流体力学例题
流体力学题库(附答案)
流体力学题库(附答案)一、单选题(共48题,每题1分,共48分)1.()管路各段阻力损失相同。
A、短管管系B、串联管系C、并联管系D、分支管系正确答案:C2.理想液体的特征是( )A、不可压缩B、符合牛顿内摩擦定律的C、无粘性D、粘度为常数正确答案:C3.当容器内工质压力大于大气压力时,工质处于()状态。
A、标准B、正压C、负压D、临界正确答案:B4.某点的真空压力是65000pa,当地大气压为0.1MPa,该点的绝对压强为()。
A、165000PaB、65000PaC、55000PaD、35000Pa正确答案:D5.在圆管流中,层流的断面流速分布为()。
A、均匀规律B、直线变化规律C、抛物线规律D、对数曲线规律正确答案:C6.抽气器的工作原理是()A、动量方程B、静力学基本方程C、连续性方程D、伯努利方程正确答案:D7.伯努利方程说明,流体在水平管内定常流动中,流速降低()A、压力下降B、都可能C、压力上升D、压力不变正确答案:C8.那个设备压力是真空压力()。
A、再热器B、凝汽器C、过热器D、给水泵正确答案:B9.伯努利方程中Z+P/ρg表示()A、单位体积流体具有的机械能B、通过过流断面的流体所具有的总机械能C、单位质量流体具有的机械能D、单位重量流体具有的测压管能头正确答案:D10.超临界机组主蒸汽压力最接近的是()。
A、5个大气压B、26兆帕C、50巴D、5公斤正确答案:B11.静止的流体中存在()。
A、压应力、拉应力和剪切力B、压应力和拉应力C、压应力D、压应力和剪切力正确答案:C12.将极细测压管插入水中,毛细现象会使得液位()A、下降B、不变C、都有可能D、上升正确答案:D13.一个标准大气压(1atm)等于()。
A、Hg780mmB、101.325kPaC、720mmHgD、110.325kPa正确答案:B14.流体在管道内的流动阻力分为()两种。
A、阀门阻力、三通阻力B、沿程阻力、局部阻力C、流量孔板阻力、水力阻力D、摩擦阻力、弯头阻力正确答案:B15.主机润滑油压力为130千帕,其是多少米水柱()。
[工学]流体力学例题
2
【例2-2】 如图2-17所示为双杯双液微压计,杯内和 U形管内分别装有密度ρ1=lOOOkg/m3和密度ρ2 =13600kg/m3的两种不同液体,大截面杯的直径D= 100mm,U形管的直径d=10mm,测得h=30mm,计算两 杯内的压强差为多少?
【解】 列1—2截面上的等压面方程
p1 1gh1 p2 1g(h2 h1 h) 2 gh
【例2-1】 如图2-16所示测量装置,活塞直径d=35㎜, 油的相对密度d油=0.92 ,水银的相对密度dHg=13.6,活塞 与缸壁无泄漏和摩擦。当活塞重为15N时,h=700㎜,试 计算U形管测压计的液面高差Δh值。
【解】 重物使活塞单位面积上承受的压强为
p
15 d2
15 0.0352
tg1 Fz左 tg1 692
18
图2-26
2020/3/2
19
【例3-1】 有一贮水装置如图3-22所示,贮水池足够 大,当阀门关闭时,压强计读数为2.8个大气压强。而当 将阀门全开,水从管中流出时,压强计读数是0.6个大气 压强,试求当水管直径d=12cm时,通过出口的体积流量 (不计流动损失)。
-ρ1g h1=9.806×1000×(0.5-0.3) +133400×0.3-7850×0.2 +133400×0.25-9.806×1000×0.6
=67876(Pa)
2020/3/2
6
图2-18
2020/3/2
7
【例2-4】 已知密闭水箱中的液面高度h4=60mm,测 压管中的液面高度h1=100cm,U形管中右端工作介质高 度,如图2-19所示。试求U形管中左端工作介质高度h3为 多少?
