圆的内接正多边形的画法

合集下载

3.8圆内接正多边形

3.8圆内接正多边形

边数是偶数的正多边形还是中心对称图形,它的 中心就是对称中心。
顶点都在同一个圆上的正多边形叫做圆内接正正 多边形。这个圆叫做该正多边形的外接圆。 正多边形和圆的关系非常密切,把一个圆n等分 (n≥3),依次连接各分点,我们就可以作出一 个圆内接正多边形。
如图,五边形ABCDE 是⊙O的内接正五边形,圆心O 叫做这个正五边形的中心; OA 是这个正五边形的 半径;∠AOB是这个正五边形的中心角;OM⊥BC, 垂足为M,OM是这个正五边形的的边心距。在其他 的正多边形中也有同样的定义。
.O
如图,把边长为6的正三角形剪去三个三角形得到 一个正六边形DFHKGE,求这个正六边形的面积.
6 3
求半径为6cm的圆内接正四边形的边长、边心距和 面积. A D 6 2cm,3 2cm,72cm2 . 各边相等的圆内接四边形是正 ·O 方形吗?各角相等的圆内接四 边形呢?如果是,请说明理由; 如果不是,请举出反例. B C 各边相等的圆内接四边形是正方形。因为同圆中等 弦对等弧,所以四边形的四个顶点把圆四等分,因 此相邻两边所组成的圆周角(即四边形的内角)都 相等;各角相等的圆内接四边形不一定是正方形, 如可以是长方形.
2 2 边心距OE OB R 2 2 2 边长BC 2BE 2 R 2R 2 2 2 S正方形ABCD ABBC 2R 2R
2 OB OE 2 2
D
·
O
B
E
C


读一读 利用尺规作正五边形 1.作⊙C. 2.作直径AB. 3.过点C作AB的垂线交 ⊙C于点P. 4.取BC中点D. 5.以点D为圆心,以DP 为半径作弧交AB于点E. 6.以点P为圆心,以PE 为半径作弧交⊙C于点F. 7.在⊙C上依次截取等 于PF的弦,就可以作出 圆内接正五边形.

《圆内接正多边形》圆

《圆内接正多边形》圆

圆内接正多边形的面积与周长的关系
面积与周长的关系
分析圆内接正多边形的面 积与周长的关系,如面积 与周长的比值、面积与周 长的变化规律等。
面积与半径的关系
分析圆内接正多边形的面 积与半径的关系,如面积 与半径的函数关系、面积 与半径的变化规律等。
周长与半径的关系
分析圆内接正多边形的周 长与半径的关系,如周长 与半径的函数关系、周长 与半径的变化规律等。
对称性在构造复杂图形中的应用
02
在构造复杂图形时,可以利用圆内接正多边形的对称性,快速
确定图形的形状和位置。
对称性在解决几何问题中的应用
03
在解决几何问题时,可以利用圆内接正多边形的对称性,寻找
解题思路和简化计算过程。
05
圆内接正多边形的作图方法
利用尺规作图法作圆内接正多边形
定义
尺规作图法是指使用直尺和圆规等基本作图工具进行作图 的方法。
所有顶点都在给定圆上。
外接圆的半径R与边心距r的关系为R = r + d/2 。
圆内接正多边形的分类
01
02
03
等边圆内接多边形
每个内角都相等的圆内接 正多边形。
等腰圆内接多边形
每条边的长度都相等的圆 内接正多边形。
正方形
特殊的等边等腰圆内接正 四边形,具有特殊的性质 和用途。
02
圆内接正多边形的面积与周长
步骤
首先使用直尺确定圆心和半径,然后使用圆规在圆上截取 等长的弧线,依次连接各弧线的端点即可得到圆内接正多 边形。
特点
尺规作图法是一种基本的作图方法,具有简单、直观的特 点,但只能作出有限的几种圆内接正多边形,如正三角形 、正方形、正六边形等。
利用几何变换法过平移、旋转、对称等几何变换手段进行作图的方法

正五边形尺规作图的画法及其他(精品)

正五边形尺规作图的画法及其他(精品)

正五边形尺规作图的画法与其他正五边形的画法第一种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.第二种作法:1. 以O为圆心,半径长为R画圆,并作互相垂直的直径MN和AP;2. 平分半径OM于K,得OK=KM;3. 以K为圆心,KA为半径画弧与ON交于H, AH即为正五边形的边长;4. 以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连结这些点.五边形ABCDE即为所求.第三种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段.正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi 〔i为右下角标〕=22i〔底数2指数2的i次幂〕+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n 边形可尺规作图的充分且必要的条件是n=2k〔2的k次幂〕或2k×p1×p2×…×ps,〔1,2…s为右下角标〕其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路<他早期曾在语言学与数学之间犹豫过>,而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数<3=F0,5=F1>;对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。

圆内接正多边形

圆内接正多边形

圆内接正多边形学习目标:1理解圆内接正多边形及正多边形的外接圆、正多边形的中心、半径、边心距、中心角等概念。

2、掌握用等分圆周画圆内接正多边形的方法,能熟练地进行有关正三角形,正方形,正六边形的计算。

1学习过程:1、复习回顾正n边形的有关计算公式:每个内角二 __________ ,每个外角= _____________2、预习、交流并展示阅读课本97页到98页,回答下列问题(1) __________ 都在同一个圆上的正多边形叫做____________ ,这个圆叫做该正多边形的(2)一个正多边形的外接圆的圆心叫做这个正多边形的,外接圆的半径叫做正多边形的,正多边形每一边所对的圆心角叫做正多边形的______ ,正n边形的中心角是,中心到正多边形的一边的距离叫做正多边形的如上图,五边形ABCDE是。

0的_______________ ,。

0是五边形ABCDE的 ______ 圆,叫做正五边形ABCDE的中心,是正五边形ABCDE的半径, _________ 是正五边形ABCDE的中心角,中心角是____ 度,OM丄BC,垂足为M , ________ 是正五边形ABCDE的边心距。

(3)利用尺规作一个已知圆的内接正多边形以圆内接正六边形为例:由于正六边形的中心角为______ ,因此它的边长和外接圆的半径R ______ ,所以在半径为R的圆上,依次截取等于R的弦,就可以六等分圆,进而作出圆内接正多边形。

