量化交易策略设计实战课件
量化交易策略的构建实战

2020/8/22
Seeking Alpha
1. 量化交易系统模型构建 2. 数据处理 3. 阿尔法模型 4. 风险控制模型 5. 成本模型 6. 投资组合模型 7. 执行模型 8. 量化模型生命周期 9. 凯纳量化1号展示
航空系统VS量化交易系统
都是是一个大型负责系统; 安全是第一要素:飞机安全降落是第一位,活着是第一位; 都是由很多子系统构成; 都需要一个中央系统负责调度和指挥子系统; 任何一个子系统环节出错都会酿成巨大事故;
量化投资的模块构建图示
一、股指期货程序化概述
量化投资第一步:数据来源和数据处理
一、股指期货程序化概述
股票数据处理:复权问题,指数样本股变更,停牌,涨跌 停…… 期货数据处理:主力合约,涨跌停;
第二步:追寻阿尔法
阿尔法 模型 一、股指期货程序化概述
寻找阿尔法:飞机制造
阿尔法产生两个来源
一个阿尔法交易系统的组成部分
统计套利之:配对交易
回测优化
优化应避免参数孤岛
测试方法 Walk forward Backtesting
传统方法
Walk forward Backtesting
第三步:风险控制模型
风险控制 模型
一、股指期货程序化概述
风险控制模型
不可能三角形
第三步:风险控制模型
交易成本 模型
一、股指期货程序化概述源自一个阿尔法交易系统的组成部分
➢交易系统一般都包括: 1. 进场规则(买什么,什么时候买,买多少) 2. 出场规则(什么时候出场,出多少,怎么出) 3. 风险控制规则(单次能承担最大亏损,连续亏损 多少,用多少倍杠杆交易,承受最长不赚钱的周 期) 4. 资金管理规则(单策略资金管理)
《量化交易实战课件》

股票市场数据的收集和存储
数据收集
获取股票市场数据,包括历史价格、交易量和 财务数据等。
数据存储
选择适当的方式将数据存储,如CSV文件、数据 库或云存储。
数据分析和预处理
在进行量化交易之前,需要对数据进行分析和预处理,以提ቤተ መጻሕፍቲ ባይዱ有用的信号并减少噪音干扰。
技术指标的计算和应用
1
应用技术指标
2
根据技术指标的信号,制定买卖策略并
《量化交易实战课件》
通过本课程,您将深入了解量化交易的概念、历史背景以及优点和不足。我 们将教您如何使用Python进行量化交易,并探讨数据收集、分析、交易策略 构建以及风险管理等方面的内容。
什么是量化交易
量化交易是利用数学模型和计算机算法进行投资决策的一种方法。它能够提 高交易效率、减少人为错误,并基于历史数据和统计分析来制定交易策略。
量化交易的历史背景
量化交易起源于20世纪70年代的美国,随着计算机技术的发展和数据的可获 得性增加,它在金融市场中的应用越来越广泛。
量化交易的优点和不足
1 优点
减少人为情绪干扰,提高交易精确度;更高的交易执行效率;能够处 理大量数据快速做出决策。
2 不足
对数据质量和准确性要求高;算法设计和参数优化需要专业知识;过 度依赖历史数据对未来预测的可靠性存在风险。
执行交易。
3
计算技术指标
利用数学公式和统计方法计算各种技术 指标,如移动平均线、相对强弱指数等。
优化技术指标
通过参数调整和优化,提高技术指标的 预测准确性和盈利能力。
如何使用Python进行量化交易
Python是一种功能强大且易于学习的编程语言,适用于量化交易的策略开发 和回测。通过Python,您可以利用各种开源库和工具来分析数据、构建模型 和执行交易。
量化投资CTA策略120807精品PPT课件

股票
债券
平均收益 标准差 偏度 峰度
0.89
0.93
0.64
3.47
4.27
2.45
0.71
-0.34
0.37
4.53
1.81
3.56
Source: Gary Corton, K Greet Rouwenhorst, Fact and Fantasies about Commidty Fuyures
上证综合指数 上证国债指数 豆一连续 沪铜连续
