高考物理知识归纳磁场电磁感应和交流电

合集下载

高中物理知识点总结:磁场 电磁感应

高中物理知识点总结:磁场 电磁感应

磁场1.磁场:磁场是存在于磁体、电流周围的一种物质(1)磁场的基本特点:磁场对处于其中的磁体、电流有力的作用.(2)磁场方向的三种判断方法:a.小磁针N极受力的方向。

b.小磁针静止时N极的指向。

c.磁感线的切线方向.2.磁感线(1)在磁场中人为地画出一系列曲线,磁感线上某一点的切线方向也表示该点的磁场方向。

曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交,不相切。

(3)几种典型磁场的磁感线的分布: 右手螺旋定则判定通电直导线、环形电流、通电螺线管周围的磁场分布①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L 的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A·m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。

(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。

(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。

4.磁场力:F=BILsinθ(θ为B与I的夹角),只要求B∥I,B⊥I两种情况;注意:只有电流和磁场之间有一定夹角时,磁场力才不为0。

高考物理电磁感应知识点归纳

高考物理电磁感应知识点归纳

高考物理电磁感应知识点归纳高考物理电磁感应知识点归纳1.电磁感应现象电磁现象:利用磁场产生电流的现象称为电磁感应,产生的电流称为感应电流。

(1)产生感应电流的条件:通过闭合电路的磁通量发生变化,即0。

(2)产生感应电动势的条件:无论回路是否闭合,只要通过线圈平面的磁通量发生变化,线路中就会产生感应电动势。

导体中产生感应电动势的部分相当于电源。

(3)电磁感应的本质是产生感应电动势。

如果回路闭合,会有感应电流;如果回路不闭合,只会有感应电动势而没有感应电流。

2.磁通量(1)定义:磁感应强度b与垂直于磁场方向的面积s的乘积称为通过这个表面的磁通量,定义公式为=BS。

如果面积S不垂直于B,则B应乘以垂直于磁场方向的投影面积S,即=BS,SI单位:Wb。

在计算磁通量时,应该是通过某一区域的磁感应线的净数量。

每张脸都有正面和背面;当磁感应线从表面的正方向穿透时,通过表面的磁通量为正。

相反,磁通量是负的。

磁通量是穿过正面和背面的磁感应线的代数和。

3.楞次定律(1)楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于感应电流方向的一般判断,而右手定则只适用于剪线时磁感应线的运动,用右手定则比楞次定律更容易判断。

(2)理解楞次定律(1)谁阻碍谁——感应电流的磁通量阻碍了感应电流的磁通量。

阻碍——阻碍的是通过回路的磁通量的变化,而不是磁通量本身。

如何阻碍——当一次磁通增加时,感应电流的磁场方向与一次磁场方向相反;当一次磁通量减少时,感应电流的磁场方向与一次磁场的方向相同,即,一次磁通量增加,一次磁通量减少。

阻塞-阻塞的结果不是停止,而是增加和减少。

(3)楞次定律的另一种表述:感应电流总是阻碍其产生的原因,表现形式有三种:(1)阻碍原始磁通量的变化;阻碍物体之间的相对运动;阻止一次电流(自感)的变化。

4.法拉第电磁感应定律电路中感应电动势的大小与通过电路的磁通量的变化率成正比。

表达式E=n/t当导体切割磁感应线时,感应电动势公式为E=BLvsin。

高中物理:磁场 电磁感应知识点总结

高中物理:磁场 电磁感应知识点总结

高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。

2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。

3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。

此外,磁场还可以产生电能,为机器提供动力。

二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。

2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。

3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。

2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。

1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。

高三物理第十章知识点归纳

高三物理第十章知识点归纳

高三物理第十章知识点归纳高三物理第十章主要讲解了电磁感应和电动机的相关知识。

在这一章中,我们将学习到电磁感应的原理、法拉第电磁感应定律以及电动机的工作原理等内容。

下面就让我们来归纳总结一下这些重要的知识点。

首先,我们来讨论电磁感应的原理。

电磁感应是指通过磁场和电场之间的相互作用产生电流的现象。

根据法拉第电磁感应定律,当磁场的磁通量发生变化时,导线中会产生感应电动势。

而磁通量的变化可以通过改变磁场的强度、导线的长度或速度来实现。

接着,我们来详细讨论一下法拉第电磁感应定律。

根据法拉第电磁感应定律,感应电动势的大小和磁通量的变化率成正比。

其中,感应电动势的方向由洛伦兹力决定,即当导线内的电流方向与磁场中的磁力方向相反时,电动势的方向为正,否则为负。

在实际应用中,我们经常使用电磁感应来实现无线电、发电、变压器等设备的运行。

例如,在发电厂中,通过旋转发电机的励磁线圈,产生的磁通量变化就能够激发出感应电动势,从而实现电能的转化。

此外,我们还要了解电动机的工作原理。

电动机是利用电磁感应产生的感应电动势来驱动电流,从而实现机械能的转化。

电动机的核心部分是由导体线圈组成的转子和磁场所构成的定子。

当通过定子施加电流时,电流会形成磁场,与转子的磁场相互作用产生力矩,使转子开始转动。

除了以上的知识点外,在高三物理第十章还有一些与电磁感应相关的实验和应用。

例如,我们可以通过安培环实验来观察和研究磁场的分布情况;利用电磁感应原理,我们可以制作简单的发电机和变压器。

总结起来,高三物理第十章主要涉及了电磁感应和电动机的知识点。

我们学习了电磁感应的原理和法拉第电磁感应定律,了解了电动机的工作原理,并且学习了一些实验和应用。

通过掌握这些知识点,我们可以更好地理解电磁感应的过程,深入了解电动机的原理,为我们今后的学习和应用奠定基础。

希望在高三物理学习中,我们能够牢固掌握这些知识点,并能够通过实践提升自己的物理实验能力。

高三物理《电磁感应》知识点归纳总结

高三物理《电磁感应》知识点归纳总结

高三物理《电磁感应》知识点归纳总结高三物理《电磁感应》知识点归纳总结在平平淡淡的学习中,很多人都经常追着老师们要知识点吧,知识点就是一些常考的内容,或者考试经常出题的地方。

想要一份整理好的知识点吗?以下是店铺精心整理的高三物理《电磁感应》知识点归纳总结,欢迎大家分享。

1.[感应电动势的大小计算公式]1)E=nΔ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,Δ/Δt:磁通量的变化率}2)E=BLV垂(切割磁感线运动){L:有效长度()}3)E=nBSω(交流发电机最大的感应电动势){E:感应电动势峰值}4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(/s)}2.磁通量=BS{:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(2)}3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}4.自感电动势E自=nΔ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103H=106μH。

