西门子PLC_基本指令简介

合集下载

西门子s7-200PLC基本指令

西门子s7-200PLC基本指令
•当输入能流断开时停止计时,同时定时器位被置0、清除 当前值。 •定时器号(Txx)决定了定时器的分辨率。
15:33
14
15:33
15
2、保持型接通延时定器(TONR)
Txx IN TONR PT
•在输入(IN)收到能流时,从当前值开始计时; •当当前值达到预置值(PT)时,定时器位被置1; •当输入能流断开时停止计时,定时器位、当前值保持不变; •必须用复位指令才能清除定时器位和当前值; •定时器号(Txx)决定了定时器的分辨率。
???
② 置位线圈指令
(S) xxx
???位代表位起始地址
当指令收到能流时,则???指定位开始的XXX个位被置1;
当指令没收到能流时,则???指定的位状态不变 。
???
③ 复位线圈指令 (xRxx) ???位代表位起始地址
当指令收到能流时,则???指定位开始的XXX个位被置0;
当指令没收到能流时,则???指定的位状态不变 。
1. 基本逻辑指令 2. 堆栈操作指令* 3. 定时器指令 4. 计数器指令 5. 比较指令
15ห้องสมุดไป่ตู้33
2
一、基本逻辑指令
1、触点指令
???
① 检查闭指令 其中???位代表位地址 当???指定地址的数据为1时, 指令结果接通能流; 否则,指令结果断开能流。
???
② 检查开指令 其中???位代表位地址 当???指定地址的数据为0时, 指令结果接通能流; 否则,指令结果断开能流。
15:33
21
2、减计数器减计数指令(CTD)
Cxx CD CTD LD PV
从当前计数值开始,在每一个(CD)输入状态 的低到高时递减计数。
•当CXX的当前值等于0时,计数器位CXX置位。

西门子PLC程序中常用的几个指令介绍

西门子PLC程序中常用的几个指令介绍

西门子PLC程序中常用的几个指令介绍西门子PLC程序中常用的几个指令介绍1、串联电路块的并联连接指令OLD两个或两个以上的接点串联连接的电路叫串联电路块。

串联电路块并联连接时,分支开始用LD、LDN指令,分支结束用OLD指令。

OLD指令与后述的ALD指令均为无目标元件指令,而两条无目标元件指令的步长都为一个程序步。

OLD有时也简称或块指令。

2、并联电路的串联连接指令ALD两个或两个以上接点并联电路称为并联电路块,分支电路并联电路块与前面电路串联连接时,使用ALD指令。

分支的起点用LD、LDN 指令,并联电路结束后,使用ALD指令与前面电路串联。

ALD指令也简称与块指令,ALD也是无操作目标元件,是一个程序步指令。

3、输出指令=1、= 输出指令是将继电器、定时器、计数器等的线圈与梯形图右边的母线直接连接,线圈的右边不允许有触点,在编程中,触点以重复使用,且类型和数量不受限制。

4、置位与复位指令S、RS为置位指令,使动作保持;R为复位指令,使操作保持复位。

从指定的位置开始的N个点的寄存器都被置位或复位,N=1~255如果被指定复位的是定时器位或计数器位,将清除定时器或计数器的当前值。

5、跳变触点EU,ED正跳变触点检测到一次正跳变(触点的入信号由0到1)时,或负跳变触点检测到一次负跳变(触点的入信号由1到0)时,触点接通到一个扫描周期.正/负跳变的符号为EU和ED,他们没有操作数,触点符号中间的”P”和”N”分别表示正跳变和负跳变6、空操作指令NOPNOP指令是一条无动作、无目标元件的一个序步指令。