1
0.454
0.61
0.0298
1
0.39
0.515
1
0.62
1
资料来源:wind资讯,齐鲁证券
国外的CTA发展类型简介
根据投资方向的不同,CTA基金可以分为分散型CTA基金和专业化CTA基金。 分散型CTA基金投资的期货品种较多,分散投资往往会使其风险较低;而专业 化的CTA基金则专注于投资某类市场;
• 对中国1995年以来的上证综合指数,期货指数(以豆一与沪铜为代表)与国债指数进行 拟合分析,结果如下表所示。可以发现,股票与商品的相关系数最低,而债券与商品的 相关系数也不高,说明加入商品期货可能有利于大类资产组合分散风险。
表:中国期货与股票、债券市场的相关性
上证综合指数 上证国债指数
豆一连续 沪铜连续
• 商品期货收益与股票、债券的负相关性随着持有区间的延长而增加,这说明商品期货对 投资组合风险的分散作用在长时间里更加显著
• 商品期货与通货膨胀呈正相关关系,意味着商品期货是抵御通货膨胀的有效工具。
表:商品期货与股票债券和通货膨胀的相关系数(1959-2008)
投资期限
股票
债券
通货膨胀
(完整版)量化策略设计及实战应用

使用国信iQuant平台进行单因子分析
目录
1 2 3 4
量化投资简介 量化投资的主要内容 多因子模型体系 多因子模型开发实例
Fama-French 三因子模型
FF三因素模型的建立
资本资产定价模型(CAPM)问世以后,很多学者就 在有效市场假说条件下对其进行了实证检验,许多影响股 票收益的其他因素陆续被发现。
量化投资的起步
量化投资的繁荣
量化投资的发展
量化投资目前的规模
➢ 截至2016年底,全球对冲基金管理资产规模达到3.01万亿美元,几乎等于国内A 股深市总市值;
➢ 2017年5月,美股对冲基金已达成27%的美股交易量,首次超过了传统资管公司、 银行等其他类型的机构投资者。
量化投资在国内
量化投资在国内
方法选择股票 组合,包括基本面选股、 市场行为量化选股。 常用的方法:公司估 值法、趋势法、资金法。
对宏观、微观指标 的量化分析判断大势 走势。 利用数据模型判断 大盘的高点低点,从 而进行波段交易。 是量化投资中难度 最大的一个策略。
利用证券价格的历 史统计规律构建资产 组合
16
量化投资的主要内容
股指期货套利
商品期货套利
期现套利 跨期套利
跨市场套利 跨品种套利
利用商品期货市场(股指期货市场)存在的不合理价格,实 现期现、跨期、跨市场、跨品种套利等。
量化投资常见策略
➢配对交易策略
基本原理:寻找两只价格走势相关的股票进行配对,两只股票的价差长期看在固定
的水平内波动。如果价差暂时地超过或低于长期水平,则可买入偏低者、卖出偏高者, 待价差恢复,赚取利润。
认为市场上涨;市场下跌时,将出现 套牢或是亏损的情况;
12
量化交易策略设计实战教材(PPT 44张)

统计套利之:配对交易
严格保密
严格保密
回测优化
优化应避免参数孤岛
严格保密
测试方法 Walk forward Backtesting
传统方法
Walk forward Backtesting
严格保密
第三步:风险控制模型
风险控制 模型
一、股指期货程序化概述
பைடு நூலகம்
严格保密
风险控制模型
不可能三角形
严格保密
量化交易之核心:构建组合 交易组合构建之四个分散, 通过组合可以明显提升收益风险比
严格保密
量化交易之核心:构建组合 策略1
严格保密
量化交易之核心:构建组合 策略2
严格保密
量化交易之核心:构建组合 策略3
严格保密
量化交易之核心:组合的好处 策略1-3 等权重组合
严格保密
回顾:量化构建框架
一、股指期货程序化概述
严格保密
市场进化 与策略生命周期探讨
严格保密
未来行情的发展-成熟市场走过的路程
新兴市场用机械策略比成熟市场有效 即使新兴市场, 1983 的收益 远高于 1990 的,说明市场正在走向成熟 (成熟市场短期定价能力高,但是长期定价能力并不那么高)
