3.8 圆内接正多边形 教案

合集下载

北师大版数学九年级下册3.8《圆内接正多边形》教案

北师大版数学九年级下册3.8《圆内接正多边形》教案

北师大版数学九年级下册3.8《圆内接正多边形》教案一. 教材分析《圆内接正多边形》是北师大版数学九年级下册第3.8节的内容。

本节主要让学生了解圆内接正多边形的性质,并会运用这些性质解决一些简单问题。

教材通过引入正多边形和圆的关系,引导学生探究圆内接正多边形的性质,培养学生的观察、思考和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了正多边形的性质,对正多边形的对称性、边角关系等有了一定的了解。

但学生对圆内接正多边形的性质可能较为陌生,需要通过实例和操作来逐步理解和掌握。

三. 教学目标1.了解圆内接正多边形的性质。

2.学会运用圆内接正多边形的性质解决一些简单问题。

3.培养学生的观察、思考和解决问题的能力。

四. 教学重难点1.圆内接正多边形的性质。

2.如何运用圆内接正多边形的性质解决实际问题。

五. 教学方法采用问题驱动法、案例分析法和合作学习法。

通过提出问题,引导学生观察、思考和讨论,从而得出结论。

同时,通过案例分析和合作学习,让学生在实践中掌握圆内接正多边形的性质。

六. 教学准备1.PPT课件。

2.相关案例和练习题。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的圆内接正多边形图片,如足球、奖杯等,引导学生关注这些现象,并提出问题:“这些图形有什么共同特点?它们与圆有什么关系?”2.呈现(10分钟)呈现圆内接正多边形的定义,并通过动画展示圆内接正多边形的形成过程。

同时,引导学生观察和总结圆内接正多边形的性质。

3.操练(10分钟)让学生分组讨论,每组选择一个圆内接正多边形,观察并记录其性质。

然后,各组汇报讨论结果,师生共同总结圆内接正多边形的性质。

4.巩固(10分钟)出示一些练习题,让学生运用圆内接正多边形的性质解决问题。

教师及时给予解答和指导,确保学生掌握所学知识。

5.拓展(10分钟)出示一些实际问题,如设计一个圆内接正多边形的图案,让学生思考如何应用圆内接正多边形的性质解决问题。

北师大版九年级数学下册:3.8《圆内接正多边形》教案2

北师大版九年级数学下册:3.8《圆内接正多边形》教案2

北师大版九年级数学下册:3.8《圆内接正多边形》教案2一. 教材分析北师大版九年级数学下册第3.8节《圆内接正多边形》是圆内接正多边形的相关知识,主要介绍圆内接正多边形的性质及判定方法。

通过学习,使学生了解圆内接正多边形与圆的关系,能运用其性质解决一些简单问题。

二. 学情分析学生在学习本节内容前,已经掌握了多边形的内角与外角的知识,对正多边形的性质也有了一定的了解。

但学生对圆内接正多边形的概念及性质可能较难理解,需要通过实例和图形来帮助学生直观地感受和理解。

三. 教学目标1.理解圆内接正多边形的概念,掌握其性质。

2.学会运用圆内接正多边形的性质解决一些简单问题。

3.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.圆内接正多边形的概念及性质。

2.如何运用圆内接正多边形的性质解决实际问题。

五. 教学方法采用问题驱动法、图形演示法、合作交流法等,引导学生观察、思考、推理,培养学生的数学思维能力。

六. 教学准备1.准备相关多媒体教学课件和教学素材。

2.准备圆内接正多边形的图形示例。

3.准备练习题和拓展题。

七. 教学过程1.导入(5分钟)通过复习多边形的内角与外角的知识,引导学生回顾正多边形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)(1)展示圆内接正多边形的图形示例,引导学生观察并思考:圆内接正多边形有什么特点?(2)引导学生总结圆内接正多边形的性质,并用文字和符号表示。

3.操练(10分钟)(1)让学生根据圆内接正多边形的性质,解决一些简单问题。

如:已知一个圆内接正六边形,求其内角度数。

(2)引导学生运用圆内接正多边形的性质,证明一个结论。

如:圆内接正多边形的对角线互相垂直。

4.巩固(10分钟)让学生独立完成练习题,检验对圆内接正多边形知识的掌握程度。

同时,教师巡回指导,解答学生的疑问。

5.拓展(10分钟)引导学生思考:如何判断一个多边形是否为圆内接正多边形?让学生通过合作交流,探讨判断方法。

九年级数学下册38圆内接正多边形教案1(新版)北师大版.doc

九年级数学下册38圆内接正多边形教案1(新版)北师大版.doc

课题:3. 8圆内接正多边形教学目标:1.了解圆内接正多边形的有关概念.2.理解并掌握正多边形半径和边氏、边心距、中心角Z间的关系.3.会用尺规作I员I的内接止方形和止六边形.教学重点与难点:重点:理解正多边形的中心、半径、中心角、边心距等概念.难点:能运用正多边形的知识解决圆的有关计算问题.课前准备:教师准备多媒体课件.教学过程:一、创设情境,导入新课活动内容:各小组派代表展示自己课前所调查得到的正多边形形状的物体.回答下列问题:问题1:什么叫正多边形?问题2:正多边形是轴对称图形、屮心对称图形吗?其对称轴有几条,对称屮心是哪一点?问题3:以对称中心为圆心,以对称中心到正多边形的一个顶点的长为半径画圆,你有何发现?处理方式:学生自己找到正多边形的对称轴和对称中心,画出符合条件的圆.设计意图:通过作图的过程,学生很容易发现圆和正多边形的关系:(1)正多边形的顶点都在圆上;(2)圆经过正多边形的所有顶点.(自然引出课题).二、探究学习,获取新知活动内容一:圆内接正多边形的概念定义:顶点都在同一个圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.把一个圆斤等分(72 >3),依次连接各分点,我们就可以作出一个圆内接正多边形.如图,五边形ABCDE是圆0的内接正五边形,圆心0 叫做这个正五边形的中心;OA是这个正五边形的半径;ZAOB是这个正五边形的中心角;0M丄BC ,垂足为M ,B0M是这个正五边形的的边心距.处理方式:学生自学课木97页例题以上内容,对照多媒体上的图形,说出各部分的名称。

教师强调:正多边形的屮心指的是其外接圆的圆心,半径指的是其外接圆的半径,屮心角指的是其每一边所对的外接圆的圆心介J.设计意图:让学生了解有关止多边形的概念,引导学生逐步深入的学习.活动内容二:求正多边形的中心角、边长和边心距例如图,在圆内接正六边形ABCDEF中,半径0C = 4, 0G丄BC ,垂足为G,求这个正六边形的中心角、边长和边心距.处理方式:引导学牛发现正六边形的中心角的一半、边长和边心距构成一个直角三角形,利用解直角三角形的知识解决问题. 教师多媒体展示解答过程:解:连接0D.•・•六边形ABCDEF为正六边形.360°・・・ ZCOD = - = 60°.6・・・\COD为等边三角形..・・ CD = OC = 4.在Rt\COG^, OC = 4, CG = 2.:.OG = 2h.・••正六边形ABCDEF中心角为60°,边长为4,边心距为2羽.设计意图:通过例题的学习,巩固冇关正多边形的概念,能运川解直角三角形的知识解决正多边形的有关计算问题.教师强调:正多边形的有关计算可转化为解直角三角形,这个直角三角形的构成是:斜边为半径,一直角边为边心距,另一直角边为边长的一半,顶点在中心的锐角为中心角的一半.活动内容三:1、用尺规作一个已知圆的内接正六边形.2、用尺规作一个已知圆的内接正四边形.3、思考:作正多边形有哪些方法?处理方式:由例题引导学生发现止六边形的边长等于其半径,从而找到六等分鬪的方法. 设计意图:使学生理解并掌握可用等分圆心和的方法等分圆周,从而用肓尺和圆规可以作出一些特殊的正多边形.三、训练反馈,应用提升活动内容:1 •把边长为6的正三角形剪去三个三角形得到一个止六边形DFKKGE,求这个正六边形的面积.2、分别求出半径为6加的圆内接正三角形的边长和边心距.(第1题)处理方式:学牛口述思考过程,并说明理山.两位同学黑板板书做题过程.设计意图:木组试题主要是巩固止多边形的冇关计算,让学生熟练转化为解直角三角形的知识解决问题.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一•想,再分享给人家.处理方式:学生畅谈自己的收获!设计意图:课堂小结是培养好学生反思、总结习惯的最好环节,只有学生养成良好的反思总结习惯,才能不断的取得进步,让学生在每堂课小体会小结的意义.五、达标检测,反馈提高活动内容:完成达标小卷.(多媒体出示)1・正三角形的边心距、半径和高的比是()A. 1:2:3B. 1:C. 1: :3D. 1:2:2.求出半径为6czn的圆内接正四边形的边长.边心距和面积.处理方式:学生在8分钟内独立完成后,两生分別说明思考过程,同位互换批改,不明白的问题利用1分钟时间交流、改正.设计意图:让学生利用当堂达标检测自己的学习效果,题目既考杏基础,给学生学习的信心和成功的体验,乂具有一些挑战性,考查学生综合应用知识的能力.六、布置作业,课堂延伸基础作业:课本P99习题3. 10,第4题.拓展作业:课本P99问题解决板书设计:。