空操作指令使该步序为空操作。

用NOP指令可替代已写入指令,可以改变电路。

在程序中加入NOP指令,在改动或追加程序时可以减少步序号的改变。

7、程序结束指令ENDEND是一条无目标元件的一序步指令。

PLC反复进行输入处理、程序运算、输出处理,在程序的最后写入END指令,表示程序结束,直接进行输出处理。

在程序调试过程中,可以按段插入END指令,可以按顺序扩大对各程序段动作的检查。

西门子PLC编程指令

西门子PLC编程指令

西门子PLC编程指令1、位逻辑指令(1)-||-常开接点(地址)(2)-|/|-常闭接点(地址)(3)XOR位异或(4)-|NOT|-信号流反向(5)-()输出线圈(6)-(#)-中间输出(7)-(R)线圈复位(8)-(S)线圈置位(9)RS复位置位触发器(10)RS置位复位触发器(11)-(N)-RLO下降沿检测(12)-(P)-PLO上升沿检测(13)-(SAVE)将RLO存入BR存储器(14)MEG地址下降沿检测(15)POS地址上升沿检测2、比较指令(1)CMP?I整数比较(2)CMP?D双整数比较(3)CMP?R实数比较3、转换指令(1)BCD_IBCD码转换为整数(2)I_BCD整数转换为BCD码(3)I_DINT整数转换为双整数(4)BCD_DIBCD码转换为双整数(5)DI_BCD双整数转换为BCD码(6)DI_REAL双整数转换为浮点数(7)INV_I整数的二进制反码(8)INV_DI双整数的二进制反码(9)NEG_I整数的二进制补码(10)NEG_DI双整数的二进制补码(11)NEG_R浮点数求反(12)ROUND舍入为双整数(13)TRUNC舍去小数取整为双整数(14)CEIL上取整(15)FLOOR下取整4、计数器指令(1)S_CUD加减计数(2)S_CU加计数器(3)S_CD减计数器(4)-(SC)计数器置初值(5)-(CU)加计数器线圈(6)-(CD)减计数器线圈5、数据块指令(1)-(OPN)打开数据块:DB或DI6、逻辑控制指令(1)-(JMP)无条件跳转(2)-(JMP)条件跳转(3)-(JMPN)若非则跳转(4)LABEL标号7、整数算术运算指令(1)ADD_I整数加法(2)SUB_I整数减法(3)MUL_I整数乘法(4)DIV_I整数除法(5)ADD_DI双整数加法(6)SUB_DI双整数减法(7)MUL_DI双整数乘法(8)DIV_DI双整数除法(9)MOD_DI回送余数的双整数8、浮点算术运算指令(1)基础指令①ADD_R实数加法②SUB_R实数减法③MUL_R实数乘法④DIV_R实数除法⑤ABS浮点数绝对值运算(2)扩展指令①SQR浮点数平方②SQRT浮点数平方根③EXP浮点数指数运算④LN浮点数自然对数运算⑤SIN浮点数正弦运算⑥COS浮点数余弦运算⑦TAN浮点数正切运算⑧ASIN浮点数反正弦运算⑨ACOS浮点数反余弦运算⑩ATAN浮点数反正切运算9、赋值指令(1)MOVE赋值10、程序控制指令(1)-(Call)从线圈调用FC/SFC(无参数) (2)CALL_FB从方块调用FB(3)CALL_FC从方块调用FC(4)CALL_SFB从方块调用SFB(5)CALL_SFC从方块调用SFC(6)-(MCR<)主控继电器接通(7)-(MCR>)主控继电器断开(8)-(MCRA)主控继电器启动(9)-(MCRD)主控继电器停止(10)-(RET)返回11、移位和循环指令(1)移位指令①SHR_I整数右移②SHR_DI双整数右移③SHL_W字左移④SHR_W字右移⑤SHL_DW双字左移⑥SHR_DW双字右移(2)循环指令①ROL_DW双字左循环②ROR_DW双字右循环12、状态位指令(1)OV-||-溢出异常位(2)OS-||-存储溢出异常位(3)UO-||-无序异常位(4)BR-||-异常位二进制结果(5)==0-||-结果位等于"0"(6)<>0-||-结果位不等于"0" (7)>0-||-结果位大于"0"(8)<0-||-结果位小于"0"(9)>=0-||-结果位大于等于"0" (10)<=0-||-结果位小于等于"0"13、定时器指令(1)S_PULSE脉冲S5定时器(2)S_PEXT扩展脉冲S5定时器(3)S_ODT接通延时S5定时器(4)S_ODTS保持型接通延时S5定时器(5)S_OFFDT断电延时S5定时器(6)-(SP)脉冲定时器线圈(7)-(SE)扩展脉冲定时器线圈(8)-(SD)接通延时定时器线圈(9)-(SS)保持型接通延时定时器线圈(10)-(SF)断开延时定时器线圈14、字逻辑指令(1)WAND_W字和字相"与"(2)WOR_W字和字相"或"(3)WAND_DW双字和双字相"与" (4)WOR_DW双字和双字相"或" (5)WXOR_W字和字相"异或" (6)WXOR_DW双字和双字相"异或“。

s7-200plc基本逻辑指令

s7-200plc基本逻辑指令

s7-200plc基本逻辑指令PLC(可编程逻辑控制器)作为现代工业自动化领域中的重要设备,可以实现对各类生产过程的自动控制。

S7-200PLC是西门子公司推出的一款经典型号,具备较高的性能和灵活的编程功能。

本文将重点介绍S7-200PLC的基本逻辑指令,包括输入/输出指令、计算指令、转移指令和比较指令等,以帮助读者更好地理解和应用该型号的PLC。

1. 输入/输出指令输入/输出指令用于读取外部信号并控制输出动作,是PLC程序中最常用的指令之一。

S7-200PLC提供了多种输入/输出指令,其中包括XIC、XIO、OUT、SET、RST等指令。

XIC指令用于判断输入信号是否为真,XIO指令则相反,用于判断输入信号是否为假。

OUT指令用于控制输出信号为真,SET指令用于设置某个输出信号为真,RST指令则相反,用于复位某个输出信号。

2. 计算指令计算指令主要用于对PLC中的数据进行运算和处理,以满足特定的控制要求。

S7-200PLC提供了多种计算指令,包括加法、减法、乘法、除法等。

比如,ADD指令用于两个数据相加,SUB指令用于两个数据相减,MUL指令用于两个数据相乘,DIV指令用于两个数据相除。

这些计算指令可以灵活应用于各类控制场景中,提高了PLC的控制能力和灵活性。

3. 转移指令转移指令用于根据特定条件执行不同的操作,是PLC程序中的决策和跳转指令。

S7-200PLC提供了多种转移指令,包括无条件转移、条件转移、循环转移等。

例如,JMP指令用于无条件转移到指定的程序段,JMPZ指令用于当某个数值为0时转移到指定的程序段,LOOP指令用于设置循环次数并执行指定的程序段。

通过合理应用转移指令,可以实现复杂的控制逻辑和流程控制。

4. 比较指令比较指令用于判断两个或多个数据之间的大小、相等关系,并根据判断结果执行不同的操作。

S7-200PLC提供了多种比较指令,包括大于、小于、等于等。

例如,GT指令用于判断某个数值是否大于另一个数值,LT指令用于判断某个数值是否小于另一个数值,EQ指令用于判断两个数值是否相等。

西门子PLC的基本指令程序设计

西门子PLC的基本指令程序设计

西门子PLC的基本指令程序设计西门子PLC的基本指令程序设计1. 引言2. 输入输出指令西门子PLC的输入输出指令用于控制PLC与外部设备(如传感器、执行器等)之间的数据交换。

其中,最常用的输入输出指令是电平指令、边沿指令和计时指令。

2.1 电平指令电平指令用于检测输入信号是否处于高电平或低电平状态。

常用的电平指令有:`I`指令:用于检测输入信号是否为高电平;`IB`指令:用于检测输入信号是否为低电平。

2.2 边沿指令边沿指令用于检测输入信号的变化。

常用的边沿指令有:`I8`指令:用于检测输入信号从低电平到高电平的上升沿;`I9`指令:用于检测输入信号从高电平到低电平的下降沿。

2.3 计时指令计时指令用于对输入信号的时间进行计时。

常用的计时指令有:`TON`指令:用于对输入信号的累计时间进行计时;`TOF`指令:用于对输入信号的间隔时间进行计时。

3. 逻辑运算指令逻辑运算指令用于进行逻辑判断和运算。

常用的逻辑运算指令有:`AND`指令:进行与运算;`OR`指令:进行或运算;`XOR`指令:进行异或运算;`NOT`指令:进行非运算。

4. 数据处理指令数据处理指令用于对数据进行处理和转换。

常用的数据处理指令有:`MOV`指令:用于将一个值从一个寄存器复制到另一个寄存器;`ADD`指令:用于对两个操作数进行相加运算;`SUB`指令:用于对两个操作数进行相减运算;`MUL`指令:用于对两个操作数进行相乘运算;`DIV`指令:用于对两个操作数进行相除运算。