pai定理 工程流体力学例题
pai 定理 工程流体力学例题例 1 开口容器内盛有液体,容器下部壁面有孔通大气。
显然在孔的不同高度上流出的速度也不同。
试计算通过此孔的流量Q 。
设自由面高度不变,不计摩擦,几何尺寸如图(4.13)所示。
解 出口面上的任一微面 dh b ⨯上的速度可以利用连续方程及动量方程求得gh 2e=V式中h 为此微元面距自由面的高度。
出口体积流量为})()2{(2322b 2/32/32/2/2/12/2/d H dH g b dh h g b Vdh Q d H d H d H d H --+===⎰⎰+-+-2a e g p p H ρ+= 例2大容器有背压的小孔流出。
开口容器内盛有液体,容器下部有小孔,小孔与另一盛有液体的容器通,如图(4.14)所示。
两容器中自由液面高度分别为1H ,2H ,压力位a p ,设不计摩擦,1H ,2H 为常数,试求小孔流出速度。
解 小孔出口压力(a )在S A 面与e A 面之间应用伯努利方程(b )利用(a )、(b ),并注意到eV V S <<,可得到出口速度公式)g 221e H H V -=(例3 文丘里管流量计为了测量管道中的流量,可以将收缩—扩张管接到管道中去。
如图(4.15)所示。
通过测量颈部及来流段的压力差以确定流体的平均速度。
为了测量这个压力差,可以利用U 型管测压器。
试建立颈部g2g p 0g 2g p 2ee 2a 1VV H S ++=+=ρρ)1)(()()g-g1212121122z p z p ρρρρρρ,,()(--=---=++l l l l l l 2/1,12212222)]1)(()/-1g2[(ρρ---==l l A A A V A Q 2/1,122122)]1)(()/(-1g 2[A ρρ---=l l A V 流速与U 型管中液面高度差的关系。
解 对1—1,2—2截面利用连续方程与伯努利方程1221A A V V = (a)z pV z p V ggg g 2222112122++=++ρρ(b)由此两式可得 )()(2)/(1221121222z p z p A A V gg g +-+=-ρρ(c ) 由此可见,只要能测出p p 12-就可完全确定V2。
流体力学例题汇总
答案:D
例9. 某液体的容重为γ,在液体内部B点较A点低 1m,其B点的压强比A点的压强大_____Pa. A.γ; B.9800; C.10000; D.不能确定
答案:A
例10.仅在重力作用下,静止液体中任意点对 同一基准面的______为一常数。 A.单位位能;B.单位势能; C.单位压能;D.单位动能
整理后得A,B两点的压强差
9806 0.5 0.3 133400 0.3 7850 0.2 133400 0pB 1 g h5 h4 3 gh4 2 gh3 3 gh2 1 gh1
解
对于底盖,由于在水平方向上压强分布对称,所以流体静压强作 用在底盖上的总压力的水平分力为零。底盖上总压力的垂直分力
d 2 h d 3 Fpz1 gVp1 g H 4 2 12 0.52 0.53 9806 2.5 0.75 6579N 4 12
例2 5如图所示,两圆筒用管 子连接。第一个圆筒直 径d1 45cm,活塞上受力 F1 3197N,密封 气体的计示压强 pe 9810Pa;第二个圆筒 d 2 30cm,活塞上受力 F2 4945.5 N,上部通大气。若 不计活塞质量,求平衡 状态时两活塞的高度差 h。(已知水银的密度 13600kg m 3 )
答案:C
下一页
例6. 仅在重力作用下,静止液体的测压管水 头线必定________. A 水平 B 线形降低 C 线形升高 D 呈曲线
答案:A
例7. 某点压强为1.0kgf/cm^2,用国际单位表示 该处的压强为______kPa。 A.100; B.98; C.1000; D.980
答案:B
流体力学计算题及答案
流体力学计算题及答案第二章例1:用复式水银压差计测量密封容器内水面的相对压强,如图所示。
已知:水面高程z 0=3m,压差计各水银面的高程分别为z 1=0.03m , z 2=0.18m , z 3=0.04m, z 4=0.20m, 水银密度3/13600m kg ρ=',水的密度3/1000m kg ρ= 。
试求水面的相对压强p 0。
解:ap z z γz z γz z γp =-----+)(')(')(3412100)()('1034120z z γz z z z γp ---+-=∴例2:用如图所示的倾斜微压计测量两条同高程水管的压差。
该微压计是一个水平倾角为θ的在xoz 坐标系中,自由表面1的方程:gr z 2220ω=对于容器边缘上的点,有:m L z m d r 4.015.02==== )/(67.1815.04.08.922220s rad r gz =⨯⨯==∴ω∵ωπ=260n /∴==⨯=n r 160260186721783ωππ..(/min)(2)当抛物面顶端碰到容器底部时,这时原容器中的水将被甩出一部分,液面为图中2所指。
在'''x o z 坐标系中:自由表面2的方程: gr z 2220ω'='当m H z m dr 5.0,15.02=='==时)/(87.2015.05.08.92222s rad r z g =⨯⨯='='ωmin)/(3.199287.20602602r ππωn =⨯='=∴这时,有:14214222ππd H d H h ⋅=-()mm Hh Hh H 2502222==∴=-∴例6:已知:一块平板宽为 B ,长为L,倾角θ,顶端与水面平齐。
求:总压力及作用点。
