流体力学经典例题及解析

合集下载

流体力学Chapter 32例题

流体力学Chapter 32例题

解(2),迹线方程可求得,
t x c e t 1 1 t y c e t 1 2
代入已知条件,可得c1=3/e, c2=4/e,则迹线方程为:
t 1 3 x e t 1 t 1 y 4 e t 1
(3),流线方程为:
上式表明:质点A的迹线是一条以(-1/2, -1)为顶点,且通 过原点的抛物线。如下图所示,
(2)流线方程为, dx dy t 1 1 积分上式可得,
x yc t 1
(b)
因为t=0时刻,流线通过原点x=y=0,可得上式积分常数 c=0,相应的流线方程为:
x y
(c)
上式表明:这是一条经过原点的,一三象限的角平分线, 且与质点A的迹线相切于原点。
dx dy xt yt
积分得,
x t c( y t )
由已知条件可得积分常数c=2/3,则流线方程为:
2 x 1 ( y 1) 3
例4:设速度场为u=t+1, v=1,t=0时刻时流体质点A位于 原点。求: (1)质点A的迹线方程; (2)t=0时刻过原点的流线方程; (3)t=1时刻质点A的运动方向。
(3)为确定t=1时刻质点A的运动方向,需求此时刻过质 点A所在位置的流线方程。由迹线的参数式方程(a)可确 定,t=1时刻质点A位于x=3/2, y=1位置,代入流线方程 (b), 3/ 2 1 c 11 可得:c=-1/4。则t=1时刻过流体质点A所在位置的流线方 程为: (d) x 2 y 1/ 2 上式是一条与流体质点A的迹线相切于(3/2, 1)点的斜直 线,运动方向为沿直线朝x,y增大方向。 小结:以上可见,非定常流动中迹线与流线不重合;不同 时刻通过某固定点的流线可以不同(参见b式)。

(完整版)流体力学习题解析

(完整版)流体力学习题解析

《流体力学》习题(二)2-1 质量为1000kg 的油液(S =0.9)在有势质量力k i F 113102598--=(N)的作用下处于平衡状态,试求油液内的压力分布规律。

2-2 容器中空气的绝对压力为p B =93.2kPa ,当地大气压力为p a =98.1kPa 试求玻璃管中水银柱上升高度h v 。

2-3 封闭容器中水面的绝对压力为p 1=105kPa ,当地大气压力为p a =98.1kPa ,A 点在水面下6m ,试求:(1)A 点的相对压力;(2)测压管中水面与容器中水面的高差。

题2-2图 题2-3图 2-4 已知水银压差计中的读数⊿h =20.3cm ,油柱高h =1.22m ,油的重度γ油=9.0kN/m 3,试求:(1)真空计中的读数p v ;(2)管中空气的相对压力p 0。

题2-4图 题2-5图 2-5 设已知测点A 到水银测压计左边水银面的高差为h 1=40cm ,左右水银面高差为h 2=25cm ,试求A 点的相对压力。

2-6 封闭容器的形状如图所示,若测压计中的汞柱读数△h =100mm ,求水面下深度H =2.5m 处的压力表读数。

题2-6图 题2-7图 2-7 封闭水箱的测压管及箱中水面高程分别为▽1=100cm 和▽4=80cm ,水银压差计右端高程为▽2=20cm ,问左端水银面高程▽3为多少?2-8 两高度差z =20cm 的水管,与一倒U 形管压差计相连,压差计内的水面高差h =10cm ,试求下列两种情况A 、B 两点的压力差:(1)γ1为空气;(2)γ1为重度9kN/m 3的油。

题2-8图题2-9图2-9 有一半封闭容器,左边三格为水,右边一格为油(比重为0.9)。

试求A、B、C、D四点的相对压力。

2-10 一小封闭容器放在大封闭容器中,后者充满压缩空气。

测压表A、B的读数分别为8.28kPa和13.80kPa,已知当地大气压为100kPa,试求小容器内的绝对压力。

[工学]流体力学例题

[工学]流体力学例题

2
【例2-2】 如图2-17所示为双杯双液微压计,杯内和 U形管内分别装有密度ρ1=lOOOkg/m3和密度ρ2 =13600kg/m3的两种不同液体,大截面杯的直径D= 100mm,U形管的直径d=10mm,测得h=30mm,计算两 杯内的压强差为多少?
【解】 列1—2截面上的等压面方程
p1 1gh1 p2 1g(h2 h1 h) 2 gh
【例2-1】 如图2-16所示测量装置,活塞直径d=35㎜, 油的相对密度d油=0.92 ,水银的相对密度dHg=13.6,活塞 与缸壁无泄漏和摩擦。当活塞重为15N时,h=700㎜,试 计算U形管测压计的液面高差Δh值。
【解】 重物使活塞单位面积上承受的压强为
p
15 d2


