒度分布和粉末特性。
第四部分:混合和分散混合是将不同粉末原料混合以获得所需成分和均匀性的过程。
混合可以采用干法或湿法,具体取决于原料和产品的性质。
分散则是将粉末分散在液体介质中,以制备浆料或胶体。
这一步骤有助于确保均匀分布,并为后续工艺步骤做好准备。
第五部分:成型成型是将粉末加工成所需形状和尺寸的过程。
这可以通过压制、注塑、挤压等方法来实现。
成型的目标是获得所需的产品形态,如坯体、颗粒或块状。
第六部分:烧结和热处理对于许多粉体制备工艺,烧结和热处理是至关重要的步骤。
烧结是通过高温处理来结合粉末颗粒,使它们相互粘合。
这有助于提高产品的密度和机械性能。
热处理则可以改变产品的晶体结构,进一步调整其性能。
第七部分:表面处理表面处理是为了改善产品的表面性质,通常包括涂层、抛光或其他化学处理方法。
这有助于提高产品的耐磨性、抗腐蚀性和美观度。
第八部分:质量控制和测试在粉体制备的每个阶段,质量控制和测试都是必不可少的。
这包括粉末特性的监测、产品形状的测量、物理性能的测试等。
粉体工程技术手册
粉体工程技术手册1. 简介粉体工程技术手册是一本系统介绍粉体工程的专业手册,旨在为从事粉体工程相关领域的工程师、科研人员和学生提供全面而详细的技术指导。
本手册将涵盖粉体的基本理论、工艺和应用,深入探讨粉体的特性、制备、处理和分析等方面知识,帮助读者全面了解粉体工程技术的最新进展及实践应用。
2. 粉体特性2.1 粉体的定义和分类粉体是指固体颗粒的集合体,具有特定的粒径和表面特性。
根据颗粒大小,粉体可分为颗粒、微粉和纳米粉体等。
不同颗粒大小对粉体的特性和应用有着重要影响。
2.2 粉体性质表征粉体的性质表征是粉体工程研究的基础,包括粒径分布、粒形和比表面积等参数。
常用的表征方法有激光粒度分析仪、电子显微镜和比表面积测试仪等。
2.3 粉体流动性粉体流动性对于粉体的输送、混合和包装等工艺过程至关重要。
松装密度、堆积角和流动性指数是评价粉体流动性的重要参数,其测定和改善方法是粉体工程研究的重点之一。
3. 粉体制备技术3.1 粉体制备方法粉体制备方法多种多样,包括物理法、化学法和物理化学法等。
常见的粉体制备方法有机械合成、溶胶-凝胶法和气相法等,每种制备方法都有其适用的粉体类型和工艺条件。
3.2 粉体表面处理技术粉体表面处理技术的目的是改善粉体的表面性能,提高粉体的分散性和稳定性。
常见的表面处理方法有涂覆、改性和包覆等,这些方法能够改变粉体粒子的性质和相互之间的相互作用。
3.3 粉体纳米化技术粉体纳米化技术是粉体工程领域的前沿研究方向,通过控制合适的制备条件和工艺参数,将粉体转化为纳米颗粒。
纳米粉体具有特殊的物理和化学性质,广泛应用于电子、材料和生物医药等领域。
4. 粉体工艺与应用4.1 粉体混合与分散技术粉体混合和分散技术是工业生产中常用的工艺,其目的是将不同粉体均匀混合或将粉体分散于基体中。
常见的混合和分散设备有搅拌器、球磨机和超声波分散器等。
4.2 粉体造粒技术粉体造粒技术是将粉体颗粒进行成型和固化的过程,常见的造粒方法有压片法、喷雾干燥法和烧结法等。
附聚成型法主要工艺过程(3篇)
第1篇一、概述附聚成型法是一种将粉末材料通过添加粘结剂、助剂等,使其在一定条件下形成具有一定形状和尺寸的制品的工艺方法。
该方法具有生产成本低、操作简便、制品强度较高、可塑性好等优点,广泛应用于陶瓷、塑料、橡胶、金属等材料的成型加工中。