解:总压力:LB θL γA h γF c 2sin ⋅==压力中心D :方法一:dA θy γy ydF dM sin ==3sin sin sin 322L BθγBdy y θγdA y θγM L A===⎰⎰DFy M = L F M yD32/==∴方法二:62212123LL BL L BL L A y J y y c cx c D +=+=+=例7:如图,已知一平板,长L,宽B,安装于斜壁面上,可绕A 转动。
《流体力学》典型例题
《例题力学》典型例题例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。
已知平板与斜面之间的油层厚度δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。
求油的动力粘性系数。
解:由牛顿内摩擦定律,平板所受的剪切应力du Udy τμμδ== 又因等速运动,惯性力为零。
根据牛顿第二定律:0m ==∑F a ,即:gsin 0m S θτ-⋅=()324gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--⋅⨯⨯⨯⨯==≈⋅⋅⨯⨯⨯ 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=⋅的油,若轴的转速200rpm n =。
求克服油的粘性阻力所消耗的功率。
解:由牛顿内摩擦定律,轴与轴承之间的剪切应力()60d d n d uy πτμμδ==粘性阻力(摩擦力):F S dl ττπ=⋅= 克服油的粘性阻力所消耗的功率:()()3223223230230603.140.360.732001600.231050938.83(W)d d n d n n lP M F dl πππμωτπδ-==⋅⋅=⨯⨯=⨯⨯⨯=⨯⨯=例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。
解:根据牛顿黏性定律 d d 2d r r F A r r ωωμμπδδ== 2d d 2d r T F r r r ωμπδ=⋅=42420d d 232dd d T T r r πμωπμωδδ===⎰432d Tπμωδ=例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。
流体力学例题(动力学部分)
1000
q
49 7 m / s
d 2
4
v2
0 .12
4
7 55 10
3
m /s
3
2
6.一个100N的重物恰被一垂直水射 流所支承,其中d=6cm,出口速度 v=8m/s,不计沿程损失,求Y=? 解:水流接触重物后动量发生了变化
Fiy q ( 2 v y 2 1 v y 1 )
Fiy 100 N q v y2
d 2
4 0
v
0 . 06 2
z1 z 2 z
v2 q2
v1
q1
由伯努利方程: v1 v 2 v
v1 q1
令: 1 由动量方程:
v
A
F i 0 q1v q 2 v qv cos
q1 q 2 q cos v 2 q2 由连续性方程:q1 q 2 q
2 gH v
令: 2 1 1
带入动量方程: F q ( 2 v z 2 1v z1 )
F av ( v a A 2 gH v )
2
水流对水桶的作用为-F
W W 0 F W 0 av ( v a A 2 gH v )
4
8 0 . 0226 m / s
3
令: 2 1 1
则:
v y1
F
q
100 1000 0 . 0226
4 . 42 m / s
由出口和重物底面的伯努利方程:
z1 p
g
v1
流体力学例题
1、叉管间距L=0.07m 的U 形管放在车内。
车等加速水平直线运动时,U 形管两端高度差H=0.05m ,求车此时的加速度。
g a =αtan LH =αtan 2/78.907.005.0s m g L H a =⨯==2、滚动轴承的轴瓦长L =0.5m ,轴外径m d 146.0=,轴承内径D=0.150m ,其间充满动力黏度=μ0.8Pa ·s 的油,如图所示。
求轴以n=min /300r 的转速匀速旋转时所需的力矩。
、s m dnv /29.260==πN d D v dL dydu A T 2102=--==μπμm N dT M ⋅==3.1523、如图,在两块相距20mm 的平板间充满动力粘度为0.065Pa ·s 的油,如果以1m/s 速度拉动距上平板5mm ,面积为0.5m 2的薄板(不计厚度),求需要的拉力dy du AT μ= N huA dy du AT 5.61===μμ N hH u A dy du AT 17.22=-==μμ N T T T 67.821=+=4、用复式U 形管差压计测量A 、B 两点的压力差。
已知:mm h 3001=,mm h 5002=。
水31000m kg =ρ,水银内313600m kg m =ρ,3800m kg ='ρ。
求B A p p -。
A B p h h h g gh h h p =+∆++'-∆-)(211ρρρPa p p B A 32144-=-5、有一敞口容器,长=L 2米,高=H 1.5米,等加速水平直线运动,求当水深h 分别为1.3米和0.5米时,使容器中的液体开始溢出的最大加速度。
g a =αtan L h H )(2tan -=α 2/96.1)(2s m g Lh H a =-= xH hL 21=34=x x H g a ==αtan s m g a /11892==6、有一敞口容器,长2米,高1.3 米,宽B=1m ,等加速水平直线运动,水深0.5米。
流体力学考试试题(附答案)剖析
