七上有理数知识点总结

合集下载

七上有理数知识点

七上有理数知识点

七上有理数知识点一、有理数的概念。

1. 有理数的定义。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数,例如3,0,-5都是整数;分数包括正分数和负分数,像(1)/(2),-(3)/(4)等都是分数。

2. 有理数的分类。

- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数二、数轴。

1. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

原点、正方向、单位长度是数轴的三要素,缺一不可。

2. 数轴上的点与有理数的关系。

- 任何一个有理数都可以用数轴上的一个点来表示,但数轴上的点不都表示有理数(还可以表示无理数)。

例如,2可以用数轴上原点右边距离原点2个单位长度的点来表示;-1.5可以用原点左边距离原点1.5个单位长度的点来表示。

- 数轴上右边的点表示的数总比左边的点表示的数大。

三、相反数。

1. 相反数的定义。

- 只有符号不同的两个数叫做互为相反数。

例如3和-3互为相反数,0的相反数是0。

2. 相反数的性质。

- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。

例如5+(-5) = 0。

- 在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

四、绝对值。

1. 绝对值的定义。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

例如|3| = 3,| - 2|=2。

2. 绝对值的性质。

- 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

即当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。

- 绝对值具有非负性,即| a|≥slant0。

五、有理数的大小比较。

1. 法则。

- 正数大于0,0大于负数,正数大于负数。

- 两个负数比较大小,绝对值大的反而小。

例如-3和-2,| - 3|=3,| - 2| = 2,因为3>2,所以-3<-2。

七年级数学有理数的知识点

七年级数学有理数的知识点

七年级数学有理数的知识点在七年级数学中,有理数是一个重要的知识点。

本文将介绍有理数的概念、有理数的加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点。

一、有理数的概念有理数是指可以表示为两个整数的比的数,其中分母不为0。

有理数包括正有理数、负有理数以及0。

可以用分数形式表示,例如2/3、-3/4等,也可以用小数表示。

二、有理数的加减乘除1.有理数的加法:同号相加,异号相减,保留符号取绝对值相加。

例如:3+5=8,-3+(-5)=-8,-3+5=2,-3-(-5)=2。

2.有理数的减法:减去一个数等于加上这个数的相反数。

例如:3-5=3+(-5)=-2,-3-(-5)=-3+5=2。

3.有理数的乘法:符号相同为正,符号不同为负,绝对值相乘。

例如:3×4=12,-3×4=-12,-3×(-4)=12。

4.有理数的除法:除数不为0,符号相同为正,符号不同为负,绝对值相除。

例如:8÷2=4,-8÷2=-4,-8÷(-2)=4。

三、负数的概念1.负数的概念:小于0的整数即为负数。

例如:-1、-2、-3等。

2.相反数:两个数互为相反数,当且仅当它们的和等于0。

例如:2和-2互为相反数。

3.绝对值:一个数的绝对值,表示这个数到0的距离。

例如:|-3|=3,|5|=5。

四、有理数的比较1.相等与不等:两个有理数相等,当且仅当它们的差等于0。

例如:-4+6=2,所以-4和6不相等。

2.大小比较:可以用数轴比较大小,也可以比较绝对值。

例如:-5<2,|3|>|-5|。

总之,在数学学习中,有理数是一个非常基础且重要的知识点。

希望这篇文章能够对大家更好地掌握有理数的概念、加减乘除、负数的概念、相反数、绝对值以及有理数的比较等方面的知识点提供一定的帮助。

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点

七年级数学上册必考重点知识点有理数43个知识点1.整数的概念:正整数、负整数和零。

2.数轴的概念和使用。

3.整数的比较和大小关系。

4.整数的相反数和绝对值。

5.整数的加法与减法。

6.整数的加减法性质。

7.整数的乘法与除法。

8.乘积的正负性。

9.除法的性质。

10.乘方的概念和运算。

11.乘方的特例:0、1和负整数指数。

12.平方根的概念和运算。

13.数的正负的乘方。

14.有理数的概念和表示。

15.有理数的四则运算。

16.有理数的加减乘除法性质。

17.加减乘除法的混合运算。

18.小数的概念和表示。

19.有限小数和循环小数的概念。

20.小数的相加与相减。

21.有理数的乘法和除法。

22.有理数乘除运算的性质。

23.百分数的概念和表示。

24.百分数与小数的相互转换。

25.百分数的增减。

26.百分数的倍数和倍数的百分数。

27.分数的概念和表示。

28.真分数、假分数和带分数的概念。

29.分数的大小比较和性质。

30.分数的相加和相减。

31.分数的相乘和相除。

32.倒数的概念和运算。

33.分数化简与约分。

34.分数的混合运算。

35.分数方程的解法。

36.分数不等式的解法。

37.分数的小数表示。

38.循环小数与无理数的概念。

39.循环小数与分数的相互转换。

40.循环小数的加减乘除法。

41.百分数的小数表示。

42.百分数的应用。

43.有理数的运算问题的解法。

以上是七年级数学上册必考的43个知识点,学生可以通过对这些知识点的理解和掌握,提高自己的数学水平,更好地应对考试和日常学习中的数学问题。

七年级数学上册“有理数”知识点梳理

七年级数学上册“有理数”知识点梳理

