第一章勾股定理单元测试卷(最新整理)
数学八年级上《第一章勾股定理》单元测试(含答案解析)
![数学八年级上《第一章勾股定理》单元测试(含答案解析)](https://img.taocdn.com/s3/m/3c0c3665fe4733687e21aa3b.png)
先根据题意画出图形,再根据勾股定理解答即可.
此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,有一定难度.
10.试题分析:根据对称性可知: , ,又 ,所以 ∽ ,根据相似的性质可得出: , ,在 中,由勾股定理可求得AC的值, , ,将这些值代入该式求出BE的值.
二、填空题(本大题共10小题,共30.0分)
11. 如图,有一块田地的形状和尺寸如图所示,则它的面积为______ .
12.在 中,已知两边长为5、12,则第三边的长为______ .
13. 如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要______ 元钱.
14. 如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍______放入 填“能”或“不能” .
15. 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则 周长的最小值为______.
整理得: ,
解得: , 两直角边分别为12cm,16cm,
则这个直角三角形的周长为 .
故选D
根据两直角边之比,设出两直角边,再由已知的斜边,利用勾股定理求出两直角边,即可得到三角形的周长.
此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理是解本题的关键.
5. 解: 的面积 ,
由勾股定理得, ,
则 ,
【解答】
解:由图可知,直角三角形的斜边长为即为大正方形的边长,
根据勾股定理可知大正方形的面积为 , ,即 , , 小正方形的面积 大正方形的面积 个直角三角形的面积 .
第1章勾股定理 单元综合测试题 2022—2023学年北师大版数学八年级上册(含答案)
![第1章勾股定理 单元综合测试题 2022—2023学年北师大版数学八年级上册(含答案)](https://img.taocdn.com/s3/m/4511174fb94ae45c3b3567ec102de2bd9605de76.png)
2022-2023学年北师大版八年级数学上册《第1章勾股定理》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.我国汉代的赵爽在注释《周髀算经》时给出了勾股定理的无字证明,人们称它为“赵爽弦图”,“赵爽弦图”指的是()A.B.C.D.2.下列各组数中,属于勾股数的是()A.1,1.7,2B.1.5,2,2.5C.6,8,10D.5,6,73.如图,以Rt△ABC的三边为直径分别向外作半圆,若斜边AB=3,则图中阴影部分的面积为()A.9πB.C.D.3π4.如图,在△ABC中,AB=AC=10,BC=12,AD平分∠BAC,则AD等于()A.6B.7C.8D.95.在△ABC中,AB=AC=5,BC=6,若点P在边AC上移动,则BP的最小值是()A.5B.6C.4D.4.86.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米7.如图,一根长25m的梯子,斜立在一竖直的墙上,这时梯足距离底端7m.如果梯子的顶端下滑4m,那么梯足将滑动()A.7m B.8m C.9m D.10m8.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A.6cm B.8cm C.10cm D.12cm9.以下列各组数为边长,能构成直角三角形的是()A.3,4,5B.4,5,6C.1,2,3D.32,42,52 10.现有四块正方形纸片,面积分别是4,6,8,10,从中选取三块按如图的方式组成图案,若要使所围成的三角形是直角三角形,则要选取的三块纸片的面积分别是()A.4,6,8B.4,6,10C.4,8,10D.6,8,10二.填空题(共7小题,满分28分)11.直角三角形的两直角边长分别为6和8,则斜边中线的长是.12.直角三角形中,两边长为3,4,则第三边长的平方为.13.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.14.如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则∠ABC的度数为.15.观察右面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;并寻找规律,请你写出有以上规律的第⑤组勾股数:,第n组勾股数是.16.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为.17.在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是.三.解答题(共6小题,满分52分)18.如图是单位长度为1的正方形网格.(1)在图1中画出一条长度的平方为10的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.。
第一章勾股定理 单元测试 2024-2025学年北师大版八年级数学上册
![第一章勾股定理 单元测试 2024-2025学年北师大版八年级数学上册](https://img.taocdn.com/s3/m/897b19b14bfe04a1b0717fd5360cba1aa8118cc4.png)
第一章勾股定理单元测试一、单选题1.平面直角坐标系中,点P (2,0)平移后对应的点为Q (5,4),则平移的距离为()A .3B .4C .5D .72.如图,在网格中的小正方形边长为1,ABC 和BCD 的顶点都在网格格点上,则ABC 和BCD 的面积之比为()A .1:2B .2:3C .3:2D .3:43.将一根橡皮筋两端固定在点A ,B 处,拉展成线段AB ,拉动橡皮筋上的一点P ,当△APB 是顶角为120°的等腰三角形时,已知AB =6cm ,则橡皮筋被拉长了()A .2cmB .4cmC .()6cmD .(4cm -4.如图,在边长为1的正方形方格中,A ,B ,C ,D 均为格点,构成图中三条线段AB ,BC ,CD .现在取出这三条线段AB ,BC ,CD 首尾相连拼三角形.下列判断正确的是()A .能拼成一个锐角三角形B .能拼成一个直角三角形C .能拼成一个钝角三角形D .不能拼成三角形5.如图,如果△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么△DEF 与△ABC 的周长比为()A .4:1B .3:1C .2:1D 2:16.下列各组数不能组成直角三角形的一组数是()A .5,12,13B .2223,4,5C .7,24,25D .8,15,177.如图,矩形ABCD 中,AC 和BD 相交于点O ,3AD =,4AB =,点E 是CD 边上一点,过点E 作EH BD ⊥于点H ,EG AC ⊥于点G ,则EH EG +的值是()A .2.4B .2.5C .3D .48.如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段50A ,B 在小正方形的顶点上,设AB 与网格线相交所成的锐角为α,则不同角度的α有()A .1种B .2种C .3种D .4种9.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,AE AF =,AC 与EF 相交于点G .下列结论:①AC 垂直平分EF ;②当AEB AEF ∠=∠时,45EAF ∠=︒;③当15DAF ∠=︒时,AEF 为等边三角形:④当C =2−2B 时,BE DF EF +=.其中正确的结论有()个A .1B .2C .3D .410.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若AD =6,CD =10,则EH EF =()A .32B .53C .43D .54二、填空题11.如图,一高层住宅发生火灾,消防车立即赶到距大厦8米处(车尾AE 到大厦墙面CD ),升起云梯到火灾窗口B .已知云梯AB 长17米,云梯底部距地面的高 1.5AE =米,则发生火灾的住户窗口距离地面多高度BD 是.12.在Rt △ABC 中,90C ∠=︒,10AB =,则2222AB AC BC ++=.13.如图所示,等腰三角形ABC 的底边为8cm ,腰长为5cm ,一动点P (与B 、C 不重合)在底边上从B 向C 以1cm/s 的速度移动,当P 运动秒时,△ACP 是直角三角形14.已知△ABC 为等边三角形,BD 为中线,延长BC 至E ,使CE =CD =1,连接DE ,则DE 等于.15.在矩形ABCD 中,AB =4,AD =9,点E 在BC 上,CE =4,点F 是AD 上的一个动点,连接BF ,若将四边形ABEF 沿EF 折叠,点A 、B 分别落在点A ′、B '处,则当点B 恰好落在矩形ABCD 的一边上时,AF 的长为.三、解答题16.如图,在四边形ABCD 中,90B ∠=︒,AC 为对角线,8AB =,6BC =,215CD =,10AD =.(1)求AC 的长;(2)求ACD 的面积.17.某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离了欲到达点B ,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.如图,在四边形ABCD 中,CD =AD =2,∠D =90°,AB =5.BC =3.(1)求∠C 的度数;(2)求四边形ABCD 的面积.19.如图所示,有一张长方形纸片ABCD ,8AB =,6AD =.现折叠该纸片使得AD 边与对角线DB 重合,折痕为DG ,点A 落在F 处,(1)DF =____________,BF =____________;(2)求AG 的长.20.如图,射线AM AN ⊥于点A 、点C 、B 在AM 、AN 上,D 为线段AC 的中点,且DE BC ⊥于点E .(1)若10BC =,直接写出22AC AB +的值;(2)若8AC =,ABC 的周长为24,求ABC 的面积;(3)若6AB =,C 点在射线AM 上移动,问此过程中,22BE CE -的值是否为定值?若是,请求出这个定值;若不是,请求出它的取值范围.21.如图,在平面直角坐标系中,O 为坐标原点,ABC 的边BC 在x 轴上,A C 、两点的坐标分别为0,、s 0,−5,0,且−32+3−12=0,点P 从B 出发以每秒2个单位的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A C 、两点的坐标;(2)连接PA ,当POA 的面积是2,求t 的值?(3)当P 在线段BO 上运动时,是否存在一点P ,使PAC 是等腰三角形?若存在,请直接写出满足条件的所有P 点的坐标.。
(完整版)北师大版八年级上册数学第一章《勾股定理》单元测试卷(含答案),推荐文档
![(完整版)北师大版八年级上册数学第一章《勾股定理》单元测试卷(含答案),推荐文档](https://img.taocdn.com/s3/m/63bdddd116fc700aba68fc5e.png)
7 7第一章《勾股定理》单元测试卷班别:姓名:一、选择题(本题共10 小题,每小题3 分,满分30 分)1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()A.4 B.8 C.10 D.122.已知a=3,b=4,若a,b,c 能组成直角三角形,则c=()A.5B.C.5 或D.5 或63.如图中字母A 所代表的正方形的面积为()A.4 B.8 C.16 D.644.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形5.直角三角形的一直角边长是7cm,另一直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm6.适合下列条件的△ABC 中,直角三角形的个数为()①a= ,b=,c= ②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25 ⑤a=2,b=2,c=4A.2 个B.3 个C.4 个D.5 个7.在△ABC 中,若a=n2﹣1,b=2n,c=n2+1,则△ABC 是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形3 8. 直角三角形斜边的平方等于两条直角边乘积的2 倍,这个三角形有一个锐角是 ( ) A .15°B .30°C .45°D .60°9. 已知,如图长方形 ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点 D 重合,折痕为 EF ,则△ABE 的面积为( ) A .3cm 2B .4cm 2C .6cm 2 D.12cm 210. 已知,如图,一轮船以 16 海里/时的速度从港口 A 出发向东北方向航行,另一轮船以 12 海里/时的速度同时从港 口 A 出发向东南方向航行,离开港口 2 小时后,则两船相距( ) A .25 海里B .30 海里C .35 海里D . 40 海里二、填空题(本题共 8 小题,每小题 3 分,满分 24 分)11. 一个三角形三边长度之比为 1∶2∶ ,则这个三角形的最大角为度.12. 如图,等腰△ABC 的底边 BC 为 16,底边上的高 AD 为 6,则腰长 AB 的长为. 13.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达点 B200m ,结果他在水中实际游了 520m ,求该河流的宽度为m .14.