最新人教版初中数学常用概念、公式和定理
人教版初中数学概念公式与定理大全
人教版初中数学概念公式和定理大全1.把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转。
点O叫旋转中心,转动的角叫旋转角,转动方向有顺时针和逆时针两种。
2.旋转的性质:①对应点到旋转中心距离相等。
②对应点与旋转中心所连线段的夹角等于旋转角。
③旋转前后图形全等。
3.把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称。
这个点叫对称中心,对应点叫做关于中心的对称点。
4.中心对称性质:①中心对称的两个图形全等。
②中心对称的两个图形,对称点所连线段都经过对称中心,且被对称中心所平分。
5.把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
6.平面直角坐标系中,A点(x,y)关于原点对称的B点坐标为(-x,-y)。
四、圆18.在一个平面内,线段OA绕它固定的一个断点O旋转一周,另一个端点A所形成的图形叫做圆,O叫做圆心,线段OA叫做半径。
圆也可以看成是所有到定点的距离等于定长的点的集合。
19.连接圆上任意两点的线段叫做弦。
经过圆心的弦是直径,直径是最长的弦。
20.圆上任意两点间的部分叫做弧。
弧分三种:①大于半圆的弧,叫做优弧;②小于半圆的弧,叫做劣弧;③圆的直径所对的每一条弧,叫半圆。
21.能够重合的两个圆叫等圆。
半径相等的圆是等圆,同圆或等圆半径相等。
在同圆或等圆中,能够互相重合的弧叫做等弧。
22.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
垂径定理的推论:平分不是直径的弦的直径垂直于弦,并且平分弦所对的两条弧。
23.顶点在圆心的角叫圆心角。
在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。
24.顶点在圆上,并且两边都与圆相交的角叫圆周角。
圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
圆周角定理的推论:①在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。
人教版初中数学公式
人教版初中数学公式
以下是人教版初中数学公式的常见内容:
1. 一元一次方程:对于方程ax + b = 0,其中a≠0,则x = -b/a。
2. 一元二次方程:对于方程ax^2 + bx + c = 0,其中
a≠0,则x = (-b ± √(b^2 - 4ac)) / 2a。
3. 平方差公式:(a + b)(a - b) = a^2 - b^2。
4. 完全平方公式:(a + b)^2 = a^2 + 2ab + b^2。
5. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。
6. 直角三角形:勾股定理a^2 + b^2 = c^2,其中a、b 代表直角边的长度,c代表斜边的长度。
7. 同角三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等的关系。
8. 面积公式:矩形的面积A = 长× 宽,三角形的面积A = (底边× 高) / 2,圆的面积A = πr^2等。
以上只是人教版初中数学公式的一部分,实际上还有很多其他内容。
人教版初中数学公式、定理大全
初中数学公式、定理大全1、一元二次方程根的情况△=b2-4ac(前提必须化成一般形式ax2+bx+c=0)当△>0时,一元二次方程有2个不相等的实数根当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形。
矩形与正方形①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行 10、内错角相等,两直线平行11、同旁内角互补,两直线平行 12、两直线平行,同位角相等13、两直线平行,内错角相等 14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SS有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)33、推论3等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
新人教版初中数学公式总结
新人教版初中数学公式总结
数学是一门需要掌握各种公式的学科。
下面是新人教版初中数学课程中的一些常用公式总结:
1. 平方公式
对于一个数a,其平方可以表示为a^2。
2. 立方公式
对于一个数a,其立方可以表示为a^3。
3. 一元一次方程公式
一元一次方程的一般形式为ax + b = 0。
其中,a和b都是已知常数,x是未知数。
解方程的步骤是将方程整理为ax = -b,然后求得x的值。
4. 一元一次不等式公式
一元一次不等式的一般形式为ax + b > 0或ax + b < 0。
其中,a和b都是已知常数,x是未知数。
解不等式的步骤是将方程整理为ax > -b或ax < -b,然后确定x的取值范围。
5. 二元一次方程公式
二元一次方程的一般形式为ax + by = c,dx + ey = f。
其中,a、b、c、d、e和f都是已知常数,x和y是未知数。
解方程的步骤是
先用一种方法将其中一个变量表示出来,然后将它代入另一个方程,求解得到另一个变量的值。
6. 相似三角形公式
相似三角形有相似比。
如果两个三角形的对应角相等,并且对
应边成比例,那么它们相似。
相似三角形的相似比等于对应边的长
度比。
以上是新人教版初中数学课程中的一些常用公式总结。
通过掌
握这些公式,能够更好地解决数学问题。
希望这份总结对你有帮助!。
人教版初一年级初中数学公式