七年级上册数学“有理数”知识点导图知识点一、正数和负数(1)大于0的数叫作正数,正数有时在数字前面加“﹢”号,读作“正”例:1,2,3,+4,+5,+6,+7都是正数(2)正数前面加上“﹣”的数叫作负数,“﹣”读作“负”例:﹣1,﹣2,﹣3,﹣4,﹣5,﹣6,﹣7都是负数(3)正数和负数可以表示“相反”的意思例:向前走5米记为﹢5米,则向后走5米记为﹣5米;向右走5米记为﹢5米,则向左走5米记为﹣5米;(4)0既不是正数,也不是负数,它是正数和负数的分界,0不止是表示“没有”例:0℃所表示的是一个确定的温度,不是表示没有温度习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0知识点二、有理数(1)可以写成分数形式的数称为有理数;例:11,﹣12,13,2,﹣3,4都是有理数(2)可以写成正分数形式的数为正有理数;例:11,13,2,4都是正有理数(3)可以写成负分数形式的数为负有理数;例:﹣12,﹣3,都是负有理数习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数1;2;﹣3;﹣5;π;7;﹣9;13;﹣15知识点三、数轴(1)规定了原点、正方向和单位长度的直线叫作数轴(2)在直线上任取一个点表示数0,这个点叫作原点(3)通常规定直线上从原点向右 (或上)为正方向,从原点向左 (或下)为负方向(4)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示12,3,...;从原点向左,用类似方法依次表示-1,-2,-3,...例:习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)知识点四、相反数(1)仅有符号不同的两个数,称这两个数互为相反数。

0的相反数是0例:1和﹣1;12和﹣12;0和0互为相反数习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0知识点五、绝对值(1)数轴上表示数α的点与原点的距离叫作数α的绝对值,记作|α|(2)一个正数的绝对值是它本身;例:|1|=1;|2|=2;|3|=3(3)一个负数的绝对值是它的相反数;例:|﹣1|=1;|﹣2|=2;|﹣3|=3(4)0的绝对值是0例:|0|=0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0知识点六、有理数的大小比较(1)正数大于0,0大于负数,正数大于负数例:1>0;0>﹣1;1>﹣1(2)两个负数,绝对值大的反而小例:|﹣1|=1,|﹣2|=2,2>1,所以﹣1>﹣2;|﹣3|=3,|﹣4|=4,4>3,所以﹣3>﹣4习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14习题参考答案习题1:指出下列数哪些是正数,哪些是负数1;3;﹣5;﹣7;﹢9;﹣2;﹢4;6;﹣8;0正数:1;3;﹢9;﹢4;6负数:﹣5;﹣7;﹣2;﹣8习题2:指出下列数哪些是有理数,哪些是正有理数,哪些是负有理数 1;2;﹣3;﹣5;π;7;﹣9;13;﹣15有理数:1;2;﹣3;﹣5;7;﹣9;13;﹣15正有理数:1;2; 7; 13;负有理数:﹣3;﹣5;﹣9;﹣15习题3:用数轴表示下列各点A (1);B (﹣2);C (1);D (2.5);E (﹣3)习题4:写出下列个数的相反数2;4;﹣6;﹣8;﹣110;0 2和﹣2;4和﹣4;﹣6和6;﹣8和8;﹣110和110;0和0习题5:写出下列各数的绝对值10;﹣11;112;﹣113;0 |10|=10;|﹣11|=11;|112|=112;|﹣113|=113;|0|=0习题6:比较下列各数的大小7与8;9与﹣10;﹣11和﹣12;0与13;0与﹣14 7>8;9>﹣10;﹣11>﹣12;0<13;0>﹣14。

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结一、有理数1. 有理数的概念有理数是指可以表示为分数的数,即整数、分数、有限小数和循环小数的总称。

有理数可以用分数形式表示,分子为整数,分母为自然数。

2. 有理数的大小比较有理数的大小比较可利用坐标轴表示。

在数轴上,数越往右,数值越大;数越往左,数值越小。

3. 有理数的加减法有理数的加减法规则与整数的运算一样。

同号两数相加、异号两数相减,要先取绝对值,再按两数同号加、异号减的原则进行加减法操作。

4. 有理数的乘除法有理数的乘法和除法规则与整数的运算法则一致,同号相乘得正数,异号相乘得负数;除数不等于零时,正数除以正数得正数,负数除以负数也得正数。

5. 有理数的混合运算将有理数的加减法、乘除法结合起来进行运算,按照运算的先乘除后加减的原则进行混合运算。

6. 有理数的应用有理数在生活中的应用非常广泛,如计量、比较、计算等方面。

二、代数1. 代数式、字母、代数式的值代数式是由数字、字母和运算符号组成的式子。

字母是未知数,代数式的值是指将字母用具体的数代入代数式中去求得的结果。

2. 代数表达式的加减法代数表达式的加减法要进行相同字母项合并,并按照合并的原则进行加减法操作。

3. 代数表达式的乘法代数表达式的乘法是指将代数式进行分配率展开,并用分配率原理进行乘法运算。

4. 代数表达式的除法代数表达式的除法是指先找出最高次项,再按照最高次项进行除法操作,得到商和余数。

5. 代数式的应用代数式在生活中的应用非常广泛,如方程、不等式、数列等方面。

三、方程1. 一元一次方程一元一次方程是指未知数的最高次项是一次的方程。

2. 解一元一次方程解一元一次方程的方法有两种,分别是移项法和等价变形法,可以通过逆运算的原理来解决方程。

3. 一元一次方程的应用一元一次方程在生活中的应用非常广泛,如比例问题、配比问题、运动问题等方面。

四、集合1. 集合的概念集合是包含一组确定对象的整体,其中的对象称为元素。

七年级上册数学有理数的知识点【优秀3篇】

七年级上册数学有理数的知识点【优秀3篇】

七年级上册数学有理数的知识点【优秀3篇】(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作总结、策划方案、演讲致辞、报告大全、合同协议、条据书信、党团资料、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays for everyone, such as work summary, planning plan, speeches, reports, contracts and agreements, articles and letters, party and group materials, teaching materials, essays, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!七年级上册数学有理数的知识点【优秀3篇】有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。