小华和小红都从同一点O 出发,小华向北走了9 米到A 点,小红向东走到B 点时,当两人相距为15 米,则小红向东走了米.15.一个三角形三边满足(a +b)2 -c2 = 2ab ,则这个三角形是三角形.16.木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线为68cm,这个桌面(填”合格”或”不合格”).17.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为cm2.18.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是.三、解答题(共46 分)19.在RtΔABC 中,∠A CB=90°,AB=5,AC=3,CD⊥AB 于D,求CD 的长.CA BD21.(7 分)如图,在△ABC 中,AD⊥BC 于D,AB=3,BD=2,DC=1,求AC 的值.22.(8 分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?小河北牧童A东B 小屋23.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么 A 城遭受这次台风影响有多长时间?《勾股定理》单元测试卷答案一、选择题(共10 小题,每小题3 分,满分30 分)1.C.2.C.3.D.4.C.5.D.6.A.7.D.8.C.9.C.10.D.二、填空题(共8 小题,每小题3 分,满分24 分)11.900 .12.10 .13.480 m.14.12 米.15.直角.16.合格.17.30 cm2.18.25 .三、解答题(共46 分)19.略20.解:∵∠ACB=90°,AB=5,AC=3,∴BC2 = AB2 -AC2=42,∴BC=4,∵CD⊥AB,1 1 12∴AB·CD= AC·BC,∴5CD=12,∴CD=.2 2 5.21.解:∵AD⊥BC 于D,∴∠ADB=∠ADC=90°∵AB=3,BD=2∴AD2=AB2﹣BD2=5∵DC=1,∴AC2=AD2+DC2=5+1=6.∴AC=22.解:设矩形的长是a,宽是b,根据题意,得:,(2)+(1)×2,得(a+b)2=196,即a+b=14,所以矩形的周长是14×2=28m.23.如图,作出A 点关于MN 的对称点A′,则A′A=8 km,连接A′B 交MN 于点P,则A′B 就是最短路线.在Rt△A′DB 中,A′D=15 km,BD=8 km由勾股定理得A′B2= A′D 2+BD2=289∴A′D =17kmA′M P NAD B24.解:(1)由A 点向BF 作垂线,垂足为C,在Rt△ABC 中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A 城要受台风影响;(2)设BF 上点D,DA=200 千米,则还有一点G,“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
第一章 勾股定理单元测试题(含答案)
![第一章 勾股定理单元测试题(含答案)](https://img.taocdn.com/s3/m/57204c3f0066f5335b81210d.png)
第一章 勾股定理单元测试题一、认真填一填 —— 要相信自己.1.如图1,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.S S S 321图1 图22.如果梯子的底端离建筑物5m ,那么13m 的消防梯可达建筑物的高度为 3.在△ABC 中,∠C =900, ∠A ,∠B ,∠C 所对的边分别为a ,b ,c . (1)若c =10,a ﹕b =3﹕4,则a =____,b =_____. (2)若a =b ,c 2=m ,则a 2=______. (3)若c =61,a =60,则b =______.4.将直角三角形的各边扩大相同的倍数,则得到的三角形一定是_______三角形(填“锐角”“直角”或“钝角”).5.在Rt △ABC 中,AC =8,在△ABE 中,DE 为AB 边上的高,DE =12,S △ABE =60,则BC 长为_______.6.小明把一根70cm 长的木棒放到一个长、宽、高分别为30cm 、40cm 、50cm 的木箱中,他能放进去吗?答: .(填“能”、或“不能”)7.如图2,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为8.如图,有一个直角三角形纸片,两直角边AC =6cm ,BC =8cm 现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上, 且与AE 重合,则CD 的长为.E DA9.观察下列表格:请你结合该表格及相关知识,求出b 、c 的值.即b = ,c =10.如图所示,将长方形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 上F 点处,已知CE =3厘米,AB =8厘米,则图中阴影部分的面积为_____平方厘米.二、细心选一选 —— 要认真考虑.11. 一个三角形的三边长分别为3,4,5,则这个三角形一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .以上答案都不对12. 满足下列条件的△ABC ,不是直角三角形的是( )A .222b c a =- B .a ∶b ∶c=3∶4∶5 C .∠C=∠A -∠B D .∠A ∶∠B ∶∠C=12∶13∶15 13.下面说法正确的是( ) A .在Rt △ABC 中,a 2+b 2=c 2B .在Rt △ABC 中,a =3,b =4,那么c =5 C .直角三角形两直角边都是5,那么斜边长为10D .直角三角形中,斜边最长14.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A.1倍 B. 2倍 C. 3倍 D. 4倍15.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,12 16. 如图所示,在△ABC 中,三边a,b,c 的大小关系是( )A.a <b <cB. c <a <bC. c <b <aD. b <a <c17.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 3318.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)A B C D三、精心做一做 —— 要注意审题(共47分)19.一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm ,高为12cm ,吸管放进杯里(如图所示),杯口外面至少要露出4.6cm ,问吸管要做多长?20.如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出2AB =2、2CD =5、2EF =13这样的线段,并选择其中的一个说明这样画的道理.21.在一棵树的10米高处有两只猴子,其中一只爬下树直向离树20米的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?22.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km /h .如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?观测点23.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?24.我国明代有一位杰出的数学家程大位在所著的《直至算法统宗》里由一道“荡秋千”的问题:“平地秋千未起,踏板一尺立地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉,良工高士素好奇,算出索长有几?”参考答案1.169 ;2.12米;3.(1).6,8; (2).2m; (3).11; 4. 直角;5. 6;6.能;7. 49;8. CD =3cm . 提示:由题可知CD =DE ,AC =AE ,设CD =x cm ,在Rt △BDE 中,有42+ x 2= 8-x .2,解得x =3. 9. 85,86;10.30;11.B ; 12.D ; 13. D ; 14.B ; 15.C ; 16.D ; 17.D ; 18.C ; 19. 解:设吸管长x cm ,由勾股定理得:(x -4.6)2=122+(2.5×2)2,解得x =17.6,即吸管要做17.6cm 长. 20.画图略,结合勾股定理说明.21.分析 为了求解问题,将这个实际问题转化为数学问题,于是,根据题意画出图形,将问题转化到在直角三角形中来,从而可以运用勾股定理构建方程求解. 解 如图1,D 为树顶,AB =10m,C 为池塘,AC =20 m ,设BD 的长是x m ,则树高(x +10)m.因为AC +AB =BD +DC ,所以DC =20+10-x ,在△ACD 中,∠A =90°,所以AC 2+AD 2=DC 2.故202+(x +10)2=(30-x )2,解得x =5.所以x +10=15,即树高15米.说明 勾股定理的本身就是数形结合的体现,求解时它又与方程紧密相联.22.在Rt △ABC 中:BC 2=225030 =1600,∴BC =40,小汽车速度=40÷2=20米/秒=72千米/时>70千米/时. ∴这辆小汽车超速了23.解:如图,甲从上午8:00到上午10:00一共走了2小时,走了12千米,即OA =12.乙从上午9:00到上午10:00一共走了1小时,图1B走了5千米,即OB =5.在Rt △OAB 中,AB 2=122十52=169,∴AB =13, 因此,上午10:00时,甲、乙两人相距13千米.∵15>13, ∴甲、乙两人还能保持联系.答:上午10:00甲、乙两人相距13千米,两人还能保持联系. 24.分析 诗的意思告诉我们:当秋千静止在地上时,秋千的踏板离地的距离为一尺,将秋千的踏板往前推两步,这里的每一步合五尺,秋千的踏板与人一样高,这个人的身高为五尺,当然这是秋千的绳索是呈直线状态,要求这个秋千的绳索有多长?要解决这个古诗中的问题,我们可以先画出图形,再运用勾股定理求解.解 如图1,不妨设图中的OA 为秋千的绳索,CD 为地平面,BC 为身高5尺的人,AE 为两步,即相当于10尺的距离,A 处有一块踏板,EC 为踏板离地的距离,它等于一尺.设OA =x ,即OB =OA =x ,F A =BE =BC -EC =5-1=4尺,BF =EA =10尺.在Rt △OBF 中,由勾股定理,得OB 2=OF 2+BF 2,即x 2=(x -4)2+102, 解这个方程,得x =14.5(尺) 所以这个秋千的绳索长度为14.5尺.图2F OD ECB A。
北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)
![北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)](https://img.taocdn.com/s3/m/dc91ad6391c69ec3d5bbfd0a79563c1ec5dad7c3.png)
北师大版八年级上册数学第一单元《勾股定理》测试卷(含答案)一、选择题(每题4分,共40分)1. 下列说法中,正确的是()A. 在任意三角形中,最长边的平方等于另外两边平方和B. 在直角三角形中,最长边的平方等于另外两边平方和C. 在直角三角形中,最长边的平方小于另外两边平方和D. 在直角三角形中,最长边的平方大于另外两边平方和答案:B2. 已知直角三角形两直角边长分别为6cm和8cm,那么它的斜边长是()A. 10cmB. 14cmC. 12cmD. 16cm答案:A3. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB 的长度是()A. 5B. 6C. 7D. 8答案:A4. 下列三角形中,能构成直角三角形的是()A. 3, 4, 5B. 5, 6, 7C. 8, 9, 10D. 10, 11, 12答案:A5. 一个三角形的三边长分别是3cm、4cm和5cm,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B6. 下列关于勾股定理的说法,错误的是()A. 勾股定理的适用范围是直角三角形B. 勾股定理可以用来求直角三角形的斜边长C. 勾股定理可以用来判断一个三角形是否为直角三角形D. 勾股定理只适用于直角三角形的直角边答案:D7. 如果一个三角形的两边长分别为5cm和12cm,那么第三边的长度可能是()A. 13cmB. 14cmC. 15cmD. 16cm答案:A8. 在直角三角形中,如果最长边的长是10cm,那么另外两边长的可能取值是()A. 6cm和8cmB. 5cm和12cmC. 3cm和4cmD. 2cm和3cm答案:B9. 已知直角三角形的斜边长为10cm,其中一条直角边长为6cm,那么另一条直角边长为()A. 4cmB. 8cmC. 10cmD. 12cm答案:B10. 下列图形中,不能用勾股定理求解的是()A. 正方形B. 矩形C. 等腰三角形D. 直角三角形答案:C二、填空题(每题4分,共40分)11. 在直角三角形ABC中,∠C=90°,AC=5,BC=12,则AB=__________。
第一章 勾股定理 章节测试2022-2023学年北师大版八年级数学上册
![第一章 勾股定理 章节测试2022-2023学年北师大版八年级数学上册](https://img.taocdn.com/s3/m/ff284f59a55177232f60ddccda38376baf1fe065.png)