九年级数学下册第三章圆3.8圆内接正多边形教案新版北师大版

九年级数学下册第三章圆3.8圆内接正多边形教案新版北师大版

3.8圆内接正多边形教学目标1.知识与技能目标了解正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,•正多边形的半径,正多边形的中心角,正多边形的边心距.2.过程与方法目标通过实例使学生理解,体会正多边形边数增加与圆的无限接近思想.3.态度价值观目标经历探索正多边形与圆相关结论的过程,发展学生的数学思考能力.教学重点正多边形的概念与正多边形和圆的关系的第一个定理.教学难点对定理的理解以及定理的证明方法.教学过程一、复习引入请同学们口答下面两个问题.1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、中心对称吗?其对称轴有几条,对称中心是哪一点?二、探索新知新概念定义:顶点都在同一个圆上的正多边形叫圆内接正多边形,这个圆叫正多边形的外接圆.这个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.三、例题解析例1 如图在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距例2 有一个亭子它的地基是半径为4 m的正六边形,求地基的周长和面积(精确到0.1平方米).【解析】如图,正六边形ABCDEF的中心角为60°,△OBC是等边三角形,从而正六边形的边长等于它的半径.因此,亭子地基的周长l=4×6=24(m).在Rt△OPC中,OC=4,PC=2.利用勾股定理,可得边心距.亭子地基的面积.四、题后小结五、做一做利用尺规作图,作已知圆的内接正六边形.六、课堂检测:1.下列图形中:①正五边形;②等腰三角形;③正八边形;④正2n(n为自然数)边形;⑤任意的平行四边形.是轴对称图形的有__________,是中心对称图形的有_________,既是中心对称图形,又是轴对称图形的有_________.2.两个正七边形的边心距之比为3∶4,则它们的边长比为_____,面积比为_____,外接圆周长比是______,中心角度数比是______.3.正方形ABCD的外接圆圆心o叫做正方形ABCD的______.4.若正六边形的边长为1,那么正六边形的中心角是____度,半径是___,边心是,它的每一个内角是.5.正n边形的一个外角度数与它的______角的度数相等6.将一个正五边形绕它的中心旋转,至少要旋转度,才能与原来的图形位置重合.七、归纳小结(学生小结,老师点评)1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边的边心距.2.正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的等量关系.。

九年级数学下册 3.8 圆内接正多边形课时教案 (新版)北师大版

九年级数学下册 3.8 圆内接正多边形课时教案 (新版)北师大版

3.8圆内接正多边形一、教学目标1.了解正多边形和圆的有关概念.2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.二、课时安排1课时三、教学重点理解并掌握正多边形半径和边长、边心距、中心角之间的关系四、教学难点会应用多边形和圆的有关知识画多边形.五、教学过程(一)导入新课你还能举出更多正多边形的例子吗?(二)讲授新课活动内容1:探究1:正多边形正多边形:___________,_____________的多边形叫做正多边形.正n边形:如果一个正多边形有n条边,那么这个正多边形叫做正n边形.【想一想】菱形是正多边形吗?矩形是正多边形吗?为什么?求证:正五边形的对角线相等怎样找圆的内接正三角形?怎样找圆的外切正三角形?怎样找圆的内接正方形?怎样找圆的外切正方形?怎样找圆的内接正n边形?怎样找圆的外切正n边形?【定理】把圆分成n(n≥3)等份:依次连接各分点所得的多边形是这个圆的内接正n边形;经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.一个正多边形是否一定有外接圆和内切圆?【类比联想】正三角形:有没有外接圆和内切圆?怎样作出这两个圆?这两个圆有什么位置关系?正方形:有没有外接圆和内切圆?怎样作出这两个圆?这两个圆有什么位置关系?那么,正n边形呢?探究2:正多边形是轴对称图形,正n边形有n条对称轴.若n为偶数,则其为中心对称图形.活动2:探究归纳【定理】任何正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆.正多边形的中心:一个正多边形的外接圆的圆心.正多边形的半径:外接圆的半径正多边形的中心角:正多边形的每一边所对的圆心角.正多边形的边心距:中心到正多边形的一边的距离.以中心为圆心,边心距为半径的圆与各边有何位置关系?以中心为圆心,边心距为半径的圆为正多边形的内切圆。

(三)重难点精讲【例1】把圆分成5等份,求证:⑴依次连接各分点所得的五边形是这个圆的内接正五边形;⑵经过各分点作圆的切线,以相邻切线的交点为顶点的五边形是这个圆的外切正五边形.证明:(1)∵弧AB=弧BC=弧CD=弧DE=弧EA,∴AB=BC=CD=DE=EA,∵BCE=CDA=3AB,∴∠1=∠2,同理∠2=∠3=∠4=∠5,又∵顶点A,B,C,D,E都在⊙O上,∴五边形ABCDE是⊙O的内接正五边形.(2)连接OA,OB,OC,则∠OAB=∠OBA=∠OBC=∠OCB.∵TP,PQ,QR分别是以A,B,C为切点的⊙O的切线,∴∠OAP=∠OBP=∠OBQ=∠OCQ.∴∠PAB=∠PBA=∠QBC=∠QCB.又∵AB=BC,∴AB=BC,∴△PAB与△QBC是全等的等腰三角形.∴∠P=∠Q,PQ=2PA.同理∠Q=∠R=∠S=∠T,QR=RS=ST=TP=2PA,∵五边形PQRST的各边都与⊙O相切,∴五边形PQRST是⊙O的外切正五边形.【例2】有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(精确到0.1m2).【解析】如图,正六边形ABCDEF 的中心角为60°,△OBC 是等边三角形,从而正六边形的边长等于它的半径.因此,亭子地基的周长在Rt △OPC 中,OC=4,PC=2.利用勾股定理,可得边心距m .r =) 亭子地基的面积2112441.6(m ).22S lr ==⨯⨯≈(四)归纳小结通过本课时的学习,需要我们掌握:1.正多边形和圆的有关概念:正多边形的中心,正多边形的半径,•正多边形的中心角,正多边形的边心距.2.正多边形的半径、正多边形的中心角、边长,正多边形的边心距之间的等量关系. (五)随堂检测1.下列图形中:①正五边形;②等腰三角形;③正八边形;④正2n (n 为自然数)边形;⑤任意的平行四边形.是轴对称图形的有__________,是中心对称图形的有_________,既是中心对称图形,又是轴对称图形的有_________.2.两个正七边形的边心距之比为3:4,则它们的边长比为_____,面积比为_____,外接圆周长比是______,中心角度数比是______.3.正方形ABCD 的外接圆圆心O 叫做正方形ABCD 的______.4.正方形ABCD 的内切圆⊙O 的半径OE 叫做正方形ABCD 的________.5.若正六边形的边长为1,那么正六边形的中心角是____度,半径是___,边心距是 ,它的每一个内角是____.6.正n 边形的一个外角度数与它的______角的度数相等.7.将一个正五边形绕它的中心旋转,至少要旋转 度,才能与原来的图形位置重合.【答案】1. ①②③④;③④⑤;③④2. 3:4;9:16;3:4;1:13. 中心4. 边心距16. 中心7. 72六.板书设计3.8圆内接正多边形1.正多边形和圆的有关概念:正多边形的中心,正多边形的半径,•正多边形的中心角,正多边形的边心距.2.正多边形的半径、正多边形的中心角、边长,正多边形的边心距之间的等量关系.例题1:例题2:七作业布置课本P93练习1、2练习册相关练习八、教学反思。

九年级数学下册 3.8 圆内接正多边形教案 (新版)北师大版

九年级数学下册 3.8 圆内接正多边形教案 (新版)北师大版

圆内接正多边形一、教学目标(1)掌握正多边形和圆的关系;(2)理解正多边形的中心、半径、中心角、边心距等概念; (3)能运用正多边形的知识解决圆的有关计算问题; (4)会运用多边形知和圆的有关知识画多边形. 二、教学重点和难点重点:掌握正多边形的概念与正多边形和圆的关系,并能进行有关计算.难点:正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题 三、教学过程 (一)情境引入:多媒体出示正多边形和圆组合的美丽图案(二)学习新知:1.正多边形概念:各边相等、各角也相等的多边形叫做正多边形. 如果一个正多边形有n(n ≥3)条边,就叫正n 边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.2.圆内接正多边形的概念:顶点都在同一个圆上的正多边形叫做圆内接正多边形. 这个圆叫做该正多边形的外接圆.3.把一个圆n 等分(3≥n ),依次连接各分点,我们就可以作出一个圆内接正多边形.4.如图,五边形ABCDE 是圆O 的内接正五边形,圆心O 叫做这个正五边形的中心;OA 是这个正五边形的半径;AOB ∠是这个正五边形的中心角;BC OM ⊥,垂足为M ,OM 是这个正五边形的的边心距.在其他的正多边形中也有同样的定义.(三)学以致用:例1:如图,在圆内接正六边形ABCDEF 中,半径4=OC ,BC OG ⊥,垂足为G ,求这个正六边形的中心角、边长和边心距.小结:例2:1、用尺规作一个已知圆的内接正六边形.2、用尺规作一个已知圆的内接正四边形.3、思考:作正多边形有哪些方法?(四)巩固提升:1.判断⑴各边相等的多边形是正多边形()⑵各角相等的多边形是正多边形()⑶正十边形绕其中心旋转36°和本身重合()2.填空⑴正多边形都是对称图形,一个正n边形有条对称轴,每条对称轴都通过正n边形的;一个正多边形,如果有偶数条边,那么它既是对称图形,又是对称图形。