(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

高考物理电磁感应知识点1.电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即Δ≠0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

高中物理知识点总结电磁感应

高中物理知识点总结电磁感应

高中物理知识点总结电磁感应
电磁感应: 1. 感应电动势:当静止的磁通线沿着一个电流通道移动时,会产生一个电动势; 2. 电感:电感是指在一个电路中,磁场变化引起的电动势; 3. 电感耦合:当两个电路相连时,它们之间的磁感耦合,使得磁场可以在两者之间传播; 4. 交流电的感应电流:当一个静止的磁通线沿着一个有电流的线路移动时,会产生一个和该电流周期性变化的电流; 5. 磁通闭环:将电流回路的一端,用一个磁通线或线圈绕制成一个闭环,就形成了一个磁通闭环; 6. 晶体管的感应原理:晶体管是由磁感耦合原理来实现信号放大的; 7. 电磁共振:当一个电流通过一个磁感耦合的电路时,会出现电磁共振的现象,即磁场的能量在电路的两端交替传递。

2024年高考物理电磁交变电流知识点总结

2024年高考物理电磁交变电流知识点总结

2024年高考物理电磁交变电流知识点总结一、电磁感应1. 法拉第电磁感应定律:当导电线圈中的磁通量发生变化时,导线中将会产生感应电动势。

2. 感应电动势与磁通量的关系:感应电动势的大小与磁场变化率有关,可以表示为ξ = -dΦ/dt,其中ξ为感应电动势,Φ为磁通量,dt为时间变化的微元。

3. 洛伦兹力:导体中的电子在磁场作用下会受到洛伦兹力的作用,导致导体中的电荷分布发生改变,产生感应电流。

二、交流电路基本概念1. 交流电流:交流电是指方向和大小都随时间变化的电流,常用正弦函数表示。

交流电流的频率、振幅和相位差是重要的参数。

2. 交流电压:交流电压也是随时间变化的电压,其形式与交流电流相似。

交流电压的频率、振幅和相位差与交流电流有着一定的关系。

3. 交流电路中的元件:交流电路中常见的元件有电阻、电容和电感。

4. 交流电的平均值和有效值:由于交流电的方向和大小都随时间变化,所以交流电的平均值和有效值与直流电有所不同。

如平均值为0,有效值即为交流电的大小。

5. 交流电路中的功率:交流电路中的功率由有功功率和无功功率组成,总功率等于有功功率和无功功率的代数和。

三、交流电路中的电阻、电感和电容1. 交流电阻:交流电阻与直流电阻一样,是指电阻对交流电流的阻碍程度,只是其阻碍程度会随着频率的变化而发生变化。

2. 交流电感:交流电感是指电感对交流电流的阻抗,其阻抗与频率成正比。

交流电感会产生滞后相位,导致电流滞后电压一定的角度。

3. 交流电容:交流电容是指电容对交流电流的阻抗,其阻抗与频率成反比。

交流电容会产生超前相位,导致电流超前电压一定的角度。

4. 交流电路中的功率因数和功率三角形:功率因数是交流电路中有功功率和视在功率的比值,功率三角形是一种用于计算交流电路中各种功率的图形表示方法。

四、电磁波和电磁谱1. 电磁波的产生:电磁波是由振荡的电场和磁场组成的,通常由加速带电粒子产生,如天线、电瓶等。

2. 电磁波的基本性质:电磁波是一种横波,能够在真空中传播,速度为光速。

高中物理-电磁感应-知识点归纳

高中物理-电磁感应-知识点归纳

电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。

(2)由电磁感应现象产生的电流,叫做感应电流。

物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。

....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。

(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。

(3)磁场强度B变化或有效面积S变化。

(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。

(2)“运动不一定切割,切割不一定生电”。

导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。

三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。

从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。

(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。

(4)“阻碍”的形式.1.阻碍原磁通量的变化,即“增反减同”。

2.阻碍相对运动,即“来拒去留”。

3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。

高考物理知识回扣(电场、磁场、电磁感应和交流电)

高考物理知识回扣(电场、磁场、电磁感应和交流电)

电场、磁场一、静电场:静电场:概念、规律特别多,注意理解及各规律的适用条件;电荷守恒定律,库仑定律1.电荷守恒定律:元电荷191.610e C -=⨯(任何带电体带电量均为e 的整数倍;起电三种方式:摩擦、接触、感应)2.库仑定律:2Qq F K r= 条件:真空中、点电荷;静电力常量k=9×109Nm 2/C 2 三个自由点电荷的平衡问题:“三点共线,两同夹异,两大夹小” 中间电荷量较小且靠近两边中电量较小的;313221q q q q q q =+熟记常见电场的电场线分布(尤其是孤立正、负电荷,等量同种、异种电荷连线上及中垂线上的场强分布,电场线的特点及作用.)3. 力的特性(E):只要有电荷存在周围就存在电场 ,电场中某位置场强:(中学阶段学过的产生电场的两种方式:电荷和变化的磁场)qF E = (定义式)2KQ E r =(真空点电荷) d U E = (匀强电场E 、d 共线)(请区分定义式与决定式)电场力:F=E*q4.两点间的电势差:U 、U AB :(有无下标的区别)静电力做功U 是电能⇒其它形式的能 电动势E 是其它形式的能⇒电能Ed -qW U B A B A AB ===→ϕϕ=-U BA =-(U B -U A )与零势点选取无关) 电场力功W=qU=qEd=F 电S E (类似于重力,做功与路径无关,只与初末位置有关)5. 能的特性(E p ):电场力是保守力,电场力所做的功等于电势能的减少量(类似于重力做功)W AB =E PA -E PB 某点电势ϕ描述电场能的特性:qW 0A →=ϕ(相对零势点而言) 理解电场线概念、特点;常见电场的电场线分布要求熟记,特别是等量同种、异种电荷连线上及中垂线上的场强特点和规律6.等势面(线)的特点:处于静电平衡导体是个等势体,其表面是个等势面,导体外表面附近的电场线垂直于导体表面(距导体远近不同的等势面的特点?),导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;表面曲率大的地方等势面越密,E 越大,称为尖端放电。

