陶瓷材料结构
陶瓷的分类及性能
陶瓷材料的力学性能陶瓷材料陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。
金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键)陶瓷:离子键和共价键。
普通陶瓷,天然粘土为原料,混料成形,烧结而成。
工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。
工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。
硬度高,弹性模量高,塑性韧性差,强度可靠性差。
常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。
一、陶瓷材料的结构和显微组织1、结构特点陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。
可以通过改变晶体结构的晶型变化改变其性能。
如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料”2、显微组织晶体相,玻璃相,气相晶界、夹杂(种类、数量、尺寸、形态、分布、影响材料的力学性能。
(可通过热处理改善材料的力学性能)陶瓷的分类玻璃—工业玻璃(光学,电工,仪表,实验室用);建筑玻璃;日用玻璃陶瓷—普通陶瓷日用,建筑卫生,电器(绝缘),化工,多孔……特种陶瓷-电容器,压电,磁性,电光,高温……金属陶瓷--结构陶瓷,工具(硬质合金),耐热,电工……玻璃陶瓷—耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷…2.陶瓷的生产(1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种陶瓷(人工的化学或化工原料--- 各种化合物如氧、碳、氮、硼化合物)(2)坯料的成形(可塑成形,注浆成形,压制成形)(3)烧成或烧结3. 陶瓷的性能(1)硬度是各类材料中最高的。
(高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV)(2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2)(3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。
2 (E/1000--E/100)。
陶瓷材料包装结构的分类
陶瓷材料包装结构的分类
一、单层结构。
1、单层底墩:由底墩、中心和上部组成,包装用于陶瓷瓷器等商品。
2、单层长柱:由底面、侧面和上部组成,适用于陶瓷饰品、陶瓷摆
件等商品。
二、多层结构。
1、双层底墩:由两个层次的底墩、中心和上部组成,适用于小型陶
瓷精品。
2、多层长柱:由多层长柱、底座和上部组成,适用于陶瓷工艺品等
商品。
三、组合结构。
1、组合底墩:由底墩、中心层次和上部组成,可用于多种陶瓷商品
的包装。
2、组合长柱:由底部、侧部和上部组成,可用于陶瓷工艺品的包装。
1.3高分子和陶瓷材料的结构与性能
第三节 高分子材料的结构与性能
一、高分子材料概述 二、高分子材料的结构 三、高分子材料的性能
★元素链大分子:大分子链中不含碳原子,而是由Si、O、 B、S、P等元素组成. 例:氟硅橡胶
(2)大分子链的形态
A、线型分子链:各链节以共价键连接成长链分子,直径小,长度
很长,呈卷曲状或线团状。长径比1000:1
B、支化型分子链:在主链的两侧以共价键连接相当数量的长短
不一的支链,形状有树枝型、梳型、线团型。
(2)高分子化合物的化学描述
①高分子化合物由低分子化合物通过聚合反应获得。 组成高分子化合物的低分子化合物称作单体。
例:聚乙烯——乙烯(CH2=CH2)
聚氯乙烯——氯乙烯(CH2=CHCl)
②高分子化合物的分子质量很大,呈长链形----大分子链, 它是由许许多多结构相同的基本单元重复连接构成的;
组成大分子链的这种结构单元称作链节(表1-12)
2006年8月6日石油巨头BP公司宣布,因位于阿拉斯加州 北部Prudhoe Bay的美国最大油田一条输油管道遭到腐蚀 发生原油泄漏。大量石油流入阿拉斯加冻土,估计共泄漏20 万加仑(相当于76 万升) ,是该油田历史上最大的一次漏油 事故。油管被迫立即关闭进行修复与清理工作。预计原油 日产量将减少40 万桶, 相当于美国原油日产量的8 %。