北师大版八上勾股定理章节测试一、选择题(共11小题)1. 一个直角三角形的三边长分别为3,4,x,则x2为( )A. 5B. 25C. 7D. 7或252. 如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A. 0.4B. 0.6C. 0.7D. 0.83. 如图所示,正方体的棱长为1,一只蜘蛛从正方体的一个顶点A爬行到另一个顶点B,则蜘蛛爬行的最短距离的平方是( )A. 2B. 3C. 4D. 54. 【例4】下列结论中,错误的有( )①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90∘;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形.A. 0个B. 1个C. 2个D. 3个5. 如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )A. 3cmB. 4cmC. 5cmD. 6cm6. 如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的Bʹ.则这根芦苇的长度是( )A. 10尺B. 11尺C. 12尺D. 13尺7. 如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A. 16cmB. 18cmC. 20cmD. 24cm8. 硬币有数字的一面为正面,另一面为反面.投掷一枚均匀的硬币一次,硬币落地后,可能性最大的是( )A. 正面向上B. 正面不向上C. 正面或反面向上D. 正面和反面都不向上9. 张瑞同学制作了四块全等的直角三角形纸板,准备复习功课用,六岁的弟弟看到纸板随手做拼图游戏,结果七拼八凑地拼出了如图所示的图形.张瑞热爱思考,借助这个图形设计了一道数学题:如图是由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长为( )A. a+bB. a−bC. √a2+b22D. √a2−b2210. 如图 所示,矩形纸片 ABCD 中,AB =6 cm ,BC =8 cm ,现将其沿EF 对折,使得点 C 与点 A重合,则 AF 的长为 ( )A. 258 cmB. 254 cmC. 252 cmD. 8 cm11. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为 0.7 米,顶端距离地面 2.4 米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面 2 米,则小巷的宽度为 ( )A. 2.2 米B. 2.3 米C. 2.4 米D. 2.5 米二、填空题(共10小题)12. 如图所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则 AE = .13. 如图,有一块直角三角形纸片 ABC ,两直角边 AC =6,BC =8,现将直角边 AC 沿直线 AD 折叠,使它落在斜边 AB 上,点 C 与点 E 重合,则 CD 长为 .14. 如图,在一个长为 2 米,宽为 1 米的纸板上有一长方体木块,它的长和纸板宽 AD 平行且大于AD ,木块的正面是边长为 0.2 米的正方形,一只蚂蚁从 A 处爬行到 C 处需要走的最短路程是 米.15. 已知三角形的三边长分别为AB=2cm,BC=2√3cm,CA=4cm,则此三角形面积是.16. 如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动米.(假设绳子是直的)17. 如图,在Rt△ABC中,∠ABC=90∘,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点Bʹ处,则BE的长为 .18. 小刚准备测量一段河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,当他把竹竿的顶端拉向岸边时,竹竿和岸边的水面刚好相齐,则河水的深度为.19. 如图,在△ABC中,∠ABC=90∘,分别以BC,AB,AC为边向外作正方形,面积分别记为S1,S2,S3,若S2=4,S3=6,则S1=.20. 阅读下列题目的解题过程:已知a,b,c为△ABC的三边,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状.解:∵a2c2−b2c2=a4−b4,(A)∴c2(a2−b2)=(a2+b2)(a2−b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)本题正确的结论为 .21. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽.问绳索长是多少?示意图如下图所示,设绳索AC的长为x尺,木柱AB的长用含x的代数式表示为尺,根据题意,可列方程为.三、解答题(共7小题)22. 如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长.23. 如图,有一只小鸟在一棵高4m的小树的树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,该小鸟立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少经过几秒才能到达大树和伙伴在一起?24. 列方程解下列应用题.如图,∠ABC=90∘,AB=12厘米,点P从A点开始沿AB边向B点移动,P的速度为2厘米/秒.点Q同时从点B开始沿BC边向C移动,Q的速度为3厘米/秒.几秒后,两点相距10厘米?25. 如图所示,若OA=3,OB=4,AB=5,OC=5,OD=12,CD=13,则∠BOC+∠AOD的度数是多少?26. 如图,在正方形网格中,每个小正方形的边长均为1,以格点为线段的端点,按下列要求仅用无刻度的直尺作图(保留作图痕迹,不写作法与证明).(1)在图1中画一条线段AB,使AB=√17,并标出AB的中点M;(2)在图2中画一条线段CD,使CD=2√13,并标出CD的中点N.27. 如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EBʹF,连接BʹD,求BʹD的最小值.28. 如图,某学校(A点)到公路(直线D)的距离为300m,到公交站(D点)的距离为500m,现要在公路边上建一个商店(C点),使之到学校A及到车站D的距离相等,求商店C与车站D之间的距离.答案1. D2. D【解析】∵AB=2.5米,AC=0.7米,∴BC=√AB2−AC2=2.4(米),∵梯子的顶部下滑0.4米,∴BE=0.4米,∴EC=BC−0.4=2米,∴DC=√DE2−EC2=1.5米.∴梯子的底部向外滑出AD=1.5−0.7=0.8(米).3. D【解析】将正方体的前面、上面展开放在同一平面上,连接AB,如图所示,爬行的最短路径为线段AB.由勾股定理得,AB2=(1+1)2+12=5,故选D.4. C【解析】①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5或√7,错误;②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠C=90∘,错误;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形,正确;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形,正确;故选:C.5. A【解析】在Rt△ABC中,由勾股定理可知:AB=√BC2+AC2=√82+62=10,由折叠的性质可知:DC=DE,AC=AE=6,∠DEA=∠C=90∘,∴BE=AB−AE=10−6=4,∠DEB=90∘,设DC=x,则BD=8−x,DE=x,在Rt△BED中,由勾股定理得:BE2+DE2=BD2,即42+x2=(8−x)2,解得:x=3,∴CD=3.6. D 【解析】设芦苇长AB=ABʹ=x尺,则水深AC=(x−1)尺,因为边长为10尺的正方形,所以BʹC=5尺.在Rt△ABʹC中,52+(x−1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.7. C 【解析】如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则SE=BC=12×24=12cm,EF=18−1−1=16cm,在Rt△FES中,由勾股定理得:SF=√SE2+EF2=√122+162=20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.8. C【解析】A.正面向上的可能性为12;B.正面不向上的可能性为12;C.正面或反面向上的可能性为1;D.正面和反面都不向上的可能性为0.9. C【解析】设CD=x,则DE=a−x,∵HG=b,∴AH=CD=AG−HG=DE−HG=a−x−b=x,∴x=a−b2,∴BC=DE=a−a−b2=a+b2,∴BD2=BC2+CD2=(a+b2)2+(a−b2)2=a2+b22,∴BD=√a2+b22.10. B【解析】设AF=x cm,则DF=(8−x)cm .∵矩形纸片ABCD中,AB=6,BC=8,现将其沿EF对折,使得点C与点A重合,∴DF=DʹF.在Rt△ADʹF中,∵AF2=ADʹ2+DʹF2,∴x2=62+(8−x)2 .解得x=25.411. A 【解析】如图,在Rt△ACB中.∵∠ACB=90∘,BC=0.7米,AC=2.4米,AB2=AC2+BC2,∴AB2=0.72+2.42=6.25.在Rt△AʹBD中,∵∠AʹBD=90∘,AʹD=2米,BD2+AʹD2=AʹB2,∴BD2+22=6.25.∴BD2=2.25.∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.即小巷的宽度为2.2米,故答案选A.12. 2【解析】∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC=√AB2+BC2=√12+12=√2;AD=√AC2+CD2=√(√2)2+12=√3;AE=√AD2+DE2=√(√3)2+12=2.13. 314. 2.6【解析】如图,将木块看成是由纸片折成的,将其拉平成一个长方形,连接AC,AB=2+0.2×2=2.4米,BC=1米,∴AC2=2.42+12=6.76=2.62,∴AC=2.6米,∴妈蚁从A处爬行到C处需要走的最短路程为2.6米.15. 2√3cm216. 9【解析】在Rt△ABC中:∵∠CAB=90∘,BC=17米,AC=8米,∴AB=√BC2−AC2=√172−82=15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17−1×7=10(米),∴AD=√CD2−AC2=√102−82=6(米),∴BD=AB−AD=15−6=9(米),答:船向岸边移动了9米.17. 3218. 2米【解析】若假设竹竿长x米,则水深(x−0.5)米,由题意得,x2=1.5x+(x−0.5)2,解之得,x=2.5.所以水深2.5−0.5=2米.19. 2【解析】∵△ABC中,∠ABC=90∘,∴AB2+BC2=AC2,∴BC2=AC2−AB2.∵BC2=S1,AB2=S2=4,AC2=S3=6,∴S1=S3−S2=6−4=2.20. C,没有考虑a=b的情况,△ABC是等腰三角形或直角三角形21. x−3,(x−3)2+82=x2【解析】x−3;由题意可知AB⊥BC,由勾股定理可得(x−3)2+82=x2.22. 由题意得DB=AD;设CD=xcm,则AD=DB=(8−x)cm,∵∠C=90∘,∴在Rt△ACD中,根据勾股定理得:AD2−CD2=AC2,即(8−x)2−x2=36,解得x=7;4cm.即CD=7423. 这只小鸟至少经过5s才能到达大树和伙伴在一起.秒或2秒24. 221325. 在△AOB中,OA=3,OB=4,AB=5,所以OA2+OB2=AB2,所以△AOB是直角三角形,且∠AOB=90∘,在△COD中,OC=5,OD=12,CD=13,所以OC2+OD2=CD2,所以△COD是直角三角形,且∠COD=90∘,所以∠BOC+∠AOD=∠AOB+∠COD=90∘+90∘=180∘.26. (1)如图1,AB=√17,点M为线段AB的中点.(2)如图2,CD=2√13,点N为线段CD的中点.27. 如图,当∠BEF=∠DEF,点Bʹ在DE上时,BʹD的值最小.根据折叠的性质,得△EBF≌△EBʹF,所以EBʹ⊥FBʹ,EBʹ=EB .因为E是AB边的中点,AB=4,所以AE=EBʹ=2 .因为AD=6,所以DE=√62+22=2√10,所以BʹD=2√10−2 .28. 过点A作AB⊥l于点B,AD=500,AB=300,∴BD=400,设CD=AC=x,则BC=400−x,在Rt△ABC中,x2=(400−x)2+3002,x=312.5,∴CD=312.5m.。
勾股定理单元测试卷(含答案)
![勾股定理单元测试卷(含答案)](https://img.taocdn.com/s3/m/0feb109a900ef12d2af90242a8956bec0975a59f.png)
勾股定理单元测试卷一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 任意三角形2. 勾股定理中的两个直角边的平方和等于斜边的平方,斜边被称为:A. 勾B. 股C. 斜边D. 高3. 在直角三角形中,若直角边的长度分别为3和4,则斜边的长度是:A. 5B. 6C. 7D. 84. 勾股定理的发现者是谁?A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 哥白尼A. a² + b² = c²B. c² = a² + b²C. a² b² = c²D. c² a² = b²二、填空题(每题2分,共10分)6. 勾股定理的公式是:__________。