初中数学常用的概念、公式和定理整数(包括:正整数、0、负整数)和分数(包括:有限小和无限环循小数)都是有理数.如:-3,-,0.231,0.737373…,,.无限不环循小数叫做无理数..如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.1.绝对值:a≥0丨a丨=a;a≤0-丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位.如:已知=0.4858,则-=48.58;已知=1.558,则-=0.1588.6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.7.幂的运算性质:①a m×a n=a m+n. ②a m÷a n=a m-n.③(a m)n=a mn. ④(ab)n=a n b n.⑤()n=n. ⑥a-n=n,特别:()-n=()n. ⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=(-)2=,(-3.14)0=1,(--)0=1.8.乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2. ②(a±b)2=a2±2ab+b2. ③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab, (a-b)2=(a+b)2-4ab.9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平方-差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止.10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.11.二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.12.一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=,其中=b2-4ac叫做根的判别式.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有个相等的实数根;当Δ<0时,方程没有实数根.注意:当Δ≥0时,方程有实数根.③若方程有两个实数根x1和x2,则x1+x2=-,x1x2=,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).④以a和b为根的一元二次方程是x2-(a+b)x+ab=0.13.解分式方程(去分母或换元)和无理方程(两边平方或换元)必须检验.形如:-的方程组,用代入法解;形如:的方程组,先把一个方程分解为两个一次方程,再把这两个方程分别与另一个方程组合成两个方程组,再用代入法分别解这两个方程组.14.不等式两边都乘以或除以同一个负数,不等号要改变方向.15.平面直角坐标系:①各限象内点的坐标如图所示.②横轴(x轴)上的点,纵坐标是0;纵轴(y轴)上的点,横坐标是0.③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数);关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数);关于原点对称的两个点,横坐标、纵坐标都互为相反数.16.一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx又叫做正比例函数(y与x成正比例),图象必过原点.17.反比例函数y=(k ≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(从左向右降);当k<0时,双曲线在二、四象限(从左向右上升).因此,它的增减性与一次函数相反. 18.二次函数y=ax 2+bx+c(a ≠0)的图象叫做抛物线(c 是抛物线与y 轴的交点的纵坐标).①a>0时,开口向上;a<0时,开口向下.②顶点坐标是(-,),对称轴是直线x=-.特别:抛物线y=a(x -h)2+k 的顶点坐标是(h,k),对称轴是直线x=h.注意:求解析式的设法 ①已知三个点的坐标,则设为一般形式y=ax 2+bx+c;②已知顶点坐标(h,k),则设为顶点式y=a(x -h)2+k;③已知抛物线与x 轴的两个交点坐标(x 1,0)和(x 2,0),则设为交点式y=a(x -x 1)(x -x 2).19.抛物线与x 轴的位置关系: 对于抛物线y=ax 2+bx+c ①Δ<0时,它与x 没有交点.②Δ=0时,它与x 轴只有一个交点(与x 轴相切).③Δ>0时,它与x 轴有两个交点(x 1,0)和(x 2,0),其中x 1和x 2是方程ax 2+bx+c=0的两个根.20.统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:①平均数=(x 1+x 2+…+x n ).②方差S 2=[(x 1-)2+(x 2-)2+…+(x n-)2.(是整数时用)③S 2=[(x 12+x 22+…+x n 2)-n(-)2].注:各数据的数位较少或平均数是分数时,用此公式.④若将n 个数x 1,x 2,…,x n 各减去一个适当的数a,得到一组新数x 1,,x 2,,…,x n ,,那么原来那组数的方差S 2=这组新数的方差,平均数=a+,.方差越大,这组数据的波动就越大.通常用样-本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准差 (3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1.21.锐角三角函数:①设∠A 是Rt Δ的任一锐角,则∠A 的正弦:sinA=,∠A 的余弦:cosA=,∠A 的正切:tanA=,∠A 的余切:cotA=. 并且sinA=cosB,tgA=ctgB,-tgActgA=1,-sin 2A+cos 2A=1.0<sinA<1,-0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A 的正弦和正切值越大,余弦和余切值反而越小. ②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,-tg(900-A)=ctgA,ctg(900-A)=-tgA.③特殊角的三角函数值:-sin300=cos600=,sin450=cos450=-,sin600=cos300=,sin00=cos900=0,sin900=cos00=1,tg300=ctg600=,tg450=ctg450=1-,tg600=ctg300=-,tg00=ctg900=0. ④斜坡的坡度i==.设坡角为α,则i=tg α=.22.三角形:(1)在一个三角形中:等边对等角,等角对等边.(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.(3)在Rt Δ中,斜边上的中线等于斜边的一半.(4)证明一个三角形是直角三角形的方法有:①先证明有一个角等于900.②先证明最长边的平方等于另两边的平方和.③先证明一条边的中线等于这条边的一半.