分子链在空间规则排列 部分规则排列
强度、刚度、耐热性、 抗熔性好
介于两者之间
无规则排列
陶瓷材料的显微结构
相同蠕变条件下:1300℃,250MPa,100h YL-a(晶界宽度1nm); YL-b(晶界宽度2.5nm) YL-b的蠕变量为YL-a的2.4倍
(3)重烧结Si3N4
反应烧结+更高温度烧结
低温氮化后,经1atmN2 压 力,1850℃,2h,室温抗 折强度550MPa
Si3N4烧结温度高,接近其挥发分解温度(1890℃); 常压下,提高烧成温度增加致密度比较困难; 发展了一种新工艺———气氛加压烧结工艺; 提高了烧成温度,抑制了烧成过程中的挥发与分解,制备出性能 优良的陶瓷材料
温度↑,陶瓷的强度↓ 高温破坏:广泛分布的显微结构 损伤的积累过程;
室温破坏:已经存在的裂纹的突 然破坏所致。
高温下损伤的形成与材料承受蠕变或蠕 变破坏的能力有关。 与高温强度有关的重要因素— 晶界相
I. 烧结助剂如MgO等与Si3N4中的SiO2 杂质 反应形成硅酸盐液相; II. 冷却过程中,这些促进烧结致密的液相形 成玻璃相驻留在晶界上,形成一层薄的非 晶态层(约1nm); III.材料在高温下(高于晶界玻璃相的转变温 度)受力时,由于蠕变裂纹的生长而破坏; IV.晶界玻璃相成为物质的快速传递区,导致 蠕变孔穴的迅速形成; V. 网状裂纹扩展并最终相互连接,导致材料 完全破坏。
他形晶:较迟结晶的晶体,在受抑制情况下生长发育,形成晶 形很不完整的晶体。
97瓷中刚玉半自形晶结构 莫来石陶瓷中莫来石 1、自形晶;2、半自形晶;3、他形晶 日用陶瓷中石英晶体受到熔 陶瓷自形晶的结构 蚀后呈他形晶结构
多晶体的晶形
§4.1 陶瓷显微结构类型
瓷 坯 中 晶 质 和 非 晶 质 的 含 量 全晶质 主 晶 相 的 晶 粒 尺 度
低温氮化后,经15atmN2 压 力,1950℃,2h,室温强度 750MPa,硬度HRA91~92
陶瓷材料的结构
(一)陶瓷材料的结构
1. 晶相
晶相是陶瓷材料的主要组成相,对陶 瓷的性能起决定性作用。 陶瓷中的晶相的结合键为 离子键 共价键 混合键
氧化物结构的结合键以离子键为 主,又称离子晶体。 Si3N4、SiC、BN等以共价键为主, 称共价晶体。 氧化物结构的主要特点是氧离子 紧密排列构成晶格骨架,组成六方或 面心立方点阵,而正离子位于骨架的 适当间隙之中。 如:CaO、MgO、Al2O3、ZrO2
• 有些陶瓷中的晶相也存在同素异构转变。
SiO2的同素异构转变
α -石英
573℃ 870℃
α -鳞石英
163℃
1470℃
α -方石英 180~270℃
1713℃
熔融SiO2
急冷 加热
β -石英
β -鳞石英
117℃ γ -鳞石英
β -方石英
石英玻璃
• 实际陶瓷晶体与金属晶体一样也存在晶体 缺陷,这些缺陷可加速陶瓷的烧结扩散过 程,还影响陶瓷性能。 • 晶粒愈细,陶瓷的强度愈高。如刚玉 ( Al2O3 )晶粒平均尺寸为 200μm 时,抗弯 强 度 为 74MPa , 1.8μm 时 抗 弯 强 度 可 高 达 570MPa。 • 陶瓷材料中往往同时存在多种晶相,对陶 瓷性能起决定作用的晶相称主晶相,其余 为次晶相。
2. 玻璃相
玻璃相是一种非晶态固体, 是陶瓷烧结时,各组成相与杂 质产生一系列物理化学反应形 成的液相在冷材料中不可缺少的组成相。
• • • •
将分散的晶相粘结在一起; 降低烧结温度; 抑制晶相的晶粒长大 填充气孔。
玻璃相熔点低、热稳定性差,在 较低温度下开始软化,导致陶瓷在高 温下发生蠕变,且其中常有一些金属 离子而降低陶瓷的绝缘性。 故工业陶瓷中玻璃相的数量要予 以控制,一 般<20~40%。
陶瓷材料-3-结构陶瓷
当从高温冷却到四方相转变温度,由于存在相变滞后现象, 大约要在1050oC左右,即偏低100oC,才由四方相转变为单斜 相,这一转变为马氏体相变。
②氧化锆陶瓷
由于氧化锆的三种不同晶型间存在密度差,升降温过程伴 随着相变,产生较大的体积变化。如四方氧化锆与单斜氧化 锆之间的转变伴随有7%~9%的体积变化。
具备多种相变的陶瓷材料,很难抵抗热冲击
①氧化铝陶瓷
普通氧化铝陶瓷:
是以Al2O3为主要成份的陶瓷。按Al2O3 含量不同可分为99瓷、 95瓷、 90瓷、 85瓷 。有时也将Al2O3 含量为80 wt.%和75 wt.%也列入普通氧化铝陶瓷。