5. 定时器指令定时器指令用于进行时间控制和延时操作。

常用的定时器指令有:`TON`指令:用于进行延时操作;`TOF`指令:用于进行时间控制。

6. 计数器指令计数器指令用于进行计数操作。

常用的计数器指令有:`CTU`指令:用于正向计数;`CTD`指令:用于逆向计数。

7. 程序控制指令程序控制指令用于控制程序的执行顺序和跳转。

常用的程序控制指令有:`JSR`指令:用于子程序调用;`JMP`指令:用于无条件跳转;`LBL`指令:用于标记指令。

西门子PLC基础指令

西门子PLC基础指令

西门子PLC基础指令
位逻辑指令
(一)触点及线圈指令
PLC梯形图语言的编程原则
1、梯形图由多个梯级组成,每个线圈可构成一个梯级,每个梯级有多条支路,每个梯级代表一个逻辑方程;
2、梯形图中的继电器、接点、线圈不是物理的,是PLC存储器中的位(1=0N;0=0FF);编程时常开/常闭接点可无限次引用,线圈输出只能是一次;
3、梯形图中流过的不是物理电流而是“概念电流”,只能从左向右流;
4、用户程序的运算是根据PLC的输入/输出映象寄存器中的内容,逻辑运算结果可以立即被后面的程序使用;
5、PLC的内部继电器不能做控制用,只能存放逻辑控制的中间状态;
6、输出线圈不能直接驱动现场的执行元件,通过I/模块上的功率器件来驱动。

基本逻辑指令以位逻辑操作为主,在位逻辑指令中,除非有特殊说明,操作数的有效区域为:I、Q、M、SM、T、C、V、S、L且数据类型为BOOL触点和线圈指令又分为:标准指令、立即指令、取反指令、正(负)跳变指令。

定时器指令
包括:接通延时定时器(TON)、有记忆的接通延时(保持型)定时器(TONR)、断开延时定时器(TOF)。

S7-200有256个定时器(T0~T255)。

计数器指令
包括:加计数CTU、减计数CTD和加/减计数CTUD总共有256个(C0~C255)。

计数器是对PLC内部的时钟脉冲进行计数,而计数器是对外部的或由程序产生的计数脉冲进行计数。

计数器累计计数的当前值(16位有符号整数),它存放在计数器的16位(bit)当前值寄存器中。

每个计数器只有一个16位的当前值寄存器地址。

在一个程序中,同一计数器号不要重复使用,更不可分配给几个不同类型的计数器。

西门子PLC指令教程基本指令

西门子PLC指令教程基本指令

LD ED =
I0.0 Q0.1
// //脉冲负跳变 //
图4.5
跳变应用
I0.0 Q0.0 Q0.1
图4.6
时序
3. 置位和复位指令
(1)S,置位指令 (2)R,复位指令 置位即置 1 ,复位即置 0 。置位和复位指令可以将位存储区 的某一位开始的一个或多个(最多可达255个)同类存储器 位置 1或置 0。这两条指令在使用时需指明三点:操作性质、 开始位和位的数量。各操作数类型及范围如表4.6所示。
LD +I I0.0 //使能输入端 //整数加法 //VW0+VW4=VW4
VW0, VW4
图4.1
整数加法
3. 梯形图的基本绘制规则 (1)Network (2)能流/使能 (3)编程顺序 (4)编号分配 (5)内、外触点的配合 (6)触点的使用次数 (7)线圈的使用次数 (8)线圈的连接
返回本节
基本指令 知识
4.1 4.2 4.3 4.4 4.5
位操作类指令 运算指令 其他数据处理指令 表功能指令 转换指令
本章学习目的
l l l l l 位操作类指令,主要是位操作及运算指令, 与时也包含与位操作密切相关的定时器和计数 器指令等。 运算指令,包括常用的算术运算和逻辑运算 指令。 其他数据处理类,包括数据的传送、移位、 填充和交换等指令。 表功能指令,包括对表的存取和查找指令。 转换指令,包括数据类型转换、码转换和字 符转换指令。
I0.0 I0.1 I0.2 Q0.0 Q0.2
图4. 4
时序图
负跳变触点检测到脉冲的每一次负跳变后, 产生一个微分脉冲。 指令格式:ED (无操作数) 应用举例:图 4.5 是跳变指令的程序片断。 图4.6是图4.5指令执行的时序。

西门子PLC基本指令功能介绍

西门子PLC基本指令功能介绍

西门⼦PLC基本指令功能介绍⼀、标准触点 LD、A、O、LDN、AN、ON、LD,取指令。

表⽰⼀个与输⼊母线相连的常开接点指令,即常开接点逻辑运算起始。

LDN,取反指令。

表⽰⼀个与输⼊母线相连的常闭接点指令,即常闭接点逻辑运算起始。

A,与指令。

⽤于单个常开接点的串联。

AN,与⾮指令。

⽤于单个常闭接点的串联。

O,或指令。

⽤于单个常开接点的并联。

ON,或⾮指令。

⽤于单个常闭接点的并联。

⼆、正、负跳变 ED、EUED,在检测到⼀个正跳变(从OFF到ON)之后,让能流接通⼀个扫描周期。

EU,在检测到⼀个负跳变(从ON到OFF)之后,让能流接通⼀个扫描周期。

三、输出 ==,在执⾏输出指令时,映像寄存器中的指定参数位被接通。

四、置位与复位指令S、RS,执⾏置位(置1)指令时,从bit或OUT指定的地址参数开始的N个点都被置位。

R,执⾏复位(置0)指令时,从bit或OUT指定的地址参数开始的N个点都被复位。

置位与复位的点数可以是1-255,当⽤复位指令时,如果bit或OUT指定的是T或C时,那么定时器或计数器被复位,同时当前值将被清零。

五、空操作指令NOPNOP指令不影响程序的执⾏,执⾏数N(1-255)。

⼀帆PLC培训学校是深圳龙岗中⼼区专业PLC培训学校,打造⾃动化实战品牌。

同时打造⾼端的⾃动化⼈才培训基地,成为⾏业领导者。

专注于西门⼦PLC S7-200/300、S7-1200、三菱PLC FN-2N/3U、Q系列、WINCC、电⽓制图EPLAN、触摸屏等PLC⽅⾯的综合型培训机构,是第⼀家⽹络在线培训和实体培训相结合的机构。