高考物理 专题九电磁感应、交流电、电磁波课件 新人教版

高考物理 专题九电磁感应、交流电、电磁波课件 新人教版
12
四、电磁场与电磁波 1.对麦克斯韦电磁场理论的进一步理解 (1)恒定的磁场(电场)不能产生电场(磁场). (2)周期性变化的电场(磁场)产生同频率的周期性变 化的磁场(电场),才能形成电磁波. (3)变化的磁场能够在周围空间产生电场,这种电场 与电荷激发的静电场不同,它的电场线是闭合的, 它的存在与空间有无导体或者有无闭合电路无关.
9
三、理想变压器原、副线圈基本量的关系 如图9-1所示:
图9-1
10
基本 关系
因果 关系 (n1、 n2 不 变)
功率关系
P1=P2
电压关系
U1=n1,与负载、副线圈的个数多少 U2 n2
无关
(1)只有一个副线圈:II12=nn21 电流关系 (2)多个副线圈:
I1n1=I2n2+I3n3+…+Innn 或 U1I1=U2I2+U3I3+…+UnIn
18
图9-3
19
【自主解答】 线框做匀加速直线运动, 则有 v=at,v= 2as;由欧姆定律可得电流 I =BRLv=BLRat=BLR2as,即感应电流大小与时 间成正比,与位移的平方根成正比,故 A、C 两项正确,B、D 两项错误.
13
2.对电磁波的理解
(1)电磁波的传播不需要介质,可在真空中
传播,在真空中,不同频率的电磁波传播速度
是相同的(都等于光速).
(2)不同频率的电磁波,在同一介质中传播,
其速度是不同的,频率越高,波速越小.
(3)v=λf,f 是电磁波的频率,即为发射电
磁波的
LC
振荡电路的频率
f=2π
1 ,改变 LC
二、交流电“四值”的比较
6
瞬时值 最大值 平均值
e= 重要 Emsinω 关系 t

高中物理实用口诀——电磁感应、交流电

高中物理实用口诀——电磁感应、交流电

高中物理实用口诀——电磁感应、交流电
电磁感应和交流电是高中物理中经常涉及到的两个重要内容,它们充分反映了从物理学的
角度上对自然界中电磁现象的认识及应用,其中电磁感应丰富了物理学的内容,让我们了
解到电、磁有着千丝万缕的联结,交流电也使人们的生活更加的便利。

电磁感应口诀:
①、电磁感应定律:磁线圈就循环电流改变,产生磁感应势由E库仑定义。

②、电磁感应中心定律:磁通单位正比磁通矢量,磁感应强度等于力线密度积分。

③、电磁感应不可传导:磁耦合现象和电场中电流消失,磁感应矢量由B库仑定义。

交流电口诀:
①、交流电无定向:电压信号变化像正弦波,频率定义自然界工程活动。

②、交流电的处理:简单的感应的话,用电感来调和含有相位的振荡。

③、变压器的原理:副线电压与主线电压的比,取决于线圈的匝数或能量比。

电磁感应和交流电是高中物理中的重要部分,这两项知识丰富了我们对物理学的认识。


磁感应能让我们了解到在大自然中,电磁的现象有千丝万缕的联系,而交流电的存在,也
为我们日常的生活提供了极其方便的补充。

如此,我们更加深刻地认识到物理学中的知识,也看到了它的可贵和重要性。

高三物理知识点总结大全6篇

高三物理知识点总结大全6篇

高三物理知识点总结大全6篇篇1一、力学1. 牛顿运动定律:牛顿运动定律是力学的基础,包括牛顿三大定律。

要掌握牛顿定律的表述、适用范围以及数学表达。

2. 动量与冲量:动量是描述物体机械运动状态的物理量,冲量是力在时间上的积累效应。

要理解动量定理和冲量定理,并能应用它们解决实际问题。

3. 功与功率:功是力在空间上的积累效应,功率是单位时间内所做的功。

要掌握功的计算方法,理解功率的概念,并能应用它们解决实际问题。

4. 机械能:机械能包括动能、势能、弹簧的弹性势能等。

要理解机械能的转化和守恒定律,并能应用它们解决实际问题。

二、电磁学1. 静电场:要掌握静电场的性质,理解电场强度、电势、电势差的概念,并能应用它们解决实际问题。

2. 稳恒电流:要理解电流的形成条件,掌握欧姆定律、基尔霍夫定律等基本规律,并能应用它们解决实际问题。

3. 磁场与电磁感应:要掌握磁场的性质,理解洛伦兹力、安培力等基本概念,并能应用它们解决实际问题。

同时,要理解电磁感应现象及其规律,掌握法拉第电磁感应定律、楞次定律等基本概念,并能应用它们解决实际问题。

4. 交流电与电磁振荡:要理解交流电的产生和传播过程,掌握正弦交流电的表达式、有效值、功率等基本概念。

同时,要理解电磁振荡的概念和产生过程,掌握阻尼振荡和无阻尼振荡的区别和特点。

三、光学与近代物理1. 几何光学:要掌握几何光学的基本原理,如光的直线传播、光的反射与折射、光的衍射等。

同时,要理解透镜的成像原理和应用,掌握凸透镜和凹透镜的区别和特点。

2. 物理光学:要理解光的波粒二象性,掌握光的干涉、衍射、散射等物理现象及其原理。

同时,要了解激光的产生和应用,以及光的偏振现象。

3. 近代物理:要了解相对论的基本原理和基本结论,如时间、长度和质量等物理概念的变化规律。

同时,要了解量子力学的基本原理和基本结论,如光的量子性、原子和分子的量子结构等。

四、实验与探究高三物理学习过程中涉及多个实验和探究活动,这些活动不仅有助于加深对物理概念的理解和掌握,还能培养学生的动手能力和创新思维。

高考物理必考考点全解析:磁场、电磁感应和交流电

高考物理必考考点全解析:磁场、电磁感应和交流电

高考物理必考考点全解析:磁场、电磁感应和交流电磁场基本特性,来源,方向(小磁针静止时极的指向,磁感线的切线方向,外部(N S)内部(S N)组成闭合曲线要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健)脑中要有各种磁源产生的磁感线的立体空间分布观念;会从不同的角度看、画、识各种磁感线分布图能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图)安培右手定则:电产生磁安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰实验安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向标量F安=B I L f洛=q B v 建立电流的微观图景(物理模型)从安培力F=ILBsinθ和I=neSv推出f=qvBsinθ。