15 0.0352
tg1 Fz左 tg1 692
18
图2-26
2020/3/2
19
【例3-1】 有一贮水装置如图3-22所示,贮水池足够 大,当阀门关闭时,压强计读数为2.8个大气压强。而当 将阀门全开,水从管中流出时,压强计读数是0.6个大气 压强,试求当水管直径d=12cm时,通过出口的体积流量 (不计流动损失)。
-ρ1g h1=9.806×1000×(0.5-0.3) +133400×0.3-7850×0.2 +133400×0.25-9.806×1000×0.6
=67876(Pa)
2020/3/2
6
图2-18
2020/3/2
7
【例2-4】 已知密闭水箱中的液面高度h4=60mm,测 压管中的液面高度h1=100cm,U形管中右端工作介质高 度,如图2-19所示。试求U形管中左端工作介质高度h3为 多少?

流体力学计算题及问题详解

流体力学计算题及问题详解

第二章例1:用复式水银压差计测量密封容器内水面的相对压强,如下列图。

:水面高程z 0=3m,压差计各水银面的高程分别为z 1=, z 2=, z 3=m, z 4=m, 水银密度 3/13600m kg ρ=',水的密度3/1000m kg ρ= 。

试求水面的相对压强p 0。

解:ap z z γz z γz z γp =-----+)(')(')(3412100)()('1034120z z γz z z z γp ---+-=∴例2:用如下列图的倾斜微压计测量两条同高程水管的压差。

该微压计是一个水平倾角为θ的Π形管。

测压计两侧斜液柱读数的差值为L=30mm ,倾角θ=30∘,试求压强差p 1 – p 2 。

解: 224131)()(p z z γz z γp =-+-- θL γz z γp p sin )(4321=-=-∴例3:用复式压差计测量两条气体管道的压差〔如下列图〕。

两个U 形管的工作液体为水银,密度为ρ2 ,其连接收充以酒精,密度为ρ1 。

如果水银面的高度读数为z 1 、 z 2 、 z 3、z 4 ,试求压强差p A – p B 。

解: 点1 的压强 :p A )(21222z z γp p A --=的压强:点)()(33211223z z γz z γp p A -+--=的压强:点 B A p z z γz z γz z γp p =---+--=)()()(3423211224 )()(32134122z z γz z z z γp p B A ---+-=-∴例4:用离心铸造机铸造车轮。

求A-A 面上的液体总压力。

解: C gz r p +⎪⎭⎫ ⎝⎛-=2221ωρ a p gz r p +⎪⎭⎫ ⎝⎛-=∴2221ωρ在界面A-A 上:Z = - ha p gh r p +⎪⎭⎫⎝⎛+=∴2221ωρ⎪⎭⎫⎝⎛+=-=∴⎰2420218122)(ghR R rdr p p F a Rωπρπ例5:在一直径d= 300mm ,而高度H=500mm 的园柱形容器中注水至高度h 1 = 300mm ,使容器绕垂直轴作等角速度旋转。

流体力学例题讲解

流体力学例题讲解

第1章 流体运动基本方程
1.8 运动方程
【例题】如图,水在双喷嘴中流动,试求水对喷嘴作用的合力大小及方向。两个
喷嘴的射流速度都是12m/s,导管轴线以及两个喷嘴的轴线都在一个水平面
内, d1 0.15m d2 0.10m d3 0.0,75不m计摩擦 1。000kg / m3
解:由连续方程得 A1V1 A2V2 A3V3
26.2
0.12m3
/
s
V2
Q A2
0.12 0.1002
15.29m / s
4
在2、3面间应用伯努利方程
p2
15.29 2
26 .2 2
3
06
1018 9.81 2 9.81
2 9.81
1.8 运动方程
p2 260 kPa
Fx p2 A2 p3 A3 cos200 Fx Q(V3 cos200 V2 )
g
p1 37.3kPa
p1 A1 0.659 kN
第1章 流体运动基本方程
Fx p1 A1 0 Fx Q2V2x Q3V3x Q1V1x
1.8 运动方程
V2x 12 cos150 11.59m / s V3x 12 cos 300 10.39m / s V1x 8.33m / s
1 (
2 x
u ) y
1 [ c(x2 y2 ) 2 (x2 y2)2
c(x2 y2 ) ] 0 (x2 y2)2
表明除在坐标原点,x、y=0, 未确z 定之外,其余流动的
旋转角速度均为零。
★ 流体微团是否作旋转运动?
第1章 流体运动基本方程
1.6 流体本构方程
【例题】已知粘性流动的速度场为 V 5x 2 yzi 3xy 2 zj 8xyz 2k