(数据来源 Kaufman 所做)
严格保密
航空系统VS量化交易系统
都是是一个大型负责系统; 安全是第一要素:飞机安全降落是第一位,活着是第一位; 都是由很多子系统构成; 都需要一个中央系统负责调度和指挥子系统; 任何一个子系统环节出错都会酿成巨大事故;
严格保密
量化投资的模块构建图示
一、股指期货程序化概述
严格保密
量化投资第一步:数据来源和数据处理
金融投资中的量化交易策略与实战应用

金融投资中的量化交易策略与实战应用量化交易是一种基于数学和统计模型的投资策略,通过使用计算机算法来执行交易决策。
在金融投资中,量化交易策略及其应用已经变得越来越普遍,被许多机构投资者和个人投资者广泛采用。
本文将介绍量化交易策略的基本原理和常见的实战应用。
首先,量化交易策略基于数学模型和大量历史数据。
它的核心目标是发现价格模式和市场趋势,并根据这些模式和趋势进行投资决策。
量化交易策略往往基于多个市场指标和技术分析工具,例如移动平均线、相对强弱指数(RSI)和布林带等。
通过对这些指标的研究和分析,可以制定出一套计算机算法来执行交易。
量化交易策略的实战应用包括以下几个方面:1. 趋势跟踪策略:这是最常见的量化交易策略之一。
趋势跟踪策略利用市场上升和下降的趋势,追踪和参与这些趋势,并在趋势反转时退出交易。
这种策略通常通过移动平均线、动量指标等多个指标来确认趋势,并根据预设的条件进行买卖交易。
2. 套利策略:套利是指在两个或多个市场中利用价格差异进行交易,以获取风险较低的利润。
例如,在股票市场上,可以通过同时买入便宜的股票和卖出昂贵的股票来实现套利。
套利策略往往需要高频交易和快速执行能力,因此更适合机构投资者。
3. 统计套利策略:统计套利策略是一种利用市场中股票或其他金融资产之间的统计关系进行交易的策略。
例如,COPIA模型(即协整对冲模型)利用了协整关系,对一对协整股票进行对冲交易,获得正向收益。
统计套利策略需要对统计学和计量经济学有深入的理解和分析能力。
4. 噪音交易策略:噪音交易策略基于假设,认为市场上的价格波动是由于投资者情绪和情绪波动引起的,而非基本面因素。
这种策略尝试从市场噪音中寻找利润机会。
例如,通过分析技术指标中的超买和超卖信号来执行交易。
5. 高频交易策略:高频交易策略是一种利用计算机算法和高速交易系统,在极短时间内进行大量交易的策略。
这种策略依赖于快速的交易执行和低延迟的数据传输。
高频交易策略通常涉及到大量的数学模型和算法,并需要高度的技术和软件支持。
量化策略设计及实战应用

Fama-French 因子模型
三个因子的具体介绍
(1)市场风险
������������= ������������- ������������
市场风险是指大盘走势变化所引起的不确定性。 简单来说,就是大盘波动导致个股也跟着波动的风 险。比如表现比较好的公司,其股票价格却伴随着 大盘下降了,或者表现不怎么好的公司,股价却跟 着牛市上涨了
认为市场上涨;市场下跌时,将出现 套牢或是亏损的情况;
12
量化投资的优点
量化投资的挑战
硬件故障
策略调整灵活度
• 电脑的硬件故障会导 致自动化系统出现无 法完成预期的投资活 动的情况,这也属于 量化投资不可控风险。
• 基于历史测试的数量化投 资策略,在情势变迁时, 有时无法像人那样做出灵 活的调整。
Fama-French 因子模型
三个因子的具体介绍
(3)账面市值比风险 ������ ������������������ = ������ ������������ − ������(������������)
账面市值比就是账面的所有者权益除以市值(下简称 B/M)。账面市值比风险描述了公司的额外财务困境风险, 说明市场上对公司的估值比公司自己的估值要低。
多因子模型基本理论
资本资产定价模型(CAPM) 套利定价模型(APT) Fama-French三因素模型
什么是因子?