7. 在直角三角形中,若直角边的长度分别为5和12,则斜边的长度是__________。
8. 勾股定理在中国被称为__________。
9. 勾股定理的发现时间大约在公元前__________年。
10. 勾股定理的发现者毕达哥拉斯是__________国人。
三、解答题(每题5分,共20分)11. 已知直角三角形的两个直角边长度分别为8和15,求斜边的长度。
12. 在直角三角形中,若斜边的长度为17,且一个直角边的长度为8,求另一个直角边的长度。
13. 勾股定理的证明方法有很多种,请简述其中一种证明方法。
14. 请举例说明勾股定理在实际生活中的应用。
答案部分一、选择题答案1. B2. C3. A4. A5. C二、填空题答案6. a² + b² = c²7. 138. 勾三股四弦五9. 50010. 希腊三、解答题答案11. 斜边长度为17。
12. 另一个直角边的长度为15。
13. 勾股定理的证明方法有很多种,其中一种是通过面积证明。
将直角三角形分为两个小直角三角形和一个矩形,分别计算它们的面积,然后通过面积关系推导出勾股定理。
勾股定理单元测试卷
![勾股定理单元测试卷](https://img.taocdn.com/s3/m/00e8e1d659f5f61fb7360b4c2e3f5727a5e92442.png)
第一章勾股定理(时间:60分钟满分100分)一、填空题:(每题4分,共28分)题号 1 2 3 4 5 6 7 得分答案1、.如右图:正方形A的面积为36,正方形B的面积为64,则正方形C的面积为A.49B.100C.144D.812、以下各组数中不能作为直角三角形的三边长的是A、3、6、8;B、5、12、13;C、6、8、10;D、8、17、15.3、在三角形ABC中,====∠BCACABC则,6,10,900A、4B、8C、16D、1364、将直角三角形的三条边长同时扩大或缩小2倍, 得到的三角形是A、钝角三角形;B、锐角三角形;C、直角三角形;D、等腰三角形5、如右图小方格都是边长为1的正方形,则四边形ABCD的面积是A、25B、12.5C、9D、8.56、小丰的妈妈买了一部29英寸(74cm)的电视机,以下对29英寸的说法中准确的是A. 小丰认为指的是屏幕的长度;B. 小丰的妈妈认为指的是屏幕的宽度;C. 小丰的爸爸认为指的是屏幕的周长;D. 售货员认为指的是屏幕对角线的长度.7、等腰三角形的一腰长为13,底边长为10,则它的面积为A、65B、60C、120D、130二、填空题:(每题4分,共20分)8、已知甲往东走了8km,乙往南走了15km,这时甲、乙俩人相距。
9、⊿ABC中,若AC2+AB2= BC2,则∠B+∠C= 。
10、在⊿ABC中,∠C=90°,若c=10,a﹕b=3﹕4,则a= ,b= 。
11、正方形的面积为100平方厘米,则该正方形的对角线长的平方为12、一只蚂蚁从长、宽都是3,高是16的长方体纸箱的A点沿纸箱爬到高的中点处B点,那么它所行的最短路线的长是_____________。
三、解答题:(共44分)13、(5分)求图中阴影部分半圆的面积.(圆周率用π表示)AB 第12题图Caaaabbbbcccc14.(5分)4个直角三角形拼成右边图形,你能根据图形面积得到勾股定理吗?15. (5分)在图中,∠B=∠FAC= 90°BC 长为3cm ,AB 长为4cm ,AF 为12cm ,求正方形CDEF 的面积。
第一章 勾股定理 分类提升训练(含答案) 2024--2025学年 北师大版 八年级数学上册
![第一章 勾股定理 分类提升训练(含答案) 2024--2025学年 北师大版 八年级数学上册](https://img.taocdn.com/s3/m/02c79e893086bceb19e8b8f67c1cfad6195fe930.png)
第一章 勾股定理 分类提升训练 2024--2025学年 北师大版 八年级数学上册一、单选题1.学了“勾股定理”后,甲、乙两位同学的观点如下:甲:如果是直角三角形,那么一定成立;乙:在中,如果,那么不是直角三角形.对于两人的观点,下列说法正确的是( )A .甲对,乙错B .甲错,乙对C .两人都错D .两人都对2.如图,在中,,分别以,为边向外作正方形,面积分别为,,若,,则的长为( )A .4B .2CD .33.为预防新冠疫情,民生大院入口的正上方处装有红外线激光测温仪(如图所示),测温仪离地面的距离米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为米的市民正对门缓慢走到离门米的地方时(即米),测温仪自动显示体温,则人头顶离测温仪的距离等于( )A .米B .米C .米D .米4.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠ABO =60°,若矩形的对角线长为6.则线段AD 的长是( )ABC V 222a b c +=ABC V 222a b c +≠ABC V ABC V 90ACB ∠=︒AC AB 1S 2S 13S =27S =BC A 3AB = 1.8CD 1.6 1.6BC =AD 2.0 2.2 2.25 2.5A .3B .4C .2D .35.如图是一圆柱玻璃杯,从内部测得底面半径为,高为,现有一根长为的吸管任意放入杯中,则吸管露在杯口外的长度最少是( )A .B .C .D .6.如图,已知矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的长为( )A.B .C .D .7. 如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .B .C .D .28.如图,有一个水池,水面是一个边长为尺的正方形,在水池正中央有一根芦苇,它高出水面6cm 16cm 25cm 6cm 5cm 9cm (25cm -ABCD 4AB =3BC =P BC CDP V DP C E PE DE AB O F OP OF =DF 3911451317557173276256101尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面、求这根芦苇的长度是多少尺?设芦苇的长度是尺,根据题意,可列方程为( )A .B .C .D .9.如图,过矩形对角线的交点,作对角线的垂线,交于点,交于点,若,,则的长等于( )A .B .CD .10.在Rt 中,.以为圆心,AM 的长为半径作弧,分别交AC ,AB 于点M ,N.再分别以M ,N 为圆心,适当长度为半径画弧,两弧交于点.连接AP ,并延长AP 交BC 于点.过点作于点,垂足为,则DE 的长度为( )A .B .C .2D .1二、填空题11.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1米,当他把绳子下端拉开5米后,发现下端刚好接触地面,则旗杆高度为 米.12.下图是公园的一角,有人为了抄近道而避开横平竖直的路的拐角 ,而走“捷径 ”,于是在草坪内走出了一条不该有的“路 ”.已知 米, 米,只为少走 米的路. x 222510x +=()2221015x -+=()22215x x -+=()22251x x +=-ABCD O BD AD E BC F 3AE =5BF =EF 48ABC V B ∠=90,8,10AB AC ︒==A P D D DE AC ⊥E E 8345ABC ∠AC AC 40AB =30BC =13.若的三边,,满足,则的面积是 .14.如图,矩形ABCD 中, , ,CB 在数轴上,点C 表示的数是 ,若以点C 为圆心,对角线CA 的长为半径作弧交数轴的正半轴于点P ,则点P 表示的数是 .15.有一根长7cm 的木棒,要放进长、宽、高分别为5cm 、4cm 、3cm 的木箱, (填“能”或“不能”)放进去。
初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)
![初中数学北师大版八年级上册 第一章 勾股定理单元测试(含答案)](https://img.taocdn.com/s3/m/a39c307d2e60ddccda38376baf1ffc4fff47e27a.png)
第一章勾股定理一、选择题1. 若a,b,c为△ABC的三边长,则下列条件中不能判定△ABC是直角三角形的是( )A.a=1.5,b=2,c=2.5B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:52. 在Rt△ABC中,若∠C=90∘,AC=3,BC=4,则点C到直线AB的距离为( )A.3B.4C.5D.2.43. 如图,四边形ABCD中,∠B=90∘,且AB=BC=2,CD=3,DA=1,则∠DAB的度数为( )A.90∘B.120∘C.135∘D.150∘4. 如图,在高为5 m,坡面长为13 m的楼梯表面铺地毯,地毯的长度至少需要( )A.17 m B.18 m C.25 m D.26 m5. 如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为3,5,2,3,则最大正方形E的面积是( )A.47B.13C.11D.86. 如图,将一根长度为8 cm,自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把皮筋中点C竖直向上拉升3 cm到点D,则此时该弹性皮筋被拉长了( )A.6 cm B.5 cm C.4 cm D.2 cm7. 如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90∘,并测得BC长为16 m,若已知AC比AB长8 m,则A点和B点之间的距离为( )A.25 m B.12 m C.13 m D.43 m8. 如图,在三角形纸片ABC中,∠ACB=90∘,AC=4,BC=3,点D,E分别在AB,AC上,连接DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上.若FD平分∠EFB,则AD的长为( )A.259B.258C.157D.207二、填空题9. 在△ABC中,∠C=90∘.(1)已知a=10,b=24,那么c=.(2)已知b:c=4:5,a=9,那么b=,c=.10. 如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB等于.11. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为.12. 如图,一个长方体长4 cm,宽3 cm,高12 cm,则它上下两底面的对角线MN的长为cm.13. 已知a,b,c为△ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,则可以判断△ABC的形状为.14. 如图所示的网格是正方形网格,则∠PAB+∠PBA=∘(点A,B,P是网格线的交点).15. 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2=.三、解答题16. 在Rt△ABC中,∠C=90∘.(1) 已知a=8,c=17,求b.(2) 已知b=40,c=41,求a.17. 如图,在四边形ABCD中,∠DBC=90∘,AB=9,AD=12,BC=8,DC=17,求四边形ABCD的面积.18. 如图,滑竿在机械槽内运动,∠C=90∘,AB=2.5 m,BC=1.5 m,当底端B向右移动0.5 m时,顶端A下滑了多少米?19. 假期中,王强和同学到某海岛上去旅游.他们按照如图所示路线.在点A登陆后租借了自行车,骑车往东走8千米,又往北走2千米;遇到障碍后往西走3千米,再折向北走到6千米处往东拐,走了1千米到达景点B.登陆点A到景点B的直线距离是多少千米?20. 若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5),(5,12,13),(7,24,25),⋯⋯第二类(a是偶数):(6,8,10),(8,15,17),(10,24,26),⋯⋯(1) 请再写出两组勾股数,每类各写一组;(2) 分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.答案一、选择题1. D2. D3. C4. A5. B6. D7. B8. D二、填空题9. 26;12;1510. 1011. x2+62=(10−x)212. 1313. 直角三角形14. 4515. 20三、解答题16.(1) 15.(2) 9.17. ∵∠DBC=90∘,DC=17,BC=8,∴BD2=CD2−BC2=172−82=225=152,∴BD=15.∵AD2+AB2=122+92=144+81=225,BD 2=225, ∴AD 2+AB 2=BD 2,∴△ABD 是直角三角形,且 ∠A =90∘,∴ 四边形 ABCD 的面积 =△ABD 的面积 +∠CBD 的面积 =12×9×12+12×15×8=54+60=114.18. 依题意得 AB =DE =2.5 m ,BC =1.5 m ,∠C =90∘,∴AC 2+BC 2=AB 2,即 AC 2+1.52=2.52,解得 AC =2 m . ∵BD =0.5 m , ∴CD =2 m .在 Rt △ECD 中,CE 2+CD 2=DE 2, ∴CE =1.5 m , ∴AE =0.5 m .答:顶端 A 下滑了 0.5 m .19. 10 千米.20.(1) 第一组(a 是奇数):9,40,41(答案不唯一);第二组(a 是偶数):12,35,37(答案不唯一).(2) 当 a 为奇数时,b =a 2−12,c =a 2+12;当 a 为偶数时,b =a 24−1,c =a 24+1.证明:当 a 为奇数时,a 2+b 2=a 2+(a 2−12)2=(a 2+12)2=c 2,∴(a,b,c ) 是“勾股数”.当 a 为偶数时,a 2+b 2=a 2+(a 24−1)2=(a 24+1)2=c 2,∴(a,b,c ) 是“勾股数”.。