(5)三角形的中位线平行于笫三边,并且等于笫三边的一半. (6)等腰三角形中,顶角的平分线与底边上的中线和高互相重合.23.四边形:(1)n 边形的内角和等于(n -2)1800,外角和等于3600. (2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分.(3)证明一个四边形是平行四边形的方法有:①先证两组对边平行.②先证两组对边相等. ③先证一组对边平行且相等.④先证两条对角线互相平分.⑤先证两组对角分别相等.(4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等.(5)证明一个四边形是矩形的方法有:①先证明它有三个角是直角.②先证它是平行四边形,再证它有一个角是直角或对角线相等.(6)证明一个四边形是菱形的方法有:①先证明它的四条边相等.②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直.(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质.(8)梯形的中位线平行于两底并且等于两底之和的一半.(9)轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正方形,正多边形,圆.中心对称图形有:线段,平行四边形,矩形,菱形,正方形,边数是偶数的正多边形,圆.24.证明两个三角形相似的方法有:①先证两组对应角相等.②先证两边对应成比例并且夹角相等.③先证三边对应成比例.④先证斜边和一条直角边对应成比例.相似三角形的性质:对应高的比,对应角平分线的比,对应中线的比,周长的比,都等于相似比.面积的比等于相似比的平方.25.平行切割定理:①如图1,DE∥BC=.②如图2,若AB∥CD∥EF则=-,=.26.射影定理:如图3,ΔABC中,若∠ACB=900,CD⊥AB,则:①AC2=AD·AB.②-BC2=BD·BA.③AD2=DA·DB.27.圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它所对应的其余三组量都分别相等.(4)圆心角的度数等于它所对的弧的度数.(5)一条弧所对的圆周角等于它所对的圆心角的一半.(6)圆周角等于它所对的弧的度数的一半.(7)弦切角等于它所夹的弧的度数的一半.(8)同弧或等弧所对的圆周角相等.(9)在同圆或等圆中,相等的圆周角所对的弧相等.(10).900的圆周角所对的弦是直径.(11)圆内接四边形的对角互补,外角等于它的内对角.28.直线和圆的位置关系:(1)若⊙O的半径为r,圆心到直线L的距离为d,则:①d<r直线L和⊙O相交.②d=r直线L和⊙O相切.③d>r-直线L和⊙O相离.(2)切线的判定定理:经过半径外端并且垂直这条半径的直线是圆的切线.反之:切线垂直过切点的半径.(3)切线长定理,弦切角定理,相交弦定理及其推论,切割线定理及其推论.(4)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.(5)RtΔ的内切圆的半径R内=-,任意多边形的内切圆的半径R内=.(6)圆外切四边形的一组对边的和等于另一组对边的和.29.圆和圆的位置关系:(1)设两圆半径为R和r,圆心距为d,则:①d>R+r两圆外离.②d=R+r两圆外切.③R-r<d<R+r(R≥r)两圆相交.④d=R-r两圆内切.⑤d<R-r两圆内含.30.圆中常作的辅助线:(1)两圆相交,常作公共弦,连心线.(2)两圆相切,常作公切线,连心线.(3)已知切线,常过切点作半径.(4)已知直径,常作直径所对的圆周角.(5)求解有关弦的问题,作弦心距.(6)弧的中点常和圆心连结.31.各顶点等分圆周正n边形各边相等,各角相等,且每个内角=度,中心角=外角=度.32.面积公式:①S正Δ=×(边长)2.②S平行四边形=底×高.③S菱形=底×高=×(对角线的积)④S圆=πR2.⑤C圆周长=2πR.⑥弧长L=.⑦S扇形==LR.⑧S圆柱侧=底面周长×高.⑨S圆锥侧=×底面周长×母线=πrR,并且2πr=(如上图).。
人教版初中数学常用概念、公式和定理
初中数学重要的概念、公式和定理第一章有理数正数:大于0的数叫正数负数:小于0的数叫负数有理数:整数和分数统称有理数数轴:规定了方向、原点、单位长度的一条直线。
相反数:只有符号不同的两个数叫相反数。
(例a a -与)绝对值:数轴上一个数到原点的距离叫绝对值。
(负数正数〉〉0,两个负数,绝对值大的反而小)互为相)(c b a ++ 倒数:)(bc a = c b a +)(0。
乘方:求n 叫指数)0次幂都是0。
数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.有理数的混合运算:先算乘除、后算加减、有括号的先算括号、有乘方的先算乘方。
第二章整式的加减单项式:数或字母的积叫单项式,单独的一个数或一个字母也叫单项式。
单项式的系数:单项式中的数字因数。
(π不能看作字母)单项式的次数:单项式中所有字母指数的和。
多项式:几个单项式的和叫多项式。
其中每个单项式叫多项式的项,来含字母的项叫常数项。
多项式的次数:多项式里次数最高项的次数叫多项的次数。
单项式和多项式统称整式。
同类项:所含字母相同,并且相同字母的指数也相同的项叫同类项。
(常数项都是同类项) 合并同类项:字母部分不变,系数相加。
(把几个同类项合并成一项叫合并同类项。
)去括号:括号前面是正号,去括号后括号内各项的符不变;括号前面是负号,去括号后括号内各项要变号。
第三章一元一次方程方程:含有未知数的等式叫方程。
一元一次方程:只含有一个未知数,并且未知数的最高次数是一次的方程叫一元一次方程。
方程的解:使方程等号两边相等的未知数的值。
等式的性质:1、等式两边加上(减去)同一个数(或式子),结果仍相等。
若b a =,则c b c a ±=±2、等式两边乘同一个数,或除以同一个来为0的数,结果仍相等。
若b a =,则bc ac =;若b a =,则)0(≠=c c b c a解方程的一般步骤或方法:去分母;角: 余角:补角:邻补角:对顶角:命题:定理:有序数对:把有顺序的两个数组成的数对叫做有序数对。
初中数学概念、定义、定理、公式大全(最新版)
初中数学概念、定义、定理、公式第二版逻辑与命题1.仅凭实验、观察、操作得到的结论有时是不深入的、不全面的,甚至是错误的。
2.判断某一件事情的句子叫做命题。
3.如果条件成立,那么结论成立,像这样的命题叫做真命题。
4.条件成立时,不能保证结论总是正确的,也就是说结论不成立,像这样的命题叫做假命题。
