初一年级一元一次方程练习题及答案2019.doc

合集下载

人教版七年级数学上册第3章《一元一次方程》选择题专练含答案)

人教版七年级数学上册第3章《一元一次方程》选择题专练含答案)

人教版七年级数学上册第3章《一元一次方程》选择题专练1.(2019秋•越秀区期末)某商店以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,那么商店卖出这两件衣服总的是( ) A .亏损10元 B .不赢不亏 C .亏损16元 D .盈利10元 2.(2019秋•福田区校级期末)一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x 天,则所列方程为( ) A .x 5+x +18=34B .x 5+x −18=34C .x 5−x +18=34D .x 5−x −18=343.(2019秋•成华区期末)欣欣服装店某天用相同的价格a (a ≥0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( ) A .亏损 B .盈利 C .不盈不亏 D .与进价有关 4.(2019秋•惠来县期末)若代数式5﹣4x 与2x −12的值互为相反数,则x 的值是( )A .32B .23C .1D .25.(2019秋•黄埔区期末)用10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,若设大水杯的单价为x 元,下列所列的方程正确的是( ) A .10x =15(x +5) B .10x =15(x ﹣5) C .15x =10(x +5) D .15x =10(x ﹣5) 6.(2019秋•揭西县期末)某种商品原先的利润率为20%,为了促销,现降价10元销售,此时利润率下降为10%,那么这种商品的进价是( ) A .100 B .110 C .120 D .130 7.(2019秋•黄埔区期末)下列变形正确的是( ) A .若x ﹣3=6,则x =6﹣3 B .若﹣3x =﹣2,则x =23 C .若3x ﹣2=x +1,则3x ﹣x =1﹣2D .若13x =3,则x =18.(2019秋•封开县期末)解方程5x ﹣3=2x +2,移项正确的是( ) A .5x ﹣2x =3+2 B .5x +2x =3+2 C .5x ﹣2x =2﹣3 D .5x +2x =2﹣3 9.(2019秋•斗门区期末)解方程x +12−2x −13=1时,去分母得( ) A .2(x +1)﹣3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=610.(2019秋•白云区期末)已知关于x 的方程x2xx ﹣2=1的解为3,则下列判断中正确的是( )A .2a >bB .2a <bC .2a =bD .不能确定 11.(2019秋•白云区期末)下列关于x 的方程,解为x =0的是( ) A .3x +4=2x ﹣4B .2x =xC .x +4﹣7=3D .x +12=−1212.(2019秋•白云区期末)一件工程,甲单独做需12天完成,乙单独做需8天完成,现先由甲、乙合作2天后,乙有其他任务,剩下的工程由甲单独完成,则甲还需要( )天才能完成该工程. A .634B .713C .6D .713.(2019秋•南山区期末)已知关于x 的一元一次方程12020x +3=2x +b 的解为x =﹣3,那么关于y 的一元一次方程12020(y +1)+3=2(y +1)+b 的解为( )A .y =1B .y =﹣1C .y =﹣3D .y =﹣4 14.(2019秋•南山区期末)小明在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是( )A .B .C .D .15.(2019秋•五华县期末)下列变形中,不正确的是( ) A .若x =y ,则x +3=y +3 B .若﹣2x =﹣2y ,则x =yC .若x x=x x,则x =y D .若x =y ,则x x=x x16.(2019秋•潮阳区期末)某中学七年级(5)班共有学生47人,当该班少两名男生时,男生的人数恰好为女生人数的一半.设该班有男生x 人,则下列方程中正确的是( ) A .2 (x +2)+x =47 B .2 (x ﹣2)+x =47 C .x ﹣2+2x =47 D .x +2+2x =47 17.(2019秋•南沙区期末)小南在解关于x 的一元一次方程x 2−x =13时,由于粗心大意,去分母时出现漏乘错误,把原方程化为3x ﹣m =2,并计算得解为x =1.则原方程正确的解为( )A .x =83B .x =1C .x =16D .x =−4318.(2019秋•花都区期末)下列解方程过程中,变形正确的是( ) A .由2x ﹣1=3得2x =3﹣1B .由2x ﹣3(x +4)=5得2x ﹣3x ﹣4=5C .由3x =2得x =32D .由x 2+x −13=1得3x +2x ﹣2=619.(2019秋•顺德区期末)下列变形不正确的是( ) A .若x =y ,则x +3=y +3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y 20.(2019秋•高明区期末)关于x 的方程3(x +1)﹣6m =0的解是﹣2,则m 的值是( ) A .−12B .12C .﹣2D .221.(2019秋•高明区期末)下列说法错误的是( ) A .若a =b ,则a ﹣2=b ﹣2 B .若ac =bc ,则a =b C .若a =b ,则﹣3a =﹣3bD .若x 2=x 2,则a =b22.(2019秋•东莞市期末)下列方程中是一元一次方程的是( ) A .x +3=0 B .x 2﹣3x =2 C .x +2y =7 D .x ﹣2 23.(2019秋•荔湾区期末)某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .(1+30%)x •90%=x +85 B .(1+30%)x •90%=x ﹣85 C .(1+30%x )•90%=x ﹣85 D .(1+30%x )•90%=x +85 24.(2019秋•花都区期末)如图,学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或300条桌腿,1块桌面需要配3条桌腿,为使每天生产的桌面和桌腿刚好配套,设安排x 名工人生产桌面,则下面所列方程正确的是( )A .20x =3×300(24﹣x )B .300x =3×20(24﹣x )C .3×20x =300(24﹣x )D .20x =300(24﹣x ) 25.(2019秋•宝安区期末)“喜茶”店中的A 种奶茶比B 种奶茶每杯贵5元,小颖买了3杯A 种奶茶、5杯B 种奶茶,一共花了135元,问A 种奶茶、B 种奶茶每杯分别的多少元?若设A 种奶茶x 元,则下列方程中正确的是( ) A .5x +3(x ﹣5)=135 B .5(x ﹣5)+3x =135 C .5x +3(x +5)=135 D .5(x +5)+3x =135 26.(2019秋•大埔县期末)关于x 的方程x +1=2b 的解是5,则b =( ) A .2 B .﹣2 C .3 D .﹣3 27.(2019秋•南海区期末)某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价是( ) A .36元 B .48元 C .50元 D .54元 28.(2019秋•龙华区期末)天虹商场将某品牌的羽绒服在进价的基础上提高60%定价销售,发现销量不好,于是在“元旦”期间将该品牌的羽绒服打六折出售,那么,在“元旦”期间天虹商场每售出一件这样的羽绒服,将会( ) A .不亏不赚 B .赚了4% C .亏了4% D .赚了36% 29.(2019秋•新会区期末)下列方程变形中,正确的是( ) A .方程3x ﹣2=2x +1,移项,得3x ﹣2x =﹣1+2 B .方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x ﹣1 C .x +13=x 4−1,去分母,得4(x +1)=3x ﹣1D .方程−25x =4,未知数系数化为1,得x =﹣1030.(2019秋•罗湖区期末)某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( ) A .不赚不亏 B .赚10元 C .赔20元 D .赚20元 31.(2019秋•宝安区期末)下面是一个被墨水污染过的方程:3x ﹣2=x ﹣,答案显示此方程的解是x =2,被墨水遮盖的是一个常数,则这个常数是( ) A .2B .﹣2C .−12D .1232.(2019秋•中山市期末)某电商销售某款羽绒服,标价为300元,若按标价的八折销售,仍可获利60元.设这款羽绒服的进价为x 元,根据题意可列方程为( ) A .300×0.8﹣x =60 B .300﹣0.8x =60 C .300×0.2﹣x =60 D .300﹣0.2x =60 33.(2019秋•中山市期末)若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2 B .4 C .﹣2 D .﹣4 34.(2019秋•香洲区期末)下列各等式的变形中,等式的性质运用正确的是( ) A .由x 2=0,得x =2 B .由x ﹣1=4,得x =5 C .由2a =3,得a =23D .由a =b ,得x x=x x35.(2019秋•东莞市期末)某汽车队运送一批货物,若每辆汽车装4吨,则还剩下8吨装不下;若每辆汽车装4.5吨,则恰好装完.该车队运送货物的汽车共有多少辆?设该车队运送货物的汽车共有x 辆,则可列方程为( ) A .4x +8=4.5x B .4x ﹣8=4.5x C .4x =4.5x +8 D .4(x +8)=4.5x 36.(2019秋•中山市期末)下列方程的变形正确的有( ) A .2x =1,变形为x =2 B .x +5=3﹣3x ,变形为4x =2 C .23x ﹣1=2,变形为2x ﹣3=2D .3x ﹣6=0,变形为3x =6 37.(2019秋•南海区期末)根据等式的基本性质,下列结论正确的是( ) A .若x =y ,则x x=xxB .若2x =y ,则6x =yC .若ax =2,则x =x2D .若x =y ,则x ﹣z =y ﹣z38.(2019秋•罗湖区校级期末)下列方程:①y =x ﹣7;①2x 2﹣x =6;①23m ﹣5=m ;①2x −1=1;①x −32=1,其中是一元一次方程的有( ) A .2个 B .3个 C .4个 D .以上答案都不对 39.(2019秋•番禺区期末)如果x =y ,那么根据等式的性质下列变形不正确的是( ) A .x +2=y +2B .3x =3yC .5﹣x =y ﹣5D .−x 3=−x 340.(2019秋•东莞市期末)我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A .x 3+3(100﹣x )=100B .x 3−3(100﹣x )=100C .3x −100−x3=100 D .3x +100−x3=100参考答案与试题解析一.选择题(共40小题) 1.【解答】解:设盈利的衣服的进价为x 元,亏损的衣服的进价为y 元, 依题意,得:120﹣x =20%x ,120﹣y =﹣20%y , 解得:x =100,y =150, ∴120﹣x +120﹣y =﹣10. 故选:A . 2.【解答】解:设甲一共做了x 天, 由题意得:x 5+x −18=34,故选:B . 3.【解答】解:设第一件衣服的进价为x 元,第二件衣服的进价为y 元,由题意得: (1+20%)x =a ,(1﹣20%)y =a ∴(1+20%)x =(1﹣20%)y 整理得:3x =2y ∴y =1.5x∴该服装店卖出这两件服装的盈利情况是: 20%x ﹣20%y =0.2x ﹣0.2y ×1.5=﹣0.1x <0 即赔了0.1x 元. 故选:A . 4.【解答】解:根据题意得:5﹣4x +2x −12=0, 去分母得:10﹣8x +2x ﹣1=0, 移项合并得:﹣6x =﹣9, 解得:x =32,故选:A . 5.【解答】解:设大水杯的单价为x 元,则小水杯的单价为(x ﹣5)元, 由题意得:10x =15(x ﹣5), 故选:B . 6.【解答】解:设这件产品的进价为x 元, x (1+20%)﹣10=x [1+(20%﹣10%)], 解得,x =100即这件商品的进价为100元, 故选:A . 7.【解答】解:A 、等式的两边都加上3,得x =6+3,原变形错误,故A 不符合题意; B 、等式两边同时除以﹣3,得x =23,原变形正确,故B 符合题意;C 、由3x ﹣2=x +1,得3x ﹣x =1+2,原变形错误,故C 不符合题意;D 、等式的两边同时乘以3,得x =9,原变形错误,故D 不符合题意; 故选:B . 8.【解答】解:移项得:5x ﹣2x =2+3, 故选:A . 9.【解答】解:方程两边同时乘以6,得:3(x +1)﹣2(2x ﹣1)=6, 故选:C . 10.【解答】解:把x =3代入方程得:3x 2x−2=1,去分母得:3b ﹣4a =2a ,即6a =3b ,整理得:2a =b , 故选:C . 11.【解答】解:∵x =0时,左边=3×0+4=4,右边=2×0﹣4=﹣4,4≠﹣4, ∴x =0不是3x +4=2x ﹣4的解.∵x =0时,左边=2×0=0,右边=0,左边=右边, ∴x =0是2x =x 的解.∵x =0时,左边=0+4﹣7=﹣3,右边=3,﹣3≠3, ∴x =0不是x +4﹣7=3的解.∵x =0时,左边=0+12=12,右边=−12,12≠−12,∴x =0不是x +12=−12的解.故选:B . 12.【解答】解:设甲还需要x 天才能完成该工程, (112+18)×2+112x =1 解得:x =7, 故选:D .13.【解答】解:∵关于x 的一元一次方程12020x +3=2x +b 的解为x =﹣3,∴关于y 的一元一次方程12020(y +1)+3=2(y +1)+b 的解为y +1=﹣3,解得:y =﹣4, 故选:D . 14.【解答】解:A 、设最小的数是x ,则x +(x +1)+(x +8)=39,解得x =10,故本选项不符合题意; B 、设最小的数是x ,则x +(x +8)+(x +14)=39,解得x =173,故本选项符合题意; C 、设最小的数是x ,则x +(x +8)+(x +16)=39,解得x =5,故本选项不符合题意; D 、设最小的数是x ,则x +(x +1)+(x +2)=39,解得:x =12,故本选项不符合题意. 故选:B . 15.【解答】解:(D )当m =0时,x x与xx无意义,故D 选项错误,故选:D . 16.【解答】解:设该班有男生x 人,则女生有2(x ﹣2)人, 依题意,得:2(x ﹣2)+x =47. 故选:B . 17.【解答】解:由题意可知:x =1是方程3x ﹣m =2的解, ∴3﹣m =2, ∴m =1, ∴原方程为x 2−1=13,∴x =83,故选:A . 18.【解答】解:2x ﹣1=3变形得2x =1+3; 2x ﹣3(x +4)=5变形得2x ﹣3x ﹣12=5;3x =2变形得x =23;故选:D . 19.【解答】解:A 、两边都加上3,等式仍成立,故本选项不符合题意. B 、两边都减去3,等式仍成立,故本选项不符合题意. C 、两边都乘以﹣3,等式仍成立,故本选项不符合题意. D 、两边开方,则x =y 或x =﹣y ,故本选项符合题意. 故选:D . 20.【解答】解:把x =﹣2代入方程3(x +1)﹣6m =0得:﹣3﹣6m =0,解得:m =−12,故选:A . 21.【解答】解:A .根据等式性质1,等式两边同时减去一个数,等式成立. 所以原说法正确,A 选项不符合题意;B .根据等式性质2,等式两边同时除以一个不为0的数,等式成立,这里c 可能为0,所以等式不成立. 所以原说法不正确,B 选项符合题意;C .根据等式性质2,等式两边同时乘以一个数或式,等式成立. 所以原说法正确,C 选项不符合题意;D .根据等式性质2,等式两边同时乘以一个数或式,等式成立. 所以原说法正确,D 选项不符合题意. 故选:B . 22.【解答】解:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式. 故选:A . 23.【解答】解:设这种商品每件的成本是x 元, 根据题意,可得到的方程是:(1+30%)x •90%=x +85. 故选:A . 24.【解答】解:设安排x 名工人生产桌子面,则安排(24﹣x )名工人生产桌子腿, 依题意,得:3×20x =300(24﹣x ). 故选:C . 25.【解答】解:若设A 种奶茶x 元,则B 种奶茶(x ﹣5)元, 根据题意,得5(x ﹣5)+3x =135. 故选:B . 26.【解答】解:∵关于x 的方程x +1=2b 的解是5, ∴5+1=2b , ∴2b =6, 解得b =3. 故选:C . 27.【解答】解:设该商品的进货价是x 元, 依题意,得:60﹣x =20%x , 解得:x =50. 故选:C . 28.【解答】解:设一件羽绒服的进价为a 元,则在进价的基础上提高60%定价为:(1+60%)a =1.6a , 在“元旦”期间将该品牌的羽绒服打六折出售,售价为1.6a ×0.6=0.96a , 0.96a ﹣a =﹣0.04a ,∴在“元旦”期间天虹商场每售出一件这样的羽绒服,将会亏了4%; 故选:C . 29.【解答】解:A 、方程3x ﹣2=2x +1,移项,得3x ﹣2x =1+2,不符合题意; B 、方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x +5,不符合题意; C 、x +13=x 4−1,去分母,得4(x +1)=3x ﹣12,不符合题意;D 、方程−25x =4,未知数系数化为1,得x =﹣10,符合题意,故选:D . 30.【解答】解:设在这次买卖中原价都是x 元, 则可列方程:(1+25%)x =150, 解得:x =120,比较可知,第一件赚了30元 第二件可列方程:(1﹣25%)x =150 解得:x =200,比较可知亏了50元,两件相比则一共亏了20元.31.【解答】解:设这个常数为a ,即3x ﹣2=x ﹣a , 把x =2代入方程得:2﹣a =4, 解得:a =﹣2, 故选:B . 32.【解答】解:设这款羽绒服的进价为x 元, 依题意,得:300×0.8﹣x =60. 故选:A . 33.【解答】解:根据题意得:3x ﹣9﹣3=0, 解得:x =4, 故选:B . 34.【解答】解:由x 2=0,得x =0,故选项A 错误;由x ﹣1=4,得x =5,故选项B 正确; 由2a =3,得a =32,故选项C 错误; 由a =b ,得x x=x x(c ≠0),故选项D 错误;故选:B . 35.【解答】解:设这个车队有x 辆车, 由题意得,4x +8=4.5x . 故选:A . 36.【解答】解:∵2x =1,变形为x =0.5, ∴选项A 不符合题意;∵x +5=3﹣3x ,变形为4x =﹣2, ∴选项B 不符合题意; ∵23x ﹣1=2,变形为2x ﹣3=6, ∴选项C 不符合题意;∵3x ﹣6=0,变形为3x =6, ∴选项D 符合题意. 故选:D .37.【解答】解:A 、当z =0时,等式x x=x x不成立,故本选项错误.B 、2x =y 的两边同时乘以3,等式才成立,即6x =3y ,故本选项错误.C 、ax =2的两边同时除以a ,等式仍成立,即x =2x ,故本选项错误.D 、x =y 的两边同时减去z ,等式仍成立,即x ﹣z =y ﹣z ,故本选项正确. 故选:D . 38.【解答】解:①不符合一元一次方程的定义,①不是一元一次方程,①属于一元二次方程,不符合一元一次方程的定义,①不是一元一次方程, ①符合一元一次方程的定义,①是一元一次方程,①属于分式方程,不符合一元一次方程的定义,①不是一元一次方程, ①符合一元一次方程的定义,①是一元一次方程, 即是一元一次方程的是①①,共2个, 故选:A . 39.【解答】解:A 、x +2=y +2,正确; B 、3x =3y ,正确;C 、5﹣x =5﹣y ,错误;D 、−x3=−x3,正确;40.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+100−x3=100.故选:D.。