八年级数学上册 第一章《勾股定理》 单元自测题
![八年级数学上册 第一章《勾股定理》 单元自测题](https://img.taocdn.com/s3/m/af992085ac51f01dc281e53a580216fc710a530a.png)
八年级数学上册第一章《勾股定理》单元自测题一、选择题:1、直角三角形的最长边的长为10,一条直角边长为8,另一条直角边长为( )A、6B、8C、10D、42.设直角三角形的两条直角边长分别为a和b,斜边长为c,若c=25,b=15,则a=()A.20B.18C.16D.123、在一个直角三角形中,若其中两边长分别为5,3,则第三边长的平方为( )A、16B、34C、 16或34D、不存在4.下列各组中不能作为直角三角形的三边长的是()A.6,8,10 B.7,24,25 C.9,12,15 D.15,20,30 5.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b﹣c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个6.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.7B.8C.9D.107.如图,将长为10m的梯子AB斜靠在墙上,使其顶端A距离地面6m.若将梯子顶端A向上移动2m,则梯子底端B向左移动()A.2m B.4m C.6m D.10m8.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为()A.2m B.3m C.3.5m D.4m9、若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是( )A 、锐角三角形B 、直角三角形C 、等腰直角三角形D 、钝角三角形10.如图,高速公路上有A,B 两点相距25km ,C,D 为两村庄,已知DA =10km ,CB =15km . DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个服务站E ,使得C,D 两村庄到E 站的距离相等,则AE 的长是( )A .5km.B .10km.C .15km.D .25km.11、如图所示的是一个底面圆周长为24 m,高为5 m 的圆柱体,一只蚂蚁沿表面从A 点爬到C 点,则它所经过的最短路线长为( )A 、12 mB 、15 mC 、13 mD 、9 m12.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,他将变得“枝繁叶茂”,请你计算出“生长”了2023次后形成的图形中所有正方形的面积之和为( )A .2022B .2023C .2024D .2025二、填空题:14、已知三角形三边长分别是6,8,10,则此三角形的面积为 .15、如图,在△ABC 中,AB =6,AC =8,BC =10,P 是线段BC 上的一点,则线段AP 的最小值为____________.16、如图,正方形ABCD 中,AE ⊥BE 于E ,且AE =3,BE =4,则阴影部分的面积是_______。
第一章 勾股定理单元测试卷
![第一章 勾股定理单元测试卷](https://img.taocdn.com/s3/m/d296d101bed5b9f3f90f1c88.png)
第一章 勾股定理单元试卷(时间100分钟 满分100分)一、选择题:(每小题4分,共计20分)1.如图1,在山坡上种树,沿山坡走了10米,高度上升了6米,如果要求树的株距(相邻两棵树之间的水平距离)是4米,那么,斜坡上相邻两棵树之间的坡面距离应是( ) A.10米 B.6米 C.5米 D.4米 .图12.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13 米C.14米D.15米.3.如图2,是一块长、宽、高分别是4cm ,2cm 和1cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A. 5cm B . 5.4cm C. 6.1cm D. 7cm .4.一个木工师傅测量了一个等腰三角形木版的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组A. 13,12,12B. 12,12,8C. 13,10,12D. 5,8,4. 5.如图3, 一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( ) A. 3.8米 B. 3.9米 C. 4米 D. 4.4米二、填空题(每小题4分,共计32分)6.小明要把一根长为70cm 的长的木棒放到一个长、宽、高分别为50cm 、40cm 、30cm 的木箱中,他能放进去吗?_______.7.李明从家出发向正北方向走了1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了图2图3______米.8.如图5,小明将一张长为20cm ,宽为15cm 的长方形纸剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为_______.图5 图6 图79.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图6所示,撑脚长AB 、DC 为3m ,两撑脚间的距离BC 为4m ,则AC=____m 就符合要求. 10.如图7,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图8,是一长方形公园,如果某人从景点A 走到景点C ,则至少要走_____米.图8 图9 图10 12.在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A 处,另一只猴子爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树______米.13.如图10是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A 、B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点最短路程是______米. 三、解答题(本题共计48分)14.(本题满分5分)如图,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C 偏离了想要达到的B 点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB 处的宽度.D B A15.(本题满分5分)我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图)请问这根藤条有多长?(注:枯树可以看成圆柱;树粗3尺,指的是:圆柱底面周长为3尺,1丈=10 .尺)16.(本题满分6分)如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如图. 求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形(单位:cm).17.(本题满分6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?18.(本题满分7分)如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?19. (本题满分6分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道.小河20.(本题满分6分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.21. (本题满分7分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再转向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B 之间的距离是多少?图1图2答案:一、选择题:(每小题4分,共计20分)1.解析:坡面距离就是斜坡的长.沿山坡走了10米,高度上升了6米,则其水平距离为8(米);设斜坡上相邻两棵树之间的坡面距离是x米,则由题意知1084x=,所以x=5.答案:C.2.解析:13米长的梯子可以达到建筑物的高度可设为x米,因梯子的底端离建筑物5米,由勾股定理得:x2=132-52,x=12米.答案:A.3.解析:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=22(24)137++=;(2) 展开前面上面由勾股定理得AB2=22(14)229++=;(3)展开左面上面由勾股定理得AB2=22(21)425++=;所以最短路径的长为5cm.答案:A.4.解析:等腰三角形的高把等腰三角形分成两个直角三角形, 腰为斜边,高和底边长一半为直角边,因此由三角形三边关系及勾股定理可知 A. 132≠122+62, B. 122≠82+62,C.132=122+52,D.52≠42+42.答案:C.5.解析:如图,此题可运用勾股定理解决,设这条木板的长度为x米,由勾股定理得:x2=1.52+3.62,解得x=3.9.答案: B .二、填空题(每小题4分,共计32分)6.解析:在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大.因此可设放入长方体盒子中的最大长度是x ㎝, 根据题意,得x 2=502+40 2+302=5000.702=4900, 因为4900<5000,所以能放进去. 答案:能.7.解析:如图4,把实际问题转化为数学模型,由题意可知AB=1200,AC=2000, 由勾股定理得:BC 2=AC2-AB2= 20002-12002=16002, 所以BC=1600.李明向正东方向走了1600米. 答案:1600.8.解析:延长AB 、DC 构成直角三角形,运用勾股定理得BC 2=(15-3)2+(20-4)2=122+162=400,所以BC=20. 答案:20cm .图5 图6 图7 9.解析:由题意可知AB 、DC 为3m ,BC 为4m ,由勾股定理得:AC 2=AB 2+BC 2=32+42=25=52,所以AC=5. 答案:5.10.解析:由题意可知梯子的长是不变的,由云梯长10米 ,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时, 梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8-6=2(米). 答案:2.11.解析:依据两点之间线段最短,确定最短路线为长方形公园的对角线长,可设长方形公园的对角线长为x 米,由勾股定理得:x 2=1202+3502,解得x=370. 答案:370.图8 图9 图1012.解析:如图9,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.设树的高度为x 米, 因两只猴子所经过的距离相等都为30米.由勾股定理得:x 2+202=[30-(x-10)]2,解得x=15. 答案:15.13.解析:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为x ,由勾股定理得:x 2=22+[(0.2+0.3)×3]2=2.52,x =2.5. 答案:2.5.三、解答题(本题共计48分)14.解析:如图,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决. 答案:在Rt △ABC 中,AB 2+BC 2=AC 2,所以AB 2+1402=5002,解得AB=480. 答:该河AB 处的宽度为480米.15.解析:本题是一道古代数学题,由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按图的方法,转化为平面图形来解决.如图13,线段AB 的长就是古藤的长. 答案:如图13,在Rt △ABC 中,由勾股定理得 AB 2=BC 2+AC 2.因为BC=20,AC=3×7=21, 所以AB 2=202+212=841. 所以AB=29.所以这根藤条有29尺. 答:这根藤条有29尺.16.解析:如图14,彩旗下垂时最低处离地面的最小高度h 也就是旗杆的高度减去彩旗的对角线的长,彩旗的对角D B A线长为150,所以h=320-150=170cm.答案:彩旗下垂时最低处离地面的最小高度h 为170cm.. 17.解析:找最短路程,只需要找到A 点关于河岸的对称点和点B 的距离就可以,借助勾股定理可以求出来.答案:如图,作出A 点关于MN 的对称点A′,连接A′B 交MN 于点P ,则A′B 就是最短路线. 在Rt △A′DB 中,由勾股定理求得A′B=17km.18.解析:本题关键是能将红莲移动后的图画出,红莲被吹至一边,花朵刚好齐及水面即AC 为红莲的长.答案:设水深为h 尺.如图,Rt △ABC 中,AB=h ,AC=h+3,BC=6,由勾股定理得:AC 2=AB 2+BC 2,即(h+3)2=h 2+62.∴h 2+6h+9=h 2+36,解得:h=4.5. 答:水深4.5尺.19. 解析:如图,卡车能否通过,关键是车高4米与AC 的比较,BC 为2.6米,只需求AB ,在直角三角形OAB 中,半径OA 为2米,车宽的一半为DC = OB =1.4米,运用勾股定理求出AB 即可.答案:过直径的中点O ,作直径的垂线交下底边于点D , 如图所示,在Rt △ABO 中,由题意知OA=2,DC = OB =1.4, 所以2222 1.4 2.04AB =-=.因为4-2.6=1.4,21.4 1.96=,2.04>1.96,所以卡车可以通过. 答:卡车可以通过,但要小心.A ′20. 解析:①只须画直角边为2和3的直角三角形即可.这时直角三角形的面积为:1232⨯⨯=3;②画面积为5的四边形,我们可画边长的平方为5的正方形即可.答案:如图1和图2.21. 解析:本题需要把实际问题转化为数学模型,构造直角三角形,利用勾股定理完成.答案:如图,过点B 作BC ⊥AD 于C ,则AC=2.5,BC=6, 由勾股定理求得AB=6.5(km) .所以登陆点A 与宝藏埋藏点B 之间的距离是6.5km.图2图1。