⑵正十二边形的每一个外角为°每一个内角是°该图形绕其中心至少旋转°和本身重合⑶用一张圆形的纸剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小应为__ cm⑷正方形ABCD的外接圆圆心O叫做正方形ABCD的______.⑸正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.⑹若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.⑺正n边形的一个外角度数与它的______角的度数相等.3.解答题如图,PA和PB分别与⊙O相切于A,B两点,作直径AC,并延长交PB于点D.连结OP,CB.(1)求证:OP∥CB;(2)若PA=12,DB:DC=2:1,求⊙O的半径.。

3.8 圆内接正多边形(教案)-北师大版数学九下

3.8 圆内接正多边形(教案)-北师大版数学九下

第8节圆内接正多边形1.了解圆内接正多边形的概念及相关概念.2.能运用正多边形的知识解决圆的有关计算问题.3.会用尺规作圆的内接正多边形.学生在探讨正多边形和圆的关系的学习过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力.1.通过合作交流、探索、实践培养学生的主体意识.2.通过学习,体验数学与生活的紧密联系,感受圆的对称美,正多边形与圆的和谐美,从而更加热爱生活,珍爱生命.【重点】掌握圆内接正多边形的性质并能加以熟练运用.【难点】用尺规作圆内接正多边形.【教师准备】多媒体课件和圆规.【学生准备】1.复习勾股定理和垂径定理等相关知识.2.圆规、直尺.导入一:如图所示的向日葵图案是用等分圆周画出的,图中的多边形是什么图形?它与圆的内接三角形有什么相同之处吗?学生分析:图中的多边形是正六边形,它与圆的内接三角形一样顶点都在圆上.【问题】它有哪些性质?它又是如何画出来的呢?[设计意图]利用类比的方法,使学生初步感知圆内接多边形的模型,利用学生急于知道答案的心理设计问题,增加了它的神秘感,更加激发了学生的求知欲望.导入二:如图所示的是正六边形的蓝色纸板,如果以它的中心为圆心,以中心到顶点的距离为半径画圆,你会有什么发现?【师生活动】学生利用直尺和圆规动手操作,进行画图,教师巡视,对于发现的问题及时予以纠正,学生完成后与同伴交流,然后教师出示课件,供学生参考.让学生说出自己发现的结论,师生共同订正.【问题】六边形和圆有什么样的位置关系?如果先给你一个圆,你能在圆中画出正六边形吗?[设计意图]在教学中创设问题情境,激发学生对探索圆内接正多边形的兴趣.通过学生的作图活动,使学生明确这节课的学习任务,利于学生集中精力学习重点内容.[过渡语]前面我们探究了圆内接三角形的概念及性质,和圆有关的其他多边形又有什么样的特征呢?课件出示:如图所示:【问题】1.你能从这四幅图中找出多边形吗它们都是几边形?2.它们都是什么样的多边形?3.这些正多边形的顶点都具有什么样的特征?【学生活动】学生观察,与同伴交流,思考后得出结论.【教师点评】每个多边形的边长都相等,所以它们都是正多边形,并且这些正多边形的顶点都在圆上.1.如何作圆内接正三角形?正四边形?正五边形?正六边形?2.如何作圆内接正n边形?【活动方式】分组活动,全班分成四个组分别作四种图形.【师生活动】学生思考后讨论,教师巡视,并参与到学生的讨论中去.然后学生作出圆的内接正多边形.请代表发言,说出他们的作法.【教师点评】利用平分圆的方法作圆内接正多边形的方法:课件出示:如图所示,五边形ABCDE是☉O的内接五边形.【活动方式】让学生通过图形,结合课本,自己了解圆内接正五边形的相关概念.【教师点评】圆心O叫做这个正五边形的中心;OA是这个正五边形的半径,∠AOB是这个正五边形的中心角;OM⊥BC,垂足为M,OM是这个正五边形的边心距.[设计意图]学生经历观察、猜想、操作的过程,逐步掌握了圆内接正多边形的相关概念和作法,并利用类比推理的方法得到其性质,提高了学生解决问题的综合能力.[知识拓展]正n边形的性质:1.正n边形的每个中心角都相等,都等于;2.正n边形的每个外角都相等,都等于;3.正n边形的每个内角都相等,都等于180°-.课件出示:如图所示,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求这个正六边形的中心角、边长和边心距.〔解析〕在由半径OC、边长的一半CG、边心距OG组成的Rt△OGC中,利用勾股定理进行解决是解题的关键,而求解边长,则连接OD得出△OCD是等边三角形就可以得出OC=CD=4.解:连接OD.∵六边形ABCDEF为正六边形,∴∠COD==60°.∴△COD为等边三角形,∴CD=OC=4.在Rt△COG中,OC=4,CG=BC=×4=2,∴OG===2.∴正六边形ABCDEF的中心角为60°,边长为4,边心距为2.[设计意图]此例是教材上的例题,紧扣这堂课的知识点,重点是对基础知识的巩固,并在巩固重点之余又培养了灵活应用能力.[知识拓展]特殊的圆内接正多边形的边长、半径、边心距之比:正多边形图形边长、半径、边心距之比正三角形2∶2∶1正四边形2∶∶1正六边形2∶2∶[过渡语]前面我们已经掌握了利用平分圆的方法作圆内接正多边形的方法,你能用尺规作圆内接正多边形吗?课件出示:【做一做】你能用尺规作一个已知圆的内接正六边形吗?教师引导学生思考下面的问题:1.通过例题探究圆的内接正六边形的边长与圆的半径有什么关系.2.你能利用圆的内接正六边形的边长与圆的半径的关系利用尺规进行作图了吗?【学生活动】学生首先独立作图,然后小组交流,代表展示.【教师点评】利用尺规作圆内接正多边形的思路还是等分圆.以作圆内接正六边形为例.作法:(1)作☉O的任意一条直径FC.(2)分别以F,C为圆心,以☉O的半径R为半径作弧,与☉O相交于点E,A和D,B.(3)顺次连接AB,BC,CD,DE,EF,FA,便得到正六边形ABCDEF.[设计意图]操作性强又富有挑战性的数学活动,有利于激发学生的学习兴趣,掌握尺规作图的【想一想】你能借助尺规作出圆内接正四边形吗?你是怎么做的?与同伴进行交流.【学生活动】学生自己独立完成.代表说出作法:作一个☉O,取☉O直径为AB,作AB的垂直平分线交☉O于C,D,顺次连接A,C,B,D,四边形ACBD即为☉O的内接正四边形.[设计意图]通过动手操作不但提高了学生的作图能力,还进一步巩固了本节课所学的知识,一举两得.1.圆内接正多边形的概念及相关概念.2.圆内接正多边形的性质.3.圆内接正多边形的尺规作法.1.如图所示,☉O是正方形ABCD的外接圆,点P在☉O上,则∠APB等于()A.30°B.45°C.55°D.60°解析:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°.故选B.2.如图(1)所示,要拧开一个边长为a=6mm的正六边形螺帽,扳手张开的开口b至少为()A.6mmB.12mmC.6mmD.4mm解析:如图(2)所示,设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∴AC⊥OB,AM=MC,∵AB=6mm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3,∴AC=2AM=6(mm).故选C.3.(2014·南京中考)如图所示,AD是正五边形ABCDE的一条对角线,则∠BAD=.解析:如图所示,设O是正五边形的中心,作出正五边形ABCDE的外接圆,连接OD,OB,则∠DOB=×360°=144°,∴∠BAD=∠DOB=72°.故填72°.4.(2014·江西中考)如图所示,△ABC内接于☉O,AO=2,BC=2,则∠BAC的度数为.解析:连接OB,OC,作OD⊥BC于D,如图所示,∵OD⊥BC,∴BD=BC=×2=,在Rt△OBD中,OB=OA=2,BD=,∴cos∠OBD==,∴∠OBD=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,∴∠BAC=∠BOC=60°.故填60°.5.已知正六边形ABCDEF的外接圆的半径为2cm,求这个正六边形的边长、周长和面积.解:∵正六边形的外接圆的半径等于边长,∴正六边形的边长=2cm;正六边形的周长l=6×2=12(cm);正六边形的面积S=6××2×=6(cm2).8圆内接正多边形1.圆内接正多边形:顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.2.