典型的比值定义(E= E=k) (B= B=k ) (u=)( R= R=) (C= C=)磁感强度B:由这些公式写出B单位,单位公式B= ; B= ; E=BLv B=;B=k(直导体);B=NI(螺线管)qBv = m R = B =;电学中的三个力:F电=q E =q F安=B I L f洛= q B v注意:①、B⊥L时,f洛最大,f洛= q B v(f 、B 、v三者方向两两垂直且力f方向时刻与速度v垂直)导致粒子做匀速圆周运动。

②、B || v时,f 洛=0 做匀速直线运动。

③、B与v成夹角时,(带电粒子沿一般方向射入磁场),可把v分解为(垂直B分量v⊥,此方向匀速圆周运动;平行B分量v|| ,此方向匀速直线运动。

)合运动为等距螺旋线运动。

带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范)。

规律: (不能直接用)1、找圆心:①(圆心的确定)因f洛一定指向圆心,ff洛方向的指向交点为圆心;洛⊥v任意两个②任意一弦的中垂线一定过圆心;③两速度方向夹角的角平分线一定过圆心。

2、求半径(两个方面):①物理规律②由轨迹图得出几何关系方程( 解题时应突出这两条方程 )几何关系:速度的偏向角=偏转圆弧所对应的圆心角(回旋角)=2倍的弦切角相对的弦切角相等,相邻弦切角互补由轨迹画及几何关系式列出:关于半径的几何关系式去求。

高中物理电磁学知识点归纳大全

高中物理电磁学知识点归纳大全

高中物理电磁学知识点归纳大全一、电场。

1. 电荷与库仑定律。

- 电荷:自然界存在两种电荷,正电荷和负电荷。

电荷的多少叫电荷量,单位是库仑(C)。

- 库仑定律:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。

表达式为F = k(q_1q_2)/(r^2),其中k = 9.0×10^9N· m^2/C^2。

2. 电场强度。

- 定义:放入电场中某点的电荷所受的电场力F与它的电荷量q的比值,叫该点的电场强度,E=(F)/(q)。

单位是N/C或V/m。

- 点电荷的电场强度:E = k(Q)/(r^2)(Q为场源电荷电荷量)。

- 电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和。

3. 电场线。

- 电场线是为了形象地描述电场而引入的假想曲线。

电场线从正电荷或无穷远出发,终止于负电荷或无穷远;电场线越密的地方电场强度越大。

4. 电势与电势差。

- 电势:电荷在电场中某一点的电势能与它的电荷量的比值,φ=(E_p)/(q)。

单位是伏特(V)。

- 电势差:电场中两点间电势的差值,U_AB=φ_A - φ_B,也等于把单位正电荷从A点移到B点电场力所做的功,U_AB=frac{W_AB}{q}。

5. 等势面。

- 电场中电势相等的点构成的面叫等势面。

等势面与电场线垂直;电场线总是从电势高的等势面指向电势低的等势面。

6. 电容器与电容。

- 电容器:两个彼此绝缘又相距很近的导体可组成一个电容器。

- 电容:电容器所带电荷量Q与电容器两极板间电势差U的比值,C=(Q)/(U),单位是法拉(F),1F = 1C/V。

平行板电容器的电容C=(varepsilon S)/(4πkd)(varepsilon为介电常数,S为极板正对面积,d为极板间距)。

二、电路。

1. 电流。

- 定义:电荷的定向移动形成电流,I=(Q)/(t),单位是安培(A)。

高中物理《电磁感应》核心知识点归纳

高中物理《电磁感应》核心知识点归纳

高中物理《电磁感应》核心知识点归纳高中物理《电磁感应》核心知识点归纳一、电磁感应现象1、产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

2、感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

3、关于磁通量变化在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有:①S、α不变,B改变,这时②B、α不变,S改变,这时③B、S不变,α改变,这时二、楞次定律1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。

(1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。

(2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。

又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。

磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。

(3)从“阻碍自身电流变化”的角度来看,就是自感现象。

自感现象中产生的自感电动势总是阻碍自身电流的变化。

2、实质:能量的转化与守恒3、应用:对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。

“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。

“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。

高考物理——电磁感应与正弦式交流电综合的新题归纳与解题策略

高考物理——电磁感应与正弦式交流电综合的新题归纳与解题策略

高考物理——电磁感应与正弦式交流电综合的新题归纳与解题策略在新高考的背景下,将电磁感应与正弦式交变电流这两部分知识进行综合考查的新题型越来越多,此类试题不仅可以考查对感应电动势、感应电流、安培力和正弦式交变电流的产生以及“四值”的应用等重要知识点,还可以考查学生的空间思维能力以及应用数学知识处理物理问题的能力。

由于电磁感应和交变电流都是高考必考的章节,因此有必要对这两部分知识进行综合考查的新题型进行深入研究。

笔者现对这些试题进行归纳总结,并探索解题策略。

题型1 线圈在匀强磁场中绕垂直磁场的轴匀速转动该题型是涉及正弦式交变电流产生的常规题型,核心要点有:1.若计时起点在中性面,则感应电动势瞬时值的表达式为e=Emsinωt,其中Em =NBSω;若计时起点在垂直中性面的位置,则感应电动势的瞬时值表达式为e=Emcosωt。

2.每经过中性面一次,电流方向改变一次,则线圈转动一圈,电流的方向改变两次。

3.在中性面时,穿过线圈的磁通量最大,但此刻磁通量的变化率为零,感应电动势为零;在经过与中性面垂直的位置时,穿过线圈的磁通量为零,但此刻磁通量的变化率最大,感应电动势最大。

除了这些基本的知识点以外,还有以下几点需要强调说明。

①线圈不管是圆形、矩形或其他形状,以上结论均相同。

②只要转轴与磁场垂直,即使轴的位置发生改变,以上结论均相同。

③当磁场或永磁体旋转、线圈静止不动时,以上结论均相同。

④当只有部分线框处于磁场中时,公式中的面积S是线框位于磁场中的有效面积。

【例1】(2022·江苏南通考前模拟·12)如图1所示,矩形线圈abcd匝数为N,总电阻为R,ab边和ad边长分别为L和3L,O、O′为线圈上两点,OO′与cd边平行且与cd边的距离为L,OO′左侧空间有垂直纸面向里的匀强磁场,磁感应强度大小为B。

现使线圈绕OO′以角速度ω匀速转动,求:(1)从图1 位置开始转过60°过程中通过导线截面电荷量q;图1(2)线圈在转动一周过程中产生的焦耳热Q。

【高中物理】高考物理电磁感应知识点总结,理科党必备!

【高中物理】高考物理电磁感应知识点总结,理科党必备!