➢ 因子就是指标或者特征, 如PE、PB、5日均线等。因子选股模型就是通过分析各 个因子与股票表现(收益率)之间的关系而建立的一套量化选股的体系。
更直观的理解多因子选股体系:以赛马运动为例
➢ 量化投资在国内刚起步,国内的量化私募以股票量化、股票多空、股票市场中性、 套利等策略为主。截至2016年底,纳入统计的量化私募基金产品规模约在2816亿 元左右,占总规模的10.18%。
量化交易策略设计实战教材(

乔尔.格林布拉Joel Greenblatt
神奇公式 选股模型 未对冲风险的收益
乔尔.格林布拉Joel Greenbltter Book That beats the market 公式围绕两个指标: EBIT/EV 1、投资回报率 EBIT/(净流动资本+净固定资产)投资回报率是指税前经营收益与 占用的有形资本的比值。 2、收益率 EBIT/EV 收益率通过计算EBIT(税前经营收益)与EV(企业价值,股本市 值+净有息债务)作者反对使用通常的P/E(价格/收益比值)或者EPS(收益/每股价 格的比值) 量化方法 将目标公司的上述投资回报率和收益率全部计算出来,然后,将数据库中的所有公司 按照投资回报率来排序,如果是1000家公司,最好的是1000分,最后一名就是1分; 按照收益率来排序,最好的是1000分,最差的是1分,每个公司的最终分值就是两个 数字相加。然后按照最后的分数来排序,挑选前十佳公司来投资。 投资步骤: 1、按照投资回报率和收益率合并后排序的公司10个公司,买入他们的股票。在第一 年投入投资金额的20%到33%。 2、每隔两三个月按照步骤一去投资买入; 3、持有一种股票满一年后就将其卖出,不管是否盈利。用卖股票的钱和新增投资买 入同等数量的神奇公司股票,替换已卖出的公司。
乔尔.格林布拉Joel Greenblatt
神奇公式 选股模型
作为哥谭资本公司(Gotham Capital)的创始人 和合伙经理人,哥谭资本在1985年成立至2005年 的二十年间,资产规模从700万美元增到8.3亿美 元,年均回报率高达40%,堪称华尔街的一项投资 奇迹。即便是经历了2008年的金融危机,哥谭资 本的资产管理规模依然维持在9亿美元的水平,年 化收益率仍高达30%。在1988年至2004年的17年间, 投资者的投资组合回报率将达到30.8%,而同期标 准普尔500指数的年复合回报率仅为12.4%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1970年夏天,以400美元作为投机的资本,开始其投机生涯。小小资金变成巨大财富, 1987年10月之前的全盛期,他的财产在减去庞大的慈善和政治捐款后,仍然有接近 二亿美元之多。
严格保密
第三步:风险控制模型
交易成本 模型
一、股指期货程序化概述
严格保密
第四步:交易成本模型
数据+软件+硬件+人才+通道+融资+执行
严格保密
第四步:投资组合构建模型
➢交易系统一般都包括: 1. 进场规则(买什么,什么时候买,买多少) 2. 出场规则(什么时候出场,出多少,怎么出) 3. 风险控制规则(单次能承担最大亏损,连续亏损 多少,用多少倍杠杆交易,承受最长不赚钱的周 期) 4. 资金管理规则(单策略资金管理)
严格保密
系统的构建步骤
➢ 制定交易策略 ➢ 编写交易模型 ➢ 历史数据回测 ➢ 模拟交易 ➢ 修正模型 ➢ 实战应用
严格保密
乔尔.格林布拉Joel Greenblatt
➢神奇公式 选股模型 未对冲风险的收益
严格保密
乔尔.格林布拉Joel Greenblatt
神奇公式 选股模型