正n边形的性质:(1)正n边形的每个中心角都相等,都等于;(2)正n边形的每个外角都相等,都等于;(3)正n边形的每个内角都相等,都等于180°-.一、教材作业【必做题】1.教材第98页随堂练习.2.教材第99页习题3.10第1,2,3题.【选做题】教材第99页习题3.10第4,5题.二、课后作业【基础巩固】1.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,3B.3,3C.6,3D.6,32.(2014·天津中考)正六边形的边心距为,则该正六边形的边长是()A. B.2 C.3 D.23.(2014·德阳中考)半径为1的圆内接正三角形的边心距为.4.如图所示,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(-1,0),则点C的坐标为.【能力提升】5.(2014·玉林中考)蜂巢的构造非常美丽、科学,如图所示的是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC 是直角三角形的个数有()A.4个B.6个C.8个D.10个6.已知☉O的面积为2π,则其内接正三角形的面积为.7.如图所示,已知正方形ABCD的边心距OE=cm,求这个正方形外接圆☉O的面积.8.作已知圆的内接正八边形.9.如图①所示,有一个宝塔,它的地基边缘是周长为26m的正五边形ABCDE(如图②所示),点O为中心.(下列各题结果精确到0.1m)(1)求地基的中心到边缘的距离;(2)已知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,那么塑像底座的半径最大是多少?【拓展探究】10.小敏在作☉O的内接正五边形时,先做了如下几个步骤:(1)作☉O的两条互相垂直的直径,再作OA的垂直平分线交OA于点M,如图(1)所示;(2)以M为圆心,BM长为半径作圆弧,交CA于点D,连接BD,如图(2).若☉O的半径为1,则由以上作图得到的关于正五边形边长BD的等式是()A.BD2=ODB.BD2=ODC.BD2=ODD.BD2=OD【答案与解析】1.B(解析:如图所示,∵正方形的边长为6,∴AB=3,又∵∠AOB=45°,∴OB=3.∴AO==3.故选B.)2.B(解析:如图所示,∵正六边形的边心距为,∴OB=,又AB=OA,OA2=AB2+OB2,∴OA2=+()2,解得OA=2.)3.(解析:如图所示,△ABC是☉O的内接等边三角形,OB=1,OD⊥BC.∵等边三角形的内心和外心重合,∴OB平分∠ABC,则∠OBD=30°.∵OD⊥BC,∴∠BDO=90°,又∵OB=1,∴OD=.)4.(解析:连接OE,由正六边形是轴对称图形知:在Rt△OEG中,∠GOE=30°,OE=1.∴GE=,OG=,∴E,∴C.)5.C(解析:如图所示,AB是直角边时,点C共有6个位置,即有6个直角三角形,AB是斜边时,点C共有2个位置,即有2个直角三角形.综上所述,△ABC是直角三角形的个数有6+2=8个.故选C.)6.(解析:如图所示,连接OB,OC,过O作OD⊥BC于D,∵☉O的面积为2π,∴☉O的半径为.∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB·sin∠BOD=·sin60°=,∴BC=2BD=,又OD=OB·cos∠BOD=·cos60°=,∴△BOC的面积=·BC·OD=××=,∴△ABC的面积=3S=3×=.)△BOC7.解:如图所示,连接OC,OD,∵圆O是正方形ABCD的外接圆,∴O是对角线AC,BD的交点,∴∠ODE=∠ADC=45°,∵OE⊥CD,∴∠OED=90°,∴∠DOE=180°-∠OED-∠ODE=45°,∴OE=DE=,由勾股定理得OD==2,∴这个正方形外接圆☉O的面积是π·22=4π.答:这个正方形外接圆☉O的面积是4π.8.作法:(1)画任意一条直径;(2)把直径看做一个平角作其角平分线,把平角分成两个直角,再作每个直角的角平分线;(3)将角平分线反向延长在圆上得到八等分点;(4)顺次连接即得正八边形.9.解:(1)作OM⊥AB于点M,连接OA,OB,则OM为边心距,∠AOB是中心角.由正五边形性质得∠AOB=360°÷5=72°.又AB=×26=5.2,∴AM=2.6,∠AOM=36°,在Rt△AMO中,边心距OM==≈3.6(m).答:地基的中心到边缘的距离约为3.6m.(2)3.6-1-1.6=1(m).答:塑像底座的半径最大约为1m.10.C(解析:如图所示,连接BM,根据题意得OB=OA=1,AD⊥OB,BM=DM,∵OA的垂直平分线交OA于点M,∴OM=AM=OA=,∴BM==,∴DM=,∴OD=DM-OM=-=,∴BD2=OD2+OB2===OD.)利用现实生活中的素材,使学生产生一种亲切感,有效激发学生的求知和探索的欲望,取得了极佳的效果.本节课由于知识比较简单,所以前三个探究活动都完全要给学生去处理,老师要相信学生,他们完全有能力完成这些探究任务,事实证明学生完成得非常出色;对于第四个利用尺规作圆内接正多边形的探究,对部分学生来说有一定难度,教师重点在于引导学生弄清楚尺规作图的依据和方法,千万不能越俎代庖,直接告诉学生利用尺规作圆内接正多边形的方法,这样只能解决现实问题,不利于学生后面探究过程的顺利进行.本节课设计的探究活动比较多,并且还拓展了一部分知识,所以时间略显紧张.对于拓展的内容,再讲时可以酌情减少一些内容或放到课下留给学生探究.随堂练习(教材第98页)解:如图所示,△ABC是☉O的内接正三角形,OB=6cm,OD⊥B C.∵正三角形的内心和外心重合,∴BO平分∠ABC,则∠OBD=30°.∵OD⊥BC,∴BD=DC,又∵OB=6cm,∴OD=3cm,BD=3cm,则BC=6cm.习题3.10(教材第99页)1.解:∵剪去三个三角形,得到正六边形,∴剪去的三个三角形是全等的等边三角形,且被剪的正三角形的边长为6,∴得到正六边形的边长为=2.如图所示,正六边形的边长HK =2,∠HOK ==60°,∵OH =OK ,∴△HOK 是等边三角形,∴OH =HK =2.∵OM ⊥HK ,∴∠HOM =30°,OM =OH ·cos 30°=2×=,S △HOK =HK ·OM =×2×=,∴S 正六边形=6S △HOK =6.∴这个正六边形的面积为6.2.解:边长为6cm ,边心距为3cm ,面积为72cm 2.3.解:各边相等的圆内接四边形是正方形.各角相等的圆内接四边形不一定是正方形,也可能是矩形.4.解:(1)如图(1)所示,连接OB ,过O 作OD ⊥BC 于D ,则∠OBC =30°,BD =OB ·cos 30°=r ,故a =BC =2BD =r.如图(2)所示,连接OB ,OC ,过O 作OE ⊥BC 于E ,则△OBE 是等腰直角三角形,2BE 2=OB 2,即BE =r ,故b =BC =r.如图(3)所示,连接OA ,OB ,过O 作OG ⊥AB ,则△OAB 是等边三角形,AG =OA ·sin 30°=r ,故c =AB =2AG =r.(2)以a ,b ,c 为边可以构成直角三角形.因为(r )2+r 2=3r 2,(r )2=3r 2,所以(r )2+r 2=(r )2.5.可以得到一个“五角星”的图案,图略.1.由于本节课的知识比较简单,所以可以让学生通过自主探究掌握大部分内容,运用观察、猜想的方法可以得出圆内接正多边形的概念.2.利用类比圆内接正五边形的方法可以总结出圆内接正多边形的中心角、边心距等相关概念.3.利用转化的思想把正多边形的问题转化为直角三角形的问题是进行圆内接正多边形的计算的重中之重,是求中心角、边心距、半径的关键所在.4.动手操作、掌握方法则是探究尺规作圆内接正多边形的根本,要重点掌握.有一个亭子,它的地基是半径为8m 的正六边形,求地基的周长和面积.〔解析〕连接OB ,OC 求出∠BOC 的度数,再由等边三角形的性质即可求出正六边形的周长;过O 作△OBC 的高OG ,利用等边三角形及特殊角的三角函数值可求出OG 的长,利用三角形的面积公式即可解答.解:连接OB ,OC.∵六边形ABCDEF 是正六边形,∴∠BOC ==60°,∴△OBC 是等边三角形,∴BC =OB =8m ,∴正六边形ABCDEF 的周长=6×8=48(m ).过O 作OG ⊥BC 于G ,∵△OBC 是等边三角形,OB =8m ,∴∠OBC =60°,∴OG =OB ·sin∠OBC =8×=4(m ),∴S △OBC =BC ·OG =×8×4=16(m 2),∴S 六边形ABCDEF =6S △OBC =6×16=96(m 2).。