作法如下:(1)0 O的任意一条直径AD如图(1)(2)分别以A、D为圆心,以。

0的半径R为半径作弧,与。

0相交于B F 和C, E则A, B, C, D, E, F是。

0的六等分点。

(3)顺次连接AB,BC,CD,DE,EF,FA便得到正六边形ABCDE,F ffl (2)I勺⑵如图,在圆内接正六边形ABCDEF中,半径0C=4, 0G丄BC,垂足为G,求正六边形的中心角、边长和边心距当堂训练:1、正六边形的边心距为2,则该正六边形的边长是_____________2、中心角为30度的圆内接正n边形的n为____________ 。

3.8 圆内接正多边形 课件 (29张PPT) 2023-2024学年北师大版数学九年级下册

3.8 圆内接正多边形  课件 (29张PPT)  2023-2024学年北师大版数学九年级下册

归纳
圆内接正多边形的辅助线
F
E
A

D
rR
BMC
1.连半径,得中心角; 2.作边心距,构造直角三角形.
半径R
O 中心角一半 边心距r
C
M
边长一半
例2 如图2,正六边形的边长为2,分别以正六边形的六条边为直径向外
作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分
面积)是( A ) A.6 3-π
.O
分析:因为正六边形每条边所对的圆心角为 60º ,所以正六边形的边长 与圆的半径 相等 .因此, 在半径为r的圆上依次截取等于 r 的弦, 即可将圆六等分.
作法:(1)作⊙O的任意一条直径FC;
(2)分别以F,C 为圆心,以 r 为半径作弧,与⊙O 交于点E,A和D,B;
(3)依次连接AB、BC、CD、DE、EF、FA,便得到正六边形ABCDEF
2
2
F
E
A
O
D
4m
r
B PC
5.(2023武汉)如图,在圆内接四边形ABCD中,AB=AD,
即为所求.
E
D
F
.O C
A
B
针对训练
1.下列说法中,不正确的是( D ) A.正多边形一定有一个外接圆和一个内切圆 B.各边相等且各角相等的多边形是正多边形 C.正多边形的内切圆和外接圆是同心圆 D.正多边形既是轴对称图形,又是中心对称图形
二 圆内接正多边形的有关计算
正n边形的一个内角的度数是多少? 中心角呢?正多边形的中心角与外角 的大小有什么关系?
A. 2
B. 4
C. 2 2
D. 4 2
A
D
O

北师大版九年级数学下册第三章8圆内接正多边形

北师大版九年级数学下册第三章8圆内接正多边形
⑤正n边形的中心角αn= 360? ,且与每一个外角相等.
n
其中正确的命题有 ( ) A.2个 B.3个 C.4个 D.5个
答案 A ①正多边形都有一个内切圆和一个外接圆,这两个圆是同心圆, 圆心是正多边形的中心,故①正确;②各边相等的圆外切多边形的各内角不 一定相等,故不一定是正多边形,如菱形,故②错误;③圆内接矩形的各内角 相等,但不是正多边形,故③错误;④边数是偶数的正多边形既是轴对称图 形又是中心对称图形,而边数是奇数的正多边形只是轴对称图形,不是中心
2.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20 cm2,则正八边
形的面积为
cm2.
答案 40 解析 如图,连接AD、HE,分别交BG、CF于点O、P、M、N, 则△ABO,△CDP,△EFN,△HGM均为全等的等腰直角三角形,四边形 BCPO、四边形GFNM为全等的矩形. 设正八边形的边长为a cm,
初中数学(北师大版)
九年级 下册
第三章 圆
知识点一 圆内接正多边形 顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正
多边形的外接圆. 把一个圆n(n≥3)等分,依次连接各分点,我们就可以作出一个圆内接正n边 形. (1)相关定义:
名称 中心
半径 中心角 边心距
概念
图形
ห้องสมุดไป่ตู้
一个正多边形的外接圆的圆心 叫做这个正多边形的中心
1.正六边形的边心距与边长之比为 ( ) A. 3 ∶3 B. 3 ∶2 C.1∶2 D. 2 ∶2
答案 B 如图,设正六边形ABCDEF的边长为2a,O为正六边形的中心,连 接OA、OB,作OM⊥AB于M, ∴△OAB是等边三角形, ∴OA=OB=AB=2a,AM=BM=a. 在Rt△OAM中,由勾股定理可得OM= 3 a, 则正六边形的边心距与边长之比为OM∶AB= 3 a∶2a= 3 ∶2,故选B.

正多边形和圆-ppt课件

正多边形和圆-ppt课件

“各边相等,各内角相等”是正多边形的两
个基本特征,当边数n>3时,二者必须同时具备,
缺一不可,否则多边形就不是正多边形.
感悟新知
3. 正多边形的有关概念
知1-讲
(1)正多边形的中心: 一个正多边形的外接圆的圆心叫作正
多边形的中心 .
(2)正多边形的半径: 正多边形的外接圆的半径叫作正多边形
的半径 .
心,OA 为半径作⊙ O,直径 FC ∥ AB, AO, BO
的延长线交⊙ O 于点 D, E.
求证:六边形 ABCDEF 为圆内接
正六边形 .
感悟新知
知1-练
思路导引:
感悟新知
知1-练
证明: ∵三角形 AOB 是正三角形,
∴∠ AOB= ∠ OAB= ∠ OBA=60°, OB=OA.
∴点 B 在⊙ O 上 .
(1)作半径为 0.9 cm 的⊙ O;
(2)用量角器画∠ AOB = ∠ BOC=120°,其中 A, B,C
均为圆上的点;
(3)连接 AB, BC, CA,则△ ABC 为
所求作的正三角形 ,如图 24. 3-4所示.
感悟新知
作法二
(1)作半径为 0.9 cm 的⊙ O;
知3-练
(2)作⊙ O 的任一直径 AB;




︵ ︵
∴BDE-CDE=CDA-CDE,即BC=AE.∴BC=AE.
同理可证其余各边都相等,
∴五边形 ABCDE 是正五边形.
感悟新知
知识点 2 正多边形的有关计算
1. 正 n 边形的每个内角都等于
(-)· °
.