【高中物理】高考物理电磁感应知识点总结,理科党必备!一、知识网络二、知识点归纳1、电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。

这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。

2、电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。

电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。

3、电磁感应发现的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。

②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。

③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。

4、对电磁感应的理解:电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的。

只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。

引起电流的原因概括为五类:① 变化的电流。

② 变化的磁场。

③ 运动的恒定电流。

④ 运动的磁场。

⑤ 在磁场中运动的导体。

5、磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。

对磁通量Φ的说明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。

6、产生感应电流的条件:一是电路闭合。

二是磁通量变化。

7、楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

8、楞次定律的理解:① 感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。

② “阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。

电磁感应、交流电、电磁波

电磁感应、交流电、电磁波

电磁感应、交流电、电磁波主讲:湖北省黄冈中学特级教师徐辉电磁感应、交流电、电磁波是电磁学中最为重要的内容,也是高考常考内容.感应电流的产生条件,感应电流方向的判断,导体切割磁感线产生感应电动势的计算,法拉第电磁感应定律的应用等更是高考热点.一、重难点分析纵观近五年的高考,分析高考考试大纲,在复习中要掌握以下知识:1、产生感应电动势、感应电流的条件:导体在磁场中做切割磁感线运动,导体内就产生感应电动势,穿过线圈的磁通量发生变化,线圈中就产生感应电动势;闭合回路的磁通量发生变化,电路中产生感应电流.2、楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化.应用楞次定律解题的步骤:明确原磁场的方向及磁通量的变化情况,根据楞次定律确定感应电流产生的磁场的方向,根据安培定则判断出感应电流的方向.楞次定律也可以理解为:阻碍相对运动(来拒去留),使线圈面积有扩大或缩小的趋势,阻碍原电流的变化(自感现象).楞次定律适用任何情况下判断感应电流的方向.3、右手定则:让磁感线垂直穿过手心,大拇指指向导体切割磁感线的运动方向,四指的指向就是导体内所产生的感应电流的方向.右手定则仅适用于导体切割磁感线产生感应电动势(电流)的情况.4、法拉第电磁感应定律:在电磁感应现象中产生的感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比,公式,E是Δt时间内的平均电动势.磁通量的变化量可有以下求法:回路与磁场垂直的面积S不变,磁感应强度发生变化时,,;磁感应强度B不变,回路与磁场垂直的面积发生变化,,线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属于这种情况.磁通量、磁通量的变化量、磁通量的变化率是不同的物理量,磁通量表示穿过这一平面的磁感线的条数,磁通量的变化量表示磁通量变化的多少,磁通量的变化率表示磁通量变化的快慢,它们之间无必然的大小关系.5、法拉第电磁感应定律的特例:回路的一部分导体做切割磁感线运动,产生感应电动势的公式为E=BLvsinθ,θ为导体运动方向与磁感线方向的夹角,当v为瞬时速度时,E为瞬时电动势;v为平均速度时,E为平均电动势.6、电磁感应现象中电势的确定:电磁感应现象中产生感应电动势的那部分导体相当于电源,它的电阻相当于内电阻,在电源内部电流是从低电势流向高电势,根据这一点可以确定电源的正负极和导体内电势的高低.7、自感现象:由于通电导体本身的电流发生变化而引起的电磁感应现象.自感阻碍通过自身的电流的变化,当电流变大则阻碍其变大,使电流慢慢地变大,当电流变小则阻碍其变小,使电流慢慢地变小.8、日光灯:日光灯主要由灯管、镇流器、启动器组成.启动器是一个自动开关,一通一断,使镇流器中的电流急剧变化,镇流器在日光灯启动时提供瞬时高压,而在日光灯正常工作时起降压限流作用.9、交流电的产生(1)产生方法:将一个平面线圈置于匀强磁场中,并使它绕垂直于磁感线的轴做匀速运动,线圈中就会产生正弦交流电.(2)中性面:平面线圈在匀强磁场中旋转,当线圈平面垂直于磁感线时,各边都不切割磁感线,线圈中没有感应电动势,这个位置叫做中性面.中性面的特点是:①线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.②线圈经过中性面时,内部的电流方向要发生改变.10、交流电的值(1)瞬时值:交流电的瞬时值反映的是不同时刻交流电的大小和方向,瞬时值是时间的函数,不同时刻,瞬时值不同.正弦交流电瞬时值的表达式为:(2)最大值:交流电的最大值反映的是交流电大小的变化范围.当线圈平面与磁感线平行时,交流电动势最大,.瞬时值与最大值的关系是:(3)有效值:交流电的有效值是根据电流的热效应规定的,即在同一时间内,跟某一交流电能使同一电阻产生相等热量的直流电的数值,叫做该交流电的有效值.正弦交流电的有效值与最大值之间的关系是:各种使用交流电的电气设备上所标的、交流电表上所测得、以及我们在叙述中没有特别加以说明的交流电的值,都是指有效值.(4)平均值:交流电的平均值是交流电图象中波形与横轴(t轴)所围的面积跟时间的比值.其数值可以用计算.某段时间内的交流电的平均值不等于这段时间始、终时刻瞬时值的算术平均值.对正弦交流电来说,在时间内,(5)在计算交流电通过导体产生的热量和电功率以及确定保险丝的熔断电流时,只能用交流电的有效值.在计算通过导体的电量时,只能用交流电的平均值.在考虑电容器的耐压值时,则应根据交流电的最大值.11、电磁振荡(1)LC回路中的振荡电流是由于电容器通过自感线圈(或产生自感电动势,阻碍通过线圈的电流的变化)不断充、放电产生的,按正弦(或余弦)规律做周期性变化.