⼀⼈多套实战设备,学习时间不限,学会为⽌,免费推荐⼯作,零基础⼊门,项⽬式教学!⼩班化教学,保证教学质量,免费试听,联系刘⽼师。

西门子s7200-PLC-基本指令

西门子s7200-PLC-基本指令

例4.1:装载及驱动线圈指令用法示例
LD I0.0 = M0.0 LDN I0.1 = Q0.0 = Q0.1
说明: (1)LD、LDN指令总是与母线相连(包括在分支点引出的母线); (2)=指令不能用于输入继电器; (3)具有图3-1中的最后2条指令结构的输出形式,称为并联输出, 并联的=指令可以连续使用; (4)=指令的操作数不可重复使用。
指令练习
3. 根据下面设计要求写出对应的梯形图和语句表 设计要求: 当I0.0接通,且I0.1断开时,接通Q0.0 当接通Q0.0时,且T10接通时,则M0.1通电
请写出以下梯形图对应的语句表
3. 置位/复位指令S/R
普通线圈获得能量流时线圈通电,能量流不能到达时 ,线圈断电,置位/复位指令则是将线圈设成为置位 线圈和复位线圈两大部分,将存储器的置位、复位功 能分开,置位线圈受到脉冲前沿触发时,线圈通电锁 存(存储器位置1)、复位线圈受到脉冲前沿触发时 ,线圈断电锁存(存储器位置0)。下次置位、复位 操作信号到来前,线圈状态保持不变。
当存储器某地址的位(bit)值为1时,则与之对 应的常开触点闭合;而与之对应常闭触点断开。
1.装载指令及驱动线圈指令 LD/LDN/OUT
装载指令及驱动线圈指令如表4-2 所示。
语句表
表4-2装载指令及线圈输出指令
功能
梯形图
操作数
LD bit
常开触点与左侧母线 相连接
I、Q、M、SM、T、C、V、 S、L
LD I0.4 LPS EU = Q0.4 LPP ED = Q0.5
LD I0.4 EU = Q0.4 ED = Q0.5
跳变指令将信号的跳变转换成持续仅一个扫描周期的短脉冲。或者 可理解成把即将开始的较长过程转换成一种起始信号(有何意义)

SiemensPLC指令讲解

SiemensPLC指令讲解

S7-200系列的基本逻辑指令S7-200系列的基本逻辑指令与FX系列和CPM1A系列基本逻辑指令大体相似,编程和梯形图表达方式也相差不多,这里列表表示S7-200系列的基本逻辑指令(见表)。

表S7-200系列的基本逻辑指令S7-200系列PLC的比较指令在SIEMENS S7-200的编程软件STEP-7中,有专门的比较指令:IN1与IN2比较,比较的数据类型可以是B、I(W)、D、R,即字节、字整数、双字整数和实数;还可以有其他的比较式:>、<、≥、≤、<>等等。

当满足比较等式,则该触点闭合。

与LMODSOFT指令对照:在LMODSOFT中,没有直接的数的比较指令,但SUB 指令可以通过其执行减法功能后的三个输出端的状态实现整数的比较功能。

若与LMODSOFT 中的SUB指令对应,则在STEP-7中应有三个比较指令:>、=、< 来分别对应SUB 指令的三个输出;若还要对应≥、≤、或<>,则根据SUB指令三个输出端的不同组合,均可找到对应的比较指令。

比如:①(30007)>(40030)①+②(30007)≥②(30007)=(40030)②+③(30007)≤(40030)③(30007)<(40030)①+③(30007)<>(40030)S7-200系列PLC的定时器指令类型、编号及分辨率TON——接通延时TONR——有记忆接通延时TOF——断开延时3种分辨率(时基):1ms、10ms、100ms——分别对应不同的定时器号定时器6个要素:指令格式(时基、编号等)预置值——PT使能——IN 复位——3种定时器不同当前值——Txxx 定时器状态(位)——可由触点显示定时值=时基×预置值PT。

由于定时器的计时间隔与程序的扫描周期并不同步,定时器可能在其时基(1ms、10ms、100ms)内任何时间启动,所以,未避免计时时间丢失,一般要求设置PT预置值必须大于最小需要的时间间隔。