(完整版)初一数学一元一次方程练习题(含答案)

(完整版)初一数学一元一次方程练习题(含答案)

初一数学一元一次方程练习题(含答案)一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是( )A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20?5%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。

A、B、C、D、6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.56千米1小时还有3一条山路,某人从山下往山顶走7.才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为( )A.约700元B.约773元C.约736元D.约865元9.下午2点x分,钟面上的时针与分针成110度的角,则有()A. B. C. D.10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11.若x=-9是方程的解,则m= 。

12.若与是同类项,则m= ,n= 。

的代数y用含,y=得y的代数式表示x用含方程13.式表示x得x=。

七年级数学(上)第4章《一元一次方程》单元练习(含解析)

七年级数学(上)第4章《一元一次方程》单元练习(含解析)

七年级数学(上)第4章《一元一次方程》单元练习一.选择题(共10小题)1.(2019•襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=2.(2019•福建)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=346853.(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30 B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72 D.3x+2(30﹣x)=724.(2019•南充)关于x的一元一次方程2xa﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.4 5.(2018•广元)已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1 B.1 C.﹣2 D.﹣3 6.(2019•阜新)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元7.(2019•荆门)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关8.(2018•无锡)蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A.10厘米/小时B.105厘米/小时C.10.5厘米/小时D.不能确定9.(2018•通辽)一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏10.(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s 内,两人相遇的次数为()A.5 B.4 C.3 D.2二.填空题(共8小题)11.(2019•呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为.12.(2019•南通)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为.13.(2019•济南)代数式与代数式3﹣2x的和为4,则x=.14.(2019•湘西州)若关于x的方程3x﹣kx+2=0的解为2,则k的值为.15.(2019•成都)若m+1与﹣2互为相反数,则m的值为.16.(2019•毕节市)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.17.(2019•株洲)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了12分钟,小轿车追上了货车,又过了8分钟,小轿车追上了客车,再过t分钟,货车追上了客车,则t=.三.解答题(共12小题)19.解方程:10﹣4(x﹣3)=2x﹣2.20.解一元一次方程:.21.(2018•镇江)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?22.(2018•长春)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.23.(2019•安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?24.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或者裤子3条.一件上衣和一条裤子为一套,库存这种布料600m.如果用这批布料做上衣和裤子恰好配套,求制作上衣所用的布料的米数.甲同学所列方程为1.5x+x=600,乙同学所列方程为=600﹣y(1)甲同学所列方程中的x表示;乙同学所列方程中的y表示.(2)甲、乙两名同学选用未知数的方法分别是法、法;(3)任选甲、乙两同学的其中一个方法解答这个题目.25.一项工程,甲单独做要10天,乙单独做要15天,丙单独做要20天.三人合做期间,甲因故请假,工程6天完工,请问甲请了几天假?26.如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有个小球(用a 表示);(3)求第三次变化后中间小桶中有多少个小球?27.某农产品公司以64000元的成本收购了某种农产品80吨,目前可以1200元/吨的价格直接售出.而该公司对这批农产品有以下两种处理方式可供选择:方式一:公司可将部分农产品直接以1200元/吨的价格售出,剩下的全部加工成半成品出售(加工成本忽略不计),每吨该农产品可以加工得到0.8吨的半成品,每吨半成品的售价为2500元.方式二:公司将该批农产品全部储藏起来,这样每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.(1)若该公司选取方式一处理该批农产品,最终获得了75%的利润率,求该公司直接销售了多少吨农产品?(2)若该公司选取方式二处理该批农产品,最终获利122000元,求该批农产品储藏了多少个星期才出售?28.甲、乙两家商场平时以同样价格出售相同的商品.“五一”节期间两家商场都让利酬宾,在甲商场按累计购物金额的85%收费;在乙商场累计购物金额超过400元后,超出400元的部分按75%收费,设小红在同一商场累计购物金额为x元,其中x>400.(Ⅰ)根据题意,填写如表(单位:元):累计购物实际花费500 700 (x)在甲商场425 …在乙商场625 …(Ⅱ)当x取何值时,小红在甲、乙两商场的实际花费相同?(Ⅲ)“五一”节期间,小红如何选择这两家商场去购物更省钱?29.某景点的门票价格如下边表格:某校七年级(1)、(2)两班共104人计划去游览该景点,其中(1)班人数少于50人.若两班都以班为单位单独购票,则一共支付1240元购票人数/人1~50 51~100 100以上每人门票价/元13 11 9 (1)两个班各有多少名学生?(2)如果两个班级联合起来,作为一个团体购票,可以省多少钱?(3)如果七年级一班单独组织去博物馆参观,你认为如何购票最省钱?30.某游泳馆每年夏季推出两种游泳付费方式:方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费4元:方式二:不购买会员证,每次游泳付费10元.设小明计划今年夏季游泳次数为x(x为正整数)(1)根据题意,填写如表:游泳次数10 15 20 (x)140 160 ……方式一的总费用(元)100 150 ……方式二的总费用(元)(2)若小明计划今年夏季游泳的总费用为260元,选择哪种付费方式,他游泳的次数比较多?(3)小明选择哪种付费方式更合算?并说明理由.答案与解析一.选择题(共10小题)1.(2019•襄阳)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.5x﹣45=7x﹣3 B.5x+45=7x+3 C.=D.=【分析】设合伙人数为x人,根据羊的总价钱不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设合伙人数为x人,依题意,得:5x+45=7x+3.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.2.(2019•福建)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+x+x=34685【分析】设他第一天读x个字,根据题意列出方程解答即可.【解答】解:设他第一天读x个字,根据题意可得:x+2x+4x=34685,故选:A.【点评】此题考查由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3.(2019•杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30 B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72 D.3x+2(30﹣x)=72【分析】直接根据题意表示出女生人数,进而利用30位学生种树72棵,得出等式求出答案.【解答】解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出男女生的植树棵数是解题关键.4.(2019•南充)关于x的一元一次方程2xa﹣2+m=4的解为x=1,则a+m的值为()A.9 B.8 C.5 D.4【分析】根据一元一次方程的概念和其解的概念解答即可.【解答】解:因为关于x的一元一次方程2xa﹣2+m=4的解为x=1,可得:a﹣2=1,2+m=4,解得:a=3,m=2,所以a+m=3+2=5,故选:C.【点评】此题考查一元一次方程的定义,关键是根据一元一次方程的概念和其解的概念解答.5.(2018•广元)已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1 B.1 C.﹣2 D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.6.(2019•阜新)某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元【分析】设这种衬衫的原价是x元,根据衬衫的成本不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x﹣20,解得:x=200.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(2019•荆门)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关【分析】设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,得出x(1+20%)=y(1﹣20%),整理得:3x=2y,则两件衣服总的盈亏就可求出.【解答】解:设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,∴x(1+20%)=y(1﹣20%),整理得:3x=2y,该服装店卖出这两件服装的盈利情况为:0.2x﹣0.2y=0.2x﹣0.3x=﹣0.1x,即赔了0.1x元,故选:B.【点评】本题考查了一元一次方程的应用,解决本题的关键是根据题意,列方程求出两件衣服的进价故选,进而求出总盈亏.8.(2018•无锡)蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A.10厘米/小时B.105厘米/小时C.10.5厘米/小时D.不能确定【分析】函数中表达式由自变量和因变量两个因素组成,这个是一次函数,图象为一条直线,可以任选符合条件的两点求出蚊香燃烧的速度.【解答】解:设时间t1时蚊香长度为y1,时间t2时蚊香长度为y2∴y1=105﹣10t1,y2=105﹣10t2则:速度=(y1﹣y2)÷(t1﹣t2)=[(105﹣10t1)﹣(105﹣10t2)]÷(t1﹣t2)=﹣10∴蚊香燃烧的速度是10厘米/小时故选:A.【点评】本题考查了函数的解析式和图象的结合,另外图象是由点来组成.9.(2018•通辽)一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏【分析】设盈利的商品的进价为x元,亏损的商品的进价为y元,根据销售收入﹣进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再由两件商品的销售收入﹣成本=利润,即可得出商店卖这两件商品总的亏损20元.【解答】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150﹣x=25%x,150﹣y=﹣25%y,解得:x=120,y=200,∴150+150﹣120﹣200=﹣20(元).故选:A.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.(2018•台州)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s 内,两人相遇的次数为()A.5 B.4 C.3 D.2【分析】可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.【解答】解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.【点评】考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.二.填空题(共8小题)11.(2019•呼和浩特)关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为x=2或x=﹣2或x=﹣3.【分析】利用一元一次方程的定义判断即可.【解答】解:∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,∴当m=1时,方程为x﹣2=0,解得:x=2;当m=0时,方程为﹣x﹣2=0,解得:x=﹣2;当2m﹣1=0,即m=时,方程为﹣x﹣2=0,解得:x=﹣3,故答案为:x=2或x=﹣2或x=﹣3.【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.12.(2019•南通)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为9x﹣11=6x+16.【分析】设有x个人共同买鸡,根据买鸡需要的总钱数不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.13.(2019•济南)代数式与代数式3﹣2x的和为4,则x=﹣1.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:+3﹣2x=4,去分母得:2x﹣1+9﹣6x=12,移项合并得:﹣4x=4,解得:x=﹣1,故答案为:﹣1【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.(2019•湘西州)若关于x的方程3x﹣kx+2=0的解为2,则k的值为4.【分析】直接把x=2代入进而得出答案.【解答】解:∵关于x的方程3x﹣kx+2=0的解为2,∴3×2﹣2k+2=0,解得:k=4.故答案为:4.【点评】此题主要考查了一元一次方程的解,正确把已知数据代入是解题关键.15.(2019•成都)若m+1与﹣2互为相反数,则m的值为1.【分析】根据“m+1与﹣2互为相反数”,得到关于m的一元一次方程,解之即可.【解答】解:根据题意得:m+1﹣2=0,解得:m=1,故答案为:1.【点评】本题考查了解一元一次方程和相反数,正确掌握相反数的定义和一元一次方程的解法是解题的关键.16.(2019•毕节市)某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是2000元.【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【解答】解:设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为2000【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解答.17.(2019•株洲)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走250步才能追到速度慢的人.【分析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了12分钟,小轿车追上了货车,又过了8分钟,小轿车追上了客车,再过t分钟,货车追上了客车,则t=40.【分析】设在某一时刻,货车与客车、小轿车的距离均为s千米,小轿车、货车、客车的速度分别为a,b,c(千米/分),并设货车经x分钟追上客车,列出有关多元一次方程组求得x的值即可.【解答】解:设在某一时刻,货车与客车、小轿车的距离均为s千米,小轿车、货车、客车的速度分别为a,b,c(千米/分),并设货车经x分钟追上客车,由题意得,∴60(b﹣c)=s,∴x=60.故t=60﹣12﹣8=40(分).答:再过40分钟,货车追上了客车.故答案为40.【点评】此题主要考查了多元一次方程组的应用,解题的关键是正确理解题意,准确寻找等量关系,然后列出方程组解决问题.三.解答题(共12小题)19.解方程:10﹣4(x﹣3)=2x﹣2.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:10﹣4x+12=2x﹣2,移项合并得:﹣6x=﹣24,解得:x=4.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.解一元一次方程:.【分析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:方程两边同时乘以6得:3x﹣2(2x﹣1)=6,去括号得:3x﹣4x+2=6,移项得:3x﹣4x=6﹣2,合并同类项得:﹣x=4,系数化为1得:x=﹣4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.(2018•镇江)小李读一本名著,星期六读了36页,第二天读了剩余部分的,这两天共读了整本书的,这本名著共有多少页?【分析】设这本名著共有x页,根据头两天读的页数是整本书的,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设这本名著共有x页,根据题意得:36+(x﹣36)=x,解得:x=216.答:这本名著共有216页.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.22.(2018•长春)学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.【分析】(1)设每套课桌椅的成本为x元,根据利润=销售收入﹣成本结合商店获得的利润不变,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单套利润×销售数量,即可求出结论.【解答】解:(1)设每套课桌椅的成本为x元,根据题意得:60×100﹣60x=72×(100﹣3)﹣72x,解得:x=82.答:每套课桌椅的成本为82元.(2)60×(100﹣82)=1080(元).答:商店获得的利润为1080元.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据数量关系,列式计算.23.(2019•安徽)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后求工作时间.【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米,由题意,得2x+(x+x﹣2)=26,解得x=7,所以乙工程队每天掘进5米,(天)答:甲乙两个工程队还需联合工作10天.【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.24.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或者裤子3条.一件上衣和一条裤子为一套,库存这种布料600m.如果用这批布料做上衣和裤子恰好配套,求制作上衣所用的布料的米数.甲同学所列方程为1.5x+x=600,乙同学所列方程为=600﹣y(1)甲同学所列方程中的x表示制作上衣的件数或制作裤子的件数;乙同学所列方程中的y表示制作上衣所用布料的米数.(2)甲、乙两名同学选用未知数的方法分别是间接设元法、直接设元法;(3)任选甲、乙两同学的其中一个方法解答这个题目.【分析】(1)根据“3m长的某种布料可做上衣2件或者裤子3条”,得到分别制作1件上衣和1条裤子所需布料的米数,结合甲乙同学所列方程,即可得到答案,(2)根据间接设元法和直接设元法的定义,即可得到答案,(3)选乙同学的方法,根据一元一次方程的解题方法,解之即可.【解答】解:(1)根据题意得;制作1件上衣所需布料的米数为:3÷2=1.5m,制作1条裤子所需布料的米数为:3÷3=1m,设制作上衣的件数或制作裤子的件数为x,则1.5x+x=600,设制作上衣所用布料的米数为y,则=600﹣y,故答案为:制作上衣的件数或制作裤子的件数,制作上衣所用布料的米数,(2)甲同学选用未知数的方法是间接设元法,乙同学选用未知数的方法是直接设元法,故答案为:间接设元,直接设元,(3)选乙同学的方法:=600﹣y,解得:y=360,答:制作上衣所用的布料的米数为360m.【点评】本题考查了一元一次方程的应用,正确掌握间接设元法,直接设元法的定义,找出等量关系,列出一元一次方程是解题的关键.25.一项工程,甲单独做要10天,乙单独做要15天,丙单独做要20天.三人合做期间,甲因故请假,工程6天完工,请问甲请了几天假?【分析】设甲请了x天假,根据三人的总工作量是“1”列出方程并解答.【解答】解:设甲请了x天假,由题意知,6(+)+=1.解得x=3.答:甲请了3天假.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,搞清每一步所求的问题与条件之间的关系,选择正确的数量关系解答.26.如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的5倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有(a+3)个小球(用a表示);。