流体力学题及问题详解

流体力学题及问题详解

C (c) 盛有不同种类溶液的连通器DC D水油BB (b) 连通器被隔断AA(a) 连通容器1. 等压面是水平面的条件是什么?2. 图中三种不同情况,试问:A-A 、B-B 、C-C 、D-D 中哪个是等压面?哪个不是等压面?为什么?3 已知某点绝对压强为80kN/m 2,当地大气压强p a =98kN/m 2。

试将该点绝对压强、相对压强和真空压强用水柱及水银柱表示。

4. 一封闭水箱自由表面上气体压强p 0=25kN/m 2,h 1=5m ,h 2=2m 。

求A 、B 两点的静水压强。

速?答:与流线正交的断面叫过流断面。

过流断面上点流速的平均值为断面平均流速。

引入断面平均流速的概念是为了在工程应用中简化计算。

8.如图所示,水流通过由两段等截面及一段变截面组成的管道,试问:(1)当阀门开度一定,上游水位保持不变,各段管中,是恒定流还是非恒定流?是均匀流还是非均匀流?(2)当阀门开度一定,上游水位随时间下降,这时管中是恒定流还是非恒定流?(3)恒定流情况下,当判别第II 段管中是渐变流还是急变流时,与该段管长有无关系?9 水流从水箱经管径分别为cmd cm d cm d 5.2,5,10321===的管道流出,出口流速sm V /13=,如图所示。

求流量及其它管道的断面平均流速。

解:应用连续性方程(1)流量:==33A v Q 4.91s l /103-⨯(2) 断面平均流速s m v /0625.01=,s m v /25.02= 。

10如图铅直放置的有压管道,已知d 1=200mm ,d 2=100mm ,断面1-1处的流速v 1=1m/s 。

求(1)输水流量Q ;(2)断面2-2处的平均流速v 2;(3)若此管水平放置,输水流量Q 及断面2-2处的速度v 2是否发生变化?(4)图a 中若水自下而上流动,Q 及v 2是否会发生变化?解:应用连续性方程 (1)4.31=Q s l / (2)s m v /42= (3)不变。

流体力学例题汇总

流体力学例题汇总

答案:D
例9. 某液体的容重为γ,在液体内部B点较A点低 1m,其B点的压强比A点的压强大_____Pa. A.γ; B.9800; C.10000; D.不能确定
答案:A
例10.仅在重力作用下,静止液体中任意点对 同一基准面的______为一常数。 A.单位位能;B.单位势能; C.单位压能;D.单位动能
整理后得A,B两点的压强差
9806 0.5 0.3 133400 0.3 7850 0.2 133400 0pB 1 g h5 h4 3 gh4 2 gh3 3 gh2 1 gh1

对于底盖,由于在水平方向上压强分布对称,所以流体静压强作 用在底盖上的总压力的水平分力为零。底盖上总压力的垂直分力
d 2 h d 3 Fpz1 gVp1 g H 4 2 12 0.52 0.53 9806 2.5 0.75 6579N 4 12
例2 5如图所示,两圆筒用管 子连接。第一个圆筒直 径d1 45cm,活塞上受力 F1 3197N,密封 气体的计示压强 pe 9810Pa;第二个圆筒 d 2 30cm,活塞上受力 F2 4945.5 N,上部通大气。若 不计活塞质量,求平衡 状态时两活塞的高度差 h。(已知水银的密度 13600kg m 3 )
答案:C
下一页
例6. 仅在重力作用下,静止液体的测压管水 头线必定________. A 水平 B 线形降低 C 线形升高 D 呈曲线
答案:A
例7. 某点压强为1.0kgf/cm^2,用国际单位表示 该处的压强为______kPa。 A.100; B.98; C.1000; D.980
答案:B