(2)在LC回路产生振荡电流的过程中,磁场能(由通过线圈中的电流产生)和电场能(由电容器极扳上的电荷产生)之间不断地相互转化着:电容器放电阶段,电场能转化为磁场能,放电完毕瞬间,电场能为零,振荡电流及磁场能达到最大值;然后电容器被反向充电,在此阶段磁场能转化为电场能,振荡电流为零瞬间,磁场能为零,电容器极板上的电荷及电场能达到最大值.(3)LC回路的固有周期和固有频率只取决于线圈的自感系数L及电容器的电容C.与电容器带电量、极板间电压及回路中电流都无关.周期的决定式:频率的决定式:T、L、C、f的单位分别是秒、亨、法、赫12、麦克斯韦电磁场理论(1)变化的磁场能够在周围空间产生电场(这种电场叫感应电场或涡旋电场,与由电荷激发的静电场不同,它的电场线是闭合的,它的存在与空间有无导体或闭合电路无关),变化的电场能够在周围空间产生磁场.(2)均匀变化的磁场产生稳定的电场,均匀变化的电场产生稳定的磁场.这里的“均匀变化”指的是:在相等时间内磁感应强度(或电场强度)的变化量相等,或者说磁感应强度(或电场强度)对时间的变化率为一定值.(3)不均匀变化的磁场产生变化的电场,不均匀变化的电场产生变化的磁场.(4)振荡的(即周期性变化的)磁场产生同频率的振荡电场,振荡的电场产生同频率的振荡磁场.(5)变化的电场和变化的磁场总是相互联系着,形成一个不可分离的统一体,这就是电磁场.13、电磁被(1)1865年,麦克斯韦预言电磁波的存在:周期性变化的电场和磁场总是相互转化、互相激励,交替产生,由发生区域向周围空间传播,这就是电磁波.1888年.赫兹用实验成功地证明了电磁波的存在.(2)在电磁波中,每处的电场强度和磁场应强度的方向总是互相垂直的,并且都跟那里的电磁波的传播方向垂直.这就是说,电场和磁场的振荡方向都跟波的传播方向垂直,因此电磁波是横波.(3)电磁波的传播速度v等于波长λ和频率f的乘积,即:v=λf任何频率的电磁波在真空中的传播速度都等于真空中光速c=3.00×108m/s.二、典型例题例1、(’04上海)两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环,当A以如图所示的方向绕中心转动的角速度发生变化时,B中产生如图所示方向的感应电流,则()A.A可能带正电且转速减小B.A可能带正电且转速增大C.A可能带负电且转速减小D.A可能带负电且转速增大解析:由于A环带电并且转动就产生一个环形电流,使B环中的磁通量发生变化,而产生感应电流.由安培定则分析可知B环中的感应电流在B环中产生的磁通量向外,由楞次定律分析可知A环中可能有逆时针方向逐渐减小的电流或顺时针逐渐增大的电流,正确答案为B、C.本题带电的A环转动将产生电流,因此A环就是一个环形电流.答案:BC例2、(’03上海)粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是()解析:将线框等效成直流电路,设线框每条边的电阻为r,如图(A、B、C、D)所示.因线框在四次移动中速度大小相等,其电动势E=Blv也大小相等.A、C、D选项中,B选项中,正确答案为B.B选项中a、b两点间的电势差应该是a、b两点间的路端电压,而不是感应电动势.答案:B例3、(’05天津)图中MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计,导轨所在平面与磁感应强度B为0.50T的匀强磁场垂直.质量m为6.0×10-3 kg、电阻为1.0Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R1.当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W,重力加速度取10m/s2,试求速率v和滑动变阻器接入电路部分的阻值R2.解析:由能量守恒,有mgv=P①代入数据解得v=4.5m/s②又E=BLv③设电阻R1与R2的并联电阻为R外,ab棒的电阻为r,有④⑤P=IE ⑥代入数据解得R 2=6.0Ω ⑦点评:本题中重力势能转化为电能,并且相等,从而可知重力做功的功率等于感应电流做功的功率.例4、(’03全国)如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20m .两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t=5.0s ,金属杆甲的加速度为a=1.37m/s 2,问此时两金属杆的速度各为多少?解析:当甲杆在力F 的作用下运动了5.0s ,设此时甲、乙杆的速度分别是V 1、V 2,它们做切割磁感线运动产生的感应电动势是:E=Bl(V 1-V 2),感应电流:I=Bl(V 1-V 2)/2R此时它们所受的安培力大小是F 1,方向相反如图所示.对甲杆:ma=F -F 1F 1=B 2l 2(V 1-V 2)/2 R在t=0s 到t=5.0s 这个过程中,甲、乙杆组成的系统受到力F 和两个安培力作用,两个安培力的大小始终相等方向始终相反,对系统的冲量为零,故系统动量的变化与F 的冲量相等.Ft=m(V 1+V 2)由①②③可得m/s m/s点评:金属杆甲、乙的运动都切割磁感线,都要产生感应电动势,由于运动方向相同,产生的感应电动势的方向也相同(但在回路中方向相反),故整个回路产生的感应电动势为E=Bl(V1-V2).例5、如图所示,足够长的光滑金属框竖直放置,框宽0.5m,框电阻不计,匀强磁场磁感应强度为1T,方向与框面垂直,金属杆MN电阻为1Ω、质量0.1kg,无初速度地释放并与框保持接触良好地竖直下落,从释放到最大速度的过程中通过棒某一截面的电量为2C.求:此过程中回路产生的电能.(空气阻力不计,g=10m/s2)解析:通过导体横截面电荷量,.又∵速度达最大时a=0,mg=BIL,.而m/s,下落过程中重力势能向热能和动能转化..答案:3.2J例6、图所示为一理想变压器,K为单刀双掷开关,P是滑动变阻器的滑动触头,U1为加在原线圈两端的电压,I1为原线圈中的电流,则()A.保持U1及P的位置不变,K由a合到b时,I1将增大B.保持U1及P的位置不变,K由b合到a时,R消耗的功率减小C.保持U不变,K合在a处,当P上滑时,I1将增大D.保持P的位置不变,K合在a处,当U1增大时,I1将增大解析:为直观,以下用“箭头升降”来表示有关量的变化.A.K由a合到B.K由b合到C.P上滑D.综上所述,本题的正确答案是:A、B、D.例7、发电站通过升压变压器、输电导线和降压变压器把电能输送到用户,如果升压变压器和降压变压器都可视为理想变压器.①画出上述输电全过程的线路图.②若发电机的输出功率是100kW,输出电压是250V,升压变压器的原、副线圈的匝数比为1︰25,求升压变压器的输出电压和输电导线中的电流.③若输电导线中的电功率损失为输入功率的4%,求输电导线的总电阻和降压变压器原线圈两端的电压.④计算降压变压器的输出功率.解析:①见图。