(完整word版)七年级数学一元一次方程练习题和答案

(完整word版)七年级数学一元一次方程练习题和答案

《一元一次方程》测试卷(总分: 120 分 时间: 120 分钟)一、填空题(每题 3 分,共 30 分)1.( 1) -3x+2x=_______ . ( 2) 5m-m-8m=_______.2.一个两位数,十位数字是9,个位数比十位数字小a ,则该两位数为 _______.3.一个长方形周长为 108cm ,长比宽 2 倍多 6cm ,则长比宽大 _______cm . 4.对于 x 的方程( k-1 ) x-3k=0 是一元一次方程,则 k_______.5.方程 6x+5=3x 的解是 ________.6.若 x=3 是方程 2x-10=4a 的解,则 a=______ .7.某服饰成本为 100 元,订价比成本高 20%,则收益为 ________元.8.某加工厂出米率为 70%的稻谷加工大米,现要加工大米1000t ,设需要这类稻谷 xt ,则列出的方程为 ______.9.当 m 值为 ______时,4m 5的值为 0.310.敌我两军相距 14 千米,敌军于 1 小时前以 4 千米 / 小时的速度逃跑, ?现我军以7 千米 / 小时的速度追击 ______小时后可追上敌军. 二、选择题(每题 3 分,共 30 分)11.以下说法中正确的选项是( )A .含有一个未知数的等式是一元一次方程B .未知数的次数都是 1 次的方程是一元一次方程C .含有一个未知数,而且未知数的次数都是一次的方程是一元一次方程D . 2y-3=1 是一元一次方程12.以下四组变形中,变形正确的选项是( )A .由 5x+7=0 得 5x=-7B .由 2x-3=0 得 2x-3+3=0C .由 x =2 得 x=1D.由 5x=7 得 x=356 313.以下各方程中,是一元一次方程的是( )A . 3x+2y=5B . y 2-6y+5=0 C. 1x-3=1D. 3x-2=4x-73x14.以下各组方程中,解同样的方程是( )A . x=3 与 4x+12=0 B. x+1=2 与( x+1) x=2xC . 7x-6=25 与7 x 1=6D. x=9 与 x+9=0515.一件工作,甲独自做20 小时达成,乙独自做 12 小时达成,现由甲独做 4 小时,剩下 的甲、乙合做,还需几小时?设剩下部分要 x 小时达成,以下方程正确的选项是( )4 x xB.14 x xA.120 1220 2012204 x xD .14 xxC.120 1220 20 122016.( 2006,江苏泰州)若对于 x 的一元一次方程 2x k x3k =1 的解为 x=-1 ,则 k 的32值为( )A .2B.1C .-13D . 071117.一条公路甲队独修需24 天,乙队需 40 天,若甲、?乙两队同时分别从两头开始修, ( )天后可将所有修完.A .24B.40C. 15 D .1618.解方程x1 4 x=1 去分母正确的选项是( )32A . 2(x-1 ) -3 ( 4x-1 )=1B . 2x-1-12+x=1C . 2(x-1 ) -3 ( 4-x ) =6D.2x-2-12-3x=619.某人从甲地到乙地,水道比公路近40 千米,但乘轮船比汽车要多用3 小时, ?已知轮船速度为 24 千米 / 时,汽车速度为 40 千米 / 时,则水道和公路的长分别为( )A . 280 千米, 240 千米B . 240 千米, 280 千米- 2 -20.一组学生去春游,估计共需用 120 元,以后又有 2 人参加进来,总花费降下来,?于是每人可少摊 3 元,设本来这组学生人数为 x 人,则有方程为()A . 120x=( x+2) xB .120x 2x120 120120 120C.x 3D.2 3xx 2 x三、解方程(共 28 分)21.( 1) 5 -6x=-7x+1; (5分)( 2)y-1( y-1 ) = 2( y-1 ) ; (5分)3 22 3(3)3[4 ( 1 x- 1) -8]= 3 43 24 2x+1; (5 分)( 4) 0.2 x 10.1 x. (5 分)0.30.222.( 8 分)若对于 x 的方程 2x-3=1 和 x k=k-3x 有同样的解,求 k 的值.2四、应用题(每题8 分,共 32 分)23.( 8 分)某校八年级近期推行小班教课,若每间教室安排20 名学生,则缺乏 3?间教室;若每间教室安排24 名学生,则空出一间教室.问这所学校共有教室多少间?24.( 8 分)如图,有9 个方格,要求每个方格填入不一样的数,使得每行、每列、?每条对角线上三个数的和相等,问图中的m是多少?m191325.( 8 分)先阅读下边的资料,再解答后边的问题.现代社会对保密要求愈来愈高,密码正在成为人们生活的一部分,有一种密码的明文(真切文)按计算器键盘字母摆列分解,此中Q、W、E、、N、M这26个字母挨次对应1、2、 3、 25、 26 这 26 个自然数(见下表):给出一个变换公式:x` x 是自然数,1 x 26, x被整除) 3 ( x 3x` x 2 是自然数,1 x 26,x被除余1 3 17( x 3 )x` x 1 是自然数,1 x被除余2)3 8(x 26, x 3将明文变换成密文,如: 4→42 +17=19,即 R 变成 L:11→111 +8=12,即 A 变成3 3S.将密文变换成明文,如:21 → 3×( 21-17 ) -2=10 ,即 X 变成 P;13→ 3×( 13-8 ) -1=14 ,即 D 变成 F;(1)按上述方法将明文 NET译为密文;(2)若按上述方法将明文译成的密文为DMN,请找出它的明文.26.( 8 分)某音乐厅五月初决定在暑期时期举办学生专场音乐会,入场券分为集体票和零售票,此中集体票占总数的2,若提早购票,则赐予不一样程序的优惠,在五月份内,3集体票每张12 元,共售出集体票数的3;零售票每张16元,?共售出零售票数的一半,5假如在六月份内,集体票按每张 16 元销售, ?并计划在六月份售出所有余票,那么零售票应按每张多少元订价才能使这两个月的票款收入持平?答案 :1.≠ 1 2 .x=-53.-14 .( 1)-x ( 2)-4m 5 .99-a 6 .22 7 .20 ? ?8.?0.7x=100039.510 .511 .D12.A13.D14.C15.C16.B17.C18.C4x x 40 19. B (点拨:设水道 x 千米,有方程+3)244020. C21.( 1) x=4( 2) y=7 ( 3)x=-29(4) x1 22.k14 15410323.设学校有 x 间教室,依题意得方程 20( x+3) =24( x-1 ),解得 x=21 (间).24.设相应的方格中数为 x 1, x 2, x 3,x 4 ,如图,由已知得m+x 1+x2=m+x +x =x +x3+13=x +19+x ,由此得 2m+x +x +x 3+x =13+19+x +x +x 3+x .341 2412 412 4∴ 2m=13+19,即 m=16.m x 1 x 2x 3 1913 x 425 .(1) 25→ 25 2+17=26 N变成 N→ 333 =1E变成 Q35 →51+8=10T变成 P3( 2) 13→ 3×( 13-8 ) -1=14D 变成 F 2 →3×( 2-0 )=6W变成 Y25 → 3×( 25-17 ) -2=22N变成 C26 .设总票数 a 张,六月份零售标价为 x 元 / 张,依题意,得12 ×3×2a+16× 1 × 1a=16×4a+ 1 ax53 23156∴ x=19.2 ,故六月份零售票应按每张19.2 元订价.。