《流体力学》典型例题

《流体力学》典型例题

《例题力学》典型例题例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。

已知平板与斜面之间的油层厚度δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。

求油的动力粘性系数。

解:由牛顿内摩擦定律,平板所受的剪切应力du Udy τμμδ== 又因等速运动,惯性力为零。

根据牛顿第二定律:0m ==∑F a ,即:gsin 0m S θτ-⋅=()324gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--⋅⨯⨯⨯⨯==≈⋅⋅⨯⨯⨯ 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=⋅的油,若轴的转速200rpm n =。

求克服油的粘性阻力所消耗的功率。

解:由牛顿内摩擦定律,轴与轴承之间的剪切应力()60d d n d uy πτμμδ==粘性阻力(摩擦力):F S dl ττπ=⋅= 克服油的粘性阻力所消耗的功率:()()3223223230230603.140.360.732001600.231050938.83(W)d d n d n n lP M F dl πππμωτπδ-==⋅⋅=⨯⨯=⨯⨯⨯=⨯⨯=例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。

解:根据牛顿黏性定律 d d 2d r r F A r r ωωμμπδδ== 2d d 2d r T F r r r ωμπδ=⋅=42420d d 232dd d T T r r πμωπμωδδ===⎰432d Tπμωδ=例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。

流体力学例题(动力学部分)

流体力学例题(动力学部分)
4 4 3
1000

q
49 7 m / s
d 2
4
v2
0 .12
4
7 55 10
3
m /s
3
2
6.一个100N的重物恰被一垂直水射 流所支承,其中d=6cm,出口速度 v=8m/s,不计沿程损失,求Y=? 解:水流接触重物后动量发生了变化
Fiy q ( 2 v y 2 1 v y 1 )
Fiy 100 N q v y2
d 2
4 0
v
0 . 06 2
z1 z 2 z
v2 q2
v1
q1


由伯努利方程: v1 v 2 v

v1 q1
令: 1 由动量方程:
v
A


F i 0 q1v q 2 v qv cos
q1 q 2 q cos v 2 q2 由连续性方程:q1 q 2 q
2 gH v
令: 2 1 1
带入动量方程: F q ( 2 v z 2 1v z1 )
F av ( v a A 2 gH v )
2
水流对水桶的作用为-F
W W 0 F W 0 av ( v a A 2 gH v )
4
8 0 . 0226 m / s
3
令: 2 1 1
则:
v y1
F
q

100 1000 0 . 0226
4 . 42 m / s
由出口和重物底面的伯努利方程:
z1 p
g

v1

流体力学例题及解答(一)

流体力学例题及解答(一)
确定管道中流体的流量 =50000kg/h,ρ=960kg/s, 【例1】精馏塔进料量为 Wh=50000kg/h,ρ=960kg/s, 其它性质与水接近。试选择适宜管径。 其它性质与水接近。试选择适宜管径。 解题思路:初选流速→计算管径 查取规格→核算 计算管径→查取规格 解题思路:初选流速 计算管径 查取规格 核算 流速。 流速。 解:
选流速u=1.8m/s (0.5-3.0m/s),计算管径,即 (0.5-3.0m/s) 计算管径, 计算管径
确定管道中流体的流量 =50000kg/h,ρ=960kg/s, 【例1】精馏塔进料量为 Wh=50000kg/h,ρ=960kg/s, 其它性质与水接近。试选择适宜管径。 其它性质与水接近。试选择适宜管径。 选取φ108×4mm的无缝钢管(d=0.1m)。 × 的无缝钢管( 选取 的无缝钢管 )。 核算流速: 核算流速:
20℃的空气在直径为80mm的水平管流过 的空气在直径为80mm的水平管流过。 【例2】20℃的空气在直径为80mm的水平管流过。现于 管路中接一文丘里管,如本题附图所示。 管路中接一文丘里管,如本题附图所示。文丘里管的 上游接一水银U管压差计,在直径为20mm的喉颈处接一 上游接一水银U管压差计,在直径为20mm的喉颈处接一 20mm 细管,基下部插入水槽中。 细管,基下部插入水槽中。空气流过文丘里管的能量 损失可忽略不计。 管压差计读数R=25mm h=0.5m时 R=25mm、 损失可忽略不计。当U管压差计读数R=25mm、h=0.5m时, 试求此时空气的流量为若干m /h。 试求此时空气的流量为若干m3/h。当大气压强为 101.33× Pa。 101.33×103Pa。 该题有两项简化, 解:该题有两项简化,即 (1)当理想流体处理,Σhw=0 )当理想流体处理, (2)可压缩流体当不可压缩流体对 ) 取平均密度ρ 待,取平均密度 m。