99氧化铝陶瓷常用作坩埚、耐火炉管及特殊用途的耐磨材料 如轴承、密封件、水阀片等; 95氧化铝陶瓷主要用作各种要求中等的耐腐蚀、耐磨部件; 85氧化铝陶瓷组份中通常加入部分滑石,形成与硅酸镁共溶 所组成的以刚玉瓷为主晶相的高铝瓷。是电真空装臵器件中 采用最广泛的瓷料。
ZrO2
1700
MgO作为助烧剂的作用机制 MgO的作用与其加入量有关:
当加入量不超过MgO在Al2O3中的固溶度(<0.3wt%)时, 固溶反应: 2MgO →2MgAl '+2O0x+V0••
生成氧空位,有利于氧的固相扩散传质,从而促进烧结
当MgO的加入量大于固溶度时,未溶解部分与Al2O3反应: MgO +Al2O3→MgO•Al2O3(尖晶石) 尖晶石是新的化合物。尖晶石颗粒分布于Al 2O3主晶相的 晶界上,阻碍晶界移动(称之为钉扎晶界),从而阻碍由于 晶界移动过快导致的气孔进入晶粒内部的情形发生。 气孔在晶界上通过晶界扩散更容易排除。钉扎晶界的结果 还可以细化晶粒。
陶瓷材料的结构与性能分析
陶瓷材料的结构与性能分析陶瓷材料是一类广泛应用于建筑、电子、航空等领域的材料,具有优异的物理和化学性质。
而想要深入了解陶瓷材料的性能表现,首先必须对其结构进行分析。
一、结晶结构陶瓷材料主要由氧化物组成,常见的有硅酸盐、氮化硅、氧化铝等。
在陶瓷材料中,原子或离子按照一定的几何排列方式组成结晶结构。
例如,硅酸盐陶瓷中的硅离子和氧离子以正方形或三角形的排列方式拼接成网络结构。
而氮化硅陶瓷则由氮离子和硅离子按照边长相等的正六边形排列形成具有大空隙的结构。
结晶结构的不同会导致陶瓷材料的性能差异,如硬度、热传导性等。
二、晶粒大小晶粒大小是陶瓷材料表面性能的重要指标之一。
晶粒的尺寸越小,材料的强度和硬度往往越高,因为小晶粒内部的晶界相对较多,在晶界上形成了许多阻碍位错运动的障碍点,从而提高了材料的抗变形能力。
因此,控制陶瓷材料的晶粒尺寸,对提高其力学性能具有重要意义。
三、杂质含量陶瓷材料中的杂质含量对其性能影响举足轻重。
杂质的存在会破坏材料的完整晶体结构,从而导致性能的下降。
例如,陶瓷材料中的铁、镉等金属离子会影响其电学性能,氮化硅材料中杂质的存在会导致其电阻率的变化。
因此,在制备陶瓷材料时,对原材料进行严格筛选和纯化,以及控制烧结工艺的条件,能够有效减少杂质含量,提高材料的性能。
四、孔洞结构孔洞是陶瓷材料中普遍存在的结构特征之一。
孔洞会影响材料的力学性能、热导率等。
例如,在陶瓷材料中,孔洞的存在可以减小材料的密度,从而提高其机械强度。
此外,孔洞还能影响热的传导、吸附等性质。
因此,对陶瓷材料的孔洞结构进行合理设计和控制,能够改善其性能,拓宽其应用范围。
五、晶界结构陶瓷材料中的晶界是由相邻晶粒之间的原子之间形成的。
晶界的存在会影响材料的力学性能、导电性能、疲劳寿命等。
在力学性能方面,晶界是位错移动的阻碍剂,增加了材料的塑性变形程度;在导电性能方面,晶界处存在能带偏移和电阻率增加现象,使材料的导电性能下降。
因此,控制晶界的结构,合理改善晶界的质量和数量,对提高陶瓷材料的性能至关重要。
陶瓷的微观结构
陶瓷的微观结构一、引言陶瓷是一种广泛应用于日常生活和工业领域的材料。
它具有许多优良的特性,如高硬度、耐高温、耐腐蚀等。
这些特性与陶瓷的微观结构密切相关。
本文将从微观层面解析陶瓷的结构特点,以增进对陶瓷材料的理解。
二、陶瓷的组成陶瓷通常由非金属元素的化合物组成,主要包括氧化物、碳化物、氮化物等。
其中,氧化物陶瓷最为常见,如氧化铝、氧化硅等。
这些化合物具有稳定的化学性质,为陶瓷材料赋予了优异的特性。
三、陶瓷的结晶结构陶瓷材料的结晶结构与其物理性质密切相关。
大多数陶瓷材料具有离子键或共价键,因此其结晶结构多为离子晶体结构或共价晶体结构。
1. 离子晶体结构离子晶体结构是由阳离子和阴离子通过离子键结合而成的晶体结构。
例如,氧化铝的结构就是由氧离子和铝离子构成的。
在这种结构中,阳离子通常占据晶体的中心位置,而阴离子则环绕其周围。
离子晶体结构的稳定性较高,因此具有较高的熔点和硬度。
2. 共价晶体结构共价晶体结构是由共价键连接的原子构成的晶体结构。
例如,硅化硅的结构就是由硅原子通过共价键连接而成的。
在这种结构中,原子通过共用电子进行连接,形成稳定的晶体结构。
共价晶体结构通常具有较高的熔点和较好的导电性能。
四、陶瓷的微观缺陷陶瓷材料中晶格缺陷的存在对其性能有着重要影响。
常见的陶瓷缺陷包括点缺陷、线缺陷和面缺陷。