5.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题。
其中一个命题称为另一个命题的逆命题。
数系及运算1.正数是比0大的数。
2.负数是比0小的数。
3.0既不是正数,也不是负数。
4.数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。
5.符号不同、绝对值相同的两个数互为相反数,其中一个是另一个的相反数。
6.0的相反数是0。
7.两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
8.有理数加法法则同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两数和为0。
一个数与0相加,仍得这个数。
9.有理数加法运算律交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)10.有理数减法法则减去一个数,等于加上这个数的相反数。
11.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘都得0。
12.有理数乘法运算律交换律:a*b=b*a结合律:(a*b)*c=a*(b*c)分配率:a*(b+c)=a*b+a*c13.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。
14.有理数的乘方求相同因数的积的运算叫做乘方,乘方运算的结果叫幂。
15.16.正数的任何次幂都是正数。
负数的奇数次幂是负数,负数的偶数次幂是正数。
17.一个大于10的数可以写成的形式,其中1≤a<10,n是正整数,这种记数法称为科学计数法。
18.有理数混合运算顺序先乘方,再乘除,最后加减。
初中数学全部定义定理公式
初中数学全部定义定理公式
一、定义
1、数:由数字表示的量或标志符号,用来代替实物,并用来计算、比较和研究事物的结果或关系。
2、集合:按照其中一种特征组织起来的一系列元素的有序统一体。
3、元素:又称成员,是组成集合的基本和最小单位。
4、空集:没有任何元素的集合称为空集,表示为∅。
5、并集:两个集合的所有元素的结合体。
表示为A∪B,即A和B的“或”集合。
6、交集:两个集合的公共部分,表示为A∩B,即A和B的“且”集合。
7、补集:指一个集合中不属于另一个集合中的元素与另一个集合相对应的集合,表示为A-B。
8、差集:指两个集合A和B中不同时属于两个集合的元素的集合,表示为A\B。
9、概率:是指在一定条件下,随机事件发生的可能性的大小指标。
10、函数:在其中一变量与另一变量之间关系的函数用等号表示,叫做函数。
二、公式
1、交集的公式:A∩B={x,x∈A且x∈B}
2、并集的公式:A∪B={x,x∈A或x∈B}
3、差集的公式:A\B={x,x∈A且x∉B}
4、补集的公式:A-B={x,x∈A且x∉B}
5、阶乘的公式:n!=1×2×3×4×…×n
6、数列求和的公式:Sn=a1+a2+a3+…+an
7、有理数的乘法的公式:(m/n)×(r/s) = (mr)/(ns)
8、有理数的除法的公式:(m/n)÷(r/s) = (ms)/(nr)。
人教版七年级数学公式及概念
人教版七年级数学公式及概念人教版七年级数学公式及概念小学和初中是学习数学的重要时期,因此,在这一时期要重视数学概念和公式。
人教版七年级数学公式及概念有:一、平面几何1. 距离公式:设A(x1, y1)、B(x2, y2)是平面上的两点,两点间的距离的公式为d=√((x1-x2)²+(y1-y2)²) 。
2. 面积公式:设图形是由直线段组成的闭合图形,面积的求解公式为1/2•∑|xi*yi+1-xi+1*yi|。
3. 体积公式:设体积为V,面积为A,高为h,那么体积的求解公式为V=Ah。
4. 角度公式:角度的求解公式为夹角的正弦值=两条线段的长度乘积的商。
二、集合1. 交集公式:设有两个集合A、B,它们的交集公式为A∩B={x|x∈A,x∈B}。
2. 并集公式:设有两个集合A、B,它们的并集公式为A∪B={x|x∈A or x∈B,x∈A and x∈B} 。
3. 集合函数公式:设集合A={a1,a2,…an}, B={b1,b2,…bn},集合函数公式为f(a1,a2,…an)=b1,b2,…bn。
三、基本数学概念1. 加法:两个数相加,结果是它们的和。
2. 减法:一个数减去另一个数,结果是它们的差。
3. 乘法:两个数乘以一起,结果是它们的积。
4. 除法:一个数除以另一个数,结果是它们的商。
5. 乘方:一个数乘以自身的次幂,结果是它们的幂。
6. 根号:平方根是一个数的平方形式,把它放到根号中,结果就是它的平方根。
7. 三角函数:三角函数是一组应用数学函数,用来描述直角三角形的边和角。
四、代数1. 平方差公式:设有n个数,它们的平方差公式为S2=1/n•Σ(xi-a)2,其中,a为这n个数的平均数,即a=1/n•Σxi 。
2.等差数列的前n项和公式:设等差数列的前n项和为权,其公式为Sn=n/2•(a1+an) 。
3. 二次方程的解公式:设二次方程的解为x1、x2,x1+x2= -b/a,x1 * x2=c/a 。
人教版初中数学定理定义总结
人教版初中数学定理定义总结数学是一门逻辑性强、需要严谨推理的学科。
在初中数学学习中,定理和定义是构建知识框架的基础。
本文将对人教版初中数学的定理和定义进行总结,并给出相关示例。
1. 整数运算定理整数是数学中最基本的概念之一。
在整数的运算中,有一些重要的定理:(1)加法交换律:对于任意整数a和b,a + b = b + a。
例如:3 + 4 = 4 + 3。
(2)加法结合律:对于任意整数a、b和c,(a + b) + c = a + (b + c)。
例如:(2 + 3) + 4 = 2 + (3 + 4)。
(3)乘法交换律:对于任意整数a和b,a × b = b × a。
例如:3 × 4 = 4 × 3。
(4)乘法结合律:对于任意整数a、b和c,(a × b) × c = a × (b × c)。
例如:(2 × 3) × 4 = 2 × (3 × 4)。
2. 直角三角形定理直角三角形是初中数学中重要的一部分。
直角三角形的定理包括:(1)勾股定理:对于直角三角形ABC,设直角边分别为a、b,斜边为c,则有a² + b² = c²。
例如:在一个直角边分别为3和4的直角三角形中,斜边的长度为5。
(2)正弦定理:对于三角形ABC,边长分别为a、b、c,夹角分别为A、B、C,则有sinA/a = sinB/b = sinC/c。