西门子PLC指令

西门子PLC指令

西门子PLC指令西门子PLC指令PLC,即可编程控制器,是一种用于自动化控制的电子设备。

西门子PLC指令是指西门子公司生产的PLC编程指令集。

以下是一些常用的西门子PLC指令:1. LD指令:LD指令是一种逻辑指令,它用于将一个变量的值加载到一个寄存器中。

例如,LDI 100将数字100加载到寄存器中。

2. MOV指令:MOV指令是一种数据传输指令,它用于将一个变量的值从一个寄存器传输到另一个寄存器中。

例如,MOVD A,B将A寄存器的值传输到B寄存器中。

3. ADD指令:ADD指令是一种加法指令,它用于将两个变量相加并将结果存储到一个寄存器中。

例如,ADD A,B将A寄存器中的值加上B寄存器中的值并将结果存储到A寄存器中。

4. SUB指令:SUB指令是一种减法指令,它用于将一个变量从另一个变量中减去并将结果存储到一个寄存器中。

例如,SUB A,B将B寄存器中的值从A寄存器中的值中减去并将结果存储到A寄存器中。

5. AND指令:AND指令是一种逻辑指令,它用于将两个变量进行逻辑与操作,并将结果存储到一个寄存器中。

例如,AND A,B将A寄存器中的值与B寄存器中的值进行逻辑与操作,并将结果存储到A寄存器中。

6. OR指令:OR指令是一种逻辑指令,它用于将两个变量进行逻辑或操作,并将结果存储到一个寄存器中。

例如,OR A,B将A寄存器中的值与B寄存器中的值进行逻辑或操作,并将结果存储到A寄存器中。

7. JMP指令:JMP指令是一种跳转指令,它用于将执行的代码跳转到指定的地址。

例如,JMP 100将执行的代码跳转到地址100处。

8. CALL指令:CALL指令是一种调用指令,它用于将执行的代码跳转到指定的子程序。

例如,CALL 200将执行的代码跳转到子程序200处。

9. RET指令:RET指令是一种返回指令,它用于从子程序中返回到主程序。

例如,RET将程序从子程序返回到主程序。

以上是一些常用的西门子PLC指令,当然还有其他很多种指令,这些指令可以根据不同的应用场景进行组合,形成不同的PLC程序。

西门子PLC的基本指令程序设计

西门子PLC的基本指令程序设计

西门子PLC的基本指令程序设计西门子PLC的基本指令程序设计引言西门子PLC(可编程逻辑控制器)是一种广泛应用于自动化控制领域的设备,用于控制和监测各种工业过程。

PLC的指令程序设计是实现自动化控制的关键步骤之一。

本文将介绍西门子PLC的基本指令程序设计,包括常用的指令类型和编程技巧。

基本指令类型在PLC的指令程序设计中,有几种常用的基本指令类型,包括:1. 位指令:用于对IO口进行开关、置位或复位操作。

例如,使用M(内部器件)指令可以读取或写入PLC内部的位状态。

2. 数值指令:用于进行算术、逻辑和比较运算。

例如,使用ADD指令可以将两个数相加,并将结果保存到指定的存储器单元中。

3. 移位指令:用于对位操作进行移位或旋转。

例如,使用SHL指令可以将一个字数据向左移位,或使用ROL指令将一组位数据进行旋转。

4. 计时器指令:用于实现时间延迟功能。

例如,使用TON(定时器ON延时)指令可以通过设定延时时间来控制执行周期。

5. 计数器指令:用于实现计数功能。

例如,使用CTU(计数器发生)指令可以对输入脉冲进行计数,并根据设定的计数值执行特定操作。

编程技巧除了了解基本的指令类型,还有一些编程技巧可以帮助提高PLC的指令程序设计效率和可靠性:1. 模块化设计:将程序划分为多个子块,每个子块负责完成一个功能。

这样可以提高程序的可读性和可维护性,并方便进行程序的扩展和修改。

2. 使用标签:在程序中使用有意义的标签,可以提高程序的可读性和理解性。

标签可以作为跳转地质使用,也可以在异常处理时作为报警信息。

3. 错误处理:在编程过程中,要考虑可能出现的错误情况,并适当处理。

例如,在设置定时器时,应考虑定时器已经运行的情况,并进行相应的处理。

4. 调试技巧:在调试PLC程序时,可以使用在线监视器或仿真工具来实时监测程序的执行状态。

这样可以快速定位和解决问题,并提高程序的可靠性。

结论本文介绍了西门子PLC的基本指令程序设计,包括常用的指令类型和编程技巧。

西门子PLC指令表

西门子PLC指令表

字符串至双整 数
STD
整数至BCD IBCD
字符串至实数 STR
实数至ASCII RTA
十六进制至 ASCII
HTA
取整(舍去小 数)
TRUNC
整数至ASCII ITA
指令
描述
STL
整数相减
-I
双整数相减
-D
整数相除得商/ 余数
DIV
整数相除
/I
双整数相除
/D
字节递减
DECB
字递减
DECW
双字递减
用包含在地址IN中的字值写入N个连续字,从地址OUT开始。N的范围是1至255。置ENO = 0的 错误条件:间接地址或操作数超出范围。
在表格(TBL)中搜索与某些标准相符的数据。"表格查找"指令搜索表,从INDX指定的表 格条目开始,寻找与CMD定义的搜索标准相匹配的数据数值(PTN)。命令参数(CMD)被指定 一个1至4的数值,分别代表 =、<>、<, and >。如果找到匹配条目,则INDX指向表格中的匹 配条目。欲查找下一个匹配条目,再次激活"表格查找"指令之前必须在INDX上加1。如果未找 到匹配条目,INDX的数值等于条目计数。一个表格最多可有100个条目,数据项目(搜索区 域)从0排号至最大值99。置ENO = 0的条件:间接地址或操作数超出范围。必须用边缘触发 器指令激活。
指令
描述
STL
字左移
SLW
字右移
SRW
字循环左移 RLW 字循环右移 RRW
备注
备注
备注
对输入IN(16位)执行求补操作,并将结果载入内存位置OUT(16位)。设置 ENO = 0的错误条件:0006 间接地址 特殊内存位:SM1.0 操作结果等于零

西门子PLC基本逻辑指令及其编程

西门子PLC基本逻辑指令及其编程
优化程序结构,采用模块化编程方法,提高程序 的易读性和可维护性。
安全性考虑不足
在编写程序时,充分考虑程序的安全性,避免因 程序错误导致设备损坏或人身伤害。
THANKS
感谢观看
触点指令
常开触点
用于连接或断开控制电路。例如,当 输入信号为真时,常开触点闭合,控 制电路接通。
常闭触点
与常开触点相反,当输入信号为真时, 常闭触点断开,控制电路断开。
线圈指令
启动线圈
用于控制输出设备的启动。例如,当满 足一定条件时,启动线圈使电机开始运 转。
VS
停止线圈
用于控制输出设备的停止。例如,当满足 一定条件时,停止线圈使电机停止运转。
特点
PLC具有可靠性高、编程简单、扩展 性强、维护方便等特点,广泛应用于 各种工业控制领域。
PLC的历史与发展
历史
PLC最早由美国数字设备公司(DEC)于1960年代末发明,随着计算机技术和 微电子技术的发展,PLC的功能和性能不断提升。
发展
现代PLC已经从简单的逻辑控制发展成为具有复杂算法和高级功能的控制系统, 能够实现自动化生产线、智能制造等领域的控制需求。
、调试和维护。
04
合理使用系统功能块
利用系统功能块简化复杂程序的 编写,提高程序的可靠性和稳定
性。
注意事项
输入输出信号的规范
确保输入输出信号的规范化和标准化, 避免信号的误读和误判。
程序调试的充分性
在程序调试阶段,应充分测试程序的 各项功能,确保程序的正确性和稳定
性。
程序安全性的考虑
在编写程序时,应充分考虑程序的安 全性,避免因程序错误导致设备损坏 或人身伤害。
Step 7
西门子官方开发的PLC编程软件,支持多种PLC型号。