【2019】人教版七年级上册第三章一元一次方程单元测试卷(4).doc

【2019】人教版七年级上册第三章一元一次方程单元测试卷(4).doc

人教版七年级数学上册第三章一元一次方程单元测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.下列方程中,解是x =5的方程是( ) A .2x -1=x B .x -3=2 C .3x =x +5D .x +3=-22.下面是小玲同学在一次课堂测验中利用等式的性质进行的变形,其中正确的是( ) A .由-13x -5=4,得13x =4+5B .由5y -3y +y =9,得(5-3)y =9C .由x +7=26,得x =19D .由-5x =20,得x =-5203.方程7(3-x )-5(x -3)=8去括号,下列正确的是( ) A .21-x -5x +15=8 B .21-7x -5x -15=8 C .21-7x -5x +15=8 D .21-x -5x -15=84.将方程x 2-x -16=6去分母,正确的是( )A .3x -(x -1)=6B .x -(x -1)=6C .6x -2(x -1)=36D .3x -(x -1)=365.某地原有沙漠108公顷,绿洲54公顷,为改善生态环境,防止沙化现象,当地政府实施了“沙漠变绿洲”工程,要把部分沙漠改造为绿洲,使绿洲面积占沙漠面积的80%.设把x 公顷沙漠改造为绿洲,则可列方程为( )A .54+x =80%×108B .54+x =80%(108-x )C .54-x =80%(108+x )D .108-x =80%(54+x )6.某船顺流航行的速度为30 km/h ,逆流航行的速度为20 km/h ,则水流的速度为( )A .5 km/hB .10 km/hC .25 km/hD .50 km/h二、填空题(本大题共5小题,每小题4分,共20分) 7.若2(x -1)+3=x ,则x 的值是________. 8.若2减去3m +45的差为6,则m =________.9.若式子6⎝ ⎛⎭⎪⎫12x -4+2x 与7-⎝ ⎛⎭⎪⎫13x -1的值相等,则x =________. 10.一列匀速行驶的高铁列车在行进途中经过一条长1200米的隧道,已知列车从车头开始进入隧道到车尾离开隧道共需8秒.出隧道后与另一列长度和速度都相同的列车相遇,从车头相遇到车尾离开仅用了2秒,则该列车的长度为________米.11.明代数学家程大位的《算法统宗》中有这样一个问题(如图1),其大意为:有一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)图1三、解答题(本大题共6小题,共56分) 12.(8分)解方程:(1)2(2x -3)-3=2-3(x -1); (2)x -33-1=-2x +42.13.(8分)小彬的练习册上有一道解方程的题,其中一个数字被墨水污染了,成了5x -14=2-2-x 3(“),他翻了书后的答案,知道这个方程的解为x =-1,于是他把被墨水污染的数字求了出来,请你把小彬的计算过程写出来.14.(8分)当x 取何值时,式子x -12+2x +16的值比x -13的值大1?15.(10分)某水果销售店用1000元购进甲、乙两种水果共140千克,这两种水果的进价、售价如下表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,则获得的利润是多少元?16.(10分)在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时小明与爸爸的对话(如图2),试根据图中的信息,解答下列问题:图2(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱,并说明理由.17.(12分)甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运到A,B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A,B两工地的运费分别是140元/吨,150元/吨,乙仓库运到A,B两工地的运费分别是200元/吨,80元/吨,本次运送水泥总运费为25900元,求甲仓库运到A工地水泥的吨数.(运费:元/吨表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下表中用含x的式子表示出其他未知量:(2)用含x的式子表示运送甲仓库100吨水泥的运费为__________元(写出化简后的结果);(3)请根据题目中的相等关系和以上分析列出方程,并写出调运方案.1.B 2. C 3.C. 4. D 5. B 6. A 7.-1 8.[答案] -8 9.[答案] 6 10.[答案] 400 11.[答案] 4612.解:(1)2(2x -3)-3=2-3(x -1), 4x -6-3=2-3x +3, 4x +3x =2+3+3+6, 7x =14, x =2.(2)去分母,得2(x -3)-6=3(-2x +4). 去括号,得2x -6-6=-6x +12. 移项、合并同类项,得8x =24. 系数化为1,得x =3.13.解:设被墨水污染的数字为a. 把x =-1代入方程, 得5×(-1)-14=3×(-1)+a 2-2-(-1)3,解得a =2.答:被墨水污染的数字是2.14.解:根据题意,得x -12+2x +16=x -13+1,3x -3+2x +1=2x -2+6, 5x -2=2x +4,x =2.所以当x 取2时,式子x -12+2x +16的值比x -13的值大1.15.解:(1)设购进甲种水果x 千克,则购进乙种水果(140-x)千克,根据题意,得 5x +9(140-x)=1000, 解得x =65,所以140-x =75.答:购进甲种水果65千克,乙种水果75千克. (2)(8-5)×65+(13-9)×75=495(元).答:获得的利润为495元.16.解:(1)设成人人数为x ,则学生人数为12-x, 则35x +352人教版七年级上册第三章《一元一次方程》单元练习题一、选择题1.小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了( ) A . 1个 B . 2个 C . 3个 D . 4个2.解方程3-=1,在下列去分母运算中,正确的是( )A . 3-(x +2)=3B . 9-x -2=1C . 9-(x +2)=3D . 9-x +2=33.若a 、b 互为相反数,则关于x 的方程ax +b =0(a ≠0)的解是( ) A .x =1 B .x =1 C .x =1或x =1 D . 不能确定4.方程3x =-6的解是( ) A .x =-2 B .x =-6 C .x =2 D .x =-125.如果用“a =b ”表示一个等式,c 表示一个整式,d 表示一个数,那么等式的第一条性质就可以表示为“a ±c =b ±c ”,以下借助符号正确的表示出等式的第二条性质的是( ) A .a •c =b •d ,a ÷c =b ÷dB.a•d=b÷d,a÷d=b•dC.a•d=b•d,a÷d=b÷dD.a•d=b•d,a÷d=b÷d(d≠0)6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A.B.C.D.7.希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A.2(x-1)+x=49B.2(x+1)+x=49C.x-1+2x=49D.x+1+2x=498.方程去分母后可得()A.3x-3=1+2xB.3x-9=1+2xC.3x-3=2+2xD.3x-12=2+4x二、填空题9.当m=时,关于x的方程(m3)x22mx+1=0是一元一次方程.10.一通信商场今年2月份销售国产手机--努比亚Z5Mini的价格为每台1880元,共售出600台.3月份,由于该型号手机价格上涨10%,使销售量下降了30%.3月底,国家主席夫人彭丽媛在德国访问时使用该型号手机的照片在新闻中播出后,极大地影响了4月份国货的销售,进入4月份,商场也开展促销活动支持国货,在3月份销售价格的基础上实行九折优惠,使该型号手机销售量增加,预计4月份,该商场此型号手机的销售额比2月份增加15.5%,则预计4月份该型号手机销售量比3月销售量增加台.11.古代有个寓言故事,驴子和骡子一起走路,它们驮着不同袋数的货物,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨什么?如果你给我一袋,那我负担的就是你的2倍;如果我给你一袋.我们才恰好驮的一样多.”试问驴子原来所驮的货物是多少袋?设驴子原来所驮的货物为x袋,可列出方程为.12.方程2x=10的解是.13.一个两位数,十位数字比个位数字大2,如果把十位数字和个位数子对调得到的新两位数比原两位数小13,设原数的个位数为x,则列方程为.14.甲仓库的货物是乙仓库货物的2倍,从甲仓库调5吨到乙仓库,这时甲仓库剩余的货物恰好比乙仓库的一半多1吨,设乙仓库原有x吨,则可列方程为.15.若与互为相反数,则a=.16.在一场NBA篮球比赛中,姚明共投中a个2分球,b个3分球,还通过罚球得到9分.在这场比赛中,他一共得了分.三、解答题17.2015-2016赛季中国男子篮球职业联赛(即CBA)激战正酣,浙江广厦队表现不俗,暂居榜首,马布里领衔的卫冕冠军北京首钢队战绩不佳,截止12月23日,在前21轮比赛中,积35分位列第七位,按比赛规则,胜一场得2分,负一场得1分,那么截止12月23日北京首钢队共胜了多少场?18.已知x=1是关于x的方程3x33x2+kx+5=0的解,求2k3+k25k8的值.19.甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x(x>4000)元.(1)分别用含有x的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x=6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x为何值时,在甲、乙两家商场购买所付的费用相同?20.当x为何值时,2x-5与-3x的值相等.21.已知方程(m3)4=m2是关于x的一元一次方程.求:(1)m的值;(2)写出这个一元一次方程.第三章《一元一次方程》单元练习题答案解析1.【答案】B【解析】设他本场比赛3分球进了x个,根据题意得5+2(x+5)+3x=25,解得x=2.故他本场比赛3分球进了2个.故选B.2.【答案】C【解析】方程两边同乘以3,得9-(x+2)=3,故选择C.3.【答案】A【解析】因为a、b互为相反数,所以a+b=0,在关于x的方程ax+b=0(a≠0)中,当x=1时,ax+b=a+b=0,则方程的解是:x=1.故选A.4.【答案】A【解析】3x=-6两边同时除以3,得x=-2故选A.5.【答案】D【解析】等式的第二条性质的是:等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.其符号表达式:a•d=b•d,a÷d=b÷d(d≠0).故选D.6.【答案】D【解析】设完成此项工程共用x天,根据题意得:,故选D.7.【答案】A【解析】设男生人数为x人,则女生为2(x-1),根据题意得:2(x-1)+x=49,故选A.8.【答案】B【解析】方程两边同时乘以6,得3x-9=1+2x,所以B选项正确.9.【答案】3【解析】由关于x的方程(m3)x22mx+1=0是一元一次方程,得m3=0.解得m=3.故答案为:3.10.【答案】280【解析】设4月份该型号手机销售量比3月销售量增加的百分率为x,依题意有[1880×(1+10%)×0.9]×[600×(1-30%)(1+x)]=1880×600×(1+15.5%),解得x=,600×(1-30%)×=600×0.7×=280(台).答:4月份该型号手机销售量比3月销售量增加280台.故答案为:280.11.【答案】x+1=2(x1)2【解析】设驴子原来所驮的货物为x袋,由题意,得x+1=2(x1) 2.12.【答案】x=5【解析】方程2x=10,解得:x=5,故答案为:x=513.【答案】10(x+2)+x-[10x+(x+2)]=13【解析】设原数的个位数为x,则十位数为(x+2),根据题意得:10(x+2)+x-[10x+(x+2)]=13,14.【答案】2x-5=(x+5)+1【解析】首先设乙仓库原有x吨,则甲仓库的货物有2x吨,从甲仓库调5吨到乙仓库后甲仓库有(2x-5)吨,乙仓库有(x+5)吨,根据关键语句“甲仓库剩余的货物恰好比乙仓库的一半多1吨,”可得方程2x-5=(x+5)+1.15.【答案】【解析】根据题意列出方程+=0,直接解出a的值,即可解题.解:根据相反数和为0得:+=0,去分母得:a+3+2a-7=0,合并同类项得:3a-4=0,移项得:3a=4,系数化为1得a=.故答案为.16.【答案】2a+3b+9【解析】2×a+3×b+9=2a+3b+9(分).