例如:对于一个三角形,边长分别为3、4、5,其中∠A对应边长3,∠B对应边长4,∠C对应边长5。
(3)余弦定理:对于三角形ABC,边长分别为a、b、c,夹角分别为A、B、C,则有c² = a² + b² - 2ab·cosC。
例如:在一个三角形中,边长分别为3、4、5,夹角C的余弦可以通过公式计算得到。
初中数学必背公式及定理
初中数学必背公式及定理初中数学中,有很多重要的公式和定理需要掌握。
下面是一些必备的公式和定理:一、基础运算法则:1.加法交换律:a+b=b+a2.减法的定义:a-b=a+(-b)3.减法与加法的关系:a-b=a+(-b)=a+(-1)×b4.乘法交换律:a×b=b×a5.乘法结合律:(a×b)×c=a×(b×c)6.乘法分配律:a×(b+c)=a×b+a×c二、整数运算公式:1.同号相乘,异号相反:正×正=正,负×负=正,正×负=负,负×正=负2.乘方运算:a^m×a^n=a^(m+n),(a^m)^n=a^(m×n)3.含有分数运算:a/b×c/d=(a×c)/(b×d),a/b÷c/d=(a×d)/(b×c)4.分数乘方运算:(a/b)^n=a^n/b^n,a^(1/n)=b,则a=b^n5.注意计算顺序:先乘方,再乘除,最后加减三、平方与立方公式:1. (a+b)² = a² + 2ab + b²2. (a-b)² = a² - 2ab + b²3.a²-b²=(a+b)(a-b)4. (a+b)³ = a³ + 3a²b + 3ab² + b³5. (a-b)³ = a³ - 3a²b + 3ab² - b³四、勾股定理:1.直角三角形的斜边平方等于两直角边平方和:c²=a²+b²五、等腰三角形定理:1.等腰三角形的两底边相等:AB=AC2.等腰三角形的两底角相等:∠B=∠C3.等腰三角形的顶角底角和为180°:∠A+∠B+∠C=180°六、平行线定理:1.同位角相等:如果两条直线被一条直线截断,同位角相等2.内错角相等:平行线被截断时,内错角相等3.顶角、底角和补角的关系:顶角与底角之和为补角4.平行线间的平行线相等:若有两条直线分别与另外两条直线平行,那么这两条直线也平行。
(完整word版)人教版初中数学知识点总结+公式-推荐文档
七年级数学(上)知识点第一章 有理数一. 知识框架二. 知识概念1.有理数:(1)凡能写成 形式的数, 都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数, 也不是负数;-a 不一定是负数, +a 也不一定是正数;pai 不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2. 数轴: 数轴是规定了原点、正方向、单位长度的一条直线.3. 相反数:(1)只有符号不同的两个数, 我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身, 0的绝对值是0, 负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;5.有理数比大小: (1)正数的绝对值越大, 这个数越大;(2)正数永远比0大, 负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小, 绝对值大的反而小;(5)数轴上的两个数, 右边的数总比左边的数大;(6)大数-小数 > 0, 小数-大数 < 0.6.互为倒数: 乘积为1的两个数互为倒数;注意: 0没有倒数;若 a ≠0, 那么 的倒数是 ;若ab=1( a 、b 互为倒数;若ab=-1( a 、b 互为负倒数.7.有理数加法法则:(1)同号两数相加, 取相同的符号, 并把绝对值相加;(2)异号两数相加, 取绝对值较大的符号, 并用较大的绝对值减去较小的绝对值;(3)一个数与0相加, 仍得这个数.8. 有理数加法的运算律:(1)加法的交换律: a+b=b+a ;(2)加法的结合律: (a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数, 等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘, 同号为正, 异号为负, 并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘, 有一个因式为零, 积为零;各个因式都不为零, 积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律: ab=ba;(2)乘法的结合律: (ab)c=a(bc);(3)乘法的分配律: a(b+c)=ab+ac .12.有理数除法法则: 除以一个数等于乘以这个数的倒数;注意: 零不能做除数, .13. 有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意: 当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n 为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14. 乘方的定义:(1)求相同因式积的运算, 叫做乘方;(2)乘方中, 相同的因式叫做底数, 相同因式的个数叫做指数, 乘方的结果叫做幂;15. 科学记数法: 把一个大于10的数记成a×10n的形式, 其中a是整数数位只有一位的数, 这种记数法叫科学记数法.16.近似数的精确位: 一个近似数, 四舍五入到那一位, 就说这个近似数的精确到那一位.17.有效数字: 从左边第一个不为零的数字起, 到精确的位数止, 所有数字, 都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章整式的加减一. 知识框架二.知识概念1. 单项式: 在代数式中, 若只含有乘法(包括乘方)运算。
人教版初中数学常用概念、公式和定理
-3 -2 初中数学重要的概念、公式和定理第一章 有理数正数:大于0的数叫正数负数:小于0的数叫负数 有理数:整数和分数统称有理数 数轴:规定了方向、原点、单位长度的一条直线。
相反数:只有符号不同的两个数叫相反数。
(例a a -与)绝对值:数轴上一个数到原点的距离叫绝对值。
(负数正数〉〉0,两个负数,绝对值大的反而小)性质:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是他的相反数有理数的加法法则:1、同号两数相加,取相同的符号,并把它们的绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对数减去较小的绝对值,互为相反数的两数相加得0;3、一个数同0相加,仍得这个数:加法交换律:两数相加,交换加数的位置,和不变。