九年级数学下册 3.8 圆内接正多边形教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案

九年级数学下册 3.8 圆内接正多边形教案 (新版)北师大版-(新版)北师大版初中九年级下册数学教案

《圆内接正多边形》教学目标:知识目标:(1)掌握正多边形和圆的关系;(2)理解正多边形的中心、半径、中心角、边心距等概念;(3)能运用正多边形的知识解决圆的有关计算问题;(4)会运用多边形知和圆的有关知识画多边形.能力目标:学生在探讨正多边形和圆的关系学习中,体会到要善于发现问题、解决问题,培养学生的概括能力和实践能力.情感目标:通过学习,体验数学与生活的紧密相连;通过合作交流,探索实践培养学生的主体意识.教学重难点:教学重点:掌握正多边形的概念与正多边形和圆的关系,并能进行有关计算.教学难点:正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题.教学设计 :本节课设计了以下教学环节:情境引入、圆内接正多边形的概念、例题学习、尺规作图、练习与提高、课堂小结、布置作业.第一环节 情境引入活动内容:各小组展示自己课前所调查得到的正多边形形状的物体并解说从中获取的知识(自然引出课题)第二环节圆内接正多边形的概念活动内容:学习圆内接正多边形及有关概念顶点都在同一个圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆. 把一个圆n 等分(3≥n ),依次连接各分点,我们就可以作出一个圆内接正多边形.如图3-35,五边形ABCDE 是圆O 的内接正五边形,圆心O 叫做这个正五边形的中心;OA 是这个正五边形的半径;AOB ∠是这个正五边形的中心角;BC OM ⊥,垂足为M ,OM 是这个正五边形的的边心距.在其他的正多边形中也有同样的定义.活动目的:让学生了解有关正多边形的概念,引导学生逐步深入的学习.第三环节例题学习活动内容:例:如图3-36,在圆内接正六边形ABCDEF 中,半径4=OC ,BC OG ⊥,垂足为G ,求这个正六边形的中心角、边长和边心距.解:连接OD∵六边形ABCDEF 为正六边形 ∴︒=︒=∠606360COD ∴COD ∆为等边三角形.∴4==OC CD在COG Rt ∆中,4=OC ,2=CG ∴32=OG∴正六边形ABCDEF 中心角为︒60,边长为4,边心距为32.活动目的:题目是有关正多边形的计算的具体应用,通过例题的学习,巩固有关正多边形的概念,能运用正多边形的知识解决圆的有关计算问题.第四环节 尺规作图活动内容:1、用尺规作一个已知圆的内接正六边形.2、用尺规作一个已知圆的内接正四边形.3、思考:作正多边形有哪些方法?第五环节练习与提高分别求出半径为6cm 的圆内接正三角形的边长和边心距.第六环节课堂小结师生互相交流总结正多边形和圆的关系、正多边形的对称性和边数相同的正多边形相似的性质、正多边形的中心、半径、中心角、边心距等概念、如何计算正多边形的半径、边心距及边长,社会调查时学到的课外知识及切身感受等.第七环节布置作业。

3.8圆内接正多边形导学案

3.8圆内接正多边形导学案

课题 3.8圆内接正多边形导学案时间:3、19 课型:新授【学习目标】1、理解圆内接正多边形及正多边形的外接圆、正多边形的中心、半径、边心距、中心角等概念.2、掌握用等分圆周画圆内接正多边形的方法,能熟练地进行有关正三角形,正方形,正六边形的计算.【重点难点】重点:理解圆内接正多边形及正多边形的外接圆、正多边形的中心、半径、边心距、中心角等概念.难点:用等分圆周画圆内接正多边形的方法.【导学流程】一、知识铺垫:经过三角形各项点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形.二、引导知新:认真研读教材97--98页内容,完成:1、都在同一个圆上的正多边形叫做,这个圆叫做该正多边形的.2、一个正多边形的外接圆的圆心叫做这个正多边形的,外接圆的半径叫做正多边形的,正多边形每一边所对的圆心角叫做正多边形的,正n边形的中心角是,中心到正多边形的一边的距离叫做正多边形的.三、深入学习:例1、如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为G,求正六边形的中心角、边长和边心距.. 课海拾贝我的困惑:我们的困惑:总结公式:设圆O 的半径为R ,则:正n 边形的中心角α=n360︒正n 边形的边长n 180sin 2︒=R a n 正n 边形的边心距nR r n ︒=180cos四、迁移运用:1、正六边形的边心距为2,则该正六边形的边长是.2、中心角为30度的圆内接正n 边形的n 为.4、求半径为6cm 的圆内接正三角形的边长和边心距.5、如图,把边长为6的正三角形剪去三个三角形得到一个正六边形DFHKGE ,求这个正六边形的面积.6、在圆中利用尺规做一个圆内接正八边形. 课后 反思3、。

北师大版九年级数学下册3.8圆内接正多边形教案

北师大版九年级数学下册3.8圆内接正多边形教案
【探究3】1.用尺规作一个已知圆的内接正六边形.
2.用尺规作一个已知圆的内接正四边形.
3.思考:作正多边形有哪些方法?
处理方式:由例题引导学生发现正六边形的边长等于其半径,从而找到六等分圆的方法.
让学生了解有关圆内接正多边形的概念,引导学生逐步深入的学习.
通过例题的学习,巩固有关圆内接正多边形的概念,能运用解直角三角形的知识解决正多边形的有关计算问题.
学生在以前的学习中,曾经探索并认识了正多边形的有关知识.强调正多边形必须满足的两个条件:一是各角都相等,二是各边都相等.两者缺一不可.通过复习鼓励学生回忆并梳理有关结论,然后再展开相应的证明活动.
(续表)
活动
二:
实践
探究
交流
新知
【探究1】圆内接正多边形的概念
定义:顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.
情境
导入
新课
【课堂引入】
问题1:什么叫正多边形?
问题2:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?
问题3:从你身边举出两三个正多边形的实例,正多边形是轴对称图形吗?是中心对称图形吗?其对称轴有几条?对称中心是哪一点?
问题4:圆与正多边形有什么关系呢?
处理方式:前3个问题请学生思考后口答,根据已有的学习经验,大部分学生能够顺利完成,个别学生可能感到有难度,对正多边形的知识点有所遗忘,教师给予及时地帮扶,并强调正多边形的定义,一是各角相等,二是各边都相等.两者缺一不可.对于第4个问题的设计,学生就产生了疑问,也就是本节课所要研究的问题.教师顺势板书课题:8圆内接正多边形
边心距为3 cm]
处理方式:学生口述思考过程,并说明理由.两位同学黑板板书做题过程.

3..8圆内接正多边形(教案)

3..8圆内接正多边形(教案)
-学会运用圆内接正多边形的性质解决实际问题,如计算外接圆和内切圆半径。
-掌握正多边形边数与圆心角、弧的关系,以及边数与正多边形相似性质之间的关系。
举例解释:
-重点一:讲解圆内接正三角形时,强调圆心角为360°/3=1值关系。
-重点二:通过具体例子,如计算圆内接正四边形的外接圆半径,引导学生应用性质解题。
3.通过实际操作和观察,发现圆内接正多边形的边数与圆心角、弧的关系,以及边数与正多边形相似性质之间的关系。
本节课旨在帮助学生掌握圆内接正多边形的性质,提高学生的几何图形认识和空间想象能力,为后续学习几何图形的性质和计算打下基础。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的几何直观和空间观念,通过观察和分析圆内接正多边形的性质,提高学生对几何图形的认识,增强空间想象能力。
在教学过程中,教师要针对重点和难点内容进行有针对性的讲解和强调,通过举例、练习、讨论等方式,帮助学生理解核心知识,突破难点,确保学生对圆内接正多边形的认识和应用能力得到提升。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.8圆内接正多边形”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过圆形和正多边形结合的图案?”(如硬币上的图案等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆内接正多边形的奥秘。
3..8圆内接正多边形(教案)
一、教学内容
本节课选自初中数学八年级下册第三章“几何图形”中的3.8节“圆内接正多边形”。教学内容主要包括以下三个方面:
1.探索圆内接正三角形的性质,如圆心角、弧、弦的关系,以及正多边形的外接圆和内切圆半径的关系。