答:他一共得了(2a+3b+9)分.故答案为:2a+3b+9.17.【答案】解:设截止12月23日北京首钢队共胜了x场,则负了(21-x)场,由题意得2x+(21-x)=35,解得x=14.答:截止12月23日北京首钢队共胜了14场.【解析】设截止12月23日北京首钢队共胜了x场,则负了(21-x)场,再根据共得35分列出方程求解即可.18.【答案】解:把x=1代入方程3x33x2+kx+5=0,得,解得k=.则2k3+k25k8==16.【解析】19.【答案】解:(1)甲商场的费用为:4000+(x-4000)80%=0.8x+800(元);乙商场的费用为:3000+(x-3000)90%=0.9x+300(元).(2)当x=6000时,甲商场的费用为:0.8+800=5600(元);当x=6000时,乙商场的费用为:0.9+300=5700(元).由5600,所以在甲商场购买更优惠.(3)由题意得0.8x+800=0.9x+300,解得x=5000.答:当x为5000元时,在甲、乙两家商场购买所付的费用相同.【解析】(1)甲商场的费用为:4000+超过4000元部分80%;乙商场的费用为:3000+超过3000元部分90%.(2)当x=6000时,分别计算出在甲、乙两商场的费用进行比较即可;(3)根据两商场的费用相等列出方程求解即可.20.【答案】解:∵2x-5与-3x的值相等,∴2x-5=-3x,移项得,2x+3x=5,合并同类项得,5x=5,把x的系数化为1得,x=1.【解析】根据题意列出关于x的一元一次方程,求出x的值即可.21.【答案】解:(1)由方程(m3)4=m2是关于x的一元一次方程,得,m30,解得m=.(2)当m=时,方程为.【解析】人教版七年级上册第三章《一元一次方程》单元练习题一、选择题1.小彬是学校的篮球队长,在一场篮球比赛中,他一人得了25分,其中罚球得了5分,他投进的2分球比3分球多5个,则他本场比赛3分球进了()A.1个B.2个C.3个D.4个2.解方程3-=1,在下列去分母运算中,正确的是()A.3-(x+2)=3B.9-x-2=1C.9-(x+2)=3D.9-x+2=33.若a、b互为相反数,则关于x的方程ax+b=0(a≠0)的解是()A.x=1B.x=1C.x=1或x=1D.不能确定4.方程3x=-6的解是()A.x=-2B.x=-6C.x=2D.x=-125.如果用“a=b”表示一个等式,c表示一个整式,d表示一个数,那么等式的第一条性质就可以表示为“a±c=b±c”,以下借助符号正确的表示出等式的第二条性质的是()A.a•c=b•d,a÷c=b÷dB.a•d=b÷d,a÷d=b•dC.a•d=b•d,a÷d=b÷dD.a•d=b•d,a÷d=b÷d(d≠0)6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合做,求完成这项工程共用的时间.若设完成此项工程共用x天,则下列方程正确的是()A.B.C.D.7.希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x人,则下列方程中,正确的是()A.2(x-1)+x=49B.2(x+1)+x=49C.x-1+2x=49D.x+1+2x=498.方程去分母后可得()A.3x-3=1+2xB.3x-9=1+2xC.3x-3=2+2xD.3x-12=2+4x二、填空题9.当m=时,关于x的方程(m3)x22mx+1=0是一元一次方程.10.一通信商场今年2月份销售国产手机--努比亚Z5Mini的价格为每台1880元,共售出600台.3月份,由于该型号手机价格上涨10%,使销售量下降了30%.3月底,国家主席夫人彭丽媛在德国访问时使用该型号手机的照片在新闻中播出后,极大地影响了4月份国货的销售,进入4月份,商场也开展促销活动支持国货,在3月份销售价格的基础上实行九折优惠,使该型号手机销售量增加,预计4月份,该商场此型号手机的销售额比2月份增加15.5%,则预计4月份该型号手机销售量比3月销售量增加台.11.古代有个寓言故事,驴子和骡子一起走路,它们驮着不同袋数的货物,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨什么?如果你给我一袋,那我负担的就是你的2倍;如果我给你一袋.我们才恰好驮的一样多.”试问驴子原来所驮的货物是多少袋?设驴子原来所驮的货物为x袋,可列出方程为.12.方程2x=10的解是.13.一个两位数,十位数字比个位数字大2,如果把十位数字和个位数子对调得到的新两位数比原两位数小13,设原数的个位数为x,则列方程为.14.甲仓库的货物是乙仓库货物的2倍,从甲仓库调5吨到乙仓库,这时甲仓库剩余的货物恰好比乙仓库的一半多1吨,设乙仓库原有x吨,则可列方程为.15.若与互为相反数,则a=.16.在一场NBA篮球比赛中,姚明共投中a个2分球,b个3分球,还通过罚球得到9分.在这场比赛中,他一共得了分.三、解答题17.2015-2016赛季中国男子篮球职业联赛(即CBA)激战正酣,浙江广厦队表现不俗,暂居榜首,马布里领衔的卫冕冠军北京首钢队战绩不佳,截止12月23日,在前21轮比赛中,积35分位列第七位,按比赛规则,胜一场得2分,负一场得1分,那么截止12月23日北京首钢队共胜了多少场?18.已知x=1是关于x的方程3x33x2+kx+5=0的解,求2k3+k25k8的值.19.甲、乙两家电器商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过4000元的电器,超出的金额按80%收取;乙商场规定:凡超过3000元的电器,超出的金额按90%收取,某顾客购买的电器价格是x(x>4000)元.(1)分别用含有x的代数式表示在甲、乙两家商场购买电器所付的费用;(2)当x=6000时,该顾客应选择哪一家商场购买更优惠?说明理由.(3)当x为何值时,在甲、乙两家商场购买所付的费用相同?20.当x为何值时,2x-5与-3x的值相等.21.已知方程(m3)4=m2是关于x的一元一次方程.求:(1)m的值;(2)写出这个一元一次方程.第三章《一元一次方程》单元练习题答案解析1.【答案】B【解析】设他本场比赛3分球进了x个,根据题意得5+2(x+5)+3x=25,解得x=2.故他本场比赛3分球进了2个.故选B.2.【答案】C【解析】方程两边同乘以3,得9-(x+2)=3,故选择C.3.【答案】A【解析】因为a、b互为相反数,所以a+b=0,在关于x的方程ax+b=0(a≠0)中,当x=1时,ax+b=a+b=0,则方程的解是:x=1.故选A.4.【答案】A【解析】3x=-6两边同时除以3,得x=-2故选A.5.【答案】D【解析】等式的第二条性质的是:等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.其符号表达式:a•d=b•d,a÷d=b÷d(d≠0).故选D.6.【答案】D【解析】设完成此项工程共用x天,根据题意得:,故选D.7.【答案】A【解析】设男生人数为x人,则女生为2(x-1),根据题意得:2(x-1)+x=49,故选A.8.【答案】B【解析】方程两边同时乘以6,得3x-9=1+2x,所以B选项正确.9.【答案】3【解析】由关于x的方程(m3)x22mx+1=0是一元一次方程,得m3=0.解得m=3.故答案为:3.10.【答案】280【解析】设4月份该型号手机销售量比3月销售量增加的百分率为x,依题意有[1880×(1+10%)×0.9]×[600×(1-30%)(1+x)]=1880×600×(1+15.5%),解得x=,600×(1-30%)×=600×0.7×=280(台).答:4月份该型号手机销售量比3月销售量增加280台.故答案为:280.11.【答案】x+1=2(x1)2【解析】设驴子原来所驮的货物为x袋,由题意,得x+1=2(x1) 2.12.【答案】x=5【解析】方程2x=10,解得:x=5,故答案为:x=513.【答案】10(x+2)+x-[10x+(x+2)]=13【解析】设原数的个位数为x,则十位数为(x+2),根据题意得:10(x+2)+x-[10x+(x+2)]=13,14.【答案】2x-5=(x+5)+1【解析】首先设乙仓库原有x吨,则甲仓库的货物有2x吨,从甲仓库调5吨到乙仓库后甲仓库有(2x-5)吨,乙仓库有(x+5)吨,根据关键语句“甲仓库剩余的货物恰好比乙仓库的一半多1吨,”可得方程2x-5=(x+5)+1.15.【答案】【解析】根据题意列出方程+=0,直接解出a的值,即可解题.解:根据相反数和为0得:+=0,去分母得:a+3+2a-7=0,合并同类项得:3a-4=0,移项得:3a=4,系数化为1得a=.故答案为.16.【答案】2a+3b+9【解析】2×a+3×b+9=2a+3b+9(分).答:他一共得了(2a+3b+9)分.故答案为:2a+3b+9.17.【答案】解:设截止12月23日北京首钢队共胜了x场,则负了(21-x)场,由题意得2x+(21-x)=35,解得x=14.答:截止12月23日北京首钢队共胜了14场.【解析】设截止12月23日北京首钢队共胜了x场,则负了(21-x)场,再根据共得35分列出方程求解即可.18.【答案】解:把x=1代入方程3x33x2+kx+5=0,得,解得k=.则2k3+k25k8==16.【解析】19.【答案】解:(1)甲商场的费用为:4000+(x-4000)80%=0.8x+800(元);乙商场的费用为:3000+(x-3000)90%=0.9x+300(元).(2)当x=6000时,甲商场的费用为:0.8+800=5600(元);当x =6000时,乙商场的费用为:0.9+300=5700(元).由5600,所以在甲商场购买更优惠.(3)由题意得0.8x +800=0.9x +300, 解得x =5000.答:当x 为5000元时,在甲、乙两家商场购买所付的费用相同. 【解析】(1)甲商场的费用为:4000+超过4000元部分80%;乙商场的费用为:3000+超过3000元部分90%.(2)当x =6000时,分别计算出在甲、乙两商场的费用进行比较即可; (3)根据两商场的费用相等列出方程求解即可. 20.【答案】解:∵2x -5与-3x 的值相等, ∴2x -5=-3x , 移项得,2x +3x =5, 合并同类项得,5x =5, 把x 的系数化为1得,x =1.【解析】根据题意列出关于x 的一元一次方程,求出x 的值即可. 21.【答案】解:(1)由方程(m 3)4=m 2是关于x 的一元一次方程,得,m 30,解得m =.(2)当m =时,方程为.【解析】人教版七年级上册第三章《一元一次方程》单元过关测试卷一、选择题(每小题3分,共24分)1、下列方程中是一元一次方程的是 ( ) A 、2x =3y B 、x =0 C 、 x 2+12(x -1)=1 D 、x1-2=x 2、已知等式523+=b a ,则下列等式中不一定成立的是 ( ) A 、;253b a =- B 、;6213+=+b a C 、;523+=bc ac D 、.3532+=b a 3、若x =2是方程k (2x -1)=kx +7的解,那么k 的值是 ( ) A 、 1B 、-1C 、7D 、-74、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.A 、3年后B 、3年前C 、9年后D 、不可能 5、在日历上,用一个正方形任意圈出3×3个数,那么这九个数的和可能是( ) A .80 B .98 C .108 D .206.6、一项工程甲单独做要40天完成,乙单独做要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是 ( )A 、 44014050x +=+ B 、44014050x +=⨯ C 、440150x += D 、 4401114050x ++=() 7、为了节约用水,某市规定:每户居民每月用水不超过20立方米,按每立方米2元收费,超过20立方米,则超过部分按每立方米4元收费,某户居民五月份交水费72元,则该居民五月份实际用水( )A . 18立方米B . 8立方米C . 28立方米D . 36立方米8、某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩( ) A 、不赔不赚 B 、赚9元 C 、赔18元 D 、赚18元 二、填空题(每小题3分,共18分) 9、方程的解是______________.10、当=x __________时,代数式24+x 与93-x 的值互为相反数. 11、如果单项式5a m -1b n-5与a 2m +1b-n + 3是同类项,则mn = .12、一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试题,得了70分,他一共做对了 题.13、一列火车匀速通过500米长的隧道,从火车头进入隧道和火车尾出隧道共用30秒,火车整体在隧道里的运行时间是20秒,则火车的长度为 .14、某商品标价为每件900元,按九折降价后再让利40元销售,仍可获利10%。