The Litter Book That beats the market 公式围绕两个指标: EBIT/EV 1、投资回报率 EBIT/(净流动资本+净固定资产)投资回报率是指税前经营收益与 占用的有形资本的比值。 2、收益率 EBIT/EV 收益率通过计算EBIT(税前经营收益)与EV(企业价值,股本市 值+净有息债务)作者反对使用通常的P/E(价格/收益比值)或者EPS(收益/每股价 格的比值) 量化方法 将目标公司的上述投资回报率和收益率全部计算出来,然后,将数据库中的所有公司 按照投资回报率来排序,如果是1000家公司,最好的是1000分,最后一名就是1分; 按照收益率来排序,最好的是1000分,最差的是1分,每个公司的最终分值就是两个 数字相加。然后按照最后的分数来排序,挑选前十佳公司来投资。 投资步骤: 1、按照投资回报率和收益率合并后排序的公司10个公司,买入他们的股票。在第一 年投入投资金额的20%到33%。 2、每隔两三个月按照步骤一去投资买入; 3、持有一种股票满一年后就将其卖出,不管是否盈利。用卖股票的钱和新增投资买 入同等数量的神奇公司股票,替换已卖出的公司。
量化交易策略设计实战
阿尔法(Alpha)之路 Seeking Alpha
凯纳量化 总经理
严格保密
Seeking Alpha
1. 量化交易系统模型构建 2. 数据处理 3. 阿尔法模型 4. 风险控制模型 5. 成本模型 6. 投资组合模型 7. 执行模型 8. 量化模型生命周期 9. 凯纳量化1号展示
严格保密
统计套利之:配对交易
严格保密
严格保密
回测优化
优化应避免参数孤岛
严格保密
测试方法 Walk forward Backtesting
传统方法 Walk forward Backtesting
严格保密
第三步:风险控制模型
风险控制 模型
一、股指期货程序化概述
严格保密
风险控制模型
不可能三角形
严格保密
乔尔.格林布拉Joel Greenblatt
神奇公式 选股模型
作为哥谭资本公司(Gotham Capital)的创始人 和合伙经理人,哥谭资本在1985年成立至2005年 的二十年间,资产规模从700万美元增到8.3亿美 元,年均回报率高达40%,堪称华尔街的一项投资 奇迹。即便是经历了2008年的金融危机,哥谭资 本的资产管理规模依然维持在9亿美元的水平,年 化收益率仍高达30%。在1988年至2004年的17年间, 投资者的投资组合回报率将达到30.8%,而同期标 准普尔500指数的年复合回报率仅为12.4%。
严格保密
航空系统VS量化交易系统
都是是一个大型负责系统; 安全是第一要素:飞机安全降落是第一位,活着是第一位; 都是由很多子系统构成; 都需要一个中央系统负责调度和指挥子系统; 任何一个子系统环节出错都会酿成巨大事故;
严格保密
量化投资的模块构建图示
一、股指期货程序化概述
严格保密
量化投资第一步:数据来源和数据处理
严格保密
国外量化模型介绍
➢ 第一个量化期货系统:唐奇安通道 ➢ 第一个大规模使用量化系统:海龟系统 ➢ 选股系统1:CANLISM 威廉 欧奈尔 ➢ 选股系统2:神奇公式 ➢ 配对交易
严格保密
唐奇安通道和海龟系统
➢海龟交易系统是公开的可以承担大量交易的系统,直 到目前还能盈利,海龟系统具备一套量化交易完整所有 因素;
一、股指期货程序化概述
股票数据处理:复权问题,指数样本股变更,停牌,涨跌 停…… 期货数据处理:主力合约,涨跌停;
严格保密
第二步:追寻阿尔法
阿尔法 模型 一、股指期货程序化概述
严格保密Biblioteka 寻找阿尔法:飞机制造严格保密
阿尔法产生两个来源
严格保密
一个阿尔法交易系统的组成部分
严格保密
一个阿尔法交易系统的组成部分
严格保密
CANLISM 威廉欧奈尔
➢CANLISM是一个结合基本面和技术面的选股模型,是现代多因子模型的基 础; ➢欧奈尔研究了从1953年至1993年,40年来500家年度涨幅最大的股票:
➢有3/4的个股在大涨之前的季报中,每股收益比上年同期增加了至少30%; ➢在1970年~1982年期间,表现最杰出的股票在其股价起动前4、5年间,年均业绩增长 率为24%; ➢对1953年至1993年期涨幅不俗的个股研究中,发现95%的公司是因为在该行业中取得 了重大的突破......一个共同点就是给社会带来令人振奋的新产品和新理念; ➢其中95%的公司在其业绩和股价出现突飞猛进之前,其流通股一般不多于2500万股; 每年涨幅居前的,在他们股价真正大幅度攀升之前,其平均的相对强弱指标为87%; ➢在1953年~1985年的30多年间,表现出色的股票,其上扬之前的平均市盈率为20,而 同期,道琼斯工业指数的成分股,其平均市盈率为15;