a b b a+=+加法结合律:三个数相加,先把前两数相加或先把后两个数相加,和不变。
)(c b a c b a++=++)(减去一个数,等于加上这个数的相反数。
)(b a b a-+=-乘法法则:两数相乘同号得正,异号得负并把绝对值相乘。
任何数同0相乘都得0。
倒数:乘积为1的两个数互为倒数。
乘法交换律:两数相乘,交换因数的位置,积不变。
ba ab=乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
)()(bc a c ab=乘法分配率:一个数同两个数的和相乘,等于把这两个数分别同这个数相乘,再把积相加。
ac ab c b a +=+)(有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数。
)0(1≠∙=÷b b a b a两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
乘方:求n个相同因数的积的运算叫乘方。
乘方的结果最做幂。
(n a 叫做幂,其中a 叫底数,n叫指数) 负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何非0次幂都是0。
科学计数法:把一个数写成n a10 的形式叫科学计数法。
人教版初中数学公式、定理大全
初中数学公式、定理大全1、一元二次方程根的情况△=b2-4ac(前提必须化成一般形式ax2+bx+c=0)当△>0时,一元二次方程有2个不相等的实数根当△=0时,一元二次方程有2个相等的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质①两组对边分别平行的四边形叫做平行四边形.②平行四边形不相邻的两个顶点连成的线段叫它的对角线。
③平行四边形的对边相等并且平行,对角相等,邻角互补。
④平行四边形的对角线互相平分.菱形:①一组邻边相等的平行四边形是菱形②领形的四条边相等,对边平行,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义、对角线互相垂直的平行四边形、四条边都相等的四边形. 矩形与正方形①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等且平分,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的所有性质。
⑤一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
多边形:①n边形的内角和等于(n-2)180°②多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的外角和多边形的外角和都等于360度二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,那么这两条直线也互相平行9、同位角相等,两直线平行 10、内错角相等,两直线平行11、同旁内角互补,两直线平行 12、两直线平行,同位角相等13、两直线平行,内错角相等 14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等全等三角形的判定方法22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SS有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等角平分线的性质:27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相等的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合等腰(边)三角形的性质30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(三线合一)33、推论3等边三角形的各角都相等,并且每一个角都等于60°等腰(边)三角形的判定34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半。
(完整版)人教版初中数学公式大全
(完整版)人教版初中数学公式大全
本文档旨在提供人教版初中数学课程中常用的数学公式大全。
以下是一些常见的数学公式,供您参考。
代数公式
1. 二次方程求根公式:
- 一元二次方程 $ax^2+bx+c=0$ 的根为:$x=\frac{-
b\pm\sqrt{b^2-4ac}}{2a}$
2. 二项式定理:
- $(a+b)^n = \binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1} b^1 + \binom{n}{2}a^{n-2} b^2 + \ldots + \binom{n}{n-1}a^1 b^{n-1} +
\binom{n}{n}a^0 b^n$
几何公式
1. 长方形面积公式:
- 长方形的面积为:$A = l \cdot w$
2. 圆周长公式:
- 圆的周长为:$C = 2\pi r$,其中 $r$ 为圆的半径
3. 圆面积公式:
- 圆的面积为:$A = \pi r^2$,其中 $r$ 为圆的半径
概率公式
1. 随机事件概率公式:
- 某个事件发生的概率为:$P(E) = \frac{n(E)}{n(S)}$,其中
$n(E)$ 是事件 $E$ 发生的次数,$n(S)$ 是样本空间中元素的总数
2. 互斥事件概率公式:
- 两个互斥事件 $A$ 和 $B$ 发生的概率为:$P(A \cup B) = P(A) + P(B)$
以上只是一些数学公式的示例,可以作为初中数学研究过程中的参考。
如需进一步了解更多数学公式,请参考人教版初中数学教材或咨询数学老师。
希望本文档对您有所帮助,祝您学业进步!。
人教版初中数学公式大全1
人教版初中数学公式大全1人教版初中数学公式大全:大家的解题利器初中数学是数学学习的重要阶段,是人教版初中数学中的重要内容。
为了更好地帮助同学们掌握初中数学,我们将为大家呈现人教版初中数学公式大全,让大家在解题时更加得心应手。