1. 点缺陷点缺陷是晶体中原子位置的缺失或替代。
常见的点缺陷有空位、间隙原子和杂质原子。
这些点缺陷会导致陶瓷的导电性、热导率等性能发生变化。
2. 线缺陷线缺陷是晶体中沿一维方向的缺陷,如位错和脆性晶粒。
位错是晶体中原子排列的错位,会导致陶瓷的塑性变差。
脆性晶粒则是陶瓷中存在的较大晶粒,容易引起断裂。
3. 面缺陷面缺陷是晶体中沿二维方向的缺陷,如晶界和孪晶。
晶界是晶体中不同晶粒的交界面,对陶瓷的力学性能和导电性能有重要影响。
孪晶是晶体中形成的两个镜像对称的晶粒,容易导致陶瓷的脆性断裂。
五、陶瓷的微观结构与性能关系陶瓷材料的微观结构对其性能具有重要影响。
陶瓷材料的晶体结构与应力分析
陶瓷材料的晶体结构与应力分析一、介绍陶瓷材料是一类具有特殊结构和性质的无机非金属材料。
在陶瓷材料中,晶体结构的性质起着重要的作用。
本文将探讨陶瓷材料的晶体结构以及应力分析方面的内容。
二、陶瓷材料的晶体结构1. 颗粒晶体结构陶瓷材料中常见的晶体结构是颗粒状的结构。
这种结构由大量的微小晶体颗粒组成。
这些颗粒有特定的结构排列方式,形成陶瓷材料的整体结构。
2. 结晶晶体结构在其他一些陶瓷材料中,晶体结构呈现出明确的晶格结构。
晶格是由原子或离子组成的周期性结构。
晶体结构的稳定性与晶格的完整性密切相关。
3. 硅酸盐晶体结构硅酸盐是一种重要的陶瓷材料类型,其晶体结构含有硅和氧的化合物。
硅酸盐的晶体结构可以用于制造陶瓷工艺品、建筑材料等。
三、陶瓷材料的应力分析1. 内应力陶瓷材料在制备或使用过程中,会受到各种力的作用,从而产生内应力。
内应力可能导致陶瓷材料的破裂或变形。
对陶瓷材料的应力分析是为了预测和控制内应力的产生。
2. 热应力热应力是由于温度变化引起的。
在陶瓷材料的制备过程中,高温和冷却过程会导致温度的变化,从而产生热应力。
热应力是陶瓷材料中常见的一种应力形式。
3. 力学应力陶瓷材料在受到外力作用时,会产生力学应力。
力学应力的大小和方向与外力的大小和方向密切相关。
对陶瓷材料的力学应力进行分析有助于了解材料的强度和韧性。
四、工程应用陶瓷材料的晶体结构和应力分析在工程领域有着广泛的应用。
例如,在陶瓷制品的设计和开发过程中,通过对晶体结构的研究,可以改善材料的性能和品质。
同时,应力分析可以帮助工程师预测陶瓷材料在使用过程中可能产生的破裂和变形情况,从而设计更可靠的陶瓷产品。
五、结论陶瓷材料的晶体结构对其性能有重要影响。
对陶瓷材料的晶体结构进行研究可以改善材料的品质和性能。
同时,应力分析对于预测和控制陶瓷材料的破裂和变形具有重要意义。
通过合理的晶体结构设计和应力分析,可以提高陶瓷材料的可靠性和应用价值。
陶瓷材料的晶体结构与应力分析是一个复杂而有趣的课题。
陶瓷材料结构
CsCl晶胞图: Cl-离子按简单立方结构排 列,正离子Cs+位于立方 体的间隙。由于正负离子 数相等,所以立方体的间 隙都是填满的。 致密度和晶格常数的计算: 配位数:8 所有立方体间隙都是添满 的 不是体心立方,是简单立 方的
Cl-
Cs+
陶瓷材料的成分是多种多样的,从简单的化合 物到由多种复杂的化合物构成的混合物。
离子键
共价键
一、陶瓷材料的结构特点
陶瓷材料的显微组织由晶体相(1)、玻璃相(2) 和气相(3)组成,而且各相的相对量变化很 大,分布也不够均匀。
(一)、陶瓷晶体
晶相是陶瓷材料中主要的组成相,决定陶瓷 材料物理化学性质的主要是晶相。
由于陶瓷材料中原子的键合方式主要是离 子键,故多数陶瓷的晶体结构可以看成是 由带电的离子而不是由原子组成。 由于陶瓷至少由两种元素组成,所以陶瓷 的晶体结构通常要比纯金属的晶体结构复 杂。
在离子晶体中,一些原子失去最外层电子而 变成正离子,另一些原子则得到最外层电子 而成为负离子。因此,在离子晶体中,通常 正离子小于负离子,即: rc/rA <1 rc和rA分别代表正负离子的半径。
一些正负离子的半径,如表3-1所示
为了降低晶体的总能量,正、负离子趋于形 成尽可能紧密的堆积. 即:一个正离子趋于有尽可能多的负离子为 邻。一个正离子周围的最近邻负离子数称为 配位数。 因此,一个最稳定的结构应当有尽可能大的 配位数,而这个配位数又取决于正、负离子 的径之比。 图3-1
陶瓷材料的主要成分是氧化物、碳化物、氮化
物、硅化物等。
2、常见陶瓷晶体类型
AX型陶瓷晶体 (1)CsCl型 (2)NaCl型 (3) ZnS闪锌矿型结构 (4)纤维锌矿型结构
陶瓷材料的结构.pptx
综上所述,金