3.8圆内接正多边形教学设计

3.8圆内接正多边形教学设计

第三章圆《圆内接正多边形》教学设计说明广东省佛山市南海区石门实验中学赖育贵一、学生起点分析学生的知识技能基础:学生在小学已经学习过圆和正多边形,对圆和正多边形的特点有所了解,在本章前面几节课中,又学习了圆的性质和与圆有关的三种位置关系的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索圆的性质,解决了一些简单的现实问题,感受到了圆的性质,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析根据学生已有的认识基础和本课的教材地位、作用,依据教学大纲,确定本课的教学目标为:知识目标:(1)掌握正多边形和圆的关系;(2)理解正多边形的中心、半径、中心角、边心距等概念;(3)能运用正多边形的知识解决圆的有关计算问题;(4)会运用多边形知和圆的有关知识画多边形.能力目标:学生在探讨正多边形和圆的关系学习中,体会到要善于发现问题、解决问题,培养学生的概括能力和实践能力.情感目标:通过学习,体验数学与生活的紧密相连;通过合作交流,探索实践培养学生的主体意识.教学重点:掌握正多边形的概念与正多边形和圆的关系,并能进行有关计算.教学难点:正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题.三、教学设计分析本节课设计了八个教学环节:课前准备——社会调查、情境引入、圆内接正多边形的概念、例题学习、尺规作图、练习与提高、课堂小结、布置作业.第一环节课前准备活动内容:社会调查(提前一周布置)以4 人合作小组为单位,开展调查活动:(1)各尽所能收集生活中各行各业、各学科中应用的各种正多边形形状的物体或照片.(2)对收集的其中最感兴趣的一件正多边形形状的物体进行研究. 活动目的:通过第1个活动,希望学生能从生活中的正多边形形状的物体中获取尽可能多的知识,体会在社会生活中正多边形的实际意义,培养学生善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识;而在第2 个活动中,学生通过对他们感兴趣的问题展开研究或查阅资料,经历探索的过程,并在此过程中培养学生勇于探索、团结协作的精神. 同时这两个活动所收集的物体为后面分析正多边形提供了极好的素材,在课堂中用源于学生真实调查展开教学,必将极大地激发了学生学习的积极性与主动性.第二环节情境引入活动内容:各小组派代表展示自己课前所调查得到的正多边形形状的物体(可以是照片、资料、也可以是亲自仿制),并解说从中获取的知识(选3—4 个小组代表讲解)活动目的:激起学生对探索正多边形与圆的兴趣,让学生学会用数学语言表述问题,培养学生从物体中获取知识的能力,并从中归纳总结正多边形的特点,体会数学来源于生活,并服务于生活,增强学生的应用意识,而且由此引出我们本节课要来研究的问题(自然引出课题)第三环节圆内接正多边形的概念活动内容:学习圆内接正多边形及有关概念文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持顶点都在同一个圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.把一个圆n等分(n 3),依次连接各分点,我们就可以作出一个圆内接正多边形.如图3-35,五边形ABCDE是圆0的内接正五边形,圆心0叫做这个正五边形的中心;0A是这个正五边形的半径;AOB是这个正五边形的中心角;OM BC ,垂足为M , 0M是这个正五边形的的边心距.在其他的正多边形中也有同样的定义.活动目的:让学生了解有关正多边形的概念,引导学生逐步深入的学习.第四环节例题学习活动内容:例:如图3-36,在圆内接正六边形ABCDEF中,半径0C 4 , OG BC,垂足为G,求这个正六边形的中心角、边长和边心距.解:连接0D•••六边形ABCDEF为正六边形• COD360 606••• C0D为等边三角形.••• CD 0C 4在Rt C0G 中,0C 4 , CG 2••• 0G 2_3•••正六边形ABCDEF中心角为60,边长为4,边心距为2.3.活动目的:题目是有关正多边形的计算的具体应用,通过例题的学习,巩固有关正多边形的概念,能运用正多边形的知识解决圆的有关计算问题.第五环节尺规作图活动内容:1用尺规作一个已知圆的内接正六边形.2、用尺规作一个已知圆的内接正四边形.3、思考:作正多边形有哪些方法?活动目的:用所学到的知识解决问题,使学生学会发现问题、分析问题、解决问题,培养学生正确运用所学知识的运用能力,巩固所学的知识.使学生理解并掌握可用等分圆心角的方法等分圆周,也可以用直尺和圆规作出一些特殊的正多边形.第六环节练习与提高活动内容:1、分别求出半径为6cm 的圆内接正三角形的边长和边心距.活动目的:对本节知识进行巩固练习.第七环节课堂小结活动内容:师生互相交流总结正多边形和圆的关系、正多边形的对称性和边数相同的正多边形相似的性质、正多边形的中心、半径、中心角、边心距等概念、如何计算正多边形的半径、边心距及边长,社会调查时学到的课外知识及切身感受等.活动目的:鼓励学生回顾梳理本节知识,巩固、提高、发展,并结合本节课的学习及课前的社会调查,谈自己的收获与感想(学生畅所欲言,教师给予鼓励),社会调查时学到的课外知识及切身感受.第八环节布置作业课本习题3.10四、教学设计反思1.要创造性的使用教材教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整.2.相信学生并为学生提供充分展示自己的机会通过课前小组合作社会调查、课堂展示正多边形的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学. 课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.3.在教学中注意的方面本节新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的严格定义不能要求过高. 在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表述有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习. 通过形象生动的直观图形,给学生营造一个问题情景,通过问题的探索来调动学生的内在动力,提高学习积极性,提高探索知识的能力.4.注意改进的方面在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问. 教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性.。

北师大版数学九年级下册3.8《圆内接正多边形》教学设计

北师大版数学九年级下册3.8《圆内接正多边形》教学设计

北师大版数学九年级下册3.8《圆内接正多边形》教学设计一. 教材分析《圆内接正多边形》是北师大版数学九年级下册第3.8节的内容。

本节主要让学生了解圆内接正多边形的性质,学会用圆的内接正多边形来解决一些几何问题。

教材通过引入正多边形的概念,引导学生探究圆内接正多边形的性质,进而得出圆内接正多边形与圆的关系。

教材内容由浅入深,逐步引导学生掌握圆内接正多边形的性质及其应用。

二. 学情分析学生在学习本节内容前,已经掌握了正多边形、圆的性质等基础知识。

但学生对圆内接正多边形的认识不足,对其性质和应用的了解有限。

因此,在教学过程中,教师需要帮助学生建立起圆内接正多边形的直观形象,引导学生通过观察、思考、探究,发现并证明圆内接正多边形的性质。

三. 教学目标1.了解圆内接正多边形的定义及其性质。

2.学会运用圆内接正多边形解决一些几何问题。

3.培养学生的观察能力、思考能力和动手能力。

四. 教学重难点1.圆内接正多边形的性质及其证明。

2.圆内接正多边形在解决几何问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究圆内接正多边形的性质。

2.利用几何画板等软件,为学生提供直观的演示,帮助学生建立圆内接正多边形的直观形象。

3.通过小组讨论、汇报等形式,培养学生的合作交流能力。

4.结合生活中的实例,让学生感受圆内接正多边形在实际问题中的应用。

六. 教学准备1.准备几何画板软件,用于展示圆内接正多边形的性质。

2.准备相关的生活实例,用于引导学生运用圆内接正多边形解决实际问题。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的圆内接正多边形实例,如足球、五角星等,引导学生关注圆内接正多边形,激发学生的学习兴趣。

同时,教师提出问题:“你们知道圆内接正多边形有什么性质吗?”让学生思考。

2.呈现(10分钟)教师利用几何画板软件,展示一个圆内接正五边形的动画,让学生观察并思考以下问题:(1)圆内接正五边形的边长和半径之间有什么关系?(2)圆内接正五边形的内角和外角分别是多少?学生在观察和思考的过程中,逐渐发现圆内接正多边形的性质。