流体力学答案解析

流体力学答案解析

流体力学答案解析题目:一不可压缩流体在水平管道内作稳定流动,管道截面由圆形逐渐扩大为方形,入口直径为d,出口边长为a。

已知入口流速为v1,入口处的压力为p1,求出口处的流速v2和压力p2。

解析:首先,根据连续性方程,流体在管道内的流速和截面积之间存在以下关系:A1v1 = A2v2其中,A1和A2分别为入口和出口的截面积。

由于管道截面由圆形变为方形,我们可以分别计算两个截面的面积。

入口截面积A1 = π(d/2)^2出口截面积 A2 = a^2将上述面积代入连续性方程,得到:π(d/2)^2 v1 = a^2 v2解得:v2 = (π(d/2)^2 v1) / a^2接下来,我们应用伯努利方程,该方程描述了流体在流动过程中速度、压力和高度之间的关系。

在水平管道中,高度不变,因此伯努利方程简化为:p1/ρ + v1^2/2 = p2/ρ + v2^2/2其中,ρ为流体的密度。

将v2的表达式代入伯努利方程,得到:p1/ρ + v1^2/2 = p2/ρ + (π(d/2)^2 v1)^2 /(2a^2ρ)化简得到:p2 = p1 + ρ(v1^2 - v2^2)/2将v2的表达式代入上式,得到:p2 = p1 + ρ(v1^2 - (π(d/2)^2 v1)^2 /(2a^2ρ))/2化简得到:p2 = p1 + (ρ/2)(v1^2 - (π(d/2)^4 v1^2) / (2a^2))进一步化简得到:p2 = p1 + (ρ/2)(v1^2(1 - (π(d/2)^4) / (2a^2)))至此,我们已经求得了出口处的流速v2和压力p2。

以下是对解题过程的详细解析:1. 连续性方程的应用:连续性方程是流体力学中的一个基本原理,描述了流体在流动过程中质量守恒的关系。

在本题中,由于流体是不可压缩的,因此在流动过程中质量守恒。

根据连续性方程,我们可以求出出口处的流速v2。

2. 伯努利方程的应用:伯努利方程是流体力学中的一个重要方程,描述了流体在流动过程中速度、压力和高度之间的关系。

流体力学考试试题(附答案)剖析

流体力学考试试题(附答案)剖析

可编辑修改精选全文完整版流体力学考试试题(附答案)1、如图所示,有一直径=d 12cm 的圆柱体,其质量=m 5kg ,在力=F 100N 的作用下,当淹深=h 0.5m 时,处于静止状态,求测压管中水柱的高度H 。

解: 圆柱体底面上各点所受的表压力为:3.131844/12.014.3806.951004/22=⨯⨯+=+=d mg F p g π(Pa )由测压管可得:)(h H g p g +=ρ则:84.05.0806.910003.13184=-⨯=-=h gp H gρ(m )2、为测定90º弯头的局部阻力系数,在A 、B 两断面接测压管,流体由A 流至B 。

已知管径d =50 mm ,AB 段长度L AB = 0.8 m ,流量q = 15 m 3/h ,沿程阻力系数λ=0.0285,两测压管中的水柱高度差Δh = 20 mm ,已知水银的密度为13600kg/m 3,求弯头的局部阻力系数ξ。

解:)/(12.2405.0360015422s m d q v v v v B A =⨯⨯====ππ 对A 、B 列伯努利方程:f BB B A A A h gv z g P g v z g P +++=++2222水水ρρ 2211z gPz g P z g Pz g P B B A A +=++=+水水水水ρρρρf BA h gv z g P g v z g P +++=++∴22222211水水ρρ vv v B A == 又64.005.08.00285.0)1100013600(12.202.08.92)(2)2(222)(22222221212211=--⨯⨯⨯=-∆-∆=-=∴+=+=∆-∆=-+-=+-+=∴d l h h v g g v d l h v g gv g v d l h h h h gh g z z g P P z gP z gP h f f f λρρλξξλρρρρρξλ水汞水汞水水水又3、一变直径管段AB ,内径d A =0.2m ,d B =0.4m ,高度差Δh =1m ,压强表指示p A =40kPa ,p B =70kPa ,已知管中通过的流量q v =0.2m 3/s ,水的密度ρ=1000kg/m 3,试判断管中水流的方向。