可编辑修改精选全文完整版流体力学考试试题(附答案)1、如图所示,有一直径=d 12cm 的圆柱体,其质量=m 5kg ,在力=F 100N 的作用下,当淹深=h 0.5m 时,处于静止状态,求测压管中水柱的高度H 。
解: 圆柱体底面上各点所受的表压力为:3.131844/12.014.3806.951004/22=⨯⨯+=+=d mg F p g π(Pa )由测压管可得:)(h H g p g +=ρ则:84.05.0806.910003.13184=-⨯=-=h gp H gρ(m )2、为测定90º弯头的局部阻力系数,在A 、B 两断面接测压管,流体由A 流至B 。
已知管径d =50 mm ,AB 段长度L AB = 0.8 m ,流量q = 15 m 3/h ,沿程阻力系数λ=0.0285,两测压管中的水柱高度差Δh = 20 mm ,已知水银的密度为13600kg/m 3,求弯头的局部阻力系数ξ。
解:)/(12.2405.0360015422s m d q v v v v B A =⨯⨯====ππ 对A 、B 列伯努利方程:f BB B A A A h gv z g P g v z g P +++=++2222水水ρρ 2211z gPz g P z g Pz g P B B A A +=++=+水水水水ρρρρf BA h gv z g P g v z g P +++=++∴22222211水水ρρ vv v B A == 又64.005.08.00285.0)1100013600(12.202.08.92)(2)2(222)(22222221212211=--⨯⨯⨯=-∆-∆=-=∴+=+=∆-∆=-+-=+-+=∴d l h h v g g v d l h v g gv g v d l h h h h gh g z z g P P z gP z gP h f f f λρρλξξλρρρρρξλ水汞水汞水水水又3、一变直径管段AB ,内径d A =0.2m ,d B =0.4m ,高度差Δh =1m ,压强表指示p A =40kPa ,p B =70kPa ,已知管中通过的流量q v =0.2m 3/s ,水的密度ρ=1000kg/m 3,试判断管中水流的方向。
流体力学例题及答案
c0 u c 1 2 c 1 2 1 2( 1)
2 2 2
T0 1 2 1 Ma T 2
0 1 2 1 Ma 2
1 1
T c 2 2 T0 c0 1
2 0 1
Q Q 0.3 4.24m / s 1 1 A1 d12 0.32 4 4
Q Q 0.3 9.55m / s 1 1 A2 2 2 d 2 0.2 4 4
V2
例:三通管道
d1 200mm, d2 150mm, d3 100mm
平均速度为:
求: u3
1 2 2 F g (h1 h2 ) Q(V2 V1 ) 2
例 一铅直矩形闸门,已知 h1= 1 m,h2= 2 m,宽 b=1.5 m, 求总压力及其作用点。
b yC yD C D
A F B
h1
h2
h2 解 F pC A ghC A g (h1 ) bh2 2 9800 (1 2 ) 1.5 2 58800 N 58.8 kN 2 1 bh3 1 1.5 23 2 J Cx h2 12 yD yC (h1 ) 2 12 2.17m yC A 2 h2 2 1.5 2 (h1 ) bh2 2
例 空气在缩放管内流动,气流的滞止参数为p0 =106 Pa , T0 = 350 K,出口截面积 Ae =10 cm2,背压为 pb= 9.3105 Pa 。如果要求喉部的马赫数达到Ma1 = 0.6,试求喉部面积A1。
解 管内为亚声速流,出口压强等于背压:
pe pb 9.3105 Pa
p0 0 1.7317 kg/m3 RT0
流体力学流体动力学基础例题
5
2024/10/12
6
【例】 有一贮水装置如图所示,贮水池足够大,当阀 门关闭时,压强计读数为2.8个大气压强。而当将阀门全 开,水从管中流出时,压强计读数是0.6个大气压强,试 求当水管直径d=12cm时,通过出口的体积流量(不计流动 损失)。
【解】 当阀门全开时列1-l、2-2截面的伯努利方程
当阀门关闭时,根据压强计的读数,应用流体静力学基本
试求管中流量qv。
【解】 首先计算1-1断面管路中心的压强。因为A-B为
等压面,列等压面方程得: Hg gh p1 gh1
p1 Hg gh gh1
则
p1
g
Hg
h h1
13.6 0.2 0.72 2
(mH2O)
列1-1和2-2断面的伯努利方程
z1
p1
g
V12 2g
z2
p2
g
V22 2g
H pa 0 0 pa 0.6 pa V22
g
g
2g
2024/10/12
1
方程求出H值
pa gH pa 2.8 pa则H 2.8 pa
g
2.8 98060 9806
28(mH 2O)
代入到上式
V2
2g
H
0.6 pa g
29.8062.8 0.698060 20.78(m/s)
9806
所以管内流量
qV
4
d
2V2
0.785 0.122 20.78 0.235(m3/s)
2024/10/12
2
2024/10/12
3
【例】 水流通过如图所示管路流入大气,已知:U形
测压管中水银柱高差Δh=0.2m,h1=0.72m H2O,管径
流体力学 课堂例题
课堂例题第一章例1 使水的体积减小0.1%及1%时,应增大压强各为多少?(K =2000MPa )解: d V /V =-0.1%∆p =-2000×106×(-0.1%)=2×106Pa=2.0Mpad V /V = -1%∆p = -2000×106×(-1%)=20 Mpa例2 一平板距离另一固定平板0.5mm ,两板间充满液体,上板在每平方米上有2N 的力作用下以0.25m/s 的速度移动,求该流体的粘度?解: 第二章例1:测压装置。