2. 正 n 边形的每个中心角都等于

北师大数学九年级下册第三章-圆内接正多边形(含解析)

北师大数学九年级下册第三章-圆内接正多边形(含解析)

第04讲_圆内接正多边形知识图谱正多边形和圆知识精讲一. 正多边形的概念及性质1. 正多边形的定义:各角相等,各边相等的多边形叫做正多边形.2. 正多边形的相关概念:(1)正多边形的中心:我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心;(2)正多边形的半径:外接圆的半径叫做正多边形的半径;(3)正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角;(4)正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.补充说明:正多边形的性质:(1)正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;(2)正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;(3)偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.二. 正多边形与圆的关系1. 把一个圆n等分,依次连结各个等分点所得到的多边形是这个圆的内接正n边形;这个圆叫这个正n边形的外接圆;经过各等分点作圆的切线,以相邻切线交点为顶点的多边形是这个圆的外切正n边形.2. 定理:任何一个正多边形都有一个外接圆和一个内切圆;并且这两个圆是同心圆.三. 正多边形有关的计算1. 正n边形的每个内角都等于()2180nn-⋅︒;2. 正n边形的每一个外角与中心角相等,等于360n︒;3. 设正n 边形的边长为n a ,半径为R ,边心距为n d ,周长为n C ,面积为n S ;则:222111422n n n n n n n n n R d a C na S n d a d C =+==⋅⋅=⋅,,三点剖析考点:正多边形的概念、性质及相关计算重难点:正多边形相关计算.易错点:对正多边形相关的概念混淆不清.正多边形的相关概念例题1、 下面给出六个命题:①各角相等的圆内接多边形是正多边形;②各边相等的圆内接多边形是正多边形;③正多边形是中心对称图形;④各角均为120︒的六边形是正六边形;⑤边数相同的正n 边形的面积之比等于它们边长的平方比;⑥各边相等的圆外切多边形是正多边形.其中,正确的命题是_____________. 【答案】 ②⑤【解析】 ①错误,反例:矩形各角相等但不是正四边形;②正确,边相等则各边所对的圆心角相等,由半径和圆心角可构成 个全等的等腰三角形,则多边形的各内角也相等;③错误,正奇数边形不是中心对称图形;④错误,在正六边形的基础上作任意一组对边的平行线,仍然截出一个六边形,各内角均为,但不是正六边形;⑤正确,相似的性质;⑥错误,只要使切点与圆心的连线不平分多边形的边长即可.例题2、 若正多边形的一个外角为60º,则这个正多边形的中心角的度数是( ) A.30° B.60° C.90° D.120° 【答案】 B【解析】 由于任意多边形的外角和均为360°,所以这个正多边形的边数为360660=,所以正六边形的中心角的度数为360606︒=︒.例题3、 正六边形的边心距与边长之比为( )A.3:3B.3:2C.1:2D.2:2【答案】 B【解析】 此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.首先根据题意画出图形,然后设六边形的边长是a ,由勾股定理即可求得OC 的长,继而求得答案.如图:设六边形的边长是a , 则半径长也是a ;经过正六边形的中心O 作边AB 的垂线OC ,则AC=12AB=12a ,∴OC=22OA AC -=32a ,a n d nR O CBA∴正六边形的边心距与边长之比为:32a:a=3:2.故选B.例题4、已知:线段a(如图)(1)求作:正六边形ABCDEF,使边长为a(用尺规作图,要保留作图痕迹,不写作法及证明)(2)若a=2cm,则半径R=______cm,边心距r=______cm,周长p=______cm,面积S=______cm2.【答案】(1)(2)2,3,12,63【解析】(1)如图,正六边形ABCDEF即为所求;(2)∵a=2cm,∴半径R=2cm.∵OA=OB=AB=a,∴∠OAB=60°,∴r=OG=OA•sin60°=2×332cm.∵a=2cm,∴周长p=6a=12cm,∴S正六边形ABCDEF=6S△OAB=6×12×2×3=63(cm2).相关计算例题1、如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=__________________°.【答案】125【解析】∵⊙O是△ABC的内切圆,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=35°,∠OCB=∠ACB=20°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣35°﹣20°=125°.例题2、已知正六边形的边长为2,则它的内切圆的半径为()A.1B.3C.2D.23【答案】B【解析】如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×32=3,∴边长为2的正六边形的内切圆的半径为3.例题3、如图1、2、3、…..、n,M、N分别是O的内接正三角形ABC、正方形ABCD、五边形ABCDE、…..、正n边形ABCDE…..的边AB、BC上的点,且BM CN=,连接OM、ON.(1)求图1中MON∠的度数;(2)图2中MON∠的度数是____________,图3中MON∠的度数是____________;(3)试探究MON∠的度数与正n边形边数n的关系(直接写出答案).【答案】(1)120︒;(2)90︒,72︒;(3)360 n︒【解析】解:分别连接OB、OC,(1)AB AC=ABC ACB∴∠=∠OC OB=,O是外接圆的圆心,CO ACB∴∠平分30OBC OCB∴∠=∠=︒30OBM OCN∴∠=∠=︒BM CN=,OC OB=OMB ONC∴∆∆≌BOM NOC∴∠=∠60BAC∠=︒120BOC∴∠=︒120MON BOC∴∠=∠=︒(2)同(1)可得MON∠的度数是90︒;图3中MON∠的度数是72︒(3)由(1)可知,360==1203MON︒∠︒;在(2)中,360==904MON︒∠︒;在(3)中360==725MON︒∠︒…..,故当n时,360 MONn︒∠=.随练1、如图,正五边形ABCDE内接于⊙O,则∠CAD=___________度.【答案】 36【解析】 ∵五边形ABCDE 是正五边形,∴AB =BC =CD =DE =EA =72°,∴∠CAD=12×72°=36°.随练2、 已知正多边形的半径与边长相等,那么正多边形的边数是( ) A.4 B.5 C.6 D.8 【答案】 C【解析】 ∵正多边形的半径与边长相等,∴正多边形的相邻的两条半径与一条边围成一个正三角形, ∴正多边形的中心角为60°∵正多边形所有中心角的和为360°, ∴360606︒÷︒=,∴正多边形的边数为6,随练3、 若等边三角形的边长是12厘米,则其内切圆的面积为 . 【答案】 12π平方厘米. 【解析】 如图,作OD ⊥AB , ∵等边三角形的边长为12厘米, ∴AD=6厘米.又∵∠DAO=12∠BAC=12×60°=30°,∴tan30°=6DO DOAD ==33, ∴DO=23厘米,∴其内切圆的面积=π(23)2=12π. 故答案为:12π平方厘米.随练4、 如图,ABCD 是O ⊙的内接正方形,PQRS 是半圆的内接正方形,那么正方形PQRS 与正方形ABCD 的面积之比为____________.【答案】 2:5 【解析】随练5、 已知圆内接正方形的面积为2,求该圆的外切正三角形的外接圆的外切正六边形的面积.SOR Q P D CBA【答案】 3【解析】 如图,设AB 是圆内接正方形的边长,CD 是外切正三角形的边长,EF 是外切正六边形的边长,连结OA OB OC OE 、、、.