七年级数学一元一次方程练习题(含答案)

七年级数学一元一次方程练习题(含答案)

七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。

24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。

如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。

初中数学一元一次方程练习题60道Word版含解析

初中数学一元一次方程练习题60道Word版含解析
(1)判断3+x=5是不是“商解方程”.
(2)若关于x的一元一次方程6+x=3(m﹣3)是“商解方程”,求m的值.
4.已知关于 的一元一次方程 的解为 ,那么关于 的一元一次方程 的解 =______.
5.(1)
(2)
6.如果方程 的解与方程 的解相同,求式子 的值.
7.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.
(1)已知关于x的一元一次方程3x+k=0是“恰解方程”,则k的值为;
(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的值;
(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值.
35.如图,数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.
16.一项工程,甲单独做需20天完成,乙单独做需15天完成,现在先由甲、乙合作若干天后,剩下的部分由乙独做,先后共用12天,请问甲做了多少天?
17.一艘轮船从甲码头到乙码头顺流而行,用了 ,从乙码头返回甲码头逆流而行,用了 .已知水流的速度是 ,求船在静水中的平均速度.
18.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.
10.新冠疫情肆虐春城期间,全市有大批志愿者不畏艰险加入到抗疫队伍中来.“大白”们的出现,给封控小区居民带来了信心,为他们的生活提供了保障.已知某社区在甲小区原有志愿者23名,在乙小区原有志愿者17名.现有来自延边州支援该社区的志愿者20名,分别去往甲小区和乙小区支援,结果在甲小区的志愿者人数比乙小区志愿者人数的三分之二还多5名,求延边州志愿者去往甲小区的人数.

初一七年级一元一次方程(含答案解析)

初一七年级一元一次方程(含答案解析)

初一七年级一元一次方程(含答案解析)一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).解一元一次方程参考答案与试题解析一.解答题(共30小题)1.解方程:2x+1=7考点:解一元一次方程.1184454专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1 合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.1184454专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.1184454专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.1184454专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.1184454专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.1184454专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.1184454专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.1184454专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.。

人教版(五四制)2019-2020七年级数学上册第十一章一元一次方程的解法专项训练题2(附答案)

人教版(五四制)2019-2020七年级数学上册第十一章一元一次方程的解法专项训练题2(附答案)