西门子plc指令含义大全详解

西门子plc指令含义大全详解

西门子plc指令含义大全详解指令(英文全称意思 ) :指令含义1、LD ( Load 装载 ) :动合触点2、LDN ( Load Not 不装载 ) :动断触点3、A ( And 与动合) : 用于动合触点串联4、AN ( And Not 与动断 ) :用于动断触点串联5、O ( Or 或动合 ) :用于动合触点并联6、ON ( Or Not 或动断 ) : 用于动断触点并联7、= ( Out 输出 ) :用于线圈输出8、OLD ( Or Lode):块或9、ALD ( And Lode): 块与10、LPS ( Logic Push ) :逻辑入栈11、LRD ( Logic Read ) :逻辑读栈12、LPP ( Logic Pop ) :逻辑出栈13、NOT ( not 并非 ) :非14、NOP ( No Operation Performed ) : 无操作15、AENO ( And ENO ) :指令盒输出端ENO相与16、S ( Set 放置 ) :置117、R ( Reset 重置,清零 ) :清零18、P ( Positive) :上升沿19、N ( Negative) :下降沿20、TON ( On_Delay Timer ) :接通延时定时器21、TONR ( Retentive On_Delay Timer ) : 有记忆接通延时定时器22、TOF ( Off_ Delay Timer ) :断开延时定时器23、CTU ( Count Up ) : 增计数器24、CTD ( Count Down ) : 减计数器25、CTDU ( Count Up/ Count Down ) :增减计数器26、ADD ( add 加 ) : 加注意//ADD_I (_ I 表示整数)ADD_DI( DI表示双字节整数)ADD-R (R 表示实数)它们都是加运算只是数的大小不同。

27、SUB ( Subtract 减去,减少) :减28、MUL ( Multiply ) : 乘29、DIV ( Divide ) : 除30、SQRT ( Square root ) : 求平方根31、LN ( Napierian Logarithm 自然对数 ) : 求自然对数32、EXP ( Exponential 指数的 ) :求指数33、INC_B ( Increment 增加 ) :增1//其中_B代表数据类型还有W(字节)、DW双字后面几个都是这样的。

西门子PLC指令集讲解

西门子PLC指令集讲解

“与”(A)、“与非”(AN)A:“与”指令适用于单个常开触点串联,完成逻辑“与”运算。

AN:“与非”指令适用于单个常闭触点串联,完成逻辑“与非”运算。

“与”(A)、“与非”(AN)指令由图可知,触点串联指令也用于串联逻辑行的开始。

CPU对逻辑行开始第1条语句如I1. 0的扫描称为首次扫描。

首次扫描的结果(I1.0的状态)被直接保存在RLO(逻辑操作结果位)中;在下一条语句,扫描触点Q5.3的状态,并将这次扫描的结果和RLO中保存的上一次结果相“与”产生的结果,再存入RLO中,如此依次进行。

在逻辑串结束处的RLO 可作进一步处理。

如赋值给Q4.2(=Q4.2)。

“或”(O)、“或非”(ON)O:“或”指令适用于单个常开触点并联,完成逻辑“或”的运算。

ON:“或非”指令适用于单个常闭触点并联,完成逻辑“或非”运算。

由图可知,触点并联指令也用于一个并联逻辑行的开始。

CPU对逻辑行开始第1条语句如I4.0的扫描称为首次扫描。

首次扫描的结果(I4.0的状态)被直接保存在RLO(逻辑操作结果位)中,并和下一条语句的扫描结果相“或”,产生新的结果再存入RLO中,如此一次进行。

在逻辑串结束处的RLO可用作进一步处理,如赋值给Q8.0(=Q8.0)。

此外,还有“异或”(X)、“异或非”(XN)、嵌套指令等等。

输出线圈输出线圈指令即逻辑串输出指令,又称赋值指令,该指令把RLO中的置赋给指定的位地址,当RLO变化时,相应位地址信号状态也变化 ,在LAD中,只能将输出指令放在触点电路的最右端,不能将输出指令单独放在一个空网络中。