七年级上册数学有理数知识点总结

七年级上册数学有理数知识点总结

七年级上册数学有理数知识点总结有理数是整数和分数的统称,包括正整数、负整数、零以及各种分数。

在七年级数学教学中,学生会学习有理数的四则运算、绝对值、比较大小、混合运算等知识点。

下面是七年级上册数学有理数知识点的总结。

一、有理数的概念1.整数的概念:自然数、零和负整数的集合。

2.分数的概念:整数和整数的商。

3.有理数的概念:整数和分数的统称。

二、有理数的表示1.整数的表示:正数用正号“+”表示,负数用负号“-”表示。

2.分数的表示:分子、分母表示分数。

3.有理数的表示:可以用数轴、分数形式或小数形式进行表示。

三、有理数的比较1.同号比较:绝对值大,数值大。

2.异号比较:绝对值大者为负。

四、有理数的加法和减法1.同号整数相加减:绝对值相加减,符号不变。

2.异号整数相加减:绝对值相减,取绝对值大的符号。

3.分数相加减:通分之后,分子相加减,分母不变。

五、有理数的乘法1.乘法的性质:同号得正,异号得负。

2.绝对值的乘法:绝对值相乘。

六、有理数的除法1.除法的性质:除法可看作乘法的倒数。

2.被除数为零的情况:被除数为零,商也为零。

七、有理数的混合运算1.先乘除后加减:乘除优先级高于加减。

2.小数、分数和整数的混合运算。

八、有理数的应用1.有理数的数轴表示。

2.有理数在实际问题中的应用。

以上是七年级上册数学有理数知识点的总结,有理数是数学学习中非常重要的概念,学好有理数的知识对学生以后学习代数、方程等数学知识有很大的帮助。

在学习过程中,学生需要多做题,多进行实际应用,才能更好地掌握有理数的知识。

七年级数学上册:全册各章知识点总结

七年级数学上册:全册各章知识点总结

第一章有理数一、有理数:1.定义:凡能写成形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2.有理数的分类:3.注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性。

4.自然数Û0和正整数a>0 Ûa是正数;a<0 Ûa是负数;a≥0 Ûa是正数或0 Ûa是非负数;a≤0 Ûa是负数或0 Ûa是非正数.二、数轴1.定义:数轴是规定了原点、正方向、单位长度的一条直线。

三、相反数1.只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0。

2.注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;3.相反数的和为0 Ûa+b=0 Ûa、b互为相反数。

4.相反数的商为-1。

5.相反数的绝对值相等。

四、绝对值1.正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;2、绝对值可表示为:4.|a|是重要的非负数,即|a|≥0;五、有理数比大小1.正数永远比0大,负数永远比0小;2.正数大于一切负数;3.两个负数比较,绝对值大的反而小;4.数轴上的两个数,右边的数总比左边的数大;5.-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

六、倒数1.定义:乘积为1的两个数互为倒数;2.注意:(1)0没有倒数(2)若ab=1Ûa、b互为倒数(3)若ab=-1Ûa、b互为负倒数2.等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.七、有理数加法法则1.同号两数相加,取相同的符号,并把绝对值相加。

七年级数学上册知识点总结集合14篇

七年级数学上册知识点总结集合14篇

七年级数学上册知识点总结集合14篇七年级数学上册知识点总结 1第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0既不积极也不消极。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整数之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.古物:只有两个符号不同的数叫做倒数。

0的反义词还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的逆;0的绝对值是0。

两个负数相比较,较大的绝对值较小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法算法:加同号,取同号,绝对值相加。

不同符号的加法,取绝对值大的加数的符号,用绝对值大的减去绝对值小的。

两个相反的数相加等于0。

用0加减一个数,还是得到这个数。

3.加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5. ab = a +(b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积为1的两个数互为倒数。