人教版(五四制)2019-2020七年级数学上册第十一章一元一次方程的解法专项训练题2(附答案)1.解方程(组):(1)()()31651x x -=+- (2) 2312{ 3417x y x y +=+= 2.解方程:(1)2(x ﹣1)+1=0(2)4(2x ﹣1)﹣3(5x+1)=14(3)x ﹣=1﹣(4)3.解方程:(1)2x+1=8-5x ; (2). 4.解下列一元一次方程:(1)(2) 5.解方程:(1)7y +6=-9y; (2)2(3y -1)-3(2-4y )=9y +10;(3) y -=2-; (4)-2+=3(x -1). 6.解下列方程(1)7+6=8-3(2)4-3(20-)=6-7(9-)(3)(4)7.解方程:(1); (2). 8.解下列方程: (1)a ﹣6=a+1; (2)3x+=3﹣. 9.解方程3714x x --10.解方程:(1)()()512132x x x ---=+ (2)221146x x +--= 11.解下列方程:(1)()319x +=; (2)2121136x x --=-. 12.满足方程|2|2x -4|-3|=2x -1的所有解的和为多少?13.已知方程6x -9=10x -45与方程3a -1=3(x +a )-2a 的解相同(1)求这个相同的解;(2)求a 的值;(3)若[m]表示不大于m 的最大整数,求[-2]的值14.解方程:(1)(2) 15.解方程(1)4x-3(5-x )=6 (2) 12226x x -+=- 16.小东同学在解一元一次方程时,发现这样一种特殊现象: x+=0的解为x=﹣,而﹣=﹣1; 2x+=0的解为x=﹣,而﹣=﹣2.于是,小东将这种类型的方程作如下定义:若一个关于x 的方程ax+b=0(a≠0)的解为x=b ﹣a ,则称之为“奇异方程”.请和小东一起进行以下探究:(1)若a=﹣1,有符合要求的“奇异方程”吗?若有,求出该方程的解;若没有,请说明理由;(2)若关于x 的方程ax+b=0(a≠0)为奇异方程,解关于y 的方程:a (a ﹣b )y+2=(b+)y .17.解方程:(1)2x +3=x +5; (2)2(3y -1)-3(2-4y)=9y +10;18.解方程:−=0.5.19.老师在黑板上出了一道解方程的题,小虎马上举手,要求到黑板上去做,他是这样做的:5(3x-1)=2(4x+2)-1①,15x-5=8x+4-1②,15x-8x=4-1+5③7x④,x=⑤老师说:小虎解一元一次方程的一般步骤都知道,但没有掌握好,因此解题出现了错误,请指出他的错步及错误原因:,方程的正确的解是x=.然后,你自己细心的解下面的方程:.20.解方程:(1)3x+7=2x﹣5 ;(2)2(x﹣1)﹣3(2+x)=5;(3)(4)[(﹣)]= +121.计算:(1)-16-(-1+)÷3×[2-(-4)2](2)解方程:-=-1(3)先化简,再求值:2(x2-2xy)+[2y2-3(x2-2xy+y2)+x2],其中x=1,y=-.22.解下列方程:(1)4(x﹣2)=3(1+3x)﹣12(2)=1.23.当x取何值时,代数式比代数式少1 ?24.25.解方程:211248 x x+-=-26.解方程:1221 43x x+--=.27.解方程:x-=2-.28.当m为何值时,关于x的方程5m+12x=6+x的解比关于x的方程x(m+1)=m(1+x)的解大2.29.列方程求解(1)m为何值时,关于x的一元一次方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍.(2)已知|a﹣3|+(b+1)2=0,代数式22b a m-+的值比12b﹣a+m多1,求m的值.参考答案1.(1)2x =-;(2)3{ 2x y ==. 【解析】试题分析:(1)方程去括号,移项合并同类项,化系数为1即可;(2)用加减消元法解答即可.试题解析:解:(1)去括号得:3x -3=6+5x -5,移项得:3x -5x =6-5+3,合并同类项得:-2x =4,解得:x =-2;(2)2312{ 3417x y x y +=+=①②,①×3-②×2得:y =2,把y =2代入①得:x =3,∴3{ 2x y ==. 2.(1)x=(2)x=-3(3)x=4(4)x=【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:(1)去括号得:2x-2+1=0,移项合并得:2x=1,解得:x=;(2)去括号得:8x-4-15x-3=14,移项合并得:-7x=21,解得:x=-3;(3)去分母得:6x-3x-3=6-x+7,移项合并得:4x=16,解得:x=4;(4)去分母得:70x-30x=21,移项合并得:40x=21,解得:x=.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.(1)x=1;(2)x=0.【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)移项得:2x+5x=8-1,合并同类项得:7x=7,系数化为1得:x=1;(2)去分母得:3(x+2)-2(2x-3)=12,去括号得:3x+6-4x+6=12,合并同类项得:-x=0,系数化为1得:x=0.【点睛】本题考查了解一元一次方程,熟练掌握运算法则是解答本题的关键.4.(1) ;(2) x=1【解析】【分析】根据解一元一次方程的一般步骤进行:去分母,去括号,移项,合并同类项,系数化为1. 【详解】解:(1)去括号,得:移项,得:合并同类项,得:(2)去分母,得:去括号,得:移项,得:合并同类项,得:-5x=-5系数化为1,得:x=1【点睛】本题考核知识点:解一元一次方程. 解题关键点:掌握解方程的一般步骤.5.(1)y=-;(2) y=2;(3) y=;(4) x=.【解析】【分析】⑴移项,将未知数系数化为1即可求解;⑵去括号,移项,合并同类项,将未知数系数化为1即可求解;⑶去分母,移项,合并同类项,将未知数系数化为1即可求解;⑷去分母,移项,合并同类项,将未知数系数化为1即可求解.【详解】(1)7y+6=-9y,移项,得7y+9y=-6,合并同类项,16y=-6.系数化为1,得y=-.(2)去括号,得6y-2-6+12y=9y+10.移项得6y+12y-9y=10+2+6,合并同类项,得9y =18,系数化为1,得y=2.(3)去分母,得6y-3(y-1)=12-(y+2),去括号,得6y-3y+3=12-y-2,移项,得6y-3y+y=12-2-3,合并同类项,得4y=7,系数化为1,得y=.(4)去分母,得2(3x-1)-12+3(2x+4)=18(x-1),去括号,得6x-2-12+6x+12=18x-18,移项,得6x+6x-18x=-18+2+12-12,合并同类项,得-6x=-16,系数化为1,得x=.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,是解决本题的关键.6.(1)=;(2);(3)y=-1(4)=0.1【解析】【分析】(1)移项,合并同类项,系数化为1即可;(2)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可;(3)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解;(4)先利用分数的基本性质将分母中含有的小数转化为整数,再去分母,去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.【详解】(1)移项得,7x+3x=8-6,合并同类项得,10x=2,系数化为1得x=;(2)去括号得,4x-60+3x=6x-63+7x,移项得,4x+3x-6x-7x=-63+60,合并同类项得,-6x=-3,系数化为1得,x=;(3)去分母得,2y-5(y-1)=10-2(y+2),去括号得,2y-5y+5=10-2y-4,移项得,2y-5y+2y=10-4-5,合并同类项得,-y=1,系数化为1得,y=-1;(3)方程可化为,-=,去分母得,18-80x-6(1.3-3x)=4(50x-4),去括号得,18-80x-7.8+18x=200x-16,移项得,-80x+18x-200x=-16-18+7.8,合并同类项得,-262x=-26.2,系数化为1得,x=0.1.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.(1)x=3;(2)x=-7.【解析】【分析】(1)先去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解;(2)先去分母,再去括号,再移项,再合并同类项,最后化系数为1,即可得到方程的解.【详解】(1)去括号得:4x﹣15+3x=6,移项得:4x+3x=6+15,合并同类项得:7x=21,化系数为1得:x=3;(2)去分母得:3(x+1)﹣2(2x﹣1)=12,去括号得:3x+3﹣4x+2=12,移项得:3x﹣4x=12﹣3﹣2,合并同类项得:﹣x=7,化系数为1得:x=﹣7.【点睛】本题考查了一元一次方程的求解方法,去分母,去括号,移项,合并同类项,化系数为1,是常用的一元一次方程的求解方法.8.(1)a=﹣28;(2)x=.【解析】【分析】(1)通过去分母、移项合并同类项,化未知数系数为1来解方程;(2)先去分母,然后去括号,移项、合并同类项【详解】(1)移项,得:a﹣a =6 +1,合并同类项,得:﹣a=7,系数化为1,得:a=﹣28;(2)去分母得:18x+3(x﹣1)=18﹣2(2x+1),去括号,得18x+3x﹣3=18﹣4x﹣2,移项、合并同类项,得:25x=19,系数化为1,得:x=.【点睛】本题考查解一元一次方程的解法;解一元一次方程常见的过程有去分母、去括号、移项、合并同类项、系数化为1等.9.(1)72x =-;(2)19x =. 【解析】试题分析:(1)方程去括号,移项合并,将x 系数化为1,即可求出解; (2)方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.试题解析:(1)去括号得:3x-3=5x+4,移项合并得:-2x=7,解得:x=72-; (2)去分母得:9-21x=5-20x-15,移项合并得:x=19.10.(1) x =2;(2)x =-4【解析】试题分析:(1)按照去括号,移项,合并同类项,系数化为1进行解答即可; (2)两边同乘12去掉分母,然后去括号,移项,合并同类项,系数化为1即可. 试题解析:解:(1)()()512132x x x ---=+ ,5x -5-2+2x =3+2x ,5x +2x -2x =3+2+5,5x =10,x =2;(2)221146x x --+=, 3(x +2)-12=2(2x -1),3x +6-12=4x -2,4x -3x =6-12+2,x =-4.11.(1)x=2;(2)x=1.5.【解析】试题分析:(1)去括号,移项.(2)去分母,去括号,合并同类项,移项,系数化1. 试题解析:解:(1)方程整理得:x +1=3,解得:x =2.(2)去分母得:4x ﹣2=6﹣2x +1,移项合并得:6x=9,解得:x=1.5.点睛:解方程的步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5) 化系数为1.易错点:(1)去分母时,要给方程两边的每一项都乘以最小公倍数,特别强调常数项也必须要乘最小公倍数.(2)乘最小公倍数的时候,一定要与每一个字母进行相乘,不要漏掉某一个分母.(3)如果某字母项或某常数项前面是有符号的,那么乘最小公倍数的时候,这个符号不要丢掉.12.8【解析】分析:因为题目中带有绝对值符号,所以必须分两种情况进行讨论,去掉绝对值符号,得到两个一元一次方程,求出方程的根,即可得到结果.详解:①当2x-4≥0时,方程化为|4x-11|=2x-1,即4x-11=2x-1或4x-11=1-2x,解得x=5或x=2;②当2x-4<0时,方程化为|5-4x|=2x-1,即5-4x=2x-1或5-4x=1-2x,解得x=1或x=2(舍去),故方程|2|2x-4|-3|=2x-1的所有解的和为5+2+1=8.点睛:本题考查的是含绝对值符号的一元一次方程,由于带有绝对值符号,必须对题目进行讨论,对重复的根要舍去.13.(1)x=9;(2)a=14;(3)2【解析】试题分析:(1)方程6x-9=10x-45即可得出这个相同的解;(2)把(1)中的解代入方程3a-1=3(x+a)-2a,然后解以a为未知数的方程即可;(3)把a的值代入[-2],根据[m]的定义求解即可.试题解析:(1)6x-9=10x-45,6x-10x=9-45,-4x=-36,x=9;(2)把x=9代入方程3a -1=3(x+a)-2a得:3a-1=3(9+a)-2a,3a-1=27+3a-2a,2a=28,a=14,(3)因为a =14,所以[-2]= [143-2]=[ 83]=2. 考点:一元一次方程.14.(1);(2). 【解析】【分析】根据解一元一次方程的步骤解方程即可.【详解】解:(1)(2)【点睛】考查解一元一次方程,一般步骤是:去分母,去括号,移项,合并同类项,把系数化为1.15.(1)x=3;(2)x=134【解析】试题分析:根据解一元一次方程的步骤解方程即可.试题解析:(1)去括号得:4x −15+3x =6,移项、合并得:7x =21,系数化为1得:x =3.(2)去分母得: ()()31122x x -=-+,去括号得: 33122x x -=--,移项合并得: 413x =,系数化为1得: 13.4x = 点睛:解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1. 16.(1)见解析;(2)见解析.【解析】【分析】(1)把a=-1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,由于b≠b+1,根据“奇异方程”定义即可求解;(2)根据“奇异方程”定义得到a(a-b)=b,方程a(a-b)y+2=(b+)y可化为by+2=(b+)y,解方程即可求解.【详解】(1)没有符合要求的“奇异方程”,理由如下:把a=﹣1代入原方程解得:x=b,若为“奇异方程”,则x=b+1,∵b≠b+1,∴不符合“奇异方程”定义,故不存在;(2)∵ax+b=0(a≠0)为奇异方程,∴x=b﹣a,∴a(b﹣a)+b=0,a(b﹣a)=﹣b,a(a﹣b)=b,∴方程a(a﹣b)y+2=(b+)y可化为by+2=(b+)y,∴by+2=by+y,2=y,解得y=4.【点睛】考查了解一元一次方程,关键是熟悉若一个关于x的方程ax+b=0(a≠0)的解为x=b-a,则称之为“奇异方程”.17.(1)x=2;(2)y=2【解析】【分析】(1)移项、合并同类项即可求解;(2)先去括号,再移项、合并同类项和系数化为1即可求解;【详解】(1)移项,得合并同类项,得(2)去括号,得移项,得合并同类项,得系数化为1,得【点睛】本题考查了一元一次方程的解法,熟练掌握解一元一次方程的步骤是解题的关键.一般步骤是:去分母,去括号,移项,合并同类项,把系数化为1.18.x=−.【解析】【分析】先把分母中的小数化为整数,再去分母,去括号,移项,合并同类项,把x的系数化为1即可.【详解】把分母中的小数化为整数得:﹣=0.5去分母得:5x﹣10﹣(10x+5)=0.5去括号得:5x﹣10﹣10x﹣5=0.5移项得:5x﹣10x=0.5+10+5合并同类项得:-5x=15.5x的系数化为1得:x=-.【点睛】本题考查了解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.19.①去分母时右边﹣1没有乘以10;④等式右边缺失;⑤化系数为1时,没有除以x的系数;﹣;x=4.【解析】【分析】依据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1求解可得.【详解】他的错步及错误原因:①去分母时右边﹣1没有乘以10;④等式右边缺失,⑤化系数为1时,没有除以x的系数;方程的正确的解是x=﹣.2(x+1)﹣4=8+2﹣x,2x+2﹣4=8+2﹣x,2x+x=8+2﹣2+4,3x=12,x=4.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1.20.(1)x=﹣12;(2)x=﹣13;(3)x=﹣25;(4)x=﹣.【解析】【分析】(1) 移项合并,将x系数化为1,即可求出解;(2) 去括号,移项合并,将x系数化为1,即可求出解;(3) 去分母,去括号,移项合并,将x系数化为1,即可求出解.(4) 去括号,移项合并,将x系数化为1,即可求出解.【详解】解:(1)3x﹣2x=﹣5﹣7,x=﹣12;(2)2x﹣2﹣6﹣3x=5,2x﹣3x=5+2+6,﹣x=13,x=﹣13;(3)4(2x﹣1)=24+3(3x﹣1),8x﹣4=24+9x﹣3,8x﹣9x=24﹣3+4,﹣x=25,x=﹣25;(4)﹣=+1,﹣=1+,﹣x=,x=﹣.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.(1)-(2)x=-5(3)2xy-y2,-5【解析】【分析】(1)先计算16、(-4)2,再算括号里面和乘除法,最后算减法得结果;(2)按解一元一次方程的步骤求解即可;(3)先对代数式进行化简,然后再代入求值.【详解】(1)原式=-1-(-)××(-14)=-1-=-;(2)去分母,得3(x-7)-2(2x-5)=-6,去括号,得3x-21-4x+10=-6,移项,得3x-4x=-6+21-10,合并,得-x=5所以,x=-5;(3)原式=2x2-4xy+(2y2-3x2+6xy-3y2+x2)=2x2-4xy+2y2-3x2+6xy-3y2+x2=2xy-y2.当x=1,y=-时,原式=2×1×(-)-(-)2=-3-=-5.【点睛】本题考查了有理数的混合运算、整式的加减、解一元一次方程等知识点.解决(1)的关键是掌握有理数混合运算的顺序,注意(2)去分母时勿漏乘,(3)需先化简再求值.. 22.(1)x=0.2;(2)x=.【解析】【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】(1)去括号得:4x-8=3+9x-12,移项合并得:-5x=-1,解得:x=0.2;(2)去分母得:30x-119+140x=21,移项合并得:170x=140,解得:x=.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.23.x=﹣7【解析】【分析】根据题意,列出方程,然后根据一元一次方程的解法,直接解方程即可【详解】解:根据题意,得:去分母,得:x +1−2(x −1)=10,去括号,得:x +1−2x +2=10,移项,得:x −2x =10−3,合并同类项,得:−x =7,系数化为1,得:x =−7.,故当x =−7时,代数式比代数式少1.【点睛】 考查解一元一次方程,列出方程,熟练掌握解一元一次方程的步骤是解题的关键.24.x=4【解析】【分析】根据一元一次方程的求解方法:移项合并同类项,再系数化一,即可求得答案.【详解】原方程化为:1.3x+0.5x=0.7+6.5,整理得:1.8x=7.2,解得:x=4.【点睛】本题考查了解一元一次方程,解题的关键是熟练的掌握解一元一次方程的方法.25.3x =【解析】试题分析:按照解一元一次方程的步骤解方程即可.试题分析: ()()221161x x +=--,42161x x +=-+,41612x x +=+-,515x =,3x =.26.x=﹣15.【解析】试题分析:先去分母,再去括号,移项合并同类项,系数化1. 试题解析:去分母得:3(x+1)﹣4(2x﹣2)=12,去括号得:3x+3﹣8x+8=12,移项、合并同类项得:﹣5x=1,系数化为1得:x=﹣15.点睛:解一元一次方程的步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解27.x=1.【解析】分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.详解:去分母,得6x-3(x-1)=12-2(x+2).去括号,得6x-3x+3=12-2x-4.移项,得6x-3x+2x=12-4-3.合并同类项,得5x=5.系数化为1,得x=1.点睛:此题考查了一元一次方程的解法,注意:不要漏乘不含分母的项;若分子是一个整体,需加上括号;移项时项的系数要变号.28.m=﹣1.【解析】试题分析:先用含m的代数式表示出两个方程的解,然后根据第一个方程的解比第二个方程的解大2列出关于m的方程求解.解:解关于x的方程5m+12x=6+x,得:x=,解关于x的方程x(m+1)=m(1+x),得:x=m,根据题意得﹣m=2,解得:m=﹣1.点睛:本题考查了含参一元一次方程的解,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.29.(1)- 14;(2)0.【解析】试题分析:(1)分别表示出两方程的解,根据解的关系确定出m的值即可;(2)根据题意列出方程,利用非负数的性质求出a与b的值,代入计算即可求出m的值.试题解析:解:(1)方程4x﹣2m=3x﹣1,解得:x=2m﹣1.方程x=2x﹣3m,解得:x=3m.由题意得:2m﹣1=6m,解得:m=﹣14;(2)由|a﹣3|+(b+1)2=0,得到a=3,b=﹣1,代入方程211 22b a mb a m-+⎛⎫--+=⎪⎝⎭,得:513122mm-⎛⎫---+=⎪⎝⎭,整理得:513122mm-++-=,去分母得:m﹣5+1+6﹣2m=2解得:m=0.点睛:此题考查了解一元一次方程,以及非负数的性质,熟练掌握运算法则是解本题的关键.。