流体力学例题与解答

流体力学例题与解答

0.6 pa V22 H 00 0 g 2g
当阀门关闭时,根据压强计的读数,应用流体静力学基本
12
方程求出H值
2.8 pa 2.8 98060 28(mH2 O) 代入到上式 H g 9806
0.6 p a 0.6 98060 V2 2 g H 2 9 . 806 2 . 8 20.78 (m/s) g 9806
18
(3)将流段AB作为隔离体取出,规定 坐标正方向,假定弯管 反力 Rx 和 R y 的方向,写 x 和 y 两个坐标方向的动量方 程: Fx Q(VBx VAx ) Fy Q(VBy VAy ) 代入题中的外力和流速 ,注意力和流速的正负 性
2 2 p A d A pB d B cos Rx Q(VB cos VA ) 4 4 2 pB d B sin R y Q(VB sin 0) 4 代入已知数据可求得 Rx 0.538 KN , R y 0.598 KN
2
p
5
p4 (5 4 )
【例】 如图所示测量装置,活塞直径d=35㎜,油的相 对密度d油=0.92 ,水银的相对密度dHg=13.6,活塞与缸壁无 泄漏和摩擦。当活塞重为15N时,h=700㎜,试计算U形管 测压计的液面高差Δh值。 【解】 重力使活塞单位面积上承受的压强为


Fz1 gV1
1 98001 4 2 2 4 61500 N
9
合力
2 F1 Fx2 F 1 z1
78400 2 61500 2
99640 N
作用线通过中心与铅垂线成角度 1 。 右部:

流体力学经典习题解答以及经典试卷及详细解答

流体力学经典习题解答以及经典试卷及详细解答

第1章 绪论若某种牌号的汽油的重度γ为7000N/m 3,求它的密度ρ。

解:由g γρ=得,3327000N/m 714.29kg/m 9.8m /m γρ===g已知水的密度ρ=997.0kg/m 3,运动黏度ν=×10-6m 2/s ,求它的动力黏度μ。

解:ρμ=v 得,3624997.0kg/m 0.89310m /s 8.910Pa s μρν--==⨯⨯=⨯⋅ 一块可动平板与另一块不动平板同时浸在某种液体中,它们之间的距离为0.5mm ,可动板若以 0.25m/s 的速度移动,为了维持这个速度需要单位面积上的作用力为2N/m 2,求这两块平板间流体的动力黏度μ。

解:假设板间流体中的速度分布是线性的,则板间流体的速度梯度可计算为13du u 0.25500s dy y 0.510--===⨯ 由牛顿切应力定律d d uyτμ=,可得两块平板间流体的动力黏度为 3d 410Pa s d yuτμ-==⨯⋅上下两个平行的圆盘,直径均为d ,间隙厚度为δ,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以角速度ω旋转,求所需力矩T 的表达式。

题图解:圆盘不同半径处线速度 不同,速度梯度不同,摩擦力也不同,但在微小面积上可视为常量。

在半径r 处,取增量dr ,微面积 ,则微面积dA 上的摩擦力dF 为du r dF dA2r dr dz ωμπμδ== 由dF 可求dA 上的摩擦矩dT32dT rdF r dr πμωδ==积分上式则有d 43202d T dT r dr 32πμωπμωδδ===⎰⎰如下图所示,水流在平板上运动,靠近板壁附近的流速呈抛物线形分布,E 点为抛物线端点,E 点处0d =y u ,水的运动黏度ν=×10-6m 2/s ,试求y =0,2,4cm 处的切应力。

(提示:先设流速分布C By Ay u ++=2,利用给定的条件确定待定常数A 、B 、C )题图解:以D 点为原点建立坐标系,设流速分布C By Ay u ++=2,由已知条件得C=0,A=-625,B=50则2u 625y 50y =-+ 由切应力公式du dy τμ=得du(1250y 50)dyτμρν==-+ y=0cm 时,221510N /m τ-=⨯;y=2cm 时,222 2.510N /m τ-=⨯;y=4cm 时,30τ= 某流体在圆筒形容器中。