3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先分乘法,再符号,最后求结果。

初中七上数学知识点总结

初中七上数学知识点总结

初中七上数学知识点总结初中数学是学生数学学习的重要阶段,它在小学数学的基础上进行了深化和拓展。

七年级上册的数学知识点主要围绕有理数、整式、方程、几何图形等几个方面展开。

以下是对这些知识点的详细总结:一、有理数1. 有理数的概念:有理数包括整数和分数,可以表示为a/b的形式,其中a、b为整数,b≠0。

2. 有理数的分类:正有理数、负有理数、0。

3. 有理数的性质:加法、减法、乘法、除法运算法则,以及它们的交换律、结合律、分配律。

4. 有理数的大小比较:正数大于0,0大于所有负数;两个负数比较大小,绝对值大的反而小。

5. 绝对值:表示数轴上一个数到原点的距离,用符号“| |”表示。

二、整式1. 整式的概念:由整数和字母的有限次幂次运算(加、减、乘、除以及乘方)组成的代数式。

2. 单项式:只含有一个字母的整式,如2x^3。

3. 多项式:由若干个单项式相加或相减组成的整式,如3x^2 - 2x + 5。

4. 同类项:所含字母相同,并且相同字母的指数也相同的项。

5. 合并同类项:将多项式中的同类项相加或相减,简化多项式。

6. 整式的加减运算:主要是合并同类项,注意去括号法则和添括号法则。

三、方程1. 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程,如2x + 3 = 0。

2. 方程的解:能使方程左右两边相等的未知数的值。

3. 解方程的方法:移项、合并同类项、系数化为1等步骤。

4. 列方程解应用题:根据题意列出方程,然后解方程得到答案。

四、几何图形1. 点、线、面、体:点无大小,线有长度无宽度,面有长宽无厚度,体有长宽高。

2. 角:由两条射线的一个公共端点形成的形状,角的大小由两条边张开的程度决定。

3. 直线、射线、线段:直线无端点,射线有一个端点,线段有两个端点。

4. 角的分类:锐角、直角、钝角、平角、周角。

5. 相交线:两条直线相交,形成四个角,对顶角相等。

6. 平行线:在同一平面内,永不相交的两条直线。

七年级上数学有理数知识点

七年级上数学有理数知识点

七年级上数学有理数知识点在七年级上数学学习中,有理数是一个重要的知识点。

有理数包括整数、正数、负数、零以及它们的运算。

下面将介绍有理数的基本概念、加减乘除运算以及应用。

一、有理数的基本概念有理数是可以表示为两个整数的比的数,包括正有理数、负有理数和零。

其中,正有理数是大于零的有理数,负有理数是小于零的有理数,零是既不是正有理数也不是负有理数的有理数。

二、有理数的加减乘除运算1. 加法运算:有理数的加法运算满足交换律、结合律和零元素。

即对于任意的有理数a、b和c,有a+b=b+a,(a+b)+c=a+(b+c),a+0=a。

2. 减法运算:有理数的减法可以转化为加法,即a-b=a+(-b)。

其中,-b表示b的相反数。

有理数的减法运算满足a+(-a)=0。

3. 乘法运算:有理数的乘法运算满足交换律、结合律和单位元素。

即对于任意的有理数a、b和c,有a×b=b×a,(a×b)×c=a×(b×c),a×1=a。

4. 除法运算:有理数的除法可以转化为乘法,即a÷b=a×(1/b),其中1/b表示b的倒数。

有理数的除法运算满足a÷a=1。

三、有理数的应用有理数在生活中的应用非常广泛。

以下列举了一些常见的应用场景:1. 温度计:温度既可以是正数,也可以是负数,用有理数来表示。

正数表示高温,负数表示低温。

2. 海拔高度:海拔高度也可以是正数和负数,正数表示高于海平面,负数表示低于海平面。

3. 账户余额:银行账户的余额可以是正数,表示存款金额;也可以是负数,表示欠款金额。

4. 游戏得分:游戏得分可以是正数,表示得分;也可以是负数,表示失分或扣分。

总结:有理数是包括整数、正数、负数和零的集合。

有理数的加减乘除运算满足一定的运算规律。

有理数在生活中有着广泛的应用,可以用来表示温度、海拔高度、账户余额和游戏得分等。

通过学习有理数的概念和运算规律,我们可以更好地理解和应用数学知识。

七上数学第一章《有理数》知识点总结

七上数学第一章《有理数》知识点总结

七上数学第一章《有理数》知识点总结七年级数学第一章《有理数》知识点总结(填空版)一、有理数的定义及正负表示1.有理数是可以表示为两个整数比例的数,包括分数、整数和零。