A 中p e =2.45×104Pa, h=500mm,h 1=200mm, h 2=100mm, h 3=300mm, ρ2=800kg/m3,求B 中气体表压。
解:1、2、3、4四个等压面,1点忽略气体密度,得例2 求斜壁圆形闸门的总压力,已知d=0.5m,a=1m,α=60°解:由式 得总压力V dV dp K -=V dV K dp -=∴h U A F μ=0005.025.02μ=)(004.0s Pa ⋅=μ)(111h h g p p e e ++=ρ13111312)(gh h h g p gh p p e e e ρρρ-++=-=2213112223)(gh gh h h g p gh p p e e e ρρρρ+-++=+=332213113334)(gh gh gh h h g p gh p p e e e ρρρρρ-+-++=-=Pap p e Be 345384-==Ap A gh F ce c p ==ρ)(20834sin )2(2N d d a g F p =+=παρ例3:圆柱扇形闸门,已知H=5m,闸门宽B=10m,α=60°。
求曲面ab 上总压力解: 总压力大小和方向为第三章例1离心水泵吸水装置,d=200mm,q V =170m 3/h,泵入口前真空为330mmHg,如不计能量损失,求水泵的吸水高度。
流体力学例题汇总
解
当汽车在水平路面上作等加速直线运动时,U形管两支管的液面在 同一斜面上,设该斜面和水平方向的夹角为 ,由题意知
tg
a h1 h2 h g L L
由上式可解出两支管液面差的高度
a 0.5 h L 0.5 25.5mm g 9.806
液体的相对平衡
例2 32如图所示,一贮水器壁 面上有三个半球形的盖 ,其直径相同, d 0.5m, 贮水器上下壁面的垂直 距离h 1.5m,水深H 2.5m。试求作用在每个半球 形盖 子上的总压力。
e 1 2
解上式得
重力场中流体的平衡
h
p2 pe p1 69964 9810 20101 0.3m g 13600 9.806
例2 6汽车上装有内充液体的 U形管,如图所示, U形管水平方向的长度 L 0.5m,汽车在水平路面上沿 直线等加速行驶,加速 度为a 0.5 m s 2 , 试求U形管两支管中液面的高 度差。
例3:试问图示中A、 B、 C、 D点的测压管 高度,测压管水头。(D点闸门关闭,以D点 所在的水平面为基准面)
A:0m,6m B:2m,6m C:3m,6m D:6m,6m
例1.相对压强是指该点的绝对气压与_______ 的差值。 A 标准大气压;B 当地大气压; C 真空压强; D 工程大气压。
式中各项物理意义:
或
常数
Z :是断面对于选定基准面的高度,水力学中称位置水头, 表示单位重量的位置势能,称单位位能;
p 是断面压强作用使流体沿测压管所能上升的高度,水力 g 学中称为压强水头,表示压力做功能提供给单位重量流 体的能量,称为单位压能;
u2 2g
是以断面流速 u为初速度的铅直上升射流所能达到的理 论高度,水力学中称为流速水头,表示单位重量的动能, 称为单位动能。
流体力学练习课
一、 伯努利方程的应用举例
根据已知条件,z1=z2=0,p1=pA=pa,p2=pB=pC= pa-γWΔh ,
v1≈0,因此
v2 2 g p1 p 2
a
2g
p a ( p a W h )
a
W h 9800 0.2 2g 2 9.8 a 12.6
图5 射流对平板的冲击力
(二) 射流对平板的冲击力
设射流口离平板很近,可不考虑流体扩散,板面光滑,可 不计板面阻力和空气阻力,水头损失可忽略,因此,由伯 努利方程可得v1=v2=v0。 以平板方向为x轴,平板法线方向为y轴,可列出动量方程
取射流为控制体,平板沿其法线方向对射流的作用力设为R。
z1
图1 污水处理管路
1
1 1
2g
z2
p2
2v22
2g
hl
一、 伯努利方程的应用举例
[ 例题 1] 某污水处理厂从高位 水池引出一条管路 AB ,如 图1所示。已知管道直径 D=300mm,管中流量 Q=0.04m3/s,安装在点B的 压力表读数为 1 工程大气压, 高度 H=20m ,求管路中 AB 的 水 头 损 失 。 [解] 选取水平基准面o-o,过 水断面1-1、2-2,如图所示。 可列出1-1、2-2两断面间的 2 伯努利方程 p v
1 4 Q Q 60 v1 2.123m/s 2 2 A1 D 0.1 4 1 4 Q Q 60 v2 8.492 m/s 2 2 A2 d 0.05 4
取管轴线为水平基准面O-O,过流断面为1-1、2-2,可列出伯 努利方程
v1 p2 v2 z1 z2 2g 2g p1
流体力学例题大全
第一章:绪论例1-1 200 ºC体积为的2.5m3水,当温度升至800ºC时,其体积增加多少?解: 200 ºC时:ρ1=998.23kg/m3 800CºC时:ρ2=971.83kg/m3即:则:例1-2使水的体积减小0.1%及1%时,应增大压强各为多少?(K=2000MPa)d V/V =-0.1%=-2000×106×(-0.1%)=2×106Pa=2.0MPad V /V = -1%= -2000×106×(-1%)=20 MPa例1-3输水管l=200m,直径d=400mm,作水压试验。
使管中压强达到55at后停止加压,经历1小时,管中压强降到50at。
如不计管道变形,问在上述情况下,经管道漏缝流出的水量平均每秒是多少?水的体积压缩率κ =4.83×10-10m2 /N 。