∵AB 是内接正方形的边长,内接正方形面积为2,∴290AB OA OB AOB ==∠=︒,,∴1OA OB ==.∵CD 是外切正三角形的边长,∴60OA CD AOC ⊥∠=︒,,∴22OC OA ==. ∵EF 是外切正六边形的边长,∴602OC EF OEF OE EF CE ⊥∠=︒==,,,∴323CE ==, ∴43EF ,∴263436683EOF S S ∆===⎝⎭随练6、 已知直角三角形的外接圆半径为6,内切圆半径为2,那么这个三角形的面积是( ) A.32 B.34 C.27 D.28 【答案】 D【解析】 暂无解析弧长与扇形的面积知识精讲一.弧长公式1.圆的周长:2πR C =2.弧长公式:π180nl R =(其中,l 表示弧长,n 表示这段弧所对圆心角度数值;R 表示该弧所在圆的半径).二.扇形面积公式1.圆的面积公式:2πS R =2.扇形面积公式:21π3602n S R lR ==扇形(n 表示扇形圆心角度数值;R 表示半径).三.圆锥、圆柱的侧面积与全面积1.圆锥(1)圆锥的侧面积:1=22S r l rl ππ=侧(以下公式中的l 均指扇形母线长);(2)圆锥的全面积:221=+=+22S S S r r l r rl ππππ=+全底侧;(3)圆锥的体积:213V r h π=;(4)圆锥的高、底面半径、母线之间的关系:222r h l +=;(5)设圆锥的底面半径为r ,母线长为l ,侧面展开图的圆心角为n ︒;则有:360S r n l S ==底侧O BADC2.圆柱(1)圆柱的侧面积:=2S r h π侧(2)圆柱的全面积:2=2πr 2πS S S rh=++侧全底四.不规则图形面积的巧算一般利用拼凑法,割补法,把不规则图形切割拼接成面积容易计算的图形再进行计算,例如:弓形面积:=S S S -弓形三角形扇形.三点剖析一.考点:弧长、扇形面积公式,圆锥的侧面积、全面积计算 二.重难点:1.计算扇形面积,计算圆锥的侧面积;2.计算扇形面积的时候,除了用圆心角求面积,也可以用弧长求面积; 三.易错点:1.圆锥相关面积计算时,注意每个量对应关系; 2.计算圆锥侧面积时,注意母线和圆锥的高是不相等的.弧长公式例题1、 一个扇形的半径为8cm ,弧长为163cm π,则扇形的圆心角为__________. 【答案】 120︒【解析】 设扇形圆心角为n ︒,根据弧长公式可得:8161803n ππ=,解得:120n =︒.例题2、 如图,在Rt ∴ABC 中,∴C=90°,∴A=20°,BC=3,以点C 为圆心,BC 的长为半径的∴C 交AB 于点D ,交AC 于点E ,则(劣弧)的长为( )A.πB.πC.πD.π【答案】 A【解析】 连接CD ,如图所示, ∴∴C=90°,∴A=20°, ∴∴B=70°.l2πrrOh 2πrh O r∴CB=CD,∴∴BDC=∴B=70°,∴∴BCD=40°,∴的长为=.故选A.例题3、如图,半径为2cm的圆O与地面相切于点B,圆周上一点A距地面高为(2+3)cm,圆O沿地面BC 方向滚动,当点A第一次接触地面时,圆O在地面上滚动的距离为.【答案】53πcm.【解析】作AD⊥BC于D,OE⊥AD于E,则AE=2+3﹣2=3,又OA=2,∴sin∠AOE=32 AEOA=,∴∠AOE=60°,则AB的长为()6090251803ππ+⨯⨯=,则圆O在地面上滚动的距离为53πcm,故答案为:53πcm.例题4、如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=4,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.【答案】(1)AE平分∠DAC(2)①3;②43π﹣3【解析】(1)证明:连接OE,如图,∵CD与⊙O相切于点E,∴OE⊥CD,∵AD⊥CD,∴OE∥AD,∴∠DAE=∠AEO,∵AO=OE,∴∠AEO=∠OAE,∴∠OAE=∠DAE,∴AE平分∠DAC;(2)解:①∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,BE=12AB=12×4=2,AE=3BE=23,在Rt△ADE中,∠DAE=∠BAE=30°,∴DE=12AE=3,∴AD=3DE=3×3=3;②∵OA=OB,∴∠AEO=∠OAE=30°,∴∠AOE=120°,∴阴影部分的面积=S扇形AOE﹣S△AOE=S扇形AOE﹣12S△ABE=21202360π﹣12•12•23•2=43π﹣3.例题5、【答案】5π【解析】暂无解析随练1、 如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC=2,AE=3,CE=1.则BD 的长是( )A.39π B.239πC.33π D.233π【答案】 B【解析】 连接OC ,∵△ACE 中,AC=2,AE=3,CE=1, ∴AE 2+CE 2=AC 2,∴△ACE 是直角三角形,即AE ⊥CD ,∵sinA=CE AC =12,∴∠A=30°, ∴∠COE=60°,∴CE OC =sin ∠COE ,即1OC =32,解得OC=233,∵AE ⊥CD , ∴BC =BD ,∴BD =BC =23603180π⨯=239π.随练2、 如图,等边三角形MNP 的边长为1,线段AB 的长为4,点M 与A 重合,点N 在线段AB 上.MNP △沿线段AB 按A B −−→的方向滚动,直至MNP △中有一个点与点B 重合为止,则点P 经过的路程为__________.【答案】43π 【解析】 该题考查的是弧长的计算.点P 经过的路程是两段弧,半径为1,圆心角为120︒,根据1=180n Rπ进行计算即可.故点P 经过的路程为:1201421803ππ⨯⨯⨯=.故答案为:43π.A (M )PNB扇形面积公式例题1、如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD 为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【答案】B【解析】∴AB=25,BD=15,∴AD=25-15=10,∴S贴纸=(﹣)×2=350πcm2,例题2、如图,AB是⊙O的直径,弦CD⊥AB于点E,⊙O的半径为3,弦CD的长为3cm,则图中阴影部分面积是_____.【答案】π﹣33 4【解析】∵弦CD⊥AB于点E,∴CE=32,∵OC=3,∴OE=32,∴∠OCE=30°,∴∠COD=120°,∴图中阴影部分面积=()21203360π⋅⨯﹣12×3×32=π﹣334,例题3、如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为.【答案】(3π﹣)cm2.【解析】作OH∴DK于H,连接OK,∴以AD为直径的半圆,正好与对边BC相切,∴AD=2CD,∴A'D=2CD,∴∴C=90°,∴∴DA'C=30°,∴∴ODH=30°,∴∴DOH=60°,∴∴DOK=120°,∴扇形ODK的面积为=3πcm2,∴∴ODH=∴OKH=30°,OD=3cm,∴OH=cm,DH=cm;∴DK=3cm,∴∴ODK的面积为cm2,∴半圆还露在外面的部分(阴影部分)的面积是:(3π﹣)cm2.随练1、如图,正方形ABCD的边长为2,连接BD,先以D为圆心,DA为半径作弧AC,再以D为圆心,DB 为半径作弧BE,且D、C、E三点共线,则图中两个阴影部分的面积之和是()A.12π B.12π+1 C.π D.π+1【答案】A【解析】∵AB=2,∴BD=22,S阴影=S扇形BDE﹣12S扇形ACD=()24522360π﹣12×904360π⨯=π﹣12π=12π,故选A.随练2、如图,三个小正方形的边长都为1,则图中阴影部分面积的和是(结果保留π).【答案】.【解析】根据图示知,∴1+∴2=180°﹣90°﹣45°=45°,∴∴ABC+∴ADC=180°,∴图中阴影部分的圆心角的和是90°+90°﹣∴1﹣∴2=135°,∴阴影部分的面积应为:S==.故答案是:.