2023年秋北师大版八年级上册数学第一章《勾股定理》单元检测卷(含答案)
![2023年秋北师大版八年级上册数学第一章《勾股定理》单元检测卷(含答案)](https://img.taocdn.com/s3/m/253418ed250c844769eae009581b6bd97f19bcc1.png)
2023年秋八年级上册数学北师大版第一章《勾股定理》单元检测卷A .1B .6.在直线上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为积依次是,,,,则l 1S 2S 3S 4SA .2B .3C .4D .67.如图,已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,则第长是( )A .10.已知直角三角形的斜边长为A .12cm 234二、填空题(共8小题,满分32分)14.已知和7cm15.如图,一架长为18.如图,长方体先后经过面,面三、解答题(共6小题,每题8分,满分48分)19.如图,一架25米长的梯子AB ,斜靠在一竖直的墙AC上,这时梯足B 到墙底端C 的距离为7米,如果梯子的顶端沿墙下滑4米,那么梯足将向外移多少米?20.如图,中,,将折叠,使点恰好落在斜边上,与点重合,为折痕,求的长.1ABCD A B -11ABB A 1BCC B Rt ABC △90,3,4B AB BC ∠=︒==ABC B AC B 'AD DB '21.如图,在Rt△ABC中,AC =28,BC =21,一个动点P 从点A 出发,以每秒1个单位的速度向点C 运动,同时另一个动点Q 从点B 出发,以每秒2个单位的速度向点A 运动,当一个点运动到达终点时另一个点也随之停止运动,运动时间为t 秒,(1)用含t 的代数式表示线段AQ 和CP ;(2)为何值时,AP =AQ ?(3)在动点P 、Q 的运动过程中,判断AP 与BP 能否相等,并说明理由.22.有一个边长为10米的正方形水池,在水池正中央有一根新生的芦苇,它高出水面1米.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问:这个水池水的深度和这根芦苇的长度分别是多少?23.如图,点在四边形的边上,且,平分,与交于点.(1)求证:.(2)当四边形的周长取最大值时,求的度数.O ABCD AB 2OA OB OC OD ====OC BOD ∠BD G CO AD ∥ABCD DOC ∠24.如图,学习了勾股定理后,数学活动兴趣小组的小娟和小燕对离教室不远的一个直角三角形空地斜边上的高进行了探究:两人在直角边上距直角顶点为米远的点处同时开始测量,点为终点.小娟沿的路径测得所经过的路程是米,小燕沿的路径测得所经过的路程也是米,这时小娟说我能求出这个直角三角形的空地斜边上的高了,小燕说我也知道怎么求出这个直角三角形的空地斜边上的高了.你能求出这个直角三角形的空地斜边上的高吗?若能,请你求出来;若不能,请说明理由.AB B 9D C D B C →→18D A C →→18参考答案:。
北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)
![北师大版八年级数学上册 第1章 勾股定理 章节测试卷 (含解析)](https://img.taocdn.com/s3/m/3e0e2970a4e9856a561252d380eb6294dd8822d9.png)
第1章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.古希腊哲学家柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17…若此类勾股数的勾为2m(m≥3,m为正整数),则其弦(结果用含m的式子表示)是( )A.4m2−1B.4m2+1C.m2−1D.m2+12.如图,五个正方形放在直线MN上,正方形A、C、E的面积依次为3、5、4,则正方形B、D 的面积之和为()A.11B.14C.17D.203.观察下列各方格图中阴影部分所示的图形(每个方格的边长为1),如果将它们沿方格边线或对角线剪开后无缝拼接,不能拼成正方形的是()A.B.C.D.4.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.2.2米B.2.3米C.2.4米D.2.5米5.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()A.2B.52C.5D.2546.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为92,则BD2的值为()A.13B.12C.11D.107.图中不能证明勾股定理的是()A. B.C.D.8.如图,将有一边重合的两张直角三角形纸片放在数轴上,纸片上的点A表示的数是-2,AC=BC=BD=1,若以点A为圆心,AD的长为半径画弧,与数轴交于点E(点E位于点A右侧),则点E表示的数为()A.3B.−2+3C.−1+3D.−39.如图,一个底面周长为24cm,高为5cm的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A.12cm B.13cm C.25cm D.26cm10.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用下图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI 的面积为S1,正方形BCGF的面积为S2,矩形AKJD的面积为S3,矩形KJEB的面积为S4,下列结论中:①BI⊥CD;②S1∶S△ACD=2∶1;③S1-S4=S3-S2;④S1S4=S3S2,正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .12.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离 km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使CD=13,则AD 的长为 km.13.如图,图1是第七届国际数学教育大会(ICME−7)会徽图案、它是由一串有公共顶点O的直角三角形(如图2)演化而成的.如果图2中的OA1=A1A2=A2A3=⋅⋅⋅=A7A8=1,若S1代表△A1OA2的面积,S2代表△A2OA3的面积,以此类推,则S10的值为.14.把由5个小正方形组成的十字形纸板(如图1)剪开,以下剪法中能够将剪成的若干块拼成一个大正方形的有(填写序号).15.如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点E是BC的中点,动点P从A 点出发以每秒1cm的速度沿A→C→B运动,设点P运动的时间是t秒,那么当t=,△APE的面积等于12.16.已知△ABC中,AC=8,AB=41,BC边上的高AG=5,D为线段AC上的动点,在BC上截取CE=AD,连接AE,BD,则AE+BD的最小值为.三.解答题(共7小题,满分52分)17.(6分)如图,在△ABC中,AD为BC边上的中线,AB=3,AC=5,AD=2,求证:AD⊥AB.18.(6分)如图,∠AOB=90°,OA=8m,OB=3m,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的路程与机器人行走的路程相等,那么机器人行走的路程BC是多少?19.(8分)以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),类似地,还可得到下列勾股数组:(5,12,13),(7,24,25)等.(1)根据上述三组勾股数的规律,写出第四组勾股数组;(2)用含n(n为正整数)的数学等式描述上述勾股数组的规律,并证明.20.(8分)现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).(1) 求线段BG的长;(2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)21.(8分)如图,在△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图(1),把△ABC沿直线DE折叠,使点A与点B重合,求BE的长;(2)如图(2),把△ABC沿直线AF折叠,使点C落在AB边上G点处,请直接写出BF的长.22.(8分)如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形如图2.(1)你能在3×3方格图(图3)中,连接四个格点(网格线的交点)组成面积为5的正方形吗?若能,请用虚线画出.(2)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.(3)如图,是由两个边长不等的正方形纸片组成的一个图形,要将其剪拼成一个既不重叠也无空隙的大正方形,则剪出的块数最少为________块.请你在图中画出裁剪线,并说明拼接方法.23.(8分)公元3世纪初,我国学家赵爽证明勾定理的图形称为“弦图”.1876年美国总统Garfeild用图1(点C、点B、点C′三点共线)进行了勾股定理的证明.△ACB与△BC′B′是一样的直角三角板,两直角边长为a,b,斜边是c.请用此图1证明勾股定理.拓展应用l:如图2,以△ABC的边AB和边AC为边长分别向外作正方形ABFH和正方形ACED,过点F、E分别作BC的垂线段FM、EN,则FM、EN、BC的数量关系是怎样?直接写出结论 .拓展应用2:如图3,在两平行线m、n之间有一正方形ABCD,已知点A和点C分别在直线m、n 上,过点D作直线l∥n∥m,已知l、n之间距离为1,l、m之间距离为2.则正方形的面积是 .答案解析一.选择题1.D【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【详解】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2−1,∴弦是a+2=m2−1+2=m2+1,故选:D.2.C【分析】如图:由题意可得∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AAC=CE,再根据全等三角形和勾股定理可得S B=S C+S A=5+3=8,同理可得S D=S C+ S E=5+4=9,最后求正方形B、D的面积之和即可.【详解】解:如图:由题意可得:∠ABC=∠ACE=∠CDE=90°,S=AB2=3,S C=DE2=5,S B=AC2,AC=CEA∴∠BAC+∠ACB=90°,∠DCE+∠ACB=90°,∴∠BAC=∠DCE,∴△ABC≅△CDE,∴DE=BC,∵∠ABC=90°,∴AC2=BC2+AB2,∴AC2=DE2+AB2,即S B=S C+S A=5+3=8,同理:S=S C+S E=5+4=9;D∴S+S B=8+9=17.D故选C.3.C【分析】根据网格的特点分别计算阴影部分的面积即可求得拼接后的正方形的边长,根据网格的特点能否找到构成边长的格点即可求解.【详解】解:A. 阴影部分面积为4,则正方形的边长为2,故能拼成正方形,不符合题意;B.阴影部分面积为10,则正方形的边长为10,∵12+32=10,故能拼成正方形,不符合题意;C.阴影部分面积为11,则正方形的边长为11,根据网格的特点不能构造出11的边,故不能拼成正方形,符合题意D. 阴影部分面积为13,则正方形的边长为13,∵22+32=13,故能拼成正方形,不符合题意;故选C.4.A【分析】将梯子斜靠在墙上时,形成的图形看做直角三角形,根据勾股定理,直角边的平方和等于斜边的平方,可以求出梯子的长度,再次利用勾股定理即可求出梯子底端到右墙的距离,从而得出答案.【详解】如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,AB2=AC2+BC2∴AB2=0.72+ 2.42= 6.25在Rt△A‘BD中,∵∠A’BD=90°,A’D=2米,BD2+A'D2=A'B2∴BD2+22= 6.25∴BD2= 2.25∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案选A5.B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE中,勾股定理列出方程,解方程即可求解.【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=AC2−A B2=52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.6.A【分析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD即可.