2.正数是大于零的有理数,用“+”表示。

3.负数是小于零的有理数,用“-”表示。

4.有理数可用数轴表示,数轴上0点表示整数0。

二、有理数的比较和排列1.对于两个不相等的有理数a和b,如果a>b,则称a大于b;如果a<b,则称a小于b。

2.两个有理数的大小可以通过将它们表示为相同分母的分数进行比较。

3.可使用数轴来比较和排列有理数。

4.有理数可以按从小到大或从大到小的顺序排列。

三、有理数的加法和减法1.有理数的加法遵循结合律和交换律,即(a+b)+c=a+(b+c)和a+b=b+a。

2.有理数的减法可以转化为加法,即a-b=a+(-b)。

3.加法的逆元是相反数,即a+(-a)=0。

四、有理数的乘法和除法1.有理数的乘法遵循结合律和交换律,即(a×b)×c=a×(b×c)和a×b=b×a。

2.有理数的除法可以转化为乘法,即a÷b=a×(1/b)。

3.乘法的逆元是倒数,即a×(1/a)=1(a≠0)。

五、有理数的四则运算1.有理数的加法和减法可以结合在一起进行。

2.有理数的乘法和除法可以结合在一起进行。

3.在进行多项式的运算时,可以按照先乘除后加减的顺序进行。

六、有理数的绝对值1.有理数a的绝对值用,a,表示,a,≥0。

2.正数的绝对值等于它本身,即,a,=a(a>0)。

3.负数的绝对值等于它相反数的绝对值,即,a,=-a(a<0)。

七、有理数的倒数1.非零有理数a的倒数用1/a表示。

2.有理数a的倒数乘以自己等于1,即a×(1/a)=1(a≠0)。

八、乘方运算1.有理数的乘方运算是指将有理数自身连乘多次的运算。

2.有理数的零次方等于1,即a^0=1(a≠0)。

七年级上册数学有理数知识点总结

七年级上册数学有理数知识点总结

七年级上册数学有理数知识点总结有理数是整数和分数的统称,包括正整数、负整数、零,以及各种形式的分数。

在七年级上册数学中,有理数是一个非常重要的知识点。

本文将对七年级上册数学有理数知识点进行总结和介绍。

1.有理数的定义有理数指的是一切可以表示为分子、分母都是整数且分母不为零的数。

可以用有理数的准确分数表示及有理数的小数表示两种方式予以表示。

2.有理数的四则运算有理数的加法、减法、乘法和除法依然遵循相同的规律。

加法和乘法满足交换律和结合律,除法满足相反数的乘法性质。

3.数轴数轴是一个非常重要的概念,它能够帮助我们直观地理解有理数之间的大小关系。

正数在数轴上位于原点的右侧,负数在数轴上位于原点的左侧。

4.绝对值绝对值表示一个数到原点的距离,用符号|a|表示,其中a是一个数。

当a为正数时,其绝对值等于a;当a为负数时,其绝对值等于-a。

5.有理数的比较在数轴上,我们可以通过有理数的大小关系来比较两个有理数的大小。

绝对值大的数较大,同号数相减取绝对值来比较,异号数按照绝对值大小来比较。

6.约分和通分约分是指将一个分数化为最简分数,通分是指寻找多个分数的最小公倍数,使它们的分母相等。

7.有理数的加减混合运算有理数的加减混合运算需要按照运算法则进行,可以先化为同号数进行加减运算,再根据结果的正负进行具体的计算。

8.有理数的乘法和除法有理数的乘法和除法也需要遵循相同的规律,同号数相乘为正,异号数相乘为负;同号数相除为正,异号数相除为负。

在乘法和除法的计算中,可以先化为同号数进行运算,根据结果的正负进行具体的计算。

9.有理数的应用有理数在生活中有很多实际应用,例如温度变化、海拔高度变化等都可以用有理数来表示和计算。

在学习七年级上册数学有理数知识点时,我们需要掌握有理数的定义、四则运算、数轴、绝对值、有理数的比较、约分和通分、有理数的加减混合运算、有理数的乘法和除法以及有理数的应用。

通过深入学习这些知识点,并进行大量的练习,可以帮助我们更好地掌握有理数的相关知识,并在日常生活中灵活运用。

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

七年级上册数学有理数知识点

七年级上册数学有理数知识点

七年级上册数学有理数知识点七年级上册数学有理数知识点有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。

整数也可看做是分母为一的分数。

不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

下面是店铺精心整理的七年级上册数学有理数知识点,希望对你有帮助!七年级上册数学有理数知识点 11.正数:比0大的数叫正数。

2.负数:比0小的数叫负数。

3.有理数:(1)凡能写成q/p(p,q为整数且p不等于0)形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:4.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

5.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0等价于a+b=0等价于a、b互为相反数。

6.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;7.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.8.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么a的倒数是1/a;若ab=1等价于a、b互为倒数;若ab=-1等价于a、b互为负倒数。

9. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。

10.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)。

人教版七年级上册数学《有理数》知识点梳理

人教版七年级上册数学《有理数》知识点梳理

人教版七年级上册数学《有理数》知识点梳理一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数 注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级数学有理数知识点总结3篇

七年级数学有理数知识点总结3篇

七年级数学有理数知识点总结3篇七年级数学有理数知识点总结1.1 正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rational number)。