下图是两个应用举例。

中间输出如图所示,中间输出指令被安置在逻辑串中间,用于将其前面的位逻辑操作结果(即本位置的RLO值)保存到指定地址,所以有时也称为“连接器”或“中间赋值元件”。

它和其他元件串联时,“连接器”指令和触点一样插入。

连接器不能直接连接母线,也不能放在逻辑串的结尾或分支结尾处。

置位指令、复位指令置位/复位指令也是一种输出指令。

西门子PLC的基本指令及程序设计

西门子PLC的基本指令及程序设计
*
4.逻辑出栈指令
LPP,逻辑弹出栈指令(分支结束或主控复位指令)。在梯形图中的分支结构中,用于将LPS指令生成一条新的母线进行恢复。
注意:使用LPP指令时,必须出现在LPS的后面,与LPS成对出现。
在语句表中指令LPP执行情况如下表所示。
*
5.逻辑读栈指令
在语句表中指令LRD 执行情况如下表所示。
*
图5-9 立即指令的用法
*
图5-10 时序图
上图5-10中,t为执行到输出点处程序所用的时间,Q0.0、Q0.1、Q0.2的输入逻辑是I0.0的普通常开触点。Q0.0为普通输出,在程序执行到它时,它的映像寄存器的状态会随着本扫描周期采集到的I0.0状态的改变而改变,而它的物理触点要等到本扫描周期的输出刷新阶段才改变;Q0.1、Q0.2为立即输出,在程序执行到它们时,它们的物理触点和输出映像寄存器同时改变;而对Q0.3来说,它的输入逻辑是I0.0的立即触点,所以在程序执行到它时,Q0.3的映像寄存器的状态会随着I0.0即时状态的改变而立即改变,而它的物理触点要等到本扫描周期的输出刷新阶段才改变。
01
04
02
03
接通延时定时器TON
接通延时定时器指令用于单一间隔的定时。上电周期或首次扫描,定时器位OFF,当前值为0。使能输入接通时,定时器位为OFF,当前值从0开始计数时间,当前值达到预设值时,定时器位ON,当前值连续计数到32767。使能输入断开,定时器自动复位,即定时器位OFF,当前值为0。
5.1.8 脉冲生成指令
脉冲生成指令为EU(Edge Up)、ED(Edge Down).下表为脉冲生成指令使用说明
*
EU指令对其之前的逻辑运算结果的上升沿产生一个宽度为一个扫描周期的脉冲,如图中的M0.0;ED指令对其逻辑运算结果的下降沿产生一个宽度为一个扫描周期的脉冲,如图中的M0.1。脉冲指令常用于启动及关断条件的判定以及配合功能指令完成一些逻辑控制任务。

西门子PLC_基本指令简介

西门子PLC_基本指令简介
X0 SUB_R EN DBW100 10 IN1 IN2 O DBW200 ENO (Q2.0)
EN:允许输入;ENO:允许输出;IN1:源1;IN2:源2:O:目标
例LD X0 SUB D100 K10 D200 OUT Y20
X0
SUB_R EN ENO (Q2.0)
DBW100 10
IN1 IN2 O DBW200
西门子 PLC 基本逻辑指令简介
本章要求
1、了解西门子PLC与三菱PLC基本指令的异同; 2、了解西门子PLC梯形图、指令表、方块图编程
的基本知识; 3、了解西门子PLC梯形图、指令表的互换。
三棱PLC与西门子PLC元件的对应关系关系: 1、输入继电器(X)X10、X11 I1.0、I1.1 2、输出继电器(Y)Y20、Y21 Q2.0、Q2.1 3、辅助继电器(M)M100、M101 存储器 M 4、定时器(T) T0、T1 T0、T1 5、计数器(C) C0、C1 C0、C1 6、数据寄存器(D) DB 数据块 L 本地数据 西门子的PLC的输入继电器I、输出继电器Q、存储器M、 数据块DB、本地数据L等的数据长度由下列辅助标识符确 定:X位、B(字节 8位)、 W(字 16位)、 D (双字 32位)。例如:DBW20、DBD50
S300 (1) LD (2) LDN (3) A (4) AN (5) O (6) ON (7) NOT (8) = (9) S (10)R
基本指令
FX-2N LD LD I AND ANI OR ORI INV OUT SET RST
方块图指令
方块图指令相当于FX-2N的功能指令。 例LD X0 SUB D100 K10 D200 OUT Y20

西门子PLC 基本指令简介共29页文档

西门子PLC 基本指令简介共29页文档
大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
西门子PLC 基本指令简介
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) LDN (3) A (4) AN (5 ) O (6) ON (7) NOT (8 ) = (9 ) S (10)R
基本指令
FX-2N LD LD I AND ANI OR ORI INV OUT SET RST
方块图指令
方块图指令相当于FX-2N的功能指令。 例LD X0 SUB D100 K10 D200 OUT Y20
X0 SUB_R EN DBW100 10 IN1 IN2 O DBW200 ENO (Q2.0)
EN:允许输入;ENO:允许输出;IN1:源1;IN2:源2:O:目标
例LD X0 SUB D100 K10 D200 OUT Y20
(1)立即触点指令 在每个标准触点指令的后面加“I”。指令
执行时,立即读取物理输入点的值,但是不 刷新对应映像寄存器的值。 这类指令包括:LDI、LDNI、AI、ANI、OI和 ONI。下面以LDI指令为例。 用法: LDI bit 例: LDI I0.2 注意:bit只能是I类型。
// //断电延时定时 //延时时间为 //30ms
图4.12
定时器特性
4.1.5 计数器指令
1. 概 述 2. 增计数器 3. 增减计数器 4. 减计数器 5. 应用举例
1. 概述
计数器用来累计输入脉冲的次数。计数
器也是由集成电路构成,是应用非常广 泛的编程元件,经常用来对产品进行计 数。 计数器指令有3种:增计数CTU、增减计 数CTUD和减计数CTD。 指令操作数有4方面:编号、预设值、脉 冲输入和复位输入。
LD O A NOT =
I0.0 I0.1 I0.2 Q0.3
// // // //
//取非,即输出反相
本程序对应的
功能框图如图 3.3 所示。在功 能框图中,常 闭触点的装入 和串并联用指 令盒的对应输 入信号端加圆 圈来表示。 程序执行的时 序图如图 3.4 所 示。
2. 正负跳变指令
指令操作数
1)编号: 2)预设值PT: 3)使能输入(只对LAD和
FBD):
LD
I0.0
//使能输入 //通电延时定时 //延时时间为 //40ms
TON T35, +4
LD TONR
I0.0 T2, +10
// //有记忆通电 //延时时间累计 //为 1000ms
LD TOF
I0.0 T36, +3
复杂逻辑指令
栈装载与指令 栈装载或指令 逻辑推入栈指令 逻辑弹出栈指令 逻辑读栈指令 装入堆栈指令
4.1.4
定时器指令
系统提供3种定时指令:TON(通电延时)、TONR(有
记忆通电延时)和TOF (断电延时) 。 精度等级: S7-200定时器的精度(时间增量/时间单位/分辨率) 有3 个等级:1ms、10ms和100ms,精度等级和定时 器号关系如表4.14所示。
(2)=I,立即输出指令 用立即指令访问输出点时,把栈顶值立
即复制到指令所指出的物理输出点,同 时,相应的输出映像寄存器的内容也被 刷新。 用法: =I bit 例: =I Q0.2 注意:bit只能是Q类型。
(3)SI,立即置位指令 用立即置位指令访问输出点时,从指令所指
5. 应用举例
1)循环计数。 以上三种类型的计数器如果在使用时,
将计数器位的常开触点作为复位输入信 号,则可以实现循环计数。 2)用计数器和定时器配合增加延时时间, 如图4.22所示。试分析以下程序中实际延 时为多长时间。
LD AN
I0.0 M0.0
//启动通电延时 //重新启动延时 //通电延时定时器 //时间设定为 3000s
LD A =
I0.0 I0.1 Q1.0
//装入常开触点 //与常开触点 //输出触点
LD A S R
I0.0 I0.1 Q0.0, 1 个触点置 1 Q0.2, 3 个触点置 0
// // //将 Q0.0 开始的//1 //将 Q0.2 开始的//3
置位复位
4. 立即指令
(1)立即触点指令 (2)=I,立即输出指令 (3)SI,立即置位指令 (4)RI,立即复位指令
LD O A = // // LDN I0.0 ON AN = // // LD O A NOT = I0.0 I0.1 I0.2 // Q0.3 // // // // // I0.1 I0.2 Q0.1 // // // I0.0 I0.1 I0.2 Q0.0 // // // //
图3.3 标准触点FBD例
出的位(bit)开始的N个(最多为128个) 物理输出点被立即置位,同时,相应的输出 映像寄存器的内容也被刷新。 用法: SI bit, N 例: SI Q0.0, 2 注意:bit只能是Q类型。SI和RI指令的操作 数类型及范围如表3.7所示。
(4)RI,立即复位指令 用立即复位指令访问输出点时,从指令所指出
的位(bit)开始的N个(最多为128个)物理 输出点被立即复位,同时,相应的输出映像寄 存器的内容也被刷新。 用法: RI bit, N 例: RI Q0.0, 1 应用举例: 图3.9为立即指令应用中的一段程序。