初一数学一元一次方程试题答案及解析

初一数学一元一次方程试题答案及解析

初一数学一元一次方程试题答案及解析1.(1)解不等式:5(x-2)+8<7-6(x-1)(2)若(1)中的不等式的最大整数解是方程2x-ax=3的解,求a的值.【答案】(1)x<;(2)a=-1.【解析】(1)根据不等式的解法:先去括号移项,然后合并同类项,系数化为1,求出不等式的解;(2)根据(1)所求的不等式的解,可得方程2x-ax=3的解为1,代入求a的值.试题解析:(1)去括号得:5x-10+8<7-6x+6,移项合并同类项得:11x<15,系数化为1得:x<;(2)由(1)得,方程2x-ax=3的解为1,将x=1代入得:2-a=3,解得:a=-1.【考点】1.解一元一次不等式;2.一元一次方程的解;3.一元一次不等式的整数解.2.初一(19)班有48名同学,其中有男同学名,将他们编成1号、2号、…,号。

在寒假期间,1号给3名同学打过电话,2号给4名同学打过电话,3号给5名同学打过电话,…,号同学给一半同学打过电话,由此可知该班女同学的人数是()A.22B.24C.25D.26【答案】D.【解析】已知初一(19)班有48名同学,则一半学生数为24,根据1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,求解即可.∵初一(19)班有48名同学,∴一半学生数为24,∵1号给3=2+1名同学打过电话,2号给4=2+2名同学打过电话,3号给5=2+3名同学打过电话,…,号同学给一半同学打过电话,∴,则该班女同学的人数是48-22=26人,故选D.【考点】应用类问题.3.的倒数与互为相反数,那么的值是()A.B.C.3D.-3【答案】C【解析】由题意可知,解得,故选C.4.若方程的解为,则的值为( )A.B.C.D.【答案】C【解析】将代入中,得,解得故选C.5.江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多,求粗加工的该种山货质量.【答案】【解析】解:设粗加工的该种山货质量为,根据题意,得,解得.答:粗加工的该种山货质量为.6.右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.【答案】28.8【解析】设出洗发水的现价是x元,直接得出有关原价的一元一次方程,再进行求解.设洗发水的现价为x元,由题意得:0.8×36=x,解得:x=28.8(元).故答案为:28.8元.7.若当时,代数式的值为,那么当时,该代数式的值是_______.【答案】5.【解析】∵代入可得,解得:.把,代入代数式得:=.故答案为:5.【考点】1.解一元一次方程;2.代数式求值.8.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?【答案】(1)购买一块A型小黑板需要l00元,购买一块8型小黑板需要l20元;(2)有两种购买方案:方案一:购买A型小黑板21块,购买8型小黑板39块;方案二:购买A型小黑板22块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一年级一元一次方程练习题及答案2019
一、填空题 .( 每小题 3 分,共 24 分)
1.已知 4x2n-5+5=0 是关于 x 的一元一次方程,则 n=_______.
2.若 x=-1 是方程 2x-3a=7 的解,则 a=_______.
3.当 x=______时,代数式 x-1 和的值互为相反数 .
4.已知 x 的与 x 的 3 倍的和比 x 的 2 倍少 6,列出方程为
________.
5. 在方程 4x+3y=1 中,用 x 的代数式表示 y,则 y=________.
6. 某商品的进价为300 元,按标价的六折销售时,利润率为5%,则商品的标价为 ____元.
7.已知三个连续的偶数的和为 60,则这三个数是 ________.
8.一件工作,甲单独做需 6 天完成,乙单独做需 12 天完成,若甲、乙一起做, ?则需 ________天完成 .
二、选择题 .( 每小题 3 分,共 30 分)
9.方程 2m+x=1和 3x-1=2x+1 有相同的解,则 m的值为 ( ).
A.0
B.1
C.-2
D.-
10.方程│ 3x│=18 的解的情况是 ( ).
A. 有一个解是 6
B. 有两个解,是±6
C.无解
D. 有无数个解
11.若方程 2ax-3=5x+b 无解,则 a,b 应满足 ( ).
A.a≠,b≠3
B.a= , b=-3
C.a≠, b=-3
D.a=,b≠-3
12.把方程的分母化为整数后的方程是 ( ).
13.在 800 米跑道上有两人练中长跑,甲每分钟跑 300 米,乙每分钟跑 260 米, ?两人同地、同时、同向起跑, t 分钟后第一次相遇, t
等于 ( ).
A.10 分
B.15 分
C.20 分
D.30 分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了 10%,三月份比二月份减少了 10%,则三月份的销售额比一月份的销售额 ( ).
A. 增加 10%
B.减少 10%
C.不增也不减
D. 减少 1%
15.在梯形面积公式 S= (a+b)h 中,已知 h=6 厘米, a=3 厘米,
S=24平方厘米,则 b=( ?) 厘米 .
A.1
B.5
C.3
D.4
16.已知甲组有 28 人,乙组有 20 人,则下列调配方法中,能使一组人数为另一组人数的一半的是 ( ).
A. 从甲组调 12 人去乙组
B. 从乙组调 4 人去甲组
C.从乙组调 12 人去甲组
D.从甲组调 12 人去乙组,或从乙组调 4 人去甲组
17.足球比赛的规则为胜一场得 3 分,平一场得 1 分,负一场是 0 分, ?一个队打了 14 场比赛,负了 5 场,共得 19 分,那么这个队胜了( ) 场.
A.3
B.4
C.5
D.6
18.如图所示,在甲图中的左盘上将 2 个物品取下一个,则在乙图
中右盘上取下几个砝码才能使天平仍然平衡 ?( )
A.3 个
B.4 个
C.5 个
D.6 个
三、解答题 .(19 ,20 题每题 6 分, 21,22 题每题 7 分, 23,24 题每题10 分,共 46 分
20.解方程: (x-1)- (3x+2)= - (x-1).
21.如图所示,在一块展示牌上整齐地贴着很多资料卡片, ?这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线
标明 .? 已知卡片的短边长度为 10 厘米,想要配三张图片来填补空白,
需要配多大尺寸的图片 .
22.一个三位数,百位上的数字比十位上的数大 1,个位上的数字比十位上数字的 3 倍少 2. 若将三个数字顺序颠倒后,所得的三位数与原三位数的和是 1171,求这个三位数 .
23.某公园的门票价格规定如下表:
购票人数1~50 人51~100 人100 人以上
票价5 元4.5 元4 元
某校初一甲、乙两班共103 人( 其中甲班人数多于乙班人数
) 去游该公园,如果两班都以班为单位分别购票,则一共需付486 元.
(1) 如果两班联合起来,作为一个团体购票,则能够节约多少钱?
(2)两班各有多少名学生 ?( 提示:本题应分情况讨论 )
24.据了解,火车票价按“”的方法来确定 . 已知 A站至 H站总里程数为 1500 千米,全程参考价为 180 元. 下表是沿途各站至 H 站的里程数:
车站名 A B C D E F G H
各站至 H 站
里程数 ( 米) 1500 1130 910 622 402 219 72 0
例如:要确定从 B 站至 E 站火车票价,其票价为=87.36 ≈87( 元 ).
(1)求 A 站至 F 站的火车票价 ( 结果精确到 1 元).
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:
66 元,马上说下一站就到了 . 请问王大妈是在哪一站下的车( 要求写出解答过程 ).
一元一次方程练习题及答案:
一、 1.3
2.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)
3.( 点拨:解方程 x-1=- ,得 x= )
4.x+3x=2x-6
5.y= - x
6.525 ( 点拨:设标价为x 元,则 =5%,解得 x=525 元)
7.18 ,20,22
8.4 [ 点拨:设需 x 天完成,则 x( + )=1,解得x=4]
二、 9.D
10.B ( 点拨:用分类讨论法:
当x≥0时, 3x=18,∴ x=6
当x100
∴每张门票按 4 元收费的总票额为103×4=412(元 )
可节省 486-412=74( 元)
(2)∵甲、乙两班共 103 人,甲班人数 >乙班人数
∴甲班多于 50 人,乙班有两种情形:
①若乙班少于或等于 50 人,设乙班有 x 人,则甲班有 (103-x) 人,依题意,得
5x+4.5(103-x)=486
解得 x=45,∴ 103-45=58( 人)
即甲班有 58 人,乙班有 45 人.
②若乙班超过 50 人,设乙班 x 人,则甲班有 (103-x) 人,
根据题意,得
4.5x+4.5(103-x)=486
∵此等式不成立,∴这种情况不存有.
故甲班为 58 人,乙班为 45 人.
24. 解: (1) 由已知可得 =0.12
A站至 H站的实际里程数为1500-219=1281( 千米 )
所以 A 站至 F 站的火车票价为0.12 ×1281=153.72≈154( 元 )
(2)设王大妈实际乘车里程数为 x 千米,根据题意,得 =66
解得 x=550,对照表格可知, D站与 G站距离为 550 千米,所以王
大妈是在 D站或 G?站下的车 .。

相关文档
最新文档