本文将详细介绍附聚成型法的主要工艺过程。
二、主要工艺过程1. 原材料准备(1)粉末材料:根据制品的性能要求,选择合适的粉末材料,如陶瓷材料、塑料粉末、橡胶粉末等。
(2)粘结剂:选择具有良好粘结性能、成型性能和耐热性的粘结剂,如水玻璃、聚乙烯醇、聚丙烯酸等。
(3)助剂:根据需要,添加适量的助剂,如增塑剂、分散剂、润滑剂等,以提高制品的性能。
2. 混合搅拌将粉末材料、粘结剂和助剂按一定比例混合,在搅拌机中进行充分搅拌,使各组分均匀分散。
搅拌过程中,需注意以下事项:(1)控制搅拌时间,避免过搅拌导致粉末结构破坏,影响制品性能。
(2)调整搅拌速度,使粉末材料、粘结剂和助剂充分混合。
(3)保持搅拌温度在适宜范围内,避免高温导致粘结剂分解或粉末结构破坏。
3. 成型根据制品的形状和尺寸要求,选择合适的成型方法,如压制成型、注塑成型、挤出成型等。
以下详细介绍几种成型方法:(1)压制成型:将混合均匀的物料放入模具中,施加一定的压力,使物料填充模具空腔,形成具有一定形状和尺寸的制品。
压制成型过程中,需注意以下事项:a. 控制压力,避免压力过大导致制品变形或损坏。
b. 控制成型时间,确保物料充分压实。
c. 选择合适的模具材料,提高模具使用寿命。
(2)注塑成型:将混合均匀的物料加热熔化,通过注塑机将熔融物料注入模具空腔,冷却固化后形成制品。
注塑成型过程中,需注意以下事项:a. 控制物料温度,确保物料具有良好的流动性。
b. 调整注塑速度,避免过快或过慢导致制品质量不稳定。
c. 选择合适的模具材料和注塑机设备。
(3)挤出成型:将混合均匀的物料加热熔化,通过挤出机将熔融物料挤出,冷却固化后形成制品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程特点: ①随着压制力的继续增大,当压力达到和超过粉末颗粒的强度极限,粉末颗粒 将发生塑形变形(对于脆性粉末来说,不发生碎塑性变形而出现脆性断裂), 直到达到具有一定密度的坯块。 ②由于接近加压端面的部分压力最大,远离加压端面压力逐渐降低,这种压 力分布的不均匀性造成了压坯各个部分粉末致密化不均匀。
3、去除压力,施加脱模压力
现象: ①去除压力后,压坯仍会紧紧的固定在钢压膜内
②压坯中聚集的内应力使压坯产生弹性后效现象
三、影响粉体压制成形的因素
1、粉末本身的特性起关键性作用
压制成形是一个十 分复杂的过程 Nhomakorabea2、 压制力起着决定性的作用
金属材料工程基础知识 一、粉体成型的原理 二、粉体成型的过程 三、影响粉体压制成形的因素
的预成形坯中,底部和顶部的密度有很大差异,这种密 度差随预成形高度的增加而增加,随直径的增大而减小。
解决方法:若使用润滑剂可以减少粉粉末批量与莫蒂之间的摩
擦力,也可以降低沿高度方向的密度不均匀程度
双向压制
浮动凹模压制
轧制成形
二、粉体成型的过程
1、将松散的粉末装在钢压膜内 2、对钢压模中粉末施加压力
金属材料工程第十八讲
胡燕燕
一、粉体成型的原理
粉体成型是指将粉末状的材料制成具有一定形状,尺寸,孔隙 率以及强度的预成形坯体的加工过程。
成型方法
不同材料因其物 理化学特性不同, 所采用的成型方 法与技术并不完 全相同
模压成形 钢模压制成形
等静压成形
单向压制 是指压力施加在粉末配料的上顶部
特点:粉末批料与凹模之间的摩擦,使得在经单向压制所得到