初中数学北师大版九年级下册《第三章 圆 8 圆内接正多边形》教材教案

初中数学北师大版九年级下册《第三章 圆 8 圆内接正多边形》教材教案

3.8圆内接正多边形教案课题:3.8圆内接正多边形课型:新授课年级:九年级教学目标:1、了解正多边形的概念、正多边形和圆的关系;2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;3、能够用直尺和圆规作图,作出一些特殊的正多边形;4、理解正多边形的中心、半径、边心距、中心角等概念.学习重点:正多边形的概念及正多边形与圆的关系.学习难点:利用直尺与圆规作特殊的正多边形.教法与学学指导:本节课主要采用“学研一体的教学模式”.坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用讲练结合法、引导学生自主学习、合作学习和探究学习.鼓励学生多思、多说、多练.课前准备:教师:多媒体课件、三角板.学生:圆规,铅笔、直尺、练习本.教学过程:一、创设情境,导入新课观察下列图形,你能说出这些图形的特征吗?提问:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?【处理方式】学生根据教师提出的问题进行思考,回忆学过的有关知识,进而回答教师提出的问题.【设计意图】培养学生的思维品质,将正多边形与圆联系起来.并由此引出今天的课题.二、探究新知,尝试发现活动一:观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念概念:叫做正多边形.(注:各边相等与各角相等必须同时成立)提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.活动二:分析、发现:问题:正多边形与圆有什么关系呢?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?师生共同归纳:顶点都在同一个圆上的正多边形叫做圆内接正多边形,这个圆叫做该正多边形的外接圆.把圆分成n(n≥3)等份:依次连结各分点所得的多边形是这个圆的内接正n边形.活动三:探究等分圆周问题:为什么等分圆周就能得到正多边形呢?教师在学生思考、交流的基础上板书证明正五边形的过程:如图,∵AB BC CD DE EA====∴AB BC CD DE EA====3BAD CAE AB==∴C D∠=∠同理可证:A B C D E∠=∠=∠=∠=∠∴五边形ABCDE是正五边形.∵A、B、C、D、E在⊙O上,∴五边形ABCDE是圆内接正五边形.教师提出问题后,学生思考、交流自己的见解,教师组织学生进行证明,方法不限.说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:依次连结圆的n(n≥3)等分点,所得的多边形是正多边形;(2)要注意定理中的“依次”、“相邻”等条件.(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.在师生共同作图的基础上,归纳出:正多边形与圆有着密切的联系.圆既是轴对称图形,又是中心对称图形,且它的每一条直径所在的直线都是它的对称轴具有旋转不变性.正多边形也是轴对称图形,正n边形有n条对称轴,当n为偶数时,它也是中心对称图形,且绕中心旋转360n︒,都能和原来的图形重合.结合图4,给出正多边形的中心、半径、中心角、边心距等概念.同样说明正多边形与圆有着很多内在的联系.A【处理方式】学生先试着独立完成,如有疑难可在学习小组内交流,师进行点拨.【设计意图】学生经过思考、讨论、交流,进一步熟悉正多边形的本质特征,掌握运用正多边形的性质、相关概念.活动四:例题探究例.如图:在圆内接正六边形ABCDEF中,半径是OA=4,OM⊥AB垂于M,求这个正六边形的中心角,边长和边心距.分析:要求正六边形的边长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OM⊥AB垂于M,在Rt△AOM中便可求得AM,又应用垂径定理可求得AB的长.解:连接OA,由于ABCDEF是正六边形,所以它的中心角等于3606︒=60°,△OBC是等边三角形,从而正六边形的边长等于它的半径.因此,所求的正六边形的边长为4.在Rt△OAM中,OA=4,AM=12AB=2利用勾股定理,可得边心距OM=22AMOA-=2224-=32【处理方式】学生先试着独立完成,如有疑难可在学习小组内交流,师进行点拨.【设计意图】学生经过思考、讨论、交流,进一步熟悉正多边形的本质特征,掌握运用正多边形德性质、解决问题,进一步体会图形的特点及在生活中的应用.活动五:做一做利用尺规作一个已知圆的内接正六边形.分析:要画正六边形,首先要画一个圆,然后对圆六等分.在学生作图的基础上,教师组织学生,分析作图.师生归纳出等分圆周的方法:1.用量角器等分圆:依据:同圆或等圆中相等的圆心角所对应的弧相等.操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大.2.用尺规等分圆.思考:如何作正八边形正三角形、正十二边形?【处理方式】提供充分的时间,鼓励学生用自己的语言表述,教师巡回引导,并集思广益.从而提高学生观察归纳、语言表达、合作交流等能力.【设计意图】鼓励学生用自己的语言表述,在学习成果分享中发挥学生的主体意识训练学生概括归纳知识的能力,从而使所学的知识系统化、条理化,提高他们的表达能力和归纳总结能力.活动六:方案设计某学校在教学楼前的圆形广场中,准备建造一个花园,并在花园内分别种植牡丹、月季和杜鹃三种花卉.为了美观,种植要求如下:(1)种植4块面积相等的牡丹、4块面积相等的月季和一块杜鹃.(注意:面积相等必须由数学知识作保证)(2)花卉总面积等于广场面积(3)花园边界只能种植牡丹花,杜鹃花种植在花园中间且与牡丹花没有公共边.请你设计种植方案:(设计的方案越多越好;不同的方案类型不同.)要求①尺规作图;②说明画法;③指出作图依据;④学生独立完成.教师巡视,对画的好的学生给予表扬,对有问题的学生给予指导.教师要关注学生对问题的理解,对等分圆周方法的掌握程度.教师提出问题后,让学生认真思考后,设计出最美的图案,并用实物投影展示自己的作品.【处理方式】学生以小组为单位,进行组内交流、讨论、设计自己的作品.教师指导小组讨论,适时进行点拨.【设计意图】解决操作层面问题.可提议用不同方法,以体现学生的创造性.此阶段通过“观察-联想-质疑-归纳-表达”展现知识的形成过程和学生的思考过程,发展学生的智力品质,让学生在获取知识的同时领会一定的数学思想和思维方法,实现学法指导的目的.四、课堂小结:谈一谈,通过本节课的学习,你有哪些收获?【处理方式】学生小组内畅所欲言,互讲本节课的内容,总结本节课所学习的知识和应注意的问题,教师对小组总结情况进行评价.【设计意图】在学习成果分享中发挥学生的主体意识训练学生概括归纳知识的能力,从而使所学的知识系统化、条理化,提高他们的表达能力和归纳总结能力.五、达标检测,反馈提高1.如图1所示,正六边形ABCDEF 内接于⊙O ,则∠ADB 的度数是( ).A .60°B .45°C .30°D .22.5°2、半径相等的圆内接正三角形、正方形、正六边形的边长之比为( )A B ,3:2:1C ,1:2:3D3.圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( ). A .36° B .60° C .72° D .108°4.若半径为5cm 的一段弧长等于半径为2cm 的圆的周长,•则这段弧所对的圆心角为( ) A .18° B .36° C .72° D .144°(1) (2)5.若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.6.有一个边长为3cm 的正六边形,若要剪一张圆形纸片完全盖住这个正六边形,则这个圆形纸片的最小半径为 .7.在△ABC 中,∠ACB=90°,∠B=15°,以C 为圆心,CA 长为半径的圆交AB 于D ,如图2所示,若AC=6,则AD 的长为________.8.如图所示,已知⊙O 的周长等于6 cm ,求以它的半径为边长的正六边形ABCDEF 的面积.【设计意图】设计此组题旨在从正反两方面灵活掌握圆内接正多边形的相关知识,同时锻炼了学生逆向思维能力,也为后续的学习做了铺垫.目的是加强学生对圆内接正多边形的 理解,同时也锻炼学生的发散思维.六.分层作业,自由拓展(1)必做题:课本99页 习题3.10 第1题、2题、3题.. (2)选做题:试一试如图⑴⑵⑶⑷,M ,N 分别为⊙O 的内接正三角形ABC ,正四边形ABCD ,正五边形ABCDE ,…正n 边形ABCDE …的边 AB ,BC 上的点,且BM=CN ,连结OM ,ON , ⑴ 求图⑴中∠MON 的度数 ⑵ 图⑵中∠MON 的度数是 .⑶ 请探究∠MON 的度数与正n 边形边数n 的关系为 .⑴ ⑵ ⑶ ⑷【设计意图】作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展.板书设计:。

北师大版九年级数学下册:3.8《圆内接正多边形》教学设计

北师大版九年级数学下册:3.8《圆内接正多边形》教学设计

北师大版九年级数学下册:3.8《圆内接正多边形》教学设计一. 教材分析《圆内接正多边形》是北师大版九年级数学下册第3.8节的内容,本节主要让学生了解圆内接正多边形的概念及其性质,学会用数学方法证明圆内接正多边形的性质,并能够运用这些性质解决一些实际问题。

教材通过引导学生在探究圆内接正多边形的过程中,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析九年级的学生已经掌握了多边形的性质,对圆的相关知识也有所了解。

但学生对圆内接正多边形的概念和性质认识尚浅,需要通过实例和证明来加深理解。

此外,学生可能对证明圆内接正多边形性质的方法感到困惑,需要教师引导和启发。

三. 教学目标1.了解圆内接正多边形的概念及其性质。

2.学会用数学方法证明圆内接正多边形的性质。

3.培养学生的逻辑思维能力和空间想象能力。

4.能够运用圆内接正多边形的性质解决实际问题。

四. 教学重难点1.圆内接正多边形的概念及其性质。

2.如何证明圆内接正多边形的性质。

3.圆内接正多边形性质在实际问题中的应用。

五. 教学方法1.引导法:教师通过提问、启发引导学生思考和探究圆内接正多边形的性质。

2.示例法:教师通过展示实例,让学生理解圆内接正多边形的性质。

3.证明法:教师引导学生运用已学知识证明圆内接正多边形的性质。

4.练习法:学生通过做练习题,巩固对圆内接正多边形性质的理解。

六. 教学准备1.教学PPT:包含圆内接正多边形的概念、性质、证明方法及实际应用。

2.练习题:针对圆内接正多边形性质的习题,包括选择题、填空题和解答题。

3.教学黑板:用于板书关键点和证明过程。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾多边形的性质,为新课的学习做好铺垫。

例如:“我们已经学习了多边形的哪些性质?这些性质如何应用到实际问题中?”2.呈现(10分钟)教师利用PPT呈现圆内接正多边形的概念和性质,让学生初步了解。

同时,通过示例法,展示圆内接正多边形的性质在实际问题中的应用。

北师大版九年级数学下册:3.8《圆内接正多边形》教学设计1

北师大版九年级数学下册:3.8《圆内接正多边形》教学设计1

北师大版九年级数学下册:3.8《圆内接正多边形》教学设计1一. 教材分析《圆内接正多边形》是北师大版九年级数学下册第3.8节的内容,主要学习了圆内接正多边形的性质及其判定方法。

这一节内容在数学知识体系中起到了承上启下的作用,既巩固了之前学习的圆的基本性质,又为后续学习圆的方程和圆与圆的位置关系奠定了基础。

二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对圆的基本性质有一定的了解。

但是,对于圆内接正多边形的性质及其判定方法,他们可能还没有完全掌握。

因此,在教学过程中,需要引导学生通过观察、思考、操作、推理等途径,自主探究圆内接正多边形的性质,提高他们的空间想象能力和逻辑推理能力。

三. 教学目标1.知识与技能:让学生掌握圆内接正多边形的性质及其判定方法,能运用这些性质解决相关问题。

2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑推理能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.圆内接正多边形的性质及其判定方法。