高二物理电磁感应重点必考知识点

高二物理电磁感应重点必考知识点

高二物理电磁感应重点必考知识点电磁感应是高中物理中的重要内容之一,也是高考物理必考的知识点。

掌握好电磁感应的理论与应用,对于学生来说至关重要。

本文将介绍高二物理电磁感应的重点必考知识点,帮助同学们更好地应对考试。

一、法拉第电磁感应定律法拉第电磁感应定律是电磁感应理论中最重要的定律之一。

它的形式可以表达为:电磁感应电动势等于导线内磁感应强度的变化率乘以导线的长度。

根据法拉第电磁感应定律,当导体与磁场相对运动时,导体内将产生感应电动势。

二、楞次定律楞次定律是在法拉第电磁感应定律的基础上得出的。

它对于电磁感应现象的解释起到了重要作用。

楞次定律可以表述为:感应电流的方向与产生感应电流的磁场变化方向相反,通过改变磁场方向或导体运动方向可以改变感应电流的方向。

三、感应电流与电动势的关系根据法拉第电磁感应定律,感应电动势与导线的长度和磁感应强度的变化率有关。

因此,我们可以通过改变导线长度、改变磁场强度或改变磁场变化的速率来改变感应电流的大小。

四、电磁感应中的能量转化电磁感应过程中,磁场通过导体内感应电流的产生将自身能量转化为电能。

同样地,由于感应电流在导体内有阻力,导体内电能也会转化为热能,导致电阻发热。

五、感应电磁场的产生在电磁感应过程中,除了产生感应电动势和感应电流外,还会产生感应磁场。

感应磁场的方向可以根据楞次定律来确定,即感应磁场的方向与产生感应电动势的磁场变化方向相反。

六、电磁感应的应用电磁感应有许多重要的应用,如发电机、变压器、感应磁罗盘等。

发电机是将机械能转化为电能的装置,利用了电磁感应的原理。

变压器则利用了电磁感应的电磁感应定律和法拉第电磁感应定律,用于改变电压大小。

感应磁罗盘则利用感应电流产生的磁场与地磁场相互作用,指示出地磁场的方向。

总结:电磁感应是高中物理中的重点知识,掌握好这一部分内容对于备战高考至关重要。

本文介绍了高二物理电磁感应的重点必考知识点,包括法拉第电磁感应定律、楞次定律、感应电流与电动势的关系、能量转化、感应电磁场的产生以及电磁感应的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理知识归纳(六)----------------------磁场、电磁感应和交流电磁场 基本特性,来源,方向(小磁针静止时极的指向,磁感线的切线方向,外部(N →S)内部(S →N)组成闭合曲线要熟悉五种典型磁场的磁感线空间分布(正确分析解答问题的关健)脑中要有各种磁源产生的磁感线的立体空间分布观念;会从不同的角度看、画、识 各种磁感线分布图能够将磁感线分布的立体、空间图转化成不同方向的平面图(正视、符视、侧视、剖视图) 安培右手定则:电产生磁 安培分子电流假说,磁产生的实质(磁现象电本质)奥斯特和罗兰实验 安培左手定则(与力有关) 磁通量概念一定要指明“是哪一个面积的、方向如何”且是双向标量 F 安=B I L ⇒推导 f 洛=q B v 建立电流的微观图景(物理模型) 从安培力F=ILBsin θ和I=neSv 推出f=qvBsin θ。

典型的比值定义 (E=q F E=k 2r Q ) (B=L I F B=k 2r I ) (u=q w b a →q W 0A A →=ϕ) ( R=I u R=S L ρ) (C=uQ C=d k 4s πε) 磁感强度B :由这些公式写出B 单位,单位⇔公式B=L I F ; B=S φ ; E=BLv ⇒ B=Lv E ; B=k 2r I (直导体) ;B=μNI (螺线管)qBv = m R v 2 ⇒ R =qB mv ⇒ B =qRmv ; v v v d u E B qE qBv d u===⇒= 电学中的三个力:F 电=q E =q duF 安=B I L f 洛= q B v 注意:①、B ⊥L 时,f 洛最大,f 洛= q B v(f 、B 、v 三者方向两两垂直且力f 方向时刻与速度v 垂直)⇒导致粒子做匀速圆周运动。

②、B || v 时,f 洛=0 ⇒做匀速直线运动。

③、B 与v 成夹角时,(带电粒子沿一般方向射入磁场),可把v 分解为(垂直B 分量v ⊥,此方向匀速圆周运动;平行B 分量v || ,此方向匀速直线运动。

) ⇒合运动为等距螺旋线运动。

带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范)。

规律:qB mv R R v m qBv 2=⇒= (不能直接用) qBm 2v R 2T ππ== 1、找圆心:①(圆心的确定)因f 洛一定指向圆心,f 洛⊥v 任意两个f 洛方向的指向交点为圆心; ②任意一弦的中垂线一定过圆心; ③两速度方向夹角的角平分线一定过圆心。

2、求半径(两个方面):①物理规律qB mv R R v m qBv 2=⇒=②由轨迹图得出几何关系方程 ( 解题时应突出这两条方程) 几何关系:速度的偏向角ϕ=偏转圆弧所对应的圆心角(回旋角)α=2倍的弦切角θ相对的弦切角相等,相邻弦切角互补 由轨迹画及几何关系式列出:关于半径的几何关系式去求。

3、求粒子的运动时间:偏向角(圆心角、回旋角)α=2倍的弦切角θ,即α=2θ)360(2)(0t 或回旋角圆心角π=×T4、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件a 、从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。

b 、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。

注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场。

电磁感应:.1.法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量变化率成正比,这就是法拉第电磁感应定律。

内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

2.[感应电动势的大小计算公式]1) E =BLV (垂直平动切割)2) =∆∆⨯=∆⨯∆=∆∆=ts B n t s B n t n E φ…=?(普适公式) ε∝t ∆φ∆(法拉第电磁感应定律) 3) E= nBS ωsin (ωt+Φ);E m =nBS ω (线圈转动切割)4)E =BL 2ω/2 (直导体绕一端转动切割)5)*自感E 自=nΔΦ/Δt ==L tI ∆∆ ( 自感 ) 3.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量变化,这就是楞次定律。

内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

B 感和I 感的方向判定:楞次定律(右手) 深刻理解“阻碍”两字的含义(I 感的B 是阻碍产生I 感的原因) B 原方向?;B 原?变化(原方向是增还是减);I 感方向?才能阻碍变化;再由I 感方向确定B 感方向。