圆锥例题1、如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】∴h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.h=23cm,底面半径r=2cm,则圆锥体的全面积为____cm2.A.43πB.8πC.12πD.(43+4)π【答案】C【解析】本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为23cm,∵圆锥的母线长为4cm,∵侧面面积=12×4π×4=8π; 底面积为=4π,全面积为:8π+4π=12πcm 2. 故选:C .例题3、 将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为__________.【答案】22.【解析】 过O 点作OC AB ⊥,垂足为D ,交O 于点C ,由折叠的性质可知,1122OD OC OA ==,由此可得,在Rt AOD ∆中,30A ∠=︒,同理可得30B ∠=︒,在AOB ∆中,由内角和定理,得180120AOB A B ∠=︒-∠-∠=︒AB ∴的长为12032180ππ⨯=设围成的圆锥的底面半径为r ,则22r ππ=1r cm ∴=∴圆锥的高为223122-=随练1、 圆锥的底面半径为4cm ,高为3cm ,则它的表面积为( ) A.12πcm 2 B.20πcm 2 C.26πcm 2 D.36πcm 2【答案】 D【解析】 底面周长是2×4π=8πcm ,底面积是:42π=16πcm 2. 母线长是:22345+=,则圆锥的侧面积是:218π520πcm 2⨯⨯=,则圆锥的表面积为16π+20π=36πcm 2.随练2、 已知扇形的圆心角为120°,所对的弧长为83π,则此扇形的面积是______. 【答案】163π【解析】 ∵扇形的圆心角为120°,所对的弧长为83π, ∴l=120R 81803⨯=ππ, 解得:R=4,则扇形面积为12Rl=163π随练3、 如图,在菱形ABCD 中,AB=2,∠C=120°,以点C 为圆心的与AB ,AD 分别相切于点G ,H ,与BC ,CD 分别相交于点E ,F .若用扇形CEF 作一个圆锥的侧面,则这个圆锥的高是__________.【答案】 2【解析】 如图:连接CG , ∵∠C=120°, ∴∠B=60°,∵AB 与相切,∴CG ⊥AB ,在直角△CBG 中,CG=BC•sin60°=2×=3,即圆锥的母线长是3, 设圆锥底面的半径为r ,则:2πr=,∴r=1.则圆锥的高是:=2.不规则图形面积的巧算例题1、 如图,AB 是∴O 的直径,弦CD ∴AB ,∴CDB=30°,CD=2,则S 阴影=( )A.πB.2πC.D.π【答案】 D【解析】 如图,CD ∴AB ,交AB 于点E , ∴AB 是直径,∴CE=DE=CD=, 又∴∴CDB=30° ∴∴COE=60°, ∴OE=1,OC=2, ∴BE=1,∴S ∴BED =S ∴OEC , ∴S 阴影=S 扇形BOC ==.故选:D .例题2、如图,半圆O的直径AB=2,弦CD∴AB,∴COD=90°,则图中阴影部分的面积为.【答案】.【解析】∴弦CD∴AB,∴S∴ACD=S∴OCD,∴S阴影=S扇形COD=•π•=×π×=.例题3、如图,⊙O是△ACD的外接圆,AB是直径,过点D作直线DE∥AB,过点B作直线BE∥AD,两直线交于点E,如果∠ACD=45°,⊙O的半径是4cm(1)请判断DE与⊙O的位置关系,并说明理由;(2)求图中阴影部分的面积(结果用π表示).【答案】(1)DE为⊙O的切线(2)(24﹣4π)cm2【解析】(1)DE与⊙O相切.理由如下:连结OD,BD,则∠ABD=∠ACD=45°,∵AB是直径,∴∠ADB=90°,∴△ADB为等腰直角三角形,∵点O为AB的中点,∴OD⊥AB,∵DE∥AB,∴OD⊥DE,∵OD是半径,∴DE为⊙O的切线;(2)∵BE∥AD,DE∥AB,∴四边形ABED为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=12(4+8)×4﹣2904360π••=(24﹣4π)cm2.随练1、 如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是____________.【答案】23π﹣3 【解析】 如图,连接BD .∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°,∴△DAB 是等边三角形, ∵AB=2,∴△ABD 的高为3,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ⎧∠=∠⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD =260213602π⨯-×2×3=23π﹣3.随练2、 如图,在∴BCE 中,点A 时边BE 上一点,以AB 为直径的∴O 与CE 相切于点D ,AD ∴OC ,点F为OC 与∴O 的交点,连接AF . (1)求证:CB 是∴O 的切线;(2)若∴ECB=60°,AB=6,求图中阴影部分的面积.【答案】(1)证明见解析;(2)π.【解析】(1)证明:连接OD,与AF相交于点G,∴CE与∴O相切于点D,∴OD∴CE,∴∴CDO=90°,∴AD∴OC,∴∴ADO=∴1,∴DAO=∴2,∴OA=OD,∴∴ADO=∴DAO,∴∴1=∴2,在∴CDO和∴CBO中,,∴∴CDO∴∴CBO,∴∴CBO=∴CDO=90°,∴CB是∴O的切线.(2)由(1)可知∴3=∴BCO,∴1=∴2,∴∴ECB=60°,∴∴3=∴ECB=30°,∴∴1=∴2=60°,∴∴4=60°,∴OA=OD,∴∴OAD是等边三角形,∴AD=OD=OF,∴∴1=∴ADO,在∴ADG和∴FOG中,,∴∴ADG∴∴FOG,∴S∴ADG=S∴FOG,∴AB=6,∴∴O的半径r=3,∴S阴=S扇形ODF==π.随练3、如图,直径AB为10的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是.【答案】 .【解析】 如图,∴AB=AB ′=8,∴BAB ′=60° ∴图中阴影部分的面积是: S=S 扇形B ′AB +S 半圆O ′﹣S 半圆O =+π×52﹣π×52 =π.拓展1、 若正六边形的边长为4,则它的内切圆面积为( ) A.9π B.10π C.12π D.15π【答案】 C【解析】 连接OD 、OE ,作OM ⊥DE 于M , ∵六边形ABCDEF 是边长为4的正六边形, ∴△ODE 是等边三角形, ∴OD =DE =4,∴3sin 604232OM OD =•︒=⨯=,∴它的内切圆面积2(23)12=π⨯=π.2、 边长为4的正六边形的边心距________,中心角等于________度,边长为________. 【答案】 23;60;4【解析】 六边形每个中心角度数为360÷6=60°,根据每个中心角都分六边形为等边三角形,∵正六边形的边长为4, 则每个等边三角形的高即圆心距为:sin 6023CO BO =⋅︒=.3、正六边形的外接圆的半径与内切圆的半径之比为________.【答案】 2:3 【解析】 暂无解析4、 如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=________________.【答案】 75°【解析】 设该正十二边形的圆心为O ,如图,连接A 10O 和A 3O ,由题意知,∧3110A A A =512⊙O 的周长,∴∠A3OA10=536012⨯=150°,∴∠A 3A 7A 10=75°,5、 (1)已知:如图1,ABC ∆是O ⊙的内接正三角形,点P 为弧BC 上一动点,求证:PA PB PC =+ (2)如图2,四边形ABCD 是O ⊙的内接正方形,点P 为弧BC 上一动点,求证:2PA PC PB =+(3)如图3,六边形ABCDEF 是O ⊙的内接正六边形,点P 为弧BC 上一动点,请探究PA PB PC 、、三者之间有何数量关系,并给予证明.