通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(opposite number)。

(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

mì求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。

在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

七年级第一章有理数知识点总结

七年级第一章有理数知识点总结

一、有理数概念及性质
1.什么是有理数
有理数是形式上存在分数表示,或者可以等价转化为分数表示的自然数,整数,分数及其各自的正负数的数的总称。

2.有理数的性质
(1)有理数的封闭性:有理数组成的集合,是一个封闭的集合,它满足交换律,结合律,分配律,有界律以及加减乘除定律。

(2)有理数的可比较性:有理数可以相互比较大小。

(3)有理数的可折叠性:有理数可以折叠为一个更小的数,而且当两个有理数可以折叠时,它们可以折叠到一个相同的因数上。

二、有理数的加减法
(1)有理数的加法
有理数的加法只要把两个加数的分母约到相同,然后将相同的分母下的分子相加即可。

(2)有理数的减法
有理数的减法只要把两个减数的分母约到相同,然后将相同的分母下的分子相减即可。

三、有理数的乘法
有理数的乘法是把两个乘数的分子相乘,分母也相乘,得到的结果是两个乘数的乘积。

四、有理数的除法
有理数的除法是把被除数的分母乘以除数的分子,分子乘以除数的分母,得到的结果是两个数的商。

五、有理数的最简形式
有理数的最简形式,即最简分数,是指把一个分数的分子和分母都约分到最简形式,使得同时存在它们的最大公约数。

六、有理数的基本运算。

七年级数学上册“有理数的运算”知识点梳理

七年级数学上册“有理数的运算”知识点梳理

七年级数学上册“有理数的运算”知识点梳理导图知识点一、有理数的加法(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和;例:1+2=3(1和2都是正数,和取正号;|3|=|1|+|2|)﹣2+(﹣3)=﹣5(﹣2和﹣3都是负数,和取负号;|﹣5|=|﹣2|+|﹣3|)(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差;例:2+(﹣1)=1(|2|>|﹣1|,和取正号;|1|=|2|-|﹣1|)2+(﹣3)=﹣1(|﹣3|>|2|,和取﹣号;|﹣1|=|﹣3|-|2|)(3)互为相反数的两个数相加得0;例:1+(﹣1)=0;﹣2+2=0(4)一个数与0相加,仍得这个数;例:1+0=1;﹣2+0=﹣2(5)两个数相加,交换加数的位置,和不变;例:1+2=2+1=3;1+(﹣2)=(﹣2)+1=﹣1;(﹣1)+(﹣2)=(﹣2)+(﹣1)=﹣3(6)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;例:1+2+3=1+(2+3)=(1+2)+3=6;(﹣1)+(﹣2)+(﹣3)=(﹣1)+[(﹣2)+(﹣3)]=[(﹣1)+(﹣2)]+(﹣3)=﹣6习题1:计算(1):3+4; (2):﹣4+(﹣5); (3):5+(﹣6);(4):﹣7+8; (5):9+0; (6):﹣10+0;(7):10+11+12; (8):(﹣11)+(﹣12)+(﹣13); (9):12+(﹣13)+(﹣14)知识点二、有理数的减法(1)减去一个数,等于加这个数的相反数例:1-2=1+(﹣2)=﹣1;(﹣2)-3=(﹣2)+(﹣3)=﹣50-5=0+(﹣5)=﹣5习题2:计算(1):3-4; (2)5-4; (3)(﹣6)-5; (4)(﹣6)-(﹣7);(5):8-7; (6)0-9 (4)0-(﹣10)知识点三、有理数的乘法(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积; 例:1×2=2(1和2都是同号,积为正;|2|=|1|×|2|)(﹣2)×(﹣3)=6(﹣2和﹣3都是同号,积为正;|6|=|﹣2|×|﹣3|) 2×(﹣3)=﹣6(2和﹣3是异号,积为负;|﹣6|=|﹣2|×|﹣3|)(2)任何数与0相乘,都得0;例:0×0=0;1×0=0;(﹣2)×0=0(3)乘积是1的两个数互为倒数;例: 2×12=1(2与12互为倒数)(﹣3)×(﹣13)=1(﹣3与﹣13互为倒数)(4)两个数相乘,交换乘数的位置,积不变;例:1×2=2×1=2;5×(﹣6)=(﹣6)×5=﹣30(5)三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;例:﹣1×2×3=﹣1×(2×3)=(﹣1×2)×3=﹣6;(6)一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加; 例:2×(1+3)=2×1+2×3=8(7)α×b 也可以写为α·b 或αb ;当用字母表示乘数时,“×”可以写成“·”或省略; 例:5×α可以写成5·α或5α习题3:计算(1)2×3; (2):(﹣3)×(﹣4); (3):4×(﹣5);(4):0×100; (5):1×2×3; (6):(﹣2)×(﹣3)×(﹣4);(7):(﹣3)×(﹣4)×5;(8):2×(2+3);(9):3×(4-5);(10)4×[(﹣3)+(﹣4)]知识点四、有理数的除法(1)除以一个不等于0的数,等于乘这个数的倒数例:4÷(﹣2)=4×(﹣1)=22(2)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商例:(﹣8)÷(﹣2)=4(﹣8和﹣2都是同为负号,商为正;|4|=|﹣8|÷|﹣2|)8÷(﹣2)=﹣4(8和﹣2一正一负为异号,商为负;|﹣4|=|8|÷|﹣2|)(3)0除以任何一个不等于0的数,都得0例:0÷(﹣9)=0;0÷9=0习题4:计算(1):6÷(﹣3);(2):(﹣10)÷(﹣2);(3):10÷(﹣10);(4):0÷4知识点五、有理数的乘方(1)求n个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂。

七年级数学上册有理数知识点总结

七年级数学上册有理数知识点总结

有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

5.a 可以表示什么数⑴a>0表示a 是正数;反之,a 是正数,则a>0;⑵a<0表示a 是负数;反之,a 是负数,则a<0⑶a=0表示a 是0;反之,a 是0,,则a=0课时2. 实数的运算与大小比较【考点链接】一、实数的运算1.实数的运算种类有:加法、减法、乘法、除法、 、 六种,其中减法转化为 运算,除法、乘方都转化为 运算。