一、基础数学公式1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:axb=bxa4、乘法结合律:(axb)xc=ax(bxc)5、乘法分配律:ax(b+c)=axb+axc6、除法性质:ax(b÷c)=((axb)÷(axc))7、除法性质:a÷(bxc)=a÷b÷c8、商不变性质:ax(b÷c)=(a÷c)x(b÷c)二、代数公式1、单项式除以单项式:单项式除以单项式,把系数、同底数幂相除,对于只在被除式里含有的字母,则连同他的指数作为商的一个因式。
2、多项式除以单项式:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
三、分式方程解法1、去分母:方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数,则可得到互为相反数的两个方程的解集也互为相反数;若有分母为0,则可得到无穷多个解;若分母不为0,则得到有限个解。
2、按去分母后的整式方程的步骤求出未知数的值。
3、验根求出未知数的值后必须验根,即在把求得的未知数的值代入最简公分母中,若最简公分母等于0,这个根为增根,必须舍去;若最简公分母不等于0,这个根就是原方程的根。
若解得的未知数的值使最简公分母等于0,则原方程无解。
四、其他公式1、三角形的面积 S=1/2ah(底和高)=1/2absinC(底和高的积乘以角C的正弦值)。
2、梯形的面积 S=(a+b)×h÷2。
3、圆的周长 C=πd=2πr(π是圆周率,r是半径,d是直径)。
4、圆的面积 S=πr²(π是圆周率)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学常用的概念、公式和定理初中数学常用概念,初中数学常用公式,初中数学常用定理,初中数学公式汇总,初中数学必考公式。
1.整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数..如:π,--,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2.绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3.一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4.把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5.被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数的小数点每移动3位,立方根的小数点就向相同方向移动1位.如:已知=0.4858,则=48.58;已知=1.558,则=0.1588.6.整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多-项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项分别除以这个单项式.7.幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n=n,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)0=1,(-)0=1.8.乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.9.选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平方差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止.10.分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式.11.二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0). 如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.12.一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=,其中=b2-4ac叫做根-的判别式.当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有个相等的实数根;当-Δ<0时,方程没有实数根.注意:当Δ≥0时,方程有实数根.③若方程有两个实数根x1和x2,则x 1+x2=-,x1x2=,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).④以a和b为根的一元二次方程是x2-(a+b)x+ab=0.13.解分式方程(去分母或换元)和无理方程(两边平方或换元)必须检验.形如:-的方程组,用代入法解;形如:的方程组,先把一个方程分解为两个一次方程,再把这两个方程分别与另一个方程组合成两个方程组,再用代入法分别解这两个方程组.14.不等式两边都乘以或除以同一个负数,不等号要改变方向.15.平面直角坐标系:①各限象内点的坐标如图所示.②横轴(x轴)上的点,纵坐标是0;纵轴(y轴)上的点,横坐标是0.③关于横轴对称的两个点,横坐标相同(纵坐标互为相反数);关于纵轴对称的两个点,纵坐标相同(横坐标互为相反数);关于原点对称的两个点,横坐标、纵坐标都互为相反数.16.一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx又叫做正比例函数(y与x成正比例),图象必过原点.17.反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(从左向右降);当k<0时,双曲线在二、四象限(从左向右上升).因此,它的增减性与一次函数相反.18.二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线(c是抛物线与y轴的交点的纵坐标).①a>0时,开口向上;a<0时,开口向下.②顶点坐标是(-,),对称轴是直线x=-.特别:抛物线y=a(x-h)2+k的顶点坐标是(h,k),对称轴是直线x=h.注意:求解析式的设法①已知三个点的坐标,则设为一般形式y=ax2+bx+c;②已知顶点坐标(h,k),则设为顶点式y=a(x-h)2+k;③已知抛物线与x轴的两个交点坐标(x1,0)和(x2,0),则设为交点式y=a(x-x1)(x-x2).19.抛物线与x轴的位置关系:对于抛物线y=ax2+bx+c①Δ<0时,它与x没有交点.②Δ=0时,它与x轴只有一个交点(与x轴相切).