【详解】解:由折叠得,AB=AE,∠BAF=∠EAF,在△BAF和△EAF中,{AB=AE∠BAF=∠EAFAF=AF,∴△BAF≌△EAF(SAS),∴BF=EF,∴AF⊥BE,又∵AF=4,AB=5,∴BF=AB2−A F2=3,在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴S△ADE =12AD⋅EF=12DG⋅h+12EG⋅h,即S△ADG +S△AEG=12AD⋅EF,∵S△AEG =12⋅GE⋅h=92,S△ADG=S△AEG,∴S△ADG +S△AEG=92+92=9,∴9=12AD⋅3,∴AD=6,∴FD=AD−AF=6−4=2,在Rt△BDF中,BF=3,FD=2,∴BD2=BF2+FD2=32+22=13,故选:A.7.A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论a2+b2=c2,找出不能证明的那个选项.【详解】解:A选项不能证明勾股定理;B选项,通过大正方形面积的不同表示方法,可以列式(a+b)2=4×12ab+c2,可得a2+b2 =c2;C选项,通过梯形的面积的不同表示方法,可以列式(a+b)22=2×12ab+12c2,可得a2+b2=c2;D选项,通过这个不规则图象的面积的不同表示方法,可以列式c2+2×12ab=a2+b2+2×12ab,可得a2+b2=c2.故选:A.8.B【详解】根据勾股定理得:AB=2,AD=3,∴AE=3,∴OE=2−3,∴点E表示的数为−2+3.故答案为:B.9.B【分析】先将圆柱圆的侧面沿着点A所在的棱线剪开,得到长方形,得到AC=5cm,BC=242=12 cm,由此即可以利用勾股定理求出蚂蚁爬行的最短路线AB的长.【详解】如图,沿着点A所在的棱线剪开,此时AC=5cm,BC=242=12cm,∴蚂蚁爬行的最短路线AB=AC2+BC2=52+122=13cm,故选:B.10.D【分析】利用正方形的性质证明△ABI≌△ADC,得出∠AIB=∠ACD,即可得出∠CNI=∠NAI,即可判断①,利用△ABI≌△ADC,即可求出△ABI的面积,即可判断②,由勾股定理和S3+S4=S▱ABED,即可判断③,由③S1-S4=S3-S2,两边平方,根据勾股定理可得AC2−B C2=AK2−B K2,然后计算S12+S42−(S22+S32)=0,即可判断④.【详解】解:∵四边形ACHI和四边形ABED为正方形,∴AI=AC,AD=AB,∠CAI=∠BAD=90°,∵∠BAI=∠BAC+∠CAI,∠DAC=∠BAC+∠BAD,∴∠BAI=∠DAC,∴△ABI≌△ADC(SAS),∴∠AIB=∠ACD,∵∠CNI=∠CAI=90°,∴BI⊥CD,故①正确;∵S△ACD=S△AIB=12×AI×AC,S正方形ACHI=S1=AI×AC,∴S1:S△ACD=2:1,故②正确;∵S1=AC2,S2=BC2,S3+S4=S正方形ADEB=AB2,AC2+BC2=AB2,∴S1+S2=S3+S4,∴S1-S4=S3-S2,故③正确;∵ S1-S4=S3-S2,∴S12+S42−2S1S4=S22+S32−2S2S3,∵S1=AC2,S2=BC2,S3=AK•KJ= AK•AB,S4=BK•KJ=BK•AB,∴S12+S42=AC4+AB2BK2,S22+S32=BC4+AK2AB2,∵AB2=AC2+ BC2,AC2=AK2+CK2,BC2=BK2+CK2,∴AC2−A K2=BC2−B K2,即AC2−B C2=AK2−B K2,∴S12+S42−(S22+S32)=AC4+AB2BK2−(BC4+AK2AB2)=AC4−B C4+AB2(BK2−A K2)=(AC2+BC2)(AC2−B C2)−A B2(AC2−B C2) =AB2(AC2−B C2)−AB2(AC2−B C2)=0,∴S1•S4=S2•S3,故④正确,二.填空题11.c2+ab a2+b2+ab【详解】解:如图所示:S1=c2+12ab×2=c2+ab,S2=a2+b2+12ab×2=a2+b2+ab.故答案为c2+ab,a2+b2+ab.12. 20 13【分析】(1)根据两点的纵坐标相同即可得出AB的长度;(2)过C作AB的垂线交AB于点E,连接AD,构造方程解出即可.【详解】(1)根据A、B两点的纵坐标相同,得AB=12−(−8)=20故答案为:20(2)如图:设AD=a,根据点A、B的纵坐标相同,则AE=12,CE=1−(−17)=18由ΔADE是直角三角形,得:(CE−CD)2+AE2=a2∴52+122=a2故答案为:13 13.102【分析】利用勾股定理依次计算出OA2=2,OA3=3,OA4=4=2,.. OA n=n,然后依据计算出前几个三角形的面积,然后依据规律解答求得S10即可.【详解】由题意得:OA2=OA12+A1A22=12+12=2,OA3=OA22+A2A32=12+(2)2=3,OA4=OA32+A3A42=12+(3)2=4=2,∴OAn=n,∴OA10=10,∴S10=12OA10⋅A10A11=12×10×1=102,故答案为:102.14.①③【分析】设小正方形的边长为1,则5个小正方形的面积为5,进而可知拼成的大正方形的边长为5,再根据所画虚线逐项进行拼接,看哪种剪法能拼成边长为5的正方形即可.【详解】解:按照①中剪法,在外围四个小正方形上分别剪一刀然后放到相邻的空处,可拼接成边长为5的正方形,符合题意;如下图所示,按照③中剪法,通过拼接也可以得到边长为5的正方形,符合题意;按照②中剪法,无法拼接成边长为5的正方形,不符合题意;故选①③.故答案为:①③.15.3或18或22【分析】分当点P在线段AB上运动时,当点P在线段BC上运动且在点E的右边时和当点P在线段BC上运动且在点E的左边时三种情况讨论,即可求出t的值.【详解】解:∵∠C=90°,BC=16cm,AC=12cm,∴AB=AC2+BC2=162+122=20,∵点E是BC的中点,∴CE=BE=12BC=8cm,S△ACE=S△ABE=12S△ABC=12×12×12×16=48cm2.当点P在线段AC上运动时,∵△APE的面积等于12,即S△APE =14S△ACE,∴AP=14AC=3,∴t=3÷1=3秒;当点P在线段BC运动时上且在点E的右边时,,如图2所示,同理可知BP=14BE=2cm,∴t=(12+8+2)÷1=22秒;当点P在线段BC上运动且在点E的左边时,如图3所示,同理可知CP=12CE=2cm,∴t=(12+8−2)÷1=18秒;故答案为∶3或18或22.16.13【分析】通过过点A 作GC 的平行线AN ,并在AN 上截取AH =AC ,构造全等三角形,得到当B ,D ,H 三点共线时,可求得AE +BD 的最小值;再作垂线构造矩形,利用勾股定理求解即可.【详解】如图,过点A 作GC 的平行线AF ,并在AF 上截取AH =AC ,连接DH ,BH .则∠HAD =∠C .在△ADH 和△CEA 中,{AD =CE ,∠HAD =∠C ,AH =CA ,∴△ADH≌△CEA(SAS),∴DH =AE ,∴AE +BD =DH +BD ,∴当B ,D ,H 三点共线时,DH +BD 的值最小,即AE +BD 的值最小,为BH 的长.∵AG ⊥BG ,AB =41,AG =5,∴在Rt △ABG 中,由勾股定理,得BG =AB 2−A G 2=(41)2−52=4.如图,过点H 作HM ⊥GC ,交GC 的延长线于点M ,则四边形AGMH 为长方形,∴HM =AG =5,GM =AH =AC =8,∴在Rt △BMH 中,由勾股定理,得BH =BM 2+HM 2=(4+8)2+52=13.∴AE+BD的最小值为13.故答案为:13.三.解答题17.证明:如图,延长AD至点E,使得AD=DE,连接CE,∵AD为BC边上的中线,∴BD=DC,又∵AD=DE,∠ADB=∠EDC,∴△ABD≌△ECD,∴AB=EC=3,∠BAD=∠E,又∵AE=2AD=4,AC=5,∴AC2=AE2+CE2,∴∠E=90°∴∠BAD=∠E=90°∴AD⊥AB.18.解:∵小球滚动的速度与机器人行走的速度相等,∴BC=AC,设BC=AC=x m,则OC=(8-x)m,在Rt△BOC中,∵OB2+OC2=BC2,.∴32+(8-x)2=x2,解得x=7316∴机器人行走的路程BC为73m.1619.(1)解:第一组勾股数的第一个数为3=2×1+1,第二个数为4=2×1×(1+1),第三个数为4=2×(1+1)+1,第二组勾股数的第一个数为5=2×2+1,第二个数为12=2×2×(2+1),第三个数为12=2×2×(2+1)+1,第三组勾股数的第一个数为7=2×3+1,第二个数为24=2×3×(3+1),第三个数为25=2×3×(3+1)+1,所以第四组勾股数组的第一个数为2×4+1=9,第二个数为2×4×(4+1)=40,第三个数为2×4×(4+1)+1=41,∴第四组勾股数组为(9,40,41);(2)解:由(1)可知:第n组勾股数为(2n+1,2n2+2n,2n2+2n+1),证明:∵(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,(2n2+2n+1)2=(2n2+2n+1)(2n2+2n+1)=4n4+4n3+2n2+4n3+4n2+2n+2n2+2n+1=4n4+8n3+8n2+4n+1∴(2n+1)2+(2n2+2n)2=(2n2+2n+1)220.解:(1)如图,连接BG.在直角△BCG中,由勾股定理得到:BG=BC2+GC2=42+32=5(dm),即线段BG的长度为5dm;(2)①把ADEH展开,如图此时总路程为(3+3+5)2+42=137②把ABEF展开,如图此时的总路程为(3+3+4)2+52=125=55③如图所示,把BCFGF展开,此时的总路程为(3+3)2+(5+4)2=117由于117<125<137,所以第三种方案路程更短,最短路程为117.21.(1)解:∵直线DE是对称轴,∴AE=BE,∵AC=6,BC=8,设AE=BE=x,则CE=8−x在Rt△ACE中,∠C=90°,∴AC2+CE2=AE2,∴62+(8−x)2=x2,,解得x=254∴BE=254(2)解:∵直线AF是对称轴,∴AC=AG,CF=CG,∵AC=6,BC=8,设CF=CG=x,则BF=8−x,∴在Rt△ACB中,∠C=90°,AB=AC2+BC2=62+82=10,∴BG=AB−AG=4,在Rt△BGF中,∠BGF=90°,∴GF2+BG2=BF2,∴x2+42=(8−x)2,解得x=3,∴BF=8−3=5.22.解:(1)能,如图所示,正方形ABCD即为所求;(2)能,如图所示,正方形ABCD即为所求;(3)如图所示,在AB上截取AM=BE,连接DM、MF,DM、FM即为裁剪线,将△DAM拼接△DCH处,使DA与DC重合,将△MEF拼接至△HGF处,使ME和HG重合,EF与FG 重合,得到正方形DMFH,∴剪出的块数最少为5块,故答案为:5.23.如图:∵点C、点B、点B′三点共线,∠C=∠C′=90°,∴四边形ACC′B′是直角梯形,∵△ACB与△BC′B′是一样的直角三角板,∴Rt△ACB≌Rt△BC′B′,∴∠CAB=∠C′BB′,AB=BB′,∴∠CBA+∠C′BB’=90°∴△ABB′是等腰直角三角形,,所以S梯形ACC′B′=(AC+B′C′)•CC′÷2=(a+b)22S △ACB =12AC ⋅BC =12ab ,S △BC ′B ′=12ab ,S △ABB ′=12c 2,所以(a +b)22=12ab +12ab +12c 2,a 2+2ab+b 2=ab+ab+c 2,∴a 2+b 2=c 2;拓展1.过A 作AP ⊥BC 于点P ,如图2,则∠BMF =∠APB =90°,∵∠ABF =90°,∴∠BFM+∠MBF =∠MBF+∠ABP ,∴∠BFM =∠ABP ,在△BMF 和△ABP 中,{∠BFM =∠ABP ∠BMF =∠APB =900BF =AB,∴△BMF ≌△ABP (AAS ),∴FM =BP ,同理,EN =CP ,∴FM+EN =BP+CP ,即FM+EN =BC ,故答案为FM+EN =BC ;拓展2.过点D 作PQ ⊥m ,分别交m 于点P ,交n 于点Q ,如图3,则∠APD =∠ADC =∠CQD =90°,∴∠ADP+∠DAP =∠ADP+∠CDQ =90°,∴∠DAP =∠CDQ ,在△APD 和△DQC 中,{∠DAP =∠CDQ ∠APD =∠DQC AD =DC,∴△APD ≌△DQC (AAS ),∴AP =DQ =2,∵PD =1,∴AD 2=22+12=5,∴正方形的面积为 5,故答案为5.。
2023-2024学年八年级数学上册《第一章 勾股定理》单元测试卷有答案-北师大版
![2023-2024学年八年级数学上册《第一章 勾股定理》单元测试卷有答案-北师大版](https://img.taocdn.com/s3/m/c54e5a0a11661ed9ad51f01dc281e53a580251cd.png)