属材料的成分、 工艺、组织结构 和性能之间有着 密切的关系。
图2-11 两种晶粒大小不同的纯铁示意图
第12页/共35页
2.2 高分子材料的结构与性能
• 2.2.1 高分子材料的结构 • 1.大分子链的构成 • (1)化学组成 • 组成大分子链的化学元素,主要是碳、氢、氧,
另外还有氮、氯、氟、硼、硅、硫等,其中碳 是形成大分子链的主要元素。 • 大分子链根据组成元素不同可分为三类,即碳 链大分子、杂链大第13分页/共子35和页 元素链大分子。
2.晶面与晶向
图2-2 立方晶格中的一些晶面
第2页/共35页
3.金属晶体的类 (型1)体心立方晶格 (2)面心立方晶格 (3)密排六方晶格
图2-3 体心立方晶胞
图2-4 面心立方晶胞
第3页/共35页
图2-5 密排六方晶胞
2.1.2 金属的实际晶体结构
1.单晶体和多晶体
图2-6 单晶体和多晶体结构示意图
图2-20 蠕变前、后分子构象变化示意图 ●应力松弛 如图2-21所示。
图2-21 应力松弛过程中分子构象变化示意图
第22页/共35页
●滞后与内耗 高聚物受周期性载荷时,产生 伸-缩的循环应变,如图2-22所示。
图2-22 橡胶在一个承载周期中的应力-应变曲线
第23页/共35页
图2-23可以看出高聚物的变形特点。A点为 初始状态,B点为屈服点,C点为断裂点。
第25页/共35页
陶瓷的典型组织结构包括: 晶体相(莫来石和石英) 玻璃相 气相
1.晶体相
(1)硅酸盐
硅酸盐基本结构具有以下特点: ①构成硅酸盐的基本单元为硅氧四面 体结构,如图2-24所示; ②硅氧四面体只能通过共用顶角而相 互结合; ③ Si4+通过 O2-结合, Si—O—Si 的结合键在氧上的键角接近于145° ; ④稳定的硅酸盐结构中,硅氧四面体 采取最高空 间维数互相结合; ⑤硅氧四面体采取比较紧密的结构结 合; ⑥同一结构中硅氧四面体最多只相差 1个氧原子。
陶瓷材料的结构
亚稳态非晶体
在特定条件下通过高能球磨或化学气 相沉积制备而成,具有较高的能量状 态,但稳定性低于玻璃态非晶体。
非晶体结构对陶瓷材料性能的影响
力学性能
非晶体结构使陶瓷材料表现出各 向同性的力学性能,具有较高的
硬度和良好的耐磨性。
热学性能
非晶体结构使陶瓷材料具有较低的 热导率和较宽的热膨胀系数范围, 有利于隔热和抗热震性能。
理和化学性质。
晶体结构可以通过X射线衍射技 术进行测定和表征。
晶体结构的基本要素包括晶格、 晶胞、原子或分子的位置等。
陶瓷材料的晶体结构类型
氧化物陶瓷
碳化物陶瓷
以金属氧化物为主要成分,如氧化铝、氧 化锆等,具有较高的熔点和硬度。
以碳化物为主要成分,如碳化硅、碳化钛 等,具有高强度和耐磨性。
氮化物陶瓷
陶瓷材料的晶体结构中可能存在 的缺陷,如空位、位错、晶界等, 这些缺陷会影响陶瓷的力学性能
和电学性能。
陶瓷材料的强化机制
相变增韧
某些陶瓷材料在受到外力作用时,会发生相变,产生微裂纹或增 韧相,吸收能量,从而提高材料的韧性。
颗粒增强
通过在陶瓷基体中添加增强颗粒,如碳化物、氮化物等,提高材料 的强度、韧性和耐磨性。
化学稳定性
非晶体结构使陶瓷材料具有较好的 化学稳定性和抗氧化性能,能够抵 抗酸、碱、盐等腐蚀性介质的侵蚀。
04
陶瓷材料的显微结构
显微结构的基本概念
显微结构是指材料在显微镜下 观察到的组织结构和形貌特征, 包括晶粒大小、晶界、气孔等。
显微结构决定了陶瓷材料的性 能,如力学性能、热性能、电 性能等。
与晶体材料不同,非晶体材料不具有周期性重复的晶格结构,其原子或分子的排列 呈现各向同性。
陶瓷的分子结构
陶瓷的分子结构
陶瓷是一种常见的非金属材料,其分子结构是由硅、氧和其他金属元素组成的三维网状结构。
这种结构使得陶瓷具有良好的耐热性、高硬度和良好的耐腐蚀性。
陶瓷的分子结构是由硅、氧元素为主,同时加入了其他金属元素,形成了三维网状结构。
这种结构使得陶瓷材料具有很高的硬度,能够抵抗外界的刮擦和压力。
同时,由于陶瓷的分子结构中存在大量的共价键,这些共价键的强相互作用使得陶瓷具有很好的稳定性,能够在高温环境下保持其性质。
除了硅、氧元素外,陶瓷中还加入了其他金属元素,如钠、钙、镁等。
这些金属元素在陶瓷的分子结构中扮演着不同的角色,可以改变陶瓷的物理性质和化学性质。
例如,加入钠元素可以提高陶瓷的电导率,使其具有导电性;加入钙元素可以增强陶瓷的力学性能,使其更加坚硬和耐磨。
陶瓷的分子结构还具有很好的稳定性,能够在高温环境下保持其性质。