解水经管道漏缝泄出后,管中压强下降,于是水体膨胀,其膨胀的水体积水体膨胀量5.95 l 即为经管道漏缝流出的水量,这是在1小时内流出的。
设经管道漏缝平均每秒流出的水体积以Q 表示,则例1-4:试绘制平板间液体的流速分布图与切应力分布图。
设平板间的液体流动为层流,且流速按直线分布,如图1-3所示。
解:设液层分界面上的流速为u,则:切应力分布:图1-3上层下层:在液层分界面上:--流速分布:上层:下层:例1-5:一底面积为40 ×45cm2,高为1cm的木块,质量为5kg,沿着涂有润滑油的斜面向下作等速运动,如图1-4所示,已知木块运动速度u =1m/s,油层厚度d =1mm,由木块所带动的油层的运动速度呈直线分布,求油的粘度。
解:∵等速∴αs =0由牛顿定律:∑F s=mαs=0m gsinθ-τ·A=0(呈直线分布)图1-4∵ θ=tan-1(5/12)=22.62°例1-6: 直径10cm的圆盘,由轴带动在一平台上旋转,圆盘与平台间充有厚度δ=1.5mm的油膜相隔,当圆盘以n =50r/min旋转时,测得扭矩M =2.94×10-4 N·m。
流体力学例题
【解】 根据等压面条件,图中1—1,2—2,3—3均为等压 面。可应用流体静力学基本方程式逐渐推算。
P1=p2+ρ1gh1
p2=p1-ρ3gh2
p3=p2+ρ2gh3
则 Rx qV (v2 v1 cos ) P2 P1 cos 0.1 (3.18 1.42 cos 60 ) 5.40 12.43cos 60 0.56(8 kN)
沿y轴方向 P1 sin R y qV (0 v1 sin )
R y P1 sin qV v1 sin
2g H
0.6 pa
g
2 9.806 2.8 0.6 98060 20.78
9806 (m/s)
所以管内流量
qV
4
d
2V2
0.785 0.122 20.78 0.235
m3/s)
【例3-8】 水流经过如下图所示管路流入大气,已知:
U形测压管中水银柱高差Δh=0.2m,h1=0.72m H2O,管 径d1=0.1m,管嘴出口直径d2=0.05m,不计管中水头损失, 试求管中流量qv。
12.43sin 60 0.11.42 sin 60 10.88(kN)
管壁对水旳反作用力
图 3-22
【解】 当阀门全开时列1-l、2-2截面旳伯努利方程
H pa 0 0 pa 0.6 pa V22
g
g
2g
当阀门关闭,据压强计旳读数,用流体静力学基本方程求出H值
pa gH pa 2.8 pa
H
2.8 pa
g
2.8 98060 9806
流体力学典型例题
典 型 例 题 1 基本概念及方程【1-1】底面积A =0.2m ×0.2m 的水容器,水面上有一块无重密封盖板,板上面放置一个重量为G 1=3000N 的铁块,测得水深h =0.5m ,如图所示。
如果将铁块加重为G 2=8000N ,试求盖板下降的高度Δh 。
【解】:利用体积弹性系数计算体积压缩率:E p v v //∆=∆ )/(00B p p np E +=p 为绝对压强。
当地大气压未知,用标准大气压Pap 501001325.1⨯=代替。
PaA G p p 51011076325.1/⨯=+= PaA G p p 52021001325.3/⨯=+=因 01/pp 和 02/p p 不是很大,可选用其中任何一个,例如,选用2/p p 来计算体积弹性系数:PaB p p np E 9020101299.2)/(⨯=+=在工程实际中,当压强不太高时,可取 Pa E 9101.2⨯=512104827.6/)(///-⨯=-=∆=∆=∆E p p E p v v h hm h h 55102413.310604827--⨯=⨯=∆【2-2】用如图所示的气压式液面计测量封闭油箱中液面高程h 。
打开阀门1,调整压缩空气的压强,使气泡开始在油箱中逸出,记下U 形水银压差计的读数Δh 1=150mm ,然后关闭阀门1,打开阀门2,同样操作,测得Δh 2=210mm 。
已知a =1m ,求深度h 及油的密度ρ。
【解】水银密度记为ρ1。
打开阀门1时,设压缩空气压强为p 1,考虑水银压差计两边液面的压差,以及油箱液面和排气口的压差,有同样,打开阀门2时,两式相减并化简得代入已知数据,得所以有2 基本概念及参数【1-3】测压管用玻璃管制成。
水的表面张力系数σ=0.0728N/m ,接触角θ=8º,如果要求毛细水柱高度不超过5mm ,玻璃管的内径应为多少? 【解】由于因此【1-4】高速水流的压强很低,水容易汽化成气泡,对水工建筑物产生气蚀。
流体力学例题(静力学部分)
T b ( gh 1 L / 2 gh 2 L / 3 ) / cos G / 2 b gL ( h1 / 2 h 2 / 3 ) / cos G / 2
T 3 1000 9 . 8 2 (1 / 2 1 . 73 / 3 ) / 0 . 5 9800 / 2
例 题
1、2、3点位于同一水平面上,其压强关系为 a.1>2>3 b.1=2=3 c.1<2<3
习题
例1:汽缸内壁的直径D=12cm,活塞的直径d=11.96cm,
活塞长度L=14cm,活塞往复运动的速度为1m/s,润滑油
的μ =0.1Pa· s。求作用在活塞上的粘性力。 解:
F A du dy
3
注意:面积、速度梯度的取法
例2:旋转圆筒粘度计,外筒固定,内筒转速n=10r/min。
内外筒间充入实验液体。内筒r1=1.93cm,外筒 r2=2cm, 内筒高h=7cm,转轴上扭距M=0.0045N· m。求该实验液体 的粘度。 解:
du dy
r1 0
r2 r1
n r1 r2
2)下游水位h3=h2/2,启门力T’=?