2023-2024学年八年级数学上册《第一章勾股定理》单元测试卷有答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.如果把直角三角形的两条直角边长同时扩大到原来的3倍,那么斜边长扩大到原来的()A.3倍B.4倍C.6倍D.9倍2.在△ABC中,a,b,c分别是,和的对边,下列不能确定为直角三角形的是()A.B.C.D.3.如图,有两棵树,一棵高12m,另一棵高4m,两树相距15m,一只鸟从一棵树的树梢飞到另一棵树的树梢,至少飞行()A.8m B.10m C.13m D.17m4.如图,等边三角形ABC的周长为18,则BC边上的高AD的长为()A.3 B.3 C.6 D.65.如图,在△ABC中,AB=8,AC=6,BC边的垂直平分线交AB于E,交BC于点D,若CD=5,则AE 的长为()A.B.2 C.D.46.如图,在△ABC中,∠C=90°,M是AB的中点,点N在AC上,MN⊥AB,若AC=8,BC=4,则NC的长为()A.5 B.4 C.3 D.27.如图,的两边和的垂直平分线分别交于D,E两点,垂足分别为M,N,若,则的周长为()A.B.C.D.8.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个锐角顶点与另一个的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一条直线上,若AB= ,则CD的长为()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.一棵垂直于地面的大树在离地面6m处折断,树的顶部落在离大树底部8m处,大树折断之前的高度是.10.如图,点A在直线上,点B、C在直线上,如果和那么平行线、之间的距离为.11.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为.12.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:),计算两圆孔中心A和B的距离为mm.13.如图,台阶阶梯每一层高,宽,长 .一只蚂蚁从点爬到点,最短路程是.三、解答题:(本题共5题,共45分)14.在中,D是BC上一点,AC=10,CD=6,AD=8,AB=17,求BC的长.15.如图,已知在Rt△ABC中,∠ACB=90°,AC=9,BC=12,AB的垂直平分线交AB于点D,交BC于点E,连结AE,求BE的长.16.如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?17.已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.18.如图,已知:AD是∠BAC的平分线,AB=BD,过点B作BE⊥AC,与AD交于点F.(1)求证:AC∥BD;(2)若AE=2,AB=3,BF=,求△ABF中AB边上的高.1.A 2.B 3.D 4.B 5.A 6.C 7.B 8.C9.16m10.311.212.15013.130cm14.解:∵∴∵∴∴∴∴∴.15.解:在Rt△ABC中,由勾股定理得AB==15∵DE垂直平分线AB∴AE=BE设BE=AE=x,则CE=12﹣x在Rt△ACE中,由勾股定理得AE2=AC2+CE2即x2=92+(12﹣x)2解得x=即BE的长为.16.(1)解:根据勾股定理:所以梯子距离地面的高度为:AO 米;(2)解:梯子下滑了0.5米即梯子距离地面的高度为OA′=(2.5﹣0.5)=2米根据勾股定理:OB′=2米所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5米答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.17.(1)解:∵AC⊥BC,AB=17,BC=8∴AC= = =15(2)解:∵122+92=152∴CD2+AD2=AC2∴四边形ABCD的面积为:×8×15+ 12×9=60+54=11418.(1)证明:∵AD是∠BAC的平分线∴∠CAD=∠BAD∵AB=BD∴∠BDA=∠BAD∴∠CAD=∠BDA∴AC∥BD;(2)解:作FG⊥AB于G在Rt△ABE中,AE=2,AB=3∴BE∴FE=BE﹣BF∵AD是∠BAC的平分线,BE⊥AC,FG⊥AB,∴FG=FE,即△ABF中AB边上的高为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 勾股定理单元试卷(时间100分钟 满分100分)一、选择题:(每小题4分,共计20分)1.如图1,在山坡上种树,沿山坡走了10米,高度上升了6米,如果要求树的株距(相邻两棵树之间的水平距离)是4米,那么,斜坡上相邻两棵树之间的坡面距离应是( )A.10米B.6米C.5米D.4米 .图12.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13 米C.14米D.15米.3.如图2,是一块长、宽、高分别是4cm ,2cm 和1cm 的长方体木块.一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是()A. 5cm B . 5.4cm C. 6.1cm D. 7cm .4.一个木工师傅测量了一个等腰三角形木版的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组A. 13,12,12B. 12,12,8C. 13,10,12D. 5,8,4.5.如图3, 一个高1.5米,宽3.6米的大门,需要在相对的顶点间用一条木板加固,则这条木板的长度是( )A. 3.8米B. 3.9米C. 4米D. 4.4米二、填空题(每小题4分,共计32分)6.小明要把一根长为70cm 的长的木棒放到一个长、宽、高分别为50cm 、40cm 、30cm 的木箱中,他能放进去吗?_______.7.李明从家出发向正北方向走了1200米,接着向正东方向走到离家2000米远的地方,这时,李明向正东方向走了图2图3______米.8.如图5,小明将一张长为20cm,宽为15cm的长方形纸剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为_______.图5 图6 图79.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图6所示,撑脚长AB、DC为3m,两撑脚间的距离BC为4m,则AC=____m就符合要求.10.如图7,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动_____米.11.如图8,是一长方形公园,如果某人从景点A走到景点C,则至少要走_____米.图8 图9 图10 12.在一棵树上的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只猴子爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树______米.13.如图10是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A、B 是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是______米.三、解答题(本题共计48分)14.(本题满分5分)如图,某人欲垂直横渡一条河,由于水流的影响,他实际上岸地点C 偏离了想要达到的B点140米,(即BC=140米),其结果是他在水中实际游了500米(即AC=500米),求该河AB处的宽度.DBA15.(本题满分5分)我们古代数学中有这样一道数学题:有一棵枯树直立在地上,树高2丈,粗3尺,有一根藤条从树根处缠绕而上,缠绕7周到达树顶,(如图)请问这根藤条有多长?(注:枯树可以看成圆柱;树粗3尺,指的是:圆柱底面周长为3尺,1丈=10尺).16.(本题满分6分)如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm,在无风的天气里,彩旗自然下垂,如图. 求彩旗下垂时最低处离地面的最小高度h.彩旗完全展平时的尺寸如左图的长方形(单位:cm).17.(本题满分6分)如图,一个牧童在小河的南4km小河的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?18.(本题满分7分)如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?19. (本题满分6分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道.20.(本题满分6分)图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.21. (本题满分7分)如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走1.5km ,遇到障碍后又往西走2km ,再转向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏.问登陆点A 与宝藏埋藏点B之间的距离是多少?图1 图2答案:一、选择题:(每小题4分,共计20分)1.解析:坡面距离就是斜坡的长. 沿山坡走了10米,高度上升了6米,则其水平距离为8(米);设斜坡上相邻两棵树之间的坡面距离是x 米,则由题意知1084x =,所以x=5.答案:C .2.解析:13米长的梯子可以达到建筑物的高度可设为x 米,因梯子的底端离建筑物5米,由勾股定理得:x 2=132-52,x=12米.答案:A .3.解析:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=22(24)137++=;(2) 展开前面上面由勾股定理得AB2=22(14)229++=;(3)展开左面上面由勾股定理得AB2=22(21)425++=;所以最短路径的长为5cm .答案:A .4.解析:等腰三角形的高把等腰三角形分成两个直角三角形, 腰为斜边,高和底边长一半为直角边,因此由三角形三边关系及勾股定理可知A. 132≠122+62, B. 122≠82+62 ,C.132=122+52 ,D.52≠42+42.答案:C .5.解析:如图,此题可运用勾股定理解决,设这条木板的长度为x 米,由勾股定理得:x 2=1.52+3.62,解得x=3.9.答案: B .二、填空题(每小题4分,共计32分)6.解析:在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大.因此可设放入长方体盒子中的最大长度是x ㎝,根据题意,得x 2 =502+40 2 +302=5000.702 =4900,因为4900<5000,所以能放进去.答案:能.7.解析:如图4,把实际问题转化为数学模型,由题意可知AB=1200,AC=2000,由勾股定理得:BC 2=AC2-AB2= 20002-12002=16002 ,所以BC=1600.李明向正东方向走了1600米.答案:1600.8.解析:延长AB 、DC 构成直角三角形,运用勾股定理得BC 2=(15-3)2+(20-4)2=122+162=400,所以BC=20.答案:20cm . 图5 图6 图79.解析:由题意可知AB 、DC 为3m ,BC 为4m ,由勾股定理得:AC 2=AB 2+BC 2=32+42=25=52,所以AC=5.答案:5.10.解析:由题意可知梯子的长是不变的,由云梯长10米 ,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时, 梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8-6=2(米).答案:2.11.解析:依据两点之间线段最短,确定最短路线为长方形公园的对角线长,可设长方形公园的对角线长为x 米,由勾股定理得:x 2=1202+3502,解得x=370.答案:370.图8 图9 图10 12.解析:如图9,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.设树的高度为x 米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x 2+202=[30-(x-10)]2,解得x=15.答案:15.13.解析:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B 点最短路程为x ,由勾股定理得:x 2=22+[(0.2+0.3)×3]2=2.52 ,x =2.5.答案:2.5.三、解答题(本题共计48分)14.解析:如图,把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.答案:在Rt △ABC 中,AB 2+BC 2=AC 2,所以AB 2+1402=5002,解得AB=480.答:该河AB 处的宽度为480米.15.解析:本题是一道古代数学题,由于树可以近似看作圆柱,藤条绕树缠绕,我们可以按图的方法,转化为平面图形来解决.如图13,线段AB 的长就是古藤的长.答案:如图13,在Rt △ABC 中,由勾股定理得AB 2=BC 2+AC 2.因为BC=20,AC=3×7=21,所以AB 2=202+212=841.所以AB=29.所以这根藤条有29尺.答:这根藤条有29尺.16.解析:如图14,彩旗下垂时最低处离地面的最小高度h也就是旗杆的高度减去彩旗的对角线的长,彩旗的对角线长为150,所以h=320-150=170cm.DB A答案:彩旗下垂时最低处离地面的最小高度h 为170cm..17.解析:找最短路程,只需要找到A 点关于河岸的对称点和点B 的距离就可以,借助勾股定理可以求出来.答案:如图,作出A 点关于MN 的对称点A′,连接A′B交MN 于点P ,则A′B 就是最短路线. 在Rt △A′DB 中,由勾股定理求得A′B=17km .18.解析:本题关键是能将红莲移动后的图画出,红莲被吹至一边,花朵刚好齐及水面即AC 为红莲的长.答案:设水深为h 尺.如图,Rt △ABC 中,AB=h ,AC=h+3,BC=6,由勾股定理得:AC 2=AB 2+BC 2,即(h+3)2=h 2+62.∴h 2+6h+9=h 2+36,解得:h=4.5.答:水深4.5尺.19. 解析:如图,卡车能否通过,关键是车高4米与AC 的比较,BC 为2.6米,只需求AB ,在直角三角形OAB 中,半径OA 为2米,车宽的一半为DC = OB =1.4米,运用勾股定理求出AB 即可.答案:过直径的中点O ,作直径的垂线交下底边于点D ,如图所示,在Rt △ABO 中,由题意知OA=2,DC = OB =1.4,所以2222 1.4 2.04AB =-=.因为4-2.6=1.4,21.4 1.96=,2.04>1.96,所以卡车可以通过.答:卡车可以通过,但要小心.A′D CB A O20. 解析:①只须画直角边为2和3的直角三角形即可.这时直角三角形的面积为:1232⨯⨯=3;②画面积为5的四边形,我们可画边长的平方为5的正方形即可.答案:如图1和图 2.21. 解析:本题需要把实际问题转化为数学模型,构造直角三角形,利用勾股定理完成.答案:如图,过点B 作BC ⊥AD 于C ,则AC=2.5,BC=6,由勾股定理求得AB=6.5(km) .所以登陆点A 与宝藏埋藏点B 之间的距离是6.5km.图2图1。