【答案】 见解析【解析】 (1)证明:延长BP 至E ,使PE PC =,连结CE .OCABPPODAB COPFDCA1260,3460∠=∠=︒∠=∠=︒60,CPE PCE ∴∠=︒∴∆是等边三角形.,,360,CE PC E ∴=∠=∠=︒又EBC PAC ∠=∠, BEC APC ∴∆∆≌ PA BE PB PC ∴==+.(2)证明:过点B 作BE PB ⊥交PA 于E ,122390,13∠+∠=∠+∠=︒∴∠=∠,又45APB ∠=︒,,2,BP BE PE PB ∴=∴=,,AB BC ABE CBP PC AE =∴∆∆∴=≌.2PA AE PE PC PB ∴=+=+(3)答:3PA PC PB =+证明:在AP 上截取AQ PC =,连结BQ ,,BAP BCP AB BC ∠=∠=,,ABQ CBP ∴∆≅∆BQ BP ∴=.又30,APB ∠=︒3PQ PB ∴=,3PA PQ AQ PB PC ∴=+=+6、 如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC =BC =DC .(1)若∠CBD =39°,求∠BAD 的度数;(2)求证:∠1=∠2.【答案】 (1)78°(2)见解析【解析】 (1)∵BC =DC ,∴∠CBD =∠CDB =39°,∵∠BAC =∠CDB =39°,∠CAD =∠CBD =39°,∴∠BAD =∠BAC +∠CAD =39°+39°=78°;(2)∵EC =BC ,∴∠CEB =∠CBE ,而∠CEB =∠2+∠BAE ,∠CBE =∠1+∠CBD ,∴∠2+∠BAE =∠1+∠CBD ,∵∠BAE =∠BDC =∠CBD ,∴∠1=∠2.7、 如图,在等腰Rt △ABC 中,AC=BC=22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( )321E C B ADO PO Q AB C D E F PA.2πB.πC.22D.2 【答案】 B 【解析】 取AB 的中点O 、AE 的中点E 、BC 的中点F ,连结OC 、OP 、OM 、OE 、OF 、EF ,如图, ∵在等腰Rt △ABC 中,AC=BC=22,∴AB=2BC=4,∴OC=12AB=2,OP=12AB=2, ∵M 为PC 的中点,∴OM ⊥PC ,∴∠CMO=90°,∴点M 在以OC 为直径的圆上,点P 点在A 点时,M 点在E 点;点P 点在B 点时,M 点在F 点,易得四边形CEOF 为正方形,EF=OC=2, ∴M 点的路径为以EF 为直径的半圆,∴点M 运动的路径长=12•2π•1=π.8、 在Rt △ABC 中,∠C =90°,AC =BC =1,将其放入平面直角坐标系,使A 点与原点重合,AB 在x 轴上,△ABC沿x 轴顺时针无滑动的滚动,点A 再次落在x 轴时停止滚动,则点A 经过的路线与x 轴围成图形的面积为________.【答案】 12π+【解析】 ∵∠C =90°,AC =BC =1, ∴22112AB =+=;根据题意得:2△ABC 绕点B 顺时针旋转135°,BC 落在x 轴上;△ABC 再绕点C 顺时针旋转90°,AC 落在x 轴上,停止滚动;∴点A 的运动轨迹是:先绕点B 旋转135°,再绕点C 旋转90°;如图所示:∴点A 经过的路线与x 轴围成的图形是:一个圆心角为135°,半径为2的扇形,加上△ABC ,再加上圆心角是90°,半径是1的扇形;∴点A 经过的路线与x 轴围成图形的面积22135(2)190111136023602⨯π⨯⨯π⨯=+⨯⨯+=π+.9、如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC长为半径画弧,与BC的延长线交于点E,则图中AE的长为________.【答案】32 2π【解析】∵四边形ABCD为正方形,∴222CA AB==,∠ACB=45°,∴∠ACE=135°,∴AE的长度13522321802π==π.10、如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cmB.15cmC.10cmD.20cm【答案】D【解析】过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.11、用一个圆心角为120°,半径为3的扇形做一个圆锥的侧面,这个圆锥的底面圆的半径为________.【答案】1【解析】 暂无解析12、 若扇形的半径为30cm ,圆心角为60°,则此扇形围成圆锥的底面半径为 cm . 【答案】 5 【解析】 设圆锥的底面半径为r ,根据题意得2π•r=6030180π⨯,解得r=5, 即圆锥的底面半径为5cm .故答案为5.13、 将△ABC 绕点B 逆时针旋转到△A′BC′,使A 、B 、C′在同一直线上,若∠BCA =90°,∠BAC =30°,AB =4cm ,则图中阴影部分面积为________cm 2.【答案】 4π【解析】 ∵∠BCA =90°,∠BAC =30°,AB =4cm ,∴BC =2,23AC =,∠A′BA =120°,∠CBC′=120°,∴阴影部分面积=(S △A′BC′+S 扇形BAA ′)-S 扇形BCC′-S △ABC 222120π(42)4πcm 360=⨯-=. 14、 一张圆心角为45°的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为1,则扇形纸板和圆形纸板的面积比是__________.【答案】 5:4【解析】 如图1,连接OD ,∵四边形ABCD 是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD=222+1=5,∴扇形的面积24555=3608ππ⨯(); 如图2,连接MB 、MC ,∵四边形ABCD 是⊙M 的内接四边形,四边形ABCD 是正方形,∴∠BMC=90°,MB=MC ,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=22, ∴⊙M 的面积是π×(22)2=12π, ∴扇形和圆形纸板的面积比是515=824ππ÷().15、 如图,△ABC 中,AC =BC ,AB =4,∠ACB =90°,以AB 的中点D 为圆心DC 长为半径作14圆DEF ,设∠BDF =α(0°<α<90°),当α变化时图中阴影部分的面积为________(14圆:∠EDF =90°,14圆的面积21π4r =⋅)【答案】 π-2【解析】 作DM ⊥AC 于M ,DN ⊥BC 于N ,连接DC ,如图所示:∵CA =CB ,∠ACB =90°,∴∠A =∠B =45°,DM AD =,DN =, ∴DM =DN ,∴四边形DMCN 是正方形,∴∠MDN =90°,∴∠MDG =90°-∠GDN ,∵∠EDF =90°,∴∠NDH =90°-∠GDN ,∴∠MDG =∠NDH ,在△DMG 和△DNH 中,MDG NDH DMG DNH DM DN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≌△DNH (AAS ),∴四边形DGCH 的面积=正方形DMCN 的面积,∵正方形DMCN 的面积2218DM AB ==21428=⨯=, ∴四边形DGCH 的面积218AB =, ∵扇形FDE 的面积22290πππ4π3601616CD AB ⋅⨯===, ∴阴影部分的面积=扇形面积-四边形DGCH 的面积=π-2.16、 如图,ABCD 是平行四边形,AB 是O 的直径,点D 在O 上1AD OA ==,则图中阴影部分的面积为__________.【答案】 34 【解析】 连接DO EO BE ,,,过点D DF AB F ⊥作于点,1AD OA AD AO DO ==∴==,,AOD ∴∆是等边三角形,ABCD 四边形是平行四边形,//60DC AB CDO DOA ∴∴∠=∠=︒,, ODE ∴∆是等边三角形,同理可得出OBE ∆是等边三角形且3个等边三角形全等, ∴阴影部分面积等于BCE ∆面积,36012DF ADsin DE EC =︒===,, ∴图中阴影部分的面积为:34.。