由于其高熔点和化学稳定性,陶瓷被广泛应用于工业、航空航天、电子等领域。
在工业中,陶瓷可以用于制造刀具、磨具、耐火材料等;在航空航天领域,陶瓷被用于制造发动机部件、热防护材料等;在电子领域,陶瓷被用于制造电子元件、电路板等。
总之,陶瓷的分子结构是由硅、氧和其他金属元素组成的三维网状结构,这种结构使得陶瓷具有良好的耐热性、高硬度和良好的耐腐蚀性。
由于其独特的性质和应用领域,陶瓷在现代社会中发挥着越来越重要的作用。
同时,随着科技的不断进步,相信陶瓷材料会在未来的发展中发挥更加重要的作用。
工程材料陶瓷材料
2、氮化硼陶瓷
氮化硼陶瓷的主晶相是BN,属于共价晶体。其晶体结 构与石墨相仿,为六方晶格,故有白石墨之称。
此类陶瓷具有良好的导热性和耐热性;热膨胀系数小; 绝缘性好;化学稳定性高;有自润性。
(三)碳化物陶瓷
1.碳化硅(SiC)陶瓷
碳化硅是用石英砂(SiO2 )加焦炭直接加热至高
温还原而成:
SiO2 + 3C
稳定性,耐高温、耐氧化、耐腐蚀等特 性。
② 陶瓷材料还具有密度小、弹性模量大、 耐磨损、强度高等特点。
③ 一些特种陶瓷还具有电、光、磁等特殊 性能。
通用硬质合金
是在成分中添加TaC或NbC来取代部分TiC。常用代号有 YW1、YW2。
(2)硬质合金的应用
硬质合金有着广泛的应用:切削刀具、冷作模具、量具和 耐磨零件等。
三、钢结硬质合金
1. 钢结硬质合金是以一种或几种碳化物(WC、 TiC)等为硬化相,以合金钢粉末为粘结剂, 经配料、压型、烧结而成。
气相
是在工艺过程中形成并保留下来的; 除非有特殊要求,一般气孔的存在对陶瓷的性能都是不利的,它降 低了陶瓷的强度,常常是造成裂纹的根源,应尽量使其含量降低; 一般普通陶瓷的气孔率为5﹪-10﹪,特种陶瓷在5﹪以下,金属陶瓷 则要求低于0.5﹪。
6、陶瓷的性能
陶瓷的力学性能
刚度最大 (弹性模量最 高);
SiC + 2CO
氮化硅的烧结工艺也有热压和反应矛烧结两种。
由于碳化硅表面有一层薄氧化膜 ,因此很难烧结,需
添加烧结助剂促进烧结,常加的助剂有硼、碳、铝等。
碳化硅陶瓷用于制造火箭喷嘴、浇注金属的喉管、热电偶套管、 炉管、燃气轮机叶片及轴承,泵的密封圈、拉丝成型模具等。
陶瓷材料的显微结构
②微裂纹分支增韧
主裂纹沿最大张应力的垂直方 向扩展,由于相变而受阻中断,裂 纹只能在偏离45o方向产生分支,也 相当于在剪应力方向再度扩展。 ③微裂纹增韧 材料制备过程中,由高温降至 低温时,一些晶粒的t-ZrO2 自发地 相变到m-ZrO2 ,产生微裂纹,使材 料增韧。
(2)影响相变增韧的因素
四、陶瓷复合材料
(1)颗粒弥散增强复合材料
ZrO2起相变韧化与裂纹转向韧化作用
(2)纤维补强增韧复合材料
①长纤维增韧
②短纤维(或晶须)增韧
热压方法制备,晶须排列有 一定的择优取向,界面结合 良好,晶须分布比较均匀
③颗粒与短纤维复合增韧
兼有ZrO2 粒子相变增 韧与短纤维韧化作用。
(3)陶瓷基复合材料的界面
m-ZrO2
1150℃ 950℃
t-ZrO2
2370℃
c-ZrO2
t-ZrO2 到m-ZrO2 马氏体相变伴随有相当大的剪切应变(约8%) 和体积增加(3%~5%) 施加压应力可抑止t-ZrO2的相变; 添加Y2O3 、MgO和CeO2 等稳定剂以降低相变温度,而使tZrO2在室温时处于亚稳定状态。
③复合材料的界面设计
目的:调整增强体与基体之间物理与化学的 相容性,充分地发挥增强体的增韧补强效应。 途径: a. 正确选择增强相与基体,使它们能够形成 一种热力学稳定的界面; b. 增强体的表面改性:表面涂层、酸洗、表 面热处理等。
表面涂层
合理的涂层能有效地调节界面 的残余应力,抑制界面的化学 反应,改善界面的结合状态
相同蠕变条件下:1300℃,250MPa,100h YL-a(晶界宽度1nm); YL-b(晶界宽度2.5nm) YL-b的蠕变量为YL-a的2.4倍
陶瓷材料的显微结构
相组成:晶相、玻璃相、气相
晶形:每一种晶体在形成、长大的过程中,往往习 惯地、自发地按一定的规律生长和发育成一 定的几何形态。
这种习惯称为结晶习性。
自形晶:先结晶的晶体在较好的环境下生长,即在有利于按其 本身的结晶习性的环境中生长发育的,而形成晶形完整 的晶体。
• Al2O3含量↑,玻璃相↓。 • Al2O3含量↑,烧成温度↑。95%瓷→1600℃;
99%瓷→1700℃。
二次重结晶,导致局部晶粒 易于长大。
原料本身不均匀; 成型时的压力因素; 烧成温度偏高; 局部不均匀的液相存在。