2. 数的乘方 =n a ,其中a 叫做 ,n 叫做 .3. =0a (其中a 0 且a 是 )=-p a (其中a 0)4. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.二、实数的大小比较1.数轴上两个点表示的数, 的点表示的数总比 的点表示的数大.2.正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.3.实数大小比较的特殊方法⑴设a 、b 是任意两个数,若a-b>0,则a b ;若a-b=0,则a b ,若a-b<0,则 a b.⑵平方法:如3>2;⑶商比较法:已知a>0、b>0,若b a >1,则a b ;若b a =1,则a b ;若ba <1,则a b. ⑷近似估算法⑸找中间值法 4.n 个非负数的和为0,则这n 个非负数同时为0. 例如:若a +2b +c =0,则a=b=c=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点一、正负数表示方法 1如果水位下降 3m 记作+3m 那么水位上升 4 m 记作2. 下列说法正确的是( A.所有的整数都是正数C.0不是最小的有理数3. 下列各项判断正确的是A.a+b 一定大于 a-b;B. B. D. 不是正数的数一定是负数 正有理数包括整数和分数 ) 若-ab<0,则 a 、 4.把下列各数填在相应的大括号里。

b 异号;C.若 a 3=b 3,则 a=b; D.若2 2a =b ,贝U a=b+8,0.275,-卜2|,0,-1.04,-(-10),0正整数集合 整数集合{ 负整数集合 正分数集合 5、n 是( (A)整数 {{ ) (B)分数 (C)有理数 22 .1010010001 …,-(-2) 2, , 7 } } } }(D)以上都不对 0.16、 7、 写出三个有理数数,使它们满足:①是负数;②是整数;③能被 下列说法中,正确的是(9、2、3、 5整除。

答:A 、零是最小的整数零是最小的正数 C 、零没有倒数 零没有绝对值 F 列说法不正确的事( (A) a 的相反数是一a. (B ) 任何有理数的平方都是正数 (C)在有理数中绝对值最小的数是零 如果a 是有理数,则下列判断中正确的是( -a 是负数 B 、|a|是正数 C 、|a| (D) 在有理数中没有最大的数 不是负数 D 、-|a|不是负数 10、 F 列说法中正确的是( A.两个数的和必定大于每一个加数 B.如果两个数的和是正数,那么这两个数中至少有一个正数 C.两个数的差一定小于被减数 D.0 减去任何数,仍得这个数 11、如果两个有理数在数轴上的对应点分别在原点的两侧,那么这两个数的商一定是( )A 、正数 B负数 C D 、可能是正数或负数 12.下列说法不正确的是 A 、0小于所有正数 13•若两个数的和为正数,则这两个数 A 、至少有一个为正数 B 14. 一个有理数的平方一 A 、正数 B 知识点二、相反数、倒数 B 、0大于所有负数 C 、0既不是正数也不是负数 心曰 /定是 ( 、负数、只有一个是正数 ) C 、非正数C 、有一个必为0 DD 、非负数()、0没有绝对值()、都是正数1. -2的相反数是 2. 3的倒数是3•若一个数的平方等于它的倒数,则这个数一定是4、有理数 1丄的相反数是() 3(A)-31(B) - (C) 3 3 (D)4、有理数- -3的倒数是((A)- 31 (B) - (C) 3(D)知识点三、数轴1. 在数轴上表示一12的点与表示一3的点的距离是2. 北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:纽约多伦多伦敦如果将两地国际标准时间的差简称为时差,那么北京与纽约的时差为 小时.知识点四、绝对值(非负数)1. ______________________________________ 绝对值小于4的整数的个数有 个.2. _______________________________________________ 绝对值大于1且不大于5的负整数有 ____________________________________________________3. 右 |-a | =5,贝U a= ______ .4.下列说法不正确的是 ()A. 0既不是正数,也不是负数C. 一个有理数不是整数就是分数 5已知a,b 互为相反数,c, d 互为倒数,x 的绝对值为5,试求:219981999 上x — (a + b + cd )x + (a + b ) + ( — cd ) 的值6 •已知ab>0,试求回 凹 •空的值。

a b ab7.若a、b、c为任意三个不为零的有理数,试确定 值是s,最小值是t ,求占的值。

2 2 28.右 |a + 1| + |b — 3| + |c| == 0,求(a — b) — (b — c) — (c — a)和值.9.若 |x — 2|+|y+3|+|z — 5|=0 计算: (1)、x, y, z 的值. (2)、求 |x|+|y|+|z| 的值.知识点五、比较大小1.若 0<m<1,m21 m 、一m的大小关系是() 21211 2 1 2A.m<m <—;B.m<m<—; C. —<m<m D.<m<mmmm m2、比较大小:- n —3.14(填=, >,<号)。

3、若有理数a,b,c 在数轴上的位置如图所示,其中 0是原点,第2页共6页北京汉城!3—B . 1是绝对值最小的数D . 0的绝对值是0 a bc abc|a| l b l l c l l abcl 的值有多少种情况,假若这个式子的最大 -1(1)用“ < 号把a,b,-a,-b 连接起来; ⑵b+c 的值是多少?(3)判断a+b 与a+c 的符号。