流体力学流体动力学基础例题

流体力学流体动力学基础例题

5
2024/10/12
6
【例】 有一贮水装置如图所示,贮水池足够大,当阀 门关闭时,压强计读数为2.8个大气压强。而当将阀门全 开,水从管中流出时,压强计读数是0.6个大气压强,试 求当水管直径d=12cm时,通过出口的体积流量(不计流动 损失)。
【解】 当阀门全开时列1-l、2-2截面的伯努利方程
当阀门关闭时,根据压强计的读数,应用流体静力学基本
试求管中流量qv。
【解】 首先计算1-1断面管路中心的压强。因为A-B为
等压面,列等压面方程得: Hg gh p1 gh1
p1 Hg gh gh1

p1
g
Hg
h h1
13.6 0.2 0.72 2
(mH2O)
列1-1和2-2断面的伯努利方程
z1
p1
g
V12 2g
z2
p2
g
V22 2g
H pa 0 0 pa 0.6 pa V22
g
g
2g
2024/10/12
1
方程求出H值
pa gH pa 2.8 pa则H 2.8 pa
g
2.8 98060 9806
28(mH 2O)
代入到上式
V2
2g
H
0.6 pa g
29.8062.8 0.698060 20.78(m/s)
9806
所以管内流量
qV
4
d
2V2
0.785 0.122 20.78 0.235(m3/s)
2024/10/12
2
2024/10/12
3
【例】 水流通过如图所示管路流入大气,已知:U形
测压管中水银柱高差Δh=0.2m,h1=0.72m H2O,管径

流体力学例题大全

流体力学例题大全

第一章:绪论例1-1 200 ºC体积为的2.5m3水,当温度升至800ºC时,其体积增加多少?解: 200 ºC时:ρ1=998.23kg/m3 800CºC时:ρ2=971.83kg/m3即:则:例1-2使水的体积减小0.1%及1%时,应增大压强各为多少?(K=2000MPa)d V/V =-0.1%=-2000×106×(-0.1%)=2×106Pa=2.0MPad V /V = -1%= -2000×106×(-1%)=20 MPa例1-3输水管l=200m,直径d=400mm,作水压试验。

使管中压强达到55at后停止加压,经历1小时,管中压强降到50at。

如不计管道变形,问在上述情况下,经管道漏缝流出的水量平均每秒是多少?水的体积压缩率κ =4.83×10-10m2 /N 。

解水经管道漏缝泄出后,管中压强下降,于是水体膨胀,其膨胀的水体积水体膨胀量5.95 l 即为经管道漏缝流出的水量,这是在1小时内流出的。

设经管道漏缝平均每秒流出的水体积以Q 表示,则例1-4:试绘制平板间液体的流速分布图与切应力分布图。

设平板间的液体流动为层流,且流速按直线分布,如图1-3所示。

解:设液层分界面上的流速为u,则:切应力分布:图1-3上层下层:在液层分界面上:--流速分布:上层:下层:例1-5:一底面积为40 ×45cm2,高为1cm的木块,质量为5kg,沿着涂有润滑油的斜面向下作等速运动,如图1-4所示,已知木块运动速度u =1m/s,油层厚度d =1mm,由木块所带动的油层的运动速度呈直线分布,求油的粘度。

解:∵等速∴αs =0由牛顿定律:∑F s=mαs=0m gsinθ-τ·A=0(呈直线分布)图1-4∵ θ=tan-1(5/12)=22.62°例1-6: 直径10cm的圆盘,由轴带动在一平台上旋转,圆盘与平台间充有厚度δ=1.5mm的油膜相隔,当圆盘以n =50r/min旋转时,测得扭矩M =2.94×10-4 N·m。