异常显微结构,晶粒大小分 布显著不均匀。
与添加剂的选用与加入量不 当有关
2、ZrO2陶瓷
与应力诱导相变不 同,后者在相变开 始点周围应力变化 较大处产生,因此 成核相变可能是应 力诱导相变的先兆。
1、大孔径的孔隙 2、不纯原料 3、异常大晶粒 4、团聚 5、第二相夹杂物
二、高温缺陷
温度↑,陶瓷的强度↓ ➢高温破坏:广泛分布的显微结构 损伤的积累过程; ➢室温破坏:已经存在的裂纹的突 然破坏所致。
高温下损伤的形成与材料承受蠕变或蠕 变破坏的能力有关。 与高温强度有关的重要因素— 晶界相
I. 烧结助剂如MgO等与Si3N4中的SiO2杂质 反应形成硅酸盐液相;
③微裂纹增韧
材料制备过程中,由高温降至 低 温 时 , 一 些 晶 粒 的 t-ZrO2 自 发 地 相变到m-ZrO2,产生微裂纹,使材 料增韧。
(2)影响相变增韧的因素
①晶粒大小
I. ZrO2相变增韧材料中存在临界晶粒尺寸; II. 晶粒尺寸大于临界尺寸时,易于相变,冷却过程中,伴随相
陶瓷的微观结构
陶瓷的微观结构引言陶瓷是一种具有特殊微观结构的无机非金属材料,具有优异的物理、化学和机械性能。
本文将重点介绍陶瓷的微观结构,包括陶瓷的组成成分、晶体结构以及晶界和孔隙等微观特征。
一、陶瓷的组成成分陶瓷的主要成分是氧化物,如氧化铝、氧化硅、氧化锆等。
此外,还可以添加少量的其他氧化物、非氧化物以及杂质元素来调整陶瓷的性能。
不同成分的陶瓷具有不同的微观结构和性能特点。
二、陶瓷的晶体结构陶瓷的晶体结构是其微观结构的基础。
大多数陶瓷是由离子晶体构成的,其晶体结构可以分为离子型和共价型两种。
离子型陶瓷的晶体结构由正负离子通过电荷作用力相互排列而成,共价型陶瓷的晶体结构由共价键连接的原子构成。
三、陶瓷的晶界晶界是陶瓷微观结构中重要的组成部分,它位于晶体之间。
晶界的存在对陶瓷的性能有重要影响。
晶界可以分为晶界位错和晶界面两部分。
晶界位错是晶体中原子间的错位,晶界面是晶体之间的界面。
晶界的存在会导致晶体的结构畸变和局部应变,从而影响陶瓷的力学性能和导电性能。
四、陶瓷的孔隙结构陶瓷的孔隙是指在其微观结构中存在的空隙或孔洞。
孔隙可以分为连通孔和闭孔两种。
连通孔是指孔隙之间存在通道,可以与外界相连,闭孔则是孔隙之间没有通道,与外界隔绝。
孔隙的存在对陶瓷的力学性能、导热性能和气密性等性能有重要影响。
结论陶瓷的微观结构是其优异性能的基础。
陶瓷的微观结构包括组成成分、晶体结构、晶界和孔隙等要素。
不同成分的陶瓷具有不同的微观结构特点,晶体结构和晶界的存在对陶瓷的性能有重要影响,而孔隙的存在则对陶瓷的多项性能产生影响。
深入了解和研究陶瓷的微观结构,可以为陶瓷的设计、制备和应用提供理论依据,进一步拓展陶瓷材料的应用领域。
陶瓷材料的组织结构和力学性能分析
陶瓷材料的组织结构和力学性能分析陶瓷作为一种广泛应用的材料,在各个领域都有重要的作用。
陶瓷具有优异的化学稳定性和耐高温性能,因此常被用于制作高温材料、耐磨材料以及电子材料等。
本文将对陶瓷材料的组织结构和力学性能进行分析。
首先,对于陶瓷材料的组织结构,需要了解陶瓷的基本成分和表面形貌。
陶瓷主要由非金属元素组成,如氧、氮、硼等。
在微观层面上,陶瓷晶体结构可以分为单晶和多晶,这直接影响其物理性质和化学性质。
此外,陶瓷的表面形貌决定了其力学性能和表面活性。
表面粗糙度越小,则材料的疲劳寿命和抗摩擦性能越好。
其次,陶瓷材料的组织结构对其力学性能有着重要的影响。
在应力作用下,陶瓷材料晶体结构中的离子发生位移或位错的移动,从而引发塑性变形或断裂。
一般情况下,陶瓷材料的强度较高,但韧性较差。
这主要是由于陶瓷的结构中具有很多微观裂纹,这些裂纹容易导致材料的破裂。
因此,提高陶瓷材料的韧性是一个重要的课题。
陶瓷材料的力学性能主要包括抗拉强度、硬度、韧性等指标。
抗拉强度是材料抵抗拉伸应力的能力,硬度是材料抵抗表面划伤的能力,而韧性则反映材料抵抗断裂的能力。
一般来说,陶瓷的抗拉强度较高,硬度也较高,但韧性较低。
在实际应用中,陶瓷材料常常通过控制其组织结构来调节其力学性能。
例如,通过添加适量的增韧相或改变烧结工艺,可以提高陶瓷材料的韧性。
此外,研究人员还通过基于陶瓷材料的多尺度模拟来深入理解其组织结构与力学性能之间的关系。
这种方法将实验数据与计算方法相结合,能够预测和解释陶瓷材料的宏观性质。
通过模拟可以更好地理解陶瓷材料的变形机制和断裂行为,为设计和制造具有特定性能的陶瓷材料提供理论依据。