③Δ>0时,它与x轴有两个交点(x1,0)和(x2,0),其中x1和x2是方程ax2+bx+c=0的两个根.20.统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n个数x1,x2,…,xn,那么:①平均数=(x1+x2+…+xn).②方差S2=[(x1-)2+(x2-)2+…+(xn-)2.(是整数时用)③S2=[(x12+x22+…+xn2)-n()2].注:各数据的数位较少或平均数是分数时,用此公式.④若将n个数x1,x2,…,xn各减去一个适当的数a,得到一组新数x1,,x2,,…,xn,,那么原来那组数的方差S2=这组新数的方差,平均数=a+,.方差越大,这组数据的波动就越大.通常用样本方差去估计总体方差,用样本平均数去估计总体平均数.方差的算术平方根叫做标准差(3)频率:①把一组数分成若干个小组,组距=(最大值-最小值)÷组数(求组数时,用收尾法取整数),这时,落在某小组内的数据的个数叫做这组的频数,每一小组的频数与数据总个数的比值叫做这一小组的频率.因此,各组的频率的和等于1.在频率分布直方图中,各小长方形的面积等于相应各组的频率.各小长方形的面积的和等于1.21.锐角三角函数:①设∠A是RtΔ的任一锐角,则∠A的正弦:sinA=,∠A的余弦:cosA=,∠A的正切:tanA=,∠A的余切:cotA=.并且sinA=cosB,tgA=ctgB,tgActgA=1,sin2A+cos2A=1.0<sinA<1,0<cosA<1,tgA>0,ctgA>0.∠A越大,∠A的正弦和正切值越大,余弦和余切值反而越小.②余角公式:sin(900-A)=cosA,cos(900-A)=sinA,tg(900-A)=ctgA,ctg(900-A)=tgA.③特殊角的三角函数值:sin300=cos600=,sin450=cos450=,sin600=cos300=,sin00= cos900=0,sin900=cos00=1,tg300=ctg600=,tg450=ctg450=1,tg600=ctg300=-,tg00=ctg900=0.④斜坡的坡度i==.设坡角为α,则i=tgα=.22.三角形:(1)在一个三角形中:等边对等角,等角对等边.(2).证明两个三再形全等的方法有:SAS,AAS,ASA,SSS,HL.(3)在RtΔ中,斜边上的中线等于斜边的一半.(4)证明一个三角形是直角三角形的方法有:①先证明有一个角等于900.②先证明最长边的平方等于另两边的平方和.③先证明一条边的中线等于这条边的一半.(5)三角形的中位线平行于笫三边,并且等于笫三边的一半.(6)等腰三角形中,顶角的平分线与底边上的中线和高互相重合.23.四边形:(1)n边形的内角和等于(n-2)1800,外角和等于3600.(2)平行四边形的性质:对边平行且相等;对角相等;邻角互补;对角线互相平分.(3)证明一个四边形是平行四边形的方法有:①先证两组对边平行.②先证两组对边相等.③先证一组对边平行且相等.④先证两条对角线互相平分.⑤先证两组对角分别相等.(4)矩形的对角线相等且互相平分;菱形的对角线互相垂直平分,并且四条边相等.(5)证明一个四边形是矩形的方法有:①先证明它有三个角是直角.②先证它是平行四边形,再证它有一个角是直角或对角线相等.(6)证明一个四边形是菱形的方法有:①先证明它的四条边相等.②先证它是平行四边形,再证它有一组邻边相等或对角线互相垂直.(7)正方形既是矩形又是菱形,它具有矩形和菱形的所有性质.(8)梯形的中位线平行于两底并且等于两底之和的一半.(9)轴对称图形有:线段,角,等腰三角形,等腰梯形,矩形,菱形,正方形,正多边形,圆.中心对称图形有:线段,平行四边形,矩形,菱形,正方形,边数是偶数的正多边形,圆.24.证明两个三角形相似的方法有:①先证两组对应角相等.②先证两边对应成比例并且夹角相等.③先证三边对应成比例.④先证斜边和一条直角边对应成比例.相似三角形的性质:对应高的比,对应角平分线的比,对应中线的比,周长的比,都等于相似比.面积的比等于相似比的平方.25.平行切割定理:①如图1,DE∥BC=.②如图2,若AB∥CD∥EF则=,=.26.射影定理:如图3,ΔABC中,若∠ACB=900,CD⊥AB,则:①AC2=AD·AB.②BC2=BD·BA.③AD2=DA·DB.27.圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(3)在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它所对应的其余三组量都分别相等.(4)圆心角的度数等于它所对的弧的度数.(5)一条弧所对的圆周角等于它所对的圆心角的一半.(6)圆周角等于它所对的弧的度数的一半.(7)弦切角等于它所夹的弧的度数的一半.(8)同弧或等弧所对的圆周角相等.(9)在同圆或等圆中,相等的圆周角所对的弧相等.(10).900的圆周角所对的弦是直径.(11)圆内接四边形的对角互补,外角等于它的内对角.28.直线和圆的位置关系:(1)若⊙O的半径为r,圆心到直线L的距离为d,则:①d<r直线L和⊙O相交.②d=r直线L和⊙O相切.③d>r直线L和⊙O相离.(2)切线的判定定理:经过半径外端并且垂直这条半径的直线是圆的切线.反之:切线垂直过切点的半径.(3)切线长定理,弦切角定理,相交弦定理及其推论,切割线定理及其推论.(4)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.(5)RtΔ的内切圆的半径R内=,任意多边形的内切圆的半径R内=.(6)圆外切四边形的一组对边的和等于另一组对边的和.29.圆和圆的位置关系:(1)设两圆半径为R 和r,圆心距为d,则:①d>R+r两圆外离. ②d=R+r两圆外切.③R -r<d<R+r(R ≥r)两圆相交.④d=R -r 两圆内切.⑤d<R -r 两圆内含. 30.圆中常作的辅助线:(1)两圆相交,常作公共弦,连心线.(2)两圆相切,常作公切线,连心线.(3)已知切线,常过切点作半径.(4)已知直径,常作直径所对的圆周角.(5)求解有关弦的问题,作弦心距.(6)弧的中点常和圆心连结.31.各顶点等分圆周正n 边形各边相等,各角相等,且每个内角=度,中心角=外角=度.32.面积公式:①S 正Δ=×(边长)2.②S 平行四边形=底×高.③S 菱形=底×高=×(对角线的积)④S 圆=πR 2.⑤C 圆周长=2πR.⑥弧长L=.⑦S 扇形==LR.⑧S 圆柱侧=底面周长×高.⑨S 圆锥侧=×底面周长×母线=πrR,并且2πr=(如上图).初中数学常用概念,初中数学常用公式,初中数学常用定理,初中数学公式汇总,初中数学必考公式。