《圆内接正多边形》圆PPT教学课件

《圆内接正多边形》圆PPT教学课件

【检查评价】
北京师范大学出版社 九年级 | 下册
布置作业: 1、教科书习题3.10第1题,第2题,第3题.(必做题) 2、教科书习题3.10第4题,第5题.(选做题)
谢谢观看!
第三章 圆
3.8 圆内接正多边形
学习目标
1.掌握正多边形和圆的关系; 2.理解正多边形的中心、半径、中心角、边心距等概念;(重点) 3.能运用正多边形的知识解决圆的有关计算问题; (难点) 4.会运用多边形知和圆的有关知识画多边形.
若n为偶数,则其为中心对称图形.
A
B O
A
E
B
F
O
C
D
C
E
D
知识讲解
【归纳】正多边形的性质
1.各边相等,各角相等. 2.圆的内接正n边形的各个顶点把圆分成n等份. 3.圆的外切正n边形的各边与圆的n个切点把圆分成n等份. 4.每个正多边形都有一个内切圆和外接圆,这两个圆是同心圆,圆心就是正 多边形的中心.
追问1:除了上述方法作圆的内接正六边形外,你还有其他方法吗?
北京师范大学出版社 九年级 | 下册
【讲授新知】
追问2:你会用用圆规和直尺来作一个已知圆的内接正方形吗?你是怎么做的? 与同伴交流.
【| 下册
学生练习1:课本98页随堂练习. 学生练习2:用等分圆周的方法画出下列图案.
__各__边__相__等___,___各__角__也__相__等__的多边形叫做正多边形.
正n边形:如果一个正多边形有n条边,那么这个正多边形叫做正n边
形.
合作探究
怎样找圆的内接正三角形?
怎样找圆的外切正三角形?
H
A
D
E
0
B
C

圆内接正五边形画法

圆内接正五边形画法

椭圆画法:
已知:长轴AB,短轴CD,常用的椭圆画法有: 四心法 (近似画法)见图a, 同心圆法(准确画法)见图b。
( a)
( b)
四心扁圆法画椭圆
已知:椭圆的长轴和短轴. 作图:椭圆.
作题步骤: 1.连接AC,在短轴的延长 线上量OE=OA,在AC上 量CF=CE; 2.作AF的中垂线,交长轴于 O1,交短轴于O2,定出其对 称点O3.O4;
§2-2
等分圆周
1. 圆内接正多边形作图 (1) 圆内接正五边形作图
已知:圆O. 作图:作已知图 的内接正五边形 作图步骤: 1.作出半径OF的 等分点H。 2.以HA为半径作圆弧, 交直径于G。
C D B O G H F A
E
3.AG长即为五边形 的边长,依次连接各 等分点A、B、C、D、 E,即为所求。
E O4 C F
O A O1
O2 B
3.分别以O3.O4和O1.O2为 圆心,以O4D.O1A为半径 作圆弧,所得图形即所求。
D O3
(2)已知正六边形对角线长度,作正六边形 画图步骤:
1.画水平、垂直对称 中心线,取1、4等 于对角线长。 2.过1、0、4点分别 做同方向的60 ° 斜线。 3.过1、4点做另一方 向的斜线。 4.过2、5点分别做 水平线即为所求。
3
1 o 2
5 4 6
§2-3
圆弧链接
作图要点:根据已知条件,准确地求出连接圆弧的圆心 和切点。
R2
作图原理:a为切点
R1
o
R2
a
o
a
R1
o
a(外切)
相减
(c)圆弧与圆弧连接(内切)
(a)圆弧与直线连接
[例]已知:O1(R1)和O2(R2)两个弧(如 图),用R3弧将它们连接起来(外切)。