总之,陶瓷材料的组织结构与力学性能之间存在着密切的关系。
了解陶瓷材料的组织结构可以帮助我们更好地理解其力学性能。
通过调控组织结构,可以改变陶瓷材料的力学性能,从而满足不同领域的需求。
此外,多尺度模拟方法为研究陶瓷材料提供了新的途径。
通过深入研究陶瓷材料的组织结构和力学性能,有助于推动陶瓷材料在各个领域的进一步应用和发展。
第19章1 陶瓷材料的结构与分类
第4篇陶瓷材料第19章陶瓷材料的结构与分类§19.1 陶瓷材料概述一、陶瓷的历史陶瓷是最古老的一种材料,是人类征服自然中获得的第一种经化学变化而制成的产物。
它的出现比金属材料早得多,它是人类文明的象征之一,也是人类文明史上重要的研究对象。
陶瓷在我国有着悠久的历史,也是我国古代灿烂文化的重要组成部分。
根据出土文物考证,我国陶器早在距今8千至1万年左右的新石器时代便已经出现。
瓷器是我国劳动人民的重要发明之一,它出现于东汉时期,距今已有1800多年的历史。
我国在唐代时期已有相当数量的瓷器出口,瓷器是我国独有的商品。
到了明代,我国瓷器几乎遍及亚、非、欧、美各大洲。
世界许多国家的大型博物馆都藏有中国明代瓷器。
长期以来陶瓷材料的发展是靠工匠技艺的传授,产品主要是日用器皿、建筑材料(如砖、玻璃)等,通常称为传统陶瓷。
近几十年来,随着许多新技术(如电子技术、空间技术、激光技术、计算机技术等)的兴起,以及基础理沦(如矿物学、冶金学、物理学等)和测试技术(如电子显微技术、X射线衍射技术和各种谱仪等)的发展,陶瓷材料研究突飞猛进,取得了许多研究成果。
材料科学的发展,使人们对材料结构和性能之间的关系有了深刻的认识,通过控制材料化学成分和微观结构(组织),相继研制成功具有不同性能的陶瓷材料。
例如,高温结构陶瓷,各种功能陶瓷(电子材料、光导纤维、敏感陶瓷材料等)得到了越来越广泛的应用,日益受到人们的重视。
目前,工程陶瓷材料、金属材料、高分子材料和复合材料并立为材料领域的四大类,其研究和开发已经成为材料科学和工程的一个重要组成部分。
陶瓷原始定义是指含有粘土矿物原料而又经高温烧结的制品。
当今陶瓷的含义业已推广,凡固体无机材料,不管其含粘土与否,也不管用什么方法制造,均通称为陶瓷。
这样,陶瓷的范围包括单晶、多晶体、或两者的混合体、玻璃、无机薄膜和陶瓷纤维等。
二、陶瓷的分类陶瓷材料分为传统陶瓷和先进陶瓷,传统陶瓷主要的原料是石英、长石和粘土等自然界中存在的矿物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如:CaO、MgO、Al2O3、ZrO2
硅酸盐结构
结构很复杂,但基本结构单元为[SiO4]硅氧四面体,结合键为离子键、共价键的混合键;
每个氧原子最多只有被两个[SiO4]所共有;
Si-O-Si的键角为145℃;
[SiO4]既可孤立存在,亦可通过共用顶点连接成链状、平面或三维网状结构,故硅酸盐材料有无机高聚物之称。
有些陶瓷中的晶相也存在同素异构转变。
SiO2的同素异构转变
实际陶瓷晶体与金属晶体一样也存在晶体缺陷,这些缺陷可加速陶瓷的烧结扩散过程,还影响陶瓷性能。
晶粒愈细,陶瓷的强度愈高。如刚玉(Al2O3)晶粒平均尺寸为200μm时,抗弯强度为74MPa,1.8μm时抗弯强度可高达570MPa。
填充气孔。
3. 气相
气相指陶瓷孔隙中的气体即气孔。是生产过程中不可避免的,陶瓷中的孔隙率常为5~10%,要力求使其呈球状,均匀分布。
气孔对陶瓷的性能有显著影响,使陶瓷强度降低、介电损耗增大,电击穿强度下降,绝缘性降低。
气相可使陶瓷的密度减小,并能吸收振动;
用作保温的陶瓷和化工用的过滤多孔陶瓷等需要Βιβλιοθήκη 加气孔率,有时气孔率可高达60%。
陶瓷材料中往往同时存在多种晶相,对陶瓷性能起决定作用的晶相称主晶相,其余为次晶相。
2. 玻璃相
玻璃相是一种非晶态固体,是陶瓷烧结时,各组成相与杂质产生一系列物理化学反应形成的液相在冷却凝固时形成的
玻璃相的作用
玻璃相是陶瓷材料中不可缺少的组成相。
将分散的晶相粘结在一起;
降低烧结温度;
抑制晶相的晶粒长大
陶瓷材料是多相多晶材料,陶瓷结构中同时存在晶体相玻璃相气相各组成相的结构、数量、形态、大小及分布决定了陶瓷的性能。
1. 晶相
晶相是陶瓷材料的主要组成相,对陶瓷的性能起决定性作用。
陶瓷中的晶相的结合键为
离子键
共价键
混合键
氧化物结构的结合键以离子键为主,又称离子晶体。
Si3N4、SiC、BN等以共价键为主,称共价晶体。