流体力学习题解析

流体力学习题解析

第六章 粘性流体绕物体的流动6-1 已知粘性流体的速度场为k xz j xyz i y x u 22835-+=(m/s)。

流体的动力粘度μ=0.144Pa·s ,在点(2,4,-6)处σyy =-100N/m 2,试求该点处其它的法向应力和切向应力。

已知:y x u 2x 5=,z y x u 3y =,2z 8z x u -=,μ=0.144Pa·s ,σyy =-100N/m 2。

解析:在点(2,4,-6)处,有8010x==∂∂xy x u ,363y -==∂∂z x yu ,19216z =-=∂∂z x z u ;2052x ==∂∂x y u ,0x =∂∂z u,723y -==∂∂z y x u ,243y ==∂∂y x zu ,28882z -=-=∂∂z x u , 0z =∂∂y u ;1zy x s 2361923680iv d -=+-=∂∂+∂∂+∂∂=zu y u x u u 由div 322yyy μμσ-∂∂+-=y u p ,可得 Pa 976.66100236144.032)36(144.02div 322yy y=+⨯⨯--⨯⨯=--∂∂=σμμy u p ,则 Pa 592.66236144.03280144.02976.66div 322x xx -=⨯⨯-⨯⨯+-=-∂∂+-=u x u p μμσ Pa 336.34236144.032192144.02976.66div 322z zz -=⨯⨯-⨯⨯+-=-∂∂+-=u z u p μμσ Pa 488.7)2072(144.0)(xy yx xy -=+-⨯=∂∂+∂∂==yu xu μττ Pa 456.3)240(144.0)(yz zyyz =+⨯=∂∂+∂∂==zu y u μττPa 472.41)2880(144.0)(zx xz zx -=-⨯=∂∂+∂∂==xu z u μττ 6-2 两种流体在压力梯度为k xp-=d d 的情形下在两固定的平行平板间作稳定层流流动,试导出其速度分布式。

流体力学典型例题

流体力学典型例题

典 型 例 题 1 基本概念及方程【1-1】底面积A =0.2m ×0.2m 的水容器,水面上有一块无重密封盖板,板上面放置一个重量为G 1=3000N 的铁块,测得水深h =0.5m ,如图所示。

如果将铁块加重为G 2=8000N ,试求盖板下降的高度Δh 。

【解】:利用体积弹性系数计算体积压缩率:E p v v //∆=∆ )/(00B p p np E +=p 为绝对压强。

当地大气压未知,用标准大气压Pa p 501001325.1⨯=代替。

Pa A G p p 51011076325.1/⨯=+=Pa A G p p 52021001325.3/⨯=+=因 01/p p 和 02/p p 不是很大,可选用其中任何一个,例如,选用02/p p 来计算体积弹性系数:Pa B p p np E 9020101299.2)/(⨯=+=在工程实际中,当压强不太高时,可取 Pa E 9101.2⨯=512104827.6/)(///-⨯=-=∆=∆=∆E p p E p v v h hm h h 55102413.310604827--⨯=⨯=∆【2-2】用如图所示的气压式液面计测量封闭油箱中液面高程h 。

打开阀门1,调整压缩空气的压强,使气泡开始在油箱中逸出,记下U 形水银压差计的读数Δh 1=150mm ,然后关闭阀门1,打开阀门2,同样操作,测得Δh 2=210mm 。

已知a =1m ,求深度h 及油的密度ρ。

【解】水银密度记为ρ1。

打开阀门1时,设压缩空气压强为p 1,考虑水银压差计两边液面的压差,以及油箱液面和排气口的压差,有同样,打开阀门2时,两式相减并化简得代入已知数据,得所以有2 基本概念及参数【1-3】测压管用玻璃管制成。

水的表面张力系数σ=0.0728N/m ,接触角θ=8º,如果要求毛细水柱高度不超过5mm ,玻璃管的内径应为多少? 【解】由于因此【1-4】高速水流的压强很低,水容易汽化成气泡,对水工建筑物产生气蚀。

流体力学例题

流体力学例题
h4=300mm,h5=500mm,ρ1=1000㎏/m3,ρ2=800㎏ /m3,ρ3=13598㎏/m3,试拟定A和B两点旳压强差。
【解】 根据等压面条件,图中1—1,2—2,3—3均为等压 面。可应用流体静力学基本方程式逐渐推算。
P1=p2+ρ1gh1
p2=p1-ρ3gh2
p3=p2+ρ2gh3
则 Rx qV (v2 v1 cos ) P2 P1 cos 0.1 (3.18 1.42 cos 60 ) 5.40 12.43cos 60 0.56(8 kN)
沿y轴方向 P1 sin R y qV (0 v1 sin )
R y P1 sin qV v1 sin
2g H
0.6 pa
g
2 9.806 2.8 0.6 98060 20.78
9806 (m/s)
所以管内流量
qV
4
d
2V2
0.785 0.122 20.78 0.235
m3/s)
【例3-8】 水流经过如下图所示管路流入大气,已知:
U形测压管中水银柱高差Δh=0.2m,h1=0.72m H2O,管 径d1=0.1m,管嘴出口直径d2=0.05m,不计管中水头损失, 试求管中流量qv。
12.43sin 60 0.11.42 sin 60 10.88(kN)
管壁对水旳反作用力
图 3-22
【解】 当阀门全开时列1-l、2-2截面旳伯努利方程
H pa 0 0 pa 0.6 pa V22
g
g
2g
当阀门关闭,据压强计旳读数,用流体静力学基本方程求出H值
pa gH pa 2.8 pa
H
2.8 pa
g
2.8 98060 9806
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档