解:
p A gh 1
p B g ( h1 h 2 )
L AB h2 sin 2m
h1
A
h2
T
B
h3
1)TL cos b [ p A L L / 2 ( p B p A ) L / 2 L 2 / 3 ] G cos L / 2 T b [ p A L / 2 ( p B p A ) L / 3 ] / cos G / 2
流体力学课件第三章例题与习题
uz
ux z
2 2(2t 2x 2 y) 2(t y z) 0(t x z) t3 x2, y2,z1
ay
Du y Dt
u y t
ux
u y x
uy
u y y
uz
u y z
az
Du z Dt
uz t
ux
uz x
uy
uz y
uz
uz z
习题 3-8
u
x
u y
xy2 1
ln
y
C1
ln( x 2) ln( z 3) C2
经过空间点 (3,1,4)
流线方程为:
ln( x 2) 1 ln y
3
ln( x 2) ln( z 3)
CC12
0 0
x
1
y3
2
x z 1
例题:已知某平面流场速度分布为:
ux
t
x 3
uy y 2
求其流线方程和迹线方程。
ln( x t)( y t) C
t=0时过(-1,-1)
C0
xy 1
例题:已知某平面流场速度分布为:
ux x t uy y t
求在t=0时过(-1,-1)其流线方程和迹线方程。
解:
迹线方程:
dx dy dt
xt yt
dx xt
dt
dy
dt
y t
dx ddyt dt
t 3) t
ln
ln C1 C2
x 3
y C2eC1 2
x C1(t 3)
y
C2et
2
例题:已知某平面流场速度分布为:
ux x t uy y t
求在t=0时过(-1,-1)其流线方程和迹线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 流体及其主要物理性质例1:已知油品的相对密度为0.85,求其重度。
解:例2:当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。
解:例3:已知:A =1200cm 2,V =0.5m/sμ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F 绘制:平板间流体的流速分布图及应力分布图解:(前提条件:牛顿流体、层流运动)因为 τ1=τ2所以3/980085.085.0m N ⨯=⇒=γδ0=+=⇒=dV Vd dM V M ρρρρρd dV V -=Padp d dp V dV E p 84105.2105%02.01111⨯=⨯⨯==-==ρρβdy du μτ=⎪⎪⎩⎪⎪⎨⎧-=-=⇒2221110h u h u V μτμτsm h h Vh u h uh u V /23.02112212211=+=⇒=-μμμμμN h uV A F 6.411=-==μτ第二章 流体静力学例1:如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。
解:分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合等压面与x 轴方向之间的夹角例2:(1)装满液体容器在顶盖中心处开口的相对平衡 分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变:利用边界条件:r =0,z =0时,p =0作用于顶盖上的压强:(表压)(2)装满液体容器在顶盖边缘处开口的相对平衡压强分布规律:=+s gz ax g atg =θPaL tg H h p A A 177552=⎪⎭⎫ ⎝⎛⋅+==θγγPaL tg H h p B B 57602=⎪⎭⎫ ⎝⎛⋅-==θγγCz gr p +-⋅=)2(22ωγg r p 222ωγ=Cz gr p +-⋅=)2(22ωγ边缘A 、B 处:r =R ,z =0,p =0作用于顶盖上的压强:例3:已知:r 1,r 2,Δh 求:ω0 解:(1)(2)因为所以例4已知:一圆柱形容器,直径D =1.2m ,完全充满水,顶盖上在r 0=0.43m 处开一小孔,敞开测压管中的水位a =0.5m ,问此容器绕其立轴旋转的转速n 多大时,顶盖所受的静水总压力为零? 已知:D =1.2m ,r 0=0.43m ,a =0.5m 求:n解:据公式坐标如图,则 ,,代入上式积分: (*)由题意条件,在A 点处:r =r 0,z =0,p =γa 则 所以g R C 222ωγ-=()2222r R gp --=ωγ212120=-s z gr ω0222220=-s z g r ωhz z s s ∆==21212202r r h g -∆=ω)(Zdz Ydy Xdx dp ++=ρx X 2ω=y Y 2ω=g Z -=C z gr p +-⋅=)2(22ωγC gr a +-⋅=)02(202ωγγ)2(202gr a C ωγ-⋅=所以 当z =0时:它是一旋转抛物方程:盖板上静压强沿径向按半径的二次方增长。
而 所以即 则所以代入数据得:n =7.118转/秒例5:闸门宽1.2m ,铰在A 点,压力表G 的读数为-14700Pa ,在右侧箱中装有油,其重度γ0=8.33KN/m 3,问在B 点加多大的水平力才能使闸门AB 平衡? 解:把p 0折算成水柱高:相当于液面下移1.5m ,如图示虚构液面则左侧:压力中心距A 点:3.11-2=1.11m)2()2(20222gr a z gr p ωγωγ-⋅+-⋅=)2(220222gr a gr p ωγωγ-⋅+=02)2(22202220=⋅⎥⎥⎦⎤⎢⎢⎣⎡-⋅+=⋅==⎰⎰⎰rdr g r a g r rdr p pdA P RR Aπωγωγπ0)2(2202320=⎥⎥⎦⎤⎢⎢⎣⎡-+⎰dr r g r a g r Rωω02)2(420220242=⎥⎥⎦⎤⎢⎢⎣⎡-+Rr g r a r g ωω2202022224042Rr ga ga r R -=⇒=+-ωωω22024212Rr ga n -==ππωm p h 5.1980014700-=-==γ()()NA h P c 7056022.11298001=⨯⨯+⨯==γ()m A h J h h c c c D 11.311.0322.131222.11231=+=⨯⨯⨯++=+=右侧:设在B 点加水平力F 使闸门AB 平衡,对A 点取矩 ∑ M A =0 即例6:一示压水箱的横剖面如图所示,压力表的读数为0.14个大气压,圆柱体长 L =1.2m ,半径R =0.6m求:使圆柱体保持如图所示位置所需的各分力(圆柱体重量不计)。