正五边形尺规作图的画法及其他

正五边形尺规作图的画法及其他

正五边形尺规作图的画法及其他正五边形的画法圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。

以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。

正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是n=2k(2的k次幂)或2k×p1×p2×…×ps,(1,2…s为右下角标)其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。

3.8 圆内接正多边形

3.8  圆内接正多边形
以作出一个圆内接正多边形. 如图,五边形ABCDE是⊙O的内接 正五边 形,圆心O叫做这个正五边形 的中心;OA是这个正五边 形的半径;
∠ AOB是这个正五边形的中心角;OM丄BC,垂足
为M,OM是这个正五边形圆心距.
(来自教材)
知1-讲
1.圆内接正多边形:顶点都在同一圆上的正多边形叫做圆 内接正多边形,这个圆叫做正多边形的外接圆.
6
(2015· 随州)如图,⊙O是正五边形ABCDE的外接圆, 这个正五边形的边长为a,半径为R,边心距为r,则 下列关系式错误的是( )
A.R2-r2=a2
B.a=2Rsin 36° C.a=2rtan 36° D.r=Rcos 36°
(来自《典中点》)
知2-导
知识点
2 圆内接正多边形的画法
利用尺规作一个已知圆的内接正六边形.
(来自《典中点》)
知1-练
2
(2016· 南京)已知正六边形的边长为2,则它的内切圆
的半径为( A.1 ) B. 3 C.2 D.2 3
3
一个圆的内接正四边形和外切正四边形的面积的比是 ( )
A.1∶ 2
B.1∶2
C.2∶3
D.2∶π
(来自《典中点》)
知1-练
4
(2015· 青岛)如图,正六边形ABCDEF内接于⊙O,
⊙O于点C,F和D,E;(4)连接AD,DE,EA.
则△ADE为所求作的正三角形,如图所示.
(来自《点拨》)
知2-讲
总 结
解决这类问题通常有两种方法:
(1)用量角器等分圆周法;
(2)用尺规等分圆周法.
(来自《点拨》)
知2-讲
例4 如图①②③…,M,N分别是⊙O的内接正三角形ABC、正

圆的内接正多边形的画法

圆的内接正多边形的画法
得圆内接正三角形abc探索新知你能用以上方法画出正四边形正五边形正六边形吗
圆的内接正多边形的画法
本课件仅供大家学习学习 学习完毕请自觉删除
谢谢 本课件仅供大家学习学习
学习完毕请自觉删除 谢谢
当堂训练
正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通 过n边形的中心。
当堂训练
边数是偶数的正多边形还是中心对称图形, 它的中心就是对称中心。
D
F
E
·O
B
E

A
O
·
D
90°
72°
60°
B
C
C
D
B
C
探索新知
你能尺规作出正六边形、正三角形、正 十二边形吗?
F
E
O
A
·
D
以半径长在圆周上截取六段相 等的弧,依次连结各等分点,则 作出正六边形.
先作出正六边形,则可作正三 角形,正十二边形,正二十四边
形………
B
C
探索新知
圆内接正五边形的画法:
① 以O为圆心,定长R为半径 画圆,并作互相垂直的直径 MN和AP。
探索新知
怎样画一个正多边形呢? 问题1:已知⊙O的半径为2cm,求 作圆的内接正三角形.
A①用量角器度量,使源自∠AOB=∠BOC=∠COA=
120°,得A、B、C
120 ° O
② 顺次连接AB、BC、 CA。
得圆内接正三角形ABC
C
B
探索新知
你能用以上方法画出正四边形、正 五边形、正六边形吗?
A
A
② 平分半径ON,得OK=KN。 B
③ 以K为圆心,KA为半径画 弧与OM交于H,AH即为正五 边形的边长。

几何作图之手绘正多边形

几何作图之手绘正多边形

几何作图之手绘正多边形
虽然机件的形状各有不同,但它们的图样基本上都是由直线、圆弧和其它一些曲线所组成的几何形体。

因此在绘图时,常常要运用一些几何作图方法。

手绘正多边形:
用绘图工具可作出正三、四、五、六……多边形。

以圆内接正五边形、正六边形为例介绍正多边形的画法。

图1 圆内接正五边形
[作图步骤]:
(1)以A为圆心,OA为半径,画弧交圆于B、C,连BC得OA 中点M;
(2)以M为圆心,MI为半径画弧,得交点K,IK线段长为所求五边形的边长。

(3)用IK长自I起截圆周得点Ⅱ、Ⅲ、Ⅳ、Ⅴ,依次连接,即得五边形。

图2 圆内接正六边形
[作图步骤]:
方法1:以A(或B)为圆心,原圆半径为半径,截圆于1、2、3、4,即得圆周六等分。

方法2:(1)用60°三角板自2作弦21;右移,自5作弦45;旋转三角板作23、65两弦。

(2)以丁字尺连接16、34,即得正六边形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∠AOB=∠BOC=∠COA=
120°,得A、B、C
120 ° O
② 顺次连接AB、BC、 CA。
得圆内接正三角形ABC
C
B
精选课件
4
探索新知
你能用以上方法画出正四边形、正 五边形、正六边形吗?
A
A
D
F
E
·O
B
E

A
O ·
D
90°
72°
60°
B
C
C
D
B
C
精选课件
5
探索新知
你能尺规作出正六边形、正三角形、正 十二边形吗?
精选课件
9
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
精选课件
1
当堂训练
正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称边数是偶数的正多边形还是中心对称图形, 它的中心就是对称中心。
精选课件
3
探索新知
怎样画一个正多边形呢? 问题1:已知⊙O的半径为2cm,求作 圆的内接正三角形.
A
①用量角器度量,使
F
E
O
A
·
D
以半径长在圆周上截取六段相 等的弧,依次连结各等分点,则 作出正六边形.
先作出正六边形,则可作正 三角形,正十二边形,正二十四
边形………
B
C
精选课件
6
探索新知
A
B
M
K
E
O
H
N
C
P
精选课件
D
7
课堂小结
画正多边形的方法
1.用量角器等分圆 2.尺规作图等分圆
精选课件
8
作业:P108:3、8
相关文档
最新文档