楞次定律的多种表述①从磁通量变化的角度:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

②从导体和磁场的相对运动:导体和磁体发生相对运动时,感应电流的磁场总是阻碍相对运动。

③从感应电流的磁场和原磁场:感应电流的磁场总是阻碍原磁场的变化。

(增反、减同)④楞次定律的特例──右手定则在应用中常见两种情况:一是磁场不变,导体回路相对磁场运动;二是导体回路不动,磁场发生变化。

磁通量的变化与相对运动具有等效性:磁通量增加相当于导体回路与磁场接近,磁通量减少相当于导体回路与磁场远离。

因此,从导体回路和磁场相对运动的角度来看,感应电流的磁场总要阻碍相对运动;从穿过导体回路的磁通量变化的角度来看,感应电流的磁场总要阻碍磁通量的变化。

能量守恒表述:I 感效果总要反抗产生感应电流的原因电磁感应现象中的动态分析,就是分析导体的受力和运动情况之间的动态关系。

一般可归纳为:导体组成的闭合电路中磁通量发生变化⇒导体中产生感应电流⇒导体受安培力作用⇒ 导体所受合力随之变化⇒导体的加速度变化⇒其速度随之变化⇒感应电流也随之变化 周而复始地循环,最后加速度小致零(速度将达到最大)导体将以此最大速度做匀速直线运动“阻碍”和“变化”的含义感应电流的磁场总是要阻碍引起感应电流的磁通量的变化,而不是阻碍引起感应电流的磁场。

因此,不能认为感应电流的磁场的方向和引起感应电流的磁场方向相反。

磁通量变化感应电流感应电流的磁场发生电磁感应现象的这部分电路就相当于电源,在电源的内部,电流的方向是从低电势流向高电势。

4.电磁感应与力学综合方法:从运动和力的关系着手,运用牛顿第二定律(1)基本思路:(2)注意安培力的特点:(3)纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系.5.电磁感应与动量、能量的综合方法:(1)从动量角度着手,运用动量定理或动量守恒定律①应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒.解决此类问题往往要应用动量守恒定律.(2)从能量转化和守恒着手,运用动能定律或能量守恒定律①基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪增哪减→由动能定理或能量守恒定律列方程求解.−−−−−−安培力做负功−−−−−电流做功6.电磁感应与电路综合方法:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路相当于电源.解决电磁感应与电路综合问题的基本思路是:(1)明确哪部分相当于电源,由法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路图.(3)运用闭合电路欧姆定律.串并联电路的性质求解未知物理量.功能关系:电磁感应现象的实质是不同形式能量的转化过程。

因此从功和能的观点入手, 分析清楚电磁感应过程中能量转化关系,往往是解决电磁感应问题的关健,也是处理此类题目的捷径之一。

产生 产生 阻碍交变电流 电磁场交变电流(1)中性面线圈平面与磁感线垂直的位置,或瞬时感应电动势为零的位置。

中性面的特点:a .线圈处于中性面位置时,穿过线圈的磁通量Φ最大,但Φt∆∆=0; 产生:矩形线圈在匀强磁场中绕与磁场垂直的轴匀速转动。

变化规律e =NBS ωsin ωt=E m sin ωt ;i =I m sin ωt ;(中性面...位置开始计时),最大值E m =NBS ω 四值:①瞬时值②最大值③有效值电流的热效应规定的;对于正弦式交流U m 2=0.707U m ④平均值 不对称方波:2I I I 2221+= 不对称的正弦波 2I I I 2m22m1+= 求某段时间内通过导线横截面的电荷量Q =I Δt=εΔt/R =ΔΦ/R我国用的交变电流,周期是0.02s ,频率是50Hz ,电流方向每秒改变100次。

表达式:e =e=2202sin100πt=311sin 100πt=311sin 314t线圈作用是“通直流,阻交流;通低频,阻高频”.电容的作用是“通交流、隔直流;通高频、阻低频”.变压器两个基本公式:① 2121n n U U = ②P 入=P 出,输.入功率由输出功率决定.........., 远距离输电:一定要画出远距离输电的示意图来,包括发电机、两台变压器、输电线等效电阻和负载电阻。

并按照规范在图中标出相应的物理量符号。

一般设两个变压器的初、次级线圈的匝数分别为、n 1、n 1/ n 2、n 2/,相应的电压、电流、功率也应该采用相应的符号来表示。

功率之间的关系是:P 1=P 1/,P 2=P 2/,P 1/=P r =P 2。

电压之间的关系是:2122221111,,U U U n n U U n n U U r +=''=''='。

电流之间的关系是:2122221111,,I I I n n I I n n I I r ==''=''='.求输电线上的电流往往是这类问题的突破口。

输电线上的功率损失和电压损失也是需要特别注意的。

分析和计算时都必须用r I U r I P r r rr ==,2,而不能用r U P r 21'=。

特别重要的是要会分析输电线上的功率损失S U S L U P P r 212111'∝⋅⎪⎪⎭⎫ ⎝⎛'=ρ, 解决变压器问题的常用方法(解题思路) ①电压思路.变压器原、副线圈的电压之比为U 1/U 2=n 1/n 2;当变压器有多个副绕组时U 1/n 1=U 2/n 2=U 3/n 3=…… ②功率思路.理想变压器的输入、输出功率为P 入=P 出,即P 1=P 2;当变压器有多个副绕组时P 1=P 2+P 3+…… ③电流思路.由I =P /U 知,对只有一个副绕组的变压器有I 1/I 2=n 2/n 1;当变压器有多个副绕组时n 1I 1=n 2I 2+n 3I 3+…… ④(变压器动态问题)制约思路.(1)电压制约:当变压器原、副线圈的匝数比(n 1/n 2)一定时,输出电压U 2由输入电压决定,即U 2=n 2U 1/n 1,可简述为“原制约副”.(2)电流制约:当变压器原、副线圈的匝数比(n 1/n 2)一定,且输入电压U 1确定时,原线圈中的电流I 1由副线圈中的输出电流I 2决定,即I 1=n 2I 2/n 1,可简述为“副制约原”.(3)负载制约:①变压器副线圈中的功率P 2由用户负载决定,P 2=P 负1+P 负2+…;②变压器副线圈中的电流I 2由用户负载及电压U 2确定,I 2=P 2/U 2; ③总功率P 总=P 线+P 2.动态分析问题的思路程序可表示为:U 122222121I R U I U n n U U 决定负载决定−−−−−→−=−−−−→−=决定决定−−−−→−=−−−−−−−−→−==1112211211)(U I P I U I U I P P P 1 ⑤原理思路.变压器原线圈中磁通量发生变化,铁芯中ΔΦ/Δt 相等;当遇到“”型变压器时有 ΔΦ1/Δt =ΔΦ2/Δt +ΔΦ3/Δt ,适用于交流电或电压(电流)变化的直流电,但不适用于恒定电流。

相关文档
最新文档