3.1.3
1. 2. 3. 4. 5. 6.
西门子 PLC 基本逻辑指令简介
本章要求
1、了解西门子PLC与三菱PLC基本指令的异同; 2、了解西门子PLC梯形图、指令表、方块图编程
的基本知识; 3、了解西门子PLC梯形图、指令表的互换。
三棱PLC与西门子PLC元件的对应关系关系: 1、输入继电器(X)X10、X11 I1.0、I1.1 2、输出继电器(Y)Y20、Y21 Q2.0、Q2.1 3、辅助继电器(M)M100、M101 存储器 M 4、定时器(T) T0、T1 T0、T1 5、计数器(C) C0、C1 C0、C1 6、数据寄存器(D) DB 数据块 L 本地数据 西门子的PLC的输入继电器I、输出继电器Q、存储器M、 数据块DB、本地数据L等的数据长度由下列辅助标识符确 定:X位、B(字节 8位)、 W(字 16位)、 D (双字 32位)。例如:DBW20、DBD50
(1)S,置位指令 将位存储区的指定位(位bit)开始的N个同类存储器位 置位。 用法: S bit, N 例: S Q0.0,1
(2)R,复位指令 将位存储区的指定位(位bit)开始的N个同类存储器位 复位。当用复位指令时,如果是对定时器T位或计数器C 位进行复位,则定时器位或计数器位被复位,同时,定 时器或计数器的当前值被清零。 用法: R bit, N 例: R Q0.2,3 应用举例:图3.7为置位和复位指令应用程序片断。
TON T50, +30000
LD =
T50 M0.0
//延时时间到 //关定时器,产生一个 //脉冲。
LD LDN I0.0
M0.0
//每隔 3000s 输入一个 //脉冲 //复位输入 //增计数器,累计脉冲 //的总数。
CTU C20, +10
结束
LD =
C30 Q0.0
//计数器触点 //输出触点
4. 减计数器
CTD,增减计数器指令。脉冲输入端CD
用于递减计数。首次扫描,定时器位 OFF,当前值为等于预设值PV。计数器 检测到CD输入的每个上升沿时,计数器 当前值减小1个单位,当前值减到0时, 计数器位ON。 复位输入有效或执行复位指令,计数器 自动复位,即计数器位OFF,当前值复 位为预设值,而不是0。 指令格式:CTD Cxxx,PV
图4.18 电机顺序起动
3. 增减计数器
CTUD,增减计数器指令。有两个脉冲输入端:CU输入端用于递增
计数,CD输入端用于递减计数。 指令格式:CTUD Cxxx,PV 例: CTUD C30,5 程序实例:如图4.20所示为增减计数器的程序片断和时序图。
LD LD LD CTUD I0.0 I0.1 I0.2 C30, +5 //增计数输入端 //减计数输入端 //复位输入端 //增减计数,设定 //脉冲数为 5。
LD =
M0.0 Q0.1
//起动信号 //起动电机 M1 //延时 2000ms //后起动电机 M2
TON T40, +200
LD =
T40 Q0.2
// //起动电机 M2 //延时 3000ms //后起动电机 M3
TON T41, +300
LD =
T41 Q0.3
// //起动电机 M3
绍基本指令在梯 形图、指令表和 功能块图3种语 言编程中的应用, 仔细比较不同编 程工具的区别与 联系。 其梯形图和指令 表程序结构如图 所示。
//如果本梯级中将 I0.1 的触点改 //为 Q0.0 的常开触点,则成为电 //机起动停止控制环节的梯形图。 LDN I0.0 ON AN = I0.1 I0.2 Q0.1 //装入常闭触点 //或常闭触点 //与常闭触点 //
X0
SUB_R EN ENO (Q2.0)
DBW100 10
IN1 IN2 O DBW200
EN:允许输入;ENO:允许输出;IN1:源1;IN2:源2:O:目标
程序实例: 本程序段用以介
LD O A =
I0.0 I0.1 I0.2 Q0.0
//装入常开触点 //或常开触点 //与常开触点 //输出触点
相关文档
最新文档