2.如何运用圆内接正多边形的性质解决实际问题。

五. 教学方法1.引导探究法:引导学生通过观察、思考、操作、推理等途径,自主探究圆内接正多边形的性质。

2.案例分析法:通过具体案例,让学生理解并掌握圆内接正多边形的判定方法。

3.讨论交流法:鼓励学生积极参与课堂讨论,分享自己的学习心得和解决问题的方法。

六. 教学准备1.准备相关的教学案例和问题,以便在课堂上进行分析和讨论。

2.准备课件和板书,以便进行直观的教学展示。

七. 教学过程1.导入(5分钟)通过一个实际问题引出圆内接正多边形的概念,激发学生的兴趣。

例如:在平面上有n条直线,它们相交于一点,且每条直线与其它直线的交点个数相等,求n 的最大值。

2.呈现(15分钟)利用课件展示圆内接正多边形的性质及其判定方法,引导学生通过观察、思考、操作、推理等途径,自主探究这些性质。

北师大版数学九年级下册3.8圆内接正多边形教学设计

北师大版数学九年级下册3.8圆内接正多边形教学设计
4.阅读拓展:
推荐阅读《圆内接正多边形的美与应用》,了解圆内接正多边形在其他领域的应用,如艺术、建筑等。
作业要求:
1.认真完成作业,字迹清楚,步骤齐全。
2.对于难题和思考题,可以与同学讨论,但需独立完成作业。
3.家长签字,加强对学生学习情况的关注和指导。
作业批改与反馈:
1.教师将认真批改学生的作业,并及时给予反馈。
3.教学评价:
(1)注重过程性评价,关注学生在探究、讨论、练习等环节的表现,鼓励学生积极参与,勇于表达。
(2)实施多元评价,结合课堂提问、课后作业、小组合作等方面,全面评估学生的学习效果。
(3)关注学生的情感态度,营造轻松、和谐的学习氛围,激发学生的学习兴趣。
4.教学拓展:
(1)引导学生运用所学知识,解决生活中的实际问题,如设计园林景观、优化交通布局等。
(2)鼓励学生进行课外阅读,了解圆内接正多边形在其他领域的应用,如艺术、建筑等。
(3)组织学生参加数学竞赛、科普活动等,提高学生的数学素养和创新能力。
四、教学内容与过程
(一)导入新课
1.创设情境:展示一幅美丽的园林景观图片,引导学生观察图片中的圆形花坛和正多边形小路。提问:“你们在生活中还见过哪些圆形和正多边形的组合?它们有什么特点?”通过这个问题,让学生感知圆内接正多边形的美和实用价值。
1.重点:圆内接正多边形的定义和性质,圆心角公式,以及运用这些知识解决实际问题。
2.难点:
(1)理解圆内接正多边形的边数与圆心角的关系,并能灵活运用圆心角公式。
(2)将理论知识应用于解决具体问题,特别是涉及圆内接正多边形面积和周长的计算。
(二)教学设想
1.教学方法:
(1)采用启发式教学法,引导学生通过观察、操作、探索、交流等活动,主动构建知识体系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、情境导入
这些美丽的图案,都是在日常生活中我们经常能看到的.你能从这些图案中找出正多边形来吗?
二、合作探究
探究点:圆内接正多边形
【类型一】 圆内接正多边形的相关计算
已知正六边形的边心距为3,求正六边形的内角、外角、中心角、半径、边长、周长和面积. 解析:根据题意画出图形,可得△OBC 是等边三角形,然后由三角函数的性质,求得OB 的长,继而求得正六边形的周长和面积.
解:如图,连接OB ,OC ,过点O 作OH ⊥BC 于H ,∵六边形ABCDEF 是正六边形,∴∠BOC =1
6
×360°=60°,∴中心角是60°.∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC .∵OH =3,sin ∠OBC =OH OB =3
2,∴OB =BC =2.∴内角为180°×(6-2)6 =120°,外角为60°,周长为2×6
=12,S 正六边形ABCDEF =6S △OBC =6×1
2
×2× 3=6 3.
方法总结:圆内接正六边形是一个比较特殊的正多边形,它的半径等于边长,对于它的计算要熟练掌握.
变式训练:见《学练优》本课时练习“课堂达标训练”第11题 【类型二】 圆内接正多边形的画法
如图,已知半径为R 的⊙O ,用多种工具、多种方法作出圆内接正三角形.
解析:度量法:用量角器量出圆心角是120度的角;尺规作图法:先将圆六等分,然后再每两份合并成一份,将圆三等分.
解:方法一:(1)用量角器画圆心角∠AOB =120°,∠BOC =120°; (2)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形. 方法二:(1)用量角器画圆心角∠BOC =120°;
(2)在⊙O 上用圆规截取AC ︵=AB ︵

(3)连接AC ,BC ,AB ,则△ABC 为圆内接正三角形. 方法三:(1)作直径AD ;
(2)以D 为圆心,以OA 长为半径画弧,交⊙O 于B ,C ; (3)连接AB ,BC ,CA ,则△ABC 为圆内接正三角形. 方法四:(1)作直径AE ;
(2)分别以A ,E 为圆心,OA 长为半径画弧与⊙O 分别交于点D ,F ,B ,C ;
(3)连接AB ,BC ,CA (或连接EF ,ED ,DF ),则△ABC (或△EFD )为圆内接正三角形.
方法总结:解决正多边形的作图问题,通常可以使用的方法有两大类:度量法、尺规作图法;其中度量法可以画出任意的多边形,而尺规作图只能作出一些特殊的正多边形,如边数是3、4的整数倍的正多边形.
变式训练:见《学练优》本课时练习“课后巩固提升”第5题 【类型三】 正多边形外接圆与内切圆的综合
如图,已知正三角形的边长为2a .
(1)求它的内切圆与外接圆组成的圆环的面积;
(2)根据计算结果,要求圆环的面积,只需测量哪一条弦的大小就可算出圆环的面积? (3)将条件中的“正三角形”改为“正方形”、“正六边形”你能得出怎样的结论? (4)已知正n 边形的边长为2a ,请写出它的内切圆与外接圆组成的圆环的面积.
解析:正多边形的边心距、半径、边长的一半正好构成直角三角形,根据勾股定理就可以求解. 解:(1)设正三角形ABC 的中心为O ,BC 切⊙O 于点D ,连接OB 、OD ,则OD ⊥BC ,BD =DC =a .则S 圆环=π·OB 2-π·OD 2=πOB 2-OD 2=π·BD 2=πa 2;
(2)只需测出弦BC (或AC ,AB )的长; (3)结果一样,即S 圆环=πa 2; (4)S 圆环=πa 2.
方法总结:正多边形的计算,一般是过中心作边的垂线,连接半径,把内切圆半径、外接圆半径、边心距,中心角之间的计算转化为解直角三角形.
变式训练:见《学练优》本课时练习“课后巩固提升”第4题 【类型四】 圆内接正多边形的实际运用
如图①,有一个宝塔,它的地基边缘是周长为26m 的正五边形ABCDE (如图②),点O 为中
心(下列各题结果精确到0.1m).
(1)求地基的中心到边缘的距离;
(2)已知塔的墙体宽为1m ,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m 的观光通道,问塑像底座的半径最大是多少?
解析:(1)构造一个由正多边形的边心距、半边和半径组成的直角三角形.根据正五边形的性质得到半边所对的角是360°
10=36°,再根据题意中的周长求得该正五边形的半边是26÷10=2.6,最后由该
角的正切值进行求解;(2)根据(1)中的结论,塔的墙体宽为1m 和最窄处为1.6m 的观光通道,进行计算.
解:(1)作OM ⊥AB 于点M ,连接OA 、OB ,则OM 为边心距,∠AOB 是中心角.由正五边形性质得∠AOB =360°÷5=72°,∴∠AOM =36°.∵AB =1
5×26=5.2,∴AM =2.6.在Rt △AMO 中,边心距
OM =AM tan36°= 2.6
tan36°
≈3.6(m).所以,地基的中心到边缘的距离约为3.6m ;
(2)3.6-1-1.6=1(m).
所以,塑像底座的半径最大约为1m.
方法总结:解决问题关键是将实际问题转化为数学问题来解答.熟悉正多边形各个元素的算法.
三、板书设计
圆内接正多边形
1.正多边形的有关概念
2.正多边形的画法
3.正多边形的有关计算

业设计1.下列边长为a的正多边形与边长为a的正方形组合起来,不能镶嵌成平面的是( )
(1)正三角形(2)正五边形(3)正六边形(4)正八边形
A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(4)
2.以下说法正确的是
A.每个内角都是120°的六边形一定是正六边形.
B.正n边形的对称轴不一定有n条.
C.正n边形的每一个外角度数等于它的中心角度数.
D.正多边形一定既是轴对称图形,又是中心对称图形.
3.若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r3,r4,r6,则r3:r4:r6等于( )
A.1:2:3B.3:2:1C.1:2:3D.3:2:1
4.如图,若正方形A1B1C1D1内接于正方形ABCD的内接圆,则
AB
B
A
1
1的值为()
A.
2
1
B.
2
2
C.
4
1
D.
4
2
5.已知正六边形ABCDEF内接于⊙O,图中阴影部分的面积为3
12,则⊙O的半径为______________________.
第5题图第6题图
6.如图,正方形ABCD内接于⊙O,点E在AD上,则∠BEC= .
7.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA/H,那么∠GA/H的大小是度.
O
B C
D
A
E
F E
D
C
B
A O
8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为.
9.如图五边形ABCDE内接于⊙O,∠A=∠B=∠C=∠D=∠E.
求证:五边形ABCDE是正五边形
10.如图,10-1、10-2、10-3、…、10-n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动。

(1)求图10-1中∠APN的度数;
(2)图10-2中,∠APN的度数是_______,图10-3中∠APN的度数是________。

(3)试探索∠APN的度数与正多边形边数n的关系(直接写答案)
教学后记本节课新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的严格定义不能要求过高.在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表述有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习.所以在教学的过程中应尽量使用多媒体教学手段.
A
B
M
C
P
N
O.
图10-1
.O
A
B C
D
M
N
P
图10-2
E
A
B
C D
M
N
P
.O
图10-3
.
M
N
P
O
图10-4
A
B C
O
D
E
C
B
A。

相关文档
最新文档