解:水平分力:→垂直分力:↑KNA h P c o 992.192.122233.82=⨯⨯⨯==γm A h J h h c c c D 33.122.111222.1132=⨯⨯⨯+=+=ABF h P h P D D +=2211KNF 87.25233.1992.1911.156.70=⨯-⨯=NA h P x c x 2.119952.16.07.19800=⨯⨯⨯==γ()NV P z 8.1320133912.0008.1980046.02.12.16.04.198002=+⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯⨯==πγ压第三章 流体运动学与动力学基础例1:已知: 求:t =0 时,A (-1,1)点流线的方程。
解:积分:ln(x+t)=-ln(-y+t)+C → (x+t) (-y+t)=C` 当t =0时,x =-1,y =1,代入上式得: C`=1 所以,过A (-1,1)点流线的方程为:xy =-1例2、伯努利方程式的应用实例 例2-1 : 一般水力计算问题有一喷水装置如图示。
已知h 1=0.3m ,h 2=1.0m ,h 3=2.5m ,求喷水出口流速,及水流喷射高度h (不计水头损失)。
解:① 以3-3断面为基准面,列1-1、3-3两断面的能量方程:以2-2断面为基准面,列2-2、4-4两断面的能量方程:所以,②例2-2: 节流式流量计⎪⎩⎪⎨⎧=+-=+=0zy x u t y u t x u t y dyt x dx +-=+()320320000h h p p h h +=⇒++=+++γγ()g V h h p 200024120+++=++γ()()()[]()sm h h h h g h h g p gV /57.63.05.28.9222212321204=-⨯⨯=+-+=+-=γmg V h 20.2224==已知:U 形水银压差计连接于直角弯管, d 1=300mm ,d 2=100mm ,管中流量Q =100L/s 试问:压差计读数Δh 等于多少? (不计水头损失)解:以0-0断面为基准面,列1-1、2-2两断面的能量方程:又,由等压面a -a 得压强关系:则所以例2-3: 毕托管原理水从立管下端泄出,立管直径为d =50mm ,射流冲击一水平放置的半径R =150mm 的圆盘,若水层离开盘边的厚度δ=1mm 求:流量Q 及汞比压计的读数Δh 。
水头损失不计。
分析:1-1: p 1(=0), V 1(?), z 1(√)2-2: p 2(=0), V 2(?), z 2(√) 3-3: p 3( ?), V 3(=0), z 3(√)(驻点) 每点都有一个未知数,可对任何两点列方程。
解:以圆盘为基准面,列1-1、2-2两断面的能量方程:()2g V 2g V 0222211++∆+=++γγp h z p ()2g V V 212221-+∆+=-h z p p γs m A Q V /42.13.014.31.04211=⨯⨯==s m A Q V /74.121.014.31.04222=⨯⨯==hp z p Hg ∆-=-γγ21zh p p Hg γγ+∆=-21()6.1942.174.1222-+∆+=+∆h z z h Hg γγγmmm h Hg 649649.018.8==-=∆γγγ①列1-1、3点的能量方程:②据连续性方程:③③代入①式:(忽略δ/2)V 2=8.74m/s, V 1=4.196m/sV 1代入②式:所以:例2-4: 流动吸力图示为一抽水装置,利用喷射水流在吼道断面上造成的负压,可将M 容器中的积水抽出。
已知:H 、b 、h (不计损失),求:吼道有效断面面积A 1与喷嘴出口断面面积A 2之间应满足什么样的条件能使抽水装置开始工作?解:以1-1为基准面,列0-0、1-1断面的能量方程:以0`-0`为基准面,列1-1、2-2断面的能量方程:2gV 022g V 032221++=++δ002g V 03321++=++γp 212241V R V d Q ⋅=⋅=δππ2242222/4.766416s m d R g V =⎪⎪⎭⎫ ⎝⎛-=δm p 898.32g V 3213=+=γs L V A V A Q /23.82211=⋅=⋅=hp Hg ∆=⋅+γγ5.13mmm p h Hg 396396.098006.1398005.19800898.35.13==⨯⨯+⨯=⋅+=∆γγ2g V 211+=γp h ()2g V 2g V 22211=++-γp h H要使抽水机工作:则:又因为:所以:例3:水头线(局部损失不计)例4:已知:Q=0.001m3/s,D=0.01mH w吸=1m,h w排=25m求:H=?p B=?N泵=?解:取1-1、2-2断面列伯努利方程:取1-1、B断面列伯努利方程:bp≥-γ1()gHVbhgV2,221=+=2211VAVA⋅=⋅bhHVVAA+==1221OmHhzzHw21232)(=+-=WQHNPapsmVVAQhpBwB6.31332001.09800108.9/74.122gV7.042=⨯⨯==⨯-=∴=⇒=+++=γγ泵吸例5:动量方程已知:一个水平放置的90º弯管输送水 d 1=150mm ,d 2=75mm p 1=2.06×105Pa ,Q =0.02m 3/s 求:水流对弯管的作用力大小和方向(不计水头损失) 分析:1-1: p 1(√), V 1(可求), z 1(√) 2-2: p 2(?), V 2(可求), z 2(√)解:取1-1、2-2两断面列伯努利方程所以,对选取的控制体列动量方程: x 方向: y 方向: 所以,所以,水流对弯管壁的作用力为F 的反作用力F`,大小相等,方向相反。