知识点六、科学计数法、有效数字 1. 下列所列四个数据中,是精确数的是( )A.小明身高1.5米B.小明体重38千克C.小明家离校15千米D. 小明班里有23名女生 2. 在下列各数中,近似数是( )A. 小强的体重约为 55千克B. 小华到商店买了 10枝铅笔C. 在一次数学测验中有 10人得了 99分D. 小华打电话用去 1元钱3. 在课堂上小聪提出n= 3.14,小亮说小聪的说法不对,因为3.14是n 的近似数,那么这个近似数()A. 精确到十分位B.精确到百分位C.精确到个位D.精确到千分位4. 下列用四舍五入法得到的近似数中,含有 3个有效数字的是( ) A. 3270 B. 0.3270C. 327 万D. 1.3275. 下列说法正确的是( )A. 近似数20.0与25的精确度相同B. 近似数25.0与25的有效数字相同C. 近似数2万和近似数20000的精确度相同D.近似数0.0204有3个有效数字6. 某省有67440000人,按要求分别取这个数的近似数,并指出近似数的有效数字(1) 精确到十万位; (2) 精确到百万位;(3) 精确到千万位.9.下列用科学记数法表示各数的算式中,不正确的是( )31 2 21 456.7=1.4567 X 10 ; 5.447=5.447 X 10 ; 152=1.52 X 10 ;— 37800=— 378 X 10 640万平方千米,用科学记数法表示为(B 64 X 105平方千米 D 6.4 X 107平方千米11.2002年世界杯足球赛期间,现场观看人数达到45A 1.92 X 10 人B 1.92 X 10 人C 12.某市科记园区的超级计算机中心内,被称为“神州一号”的计算机运算速度为每秒 384 000 000 000 次。

用科学记数法表示为()10111213I b I = I c|。

7.用科学记数法表示 13040000沁 __________ &— 800 800可以用科学记数法表示为(44A — 8.008 X 10B 8.008 X 10____________ ,(保留3个有效数字) )55C — 8.008 X 10D 8.008 X 1010.我国西部地区面积约为A 640 X 104平方千米6C 6.4 X 10平方千米1 920 000人,用科学记数法表示为(671.92 X 10 人 D 1.92 X 10 人A 3.84 X 10 次B 3.84 X10 次C 3.84 X 10 次D 3.84 X 10 次14、下列说法正确的是()知识点七、有理数的运算5、计算::(-2 2- )—=- 1 ;-19 + = 20;31 1 / 1、9X3 _; 2 - + (-1 )= 。

3 3 6(1) (—30) —(—28) + (— 70) —88(3)( —11!) 1X ( — 1X ( —0.3)1X 3 - X(-?)4 3 3 5(5) —1—(—10) + 1X 2 +(—4); ⑵-72 r 2十 2 X ( — 3) + ( — 6)1)2 31 1 1 11 322、(—3 ) r4 —12 ) r —)X ( —)7 6 2 25 423、( — 2) 14X ( — 3)15X ( —])1462 2 51 1 1 124、一 4 + 5X ( — 4) — ( — 1) X ( —) + ( — 2 — ) - ( — 2 —)6 2 4、(〜25)x(-3f)X(+4)(2)(-2.6)+(-3.4)+(+2.3)+1.5+(-2.3)13.设n是一个正整数,那么 10n是()A 10 个n相乘的结果B 是一个n位整数C 10 的后面又n个0的整数D 是一个n+1位的整数A近似数24.00与24.0的精确度一样、近似数100万的有效数字是1,0,0,0,0,0,0 B近似数5.29 103与近似数5290的精确度一样D、近似数529和近似数0.529都有三个有效数字“ 1 1 5 2 126、- + + —273 2 6_ 3 425、2-143(-281、31+ (- 28) +28+69 2 、(—7)+(+11)+( —13)+93、23—17 + 7 — 164、2 +( — 1) — 1+13 5 3,12 c 2 ,13 ,12 c / ,131 - X 3 ——1 —X 4 —— 3 X —1—)13 15 15 13 15(1)(+7)+(-6)+(-7)+(+6)30、( — 26.54)+( — 6.4) — 18.54+6.4 31、(—47) — ( — 5丄)+( — 4丄)—3〕8 2 4 8知识点八、有理数的乘方3.如果| a +2|+( b -1) 2=0,那么代数式(A -2009B 2009C -14. (— 5) 3的底数是 __________ ,指数是 _________知识点九、探索找规律1对正有理数a 、b 规定运算★如下:a* b=ab,则8^ 6=.a b2.珠穆朗玛峰海拔高度是 8848米,估计有 ________ 层楼高。

3•瑞士中学教师巴尔末成功地从光谱数据-、16、却、艺中得到巴尔末公式,从而打开了光谱奥妙的大门,5 12 21 32请你按这种规律写出接下来的第二个数据是 ________________ .4.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次, 就把这根很粗的面条拉成了许多细的面条,如下面草图所示。

这样捏合到第____ 次后可拉出64根细面条。

第一次捏合 第二次捏合 第三次捏合5. 给出依次排列的一列数:—1 , 2,— 4, 8, — 16, 32, (1)按照给出的这几个数列的某种规律,继续写出后面的3项: ____(2) 这一列数第n 个数是什么?(1)(+12)+(-14)- (-56 ) +(-27) (3)(-12) -4X( -6) -2①(-8)+(+21)-( - 12) ②(一100) -5X (—4)⑤(一24)X(-—-)6 4⑥ | — 5 — 4| — 5 X(—2) 2— 1 -(—a +b )2009的值是,结果等于1999 20007. (1)计算 下列 各式:并且填空:(1分)1 3 () 1 3 5 ()1 3 5 7 ( )1 3 5 7 9( )(2)细心观察上述运算和结果,算出1+3+5+7+ …+2003+2005+2007= ________________ .(结果用幕表示)(2 分)(3) 计算:101 + 103+105+107+…2003+2005+2007 (结果用幕表示)&在右图的9个方格中分别填入1、2、3、4、5、6、7、8、9使得每行的3个数、每列的3个数、斜对角线上的 3 个数之和都相等.6计算:(3分)。

相关文档
最新文档