初三中考数学 综合练习题
中考数学总复习《圆的综合题》练习题(附答案)
中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。
中考总复习初三数学综合测试(带答案)
11题图B16题图P DE BCA中考总复习初三数学综合测试(二)班级 姓名 得分一、 填空题(每空2分,共40分) 1、21-的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。
2、不等式组⎩⎨⎧-+2804<>x x 的解集是 。
3、函数y=11-x 自变量x 的取值范围是 。
4、直线y=3x-2一定过(0,-2)和( ,0)两点。
5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。
6、等腰三角形的一个角为︒30,则底角为 。
7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。
8、如图PA 切⊙O 于点A ,∠PAB=︒30,∠AOB= ,∠ACB= 。
9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。
10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。
11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。
12、已知Rt ∆ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ∆的外接圆的面积为 。
二、 选择题(每题4分,共20分)13、如果方程0m x 2x 2=++有两个同号的实数根,m 的取值范围是 ( ) A 、m <1 B 、0<m ≤1 C 、0≤m <1 D 、m >014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。
则平均每次降低成本的百分率是 ( )A .8.5% B. 9% C. 9.5% D. 10% 15、二次函数c bx ax y 2++=的图像如图所示,则关于此二次函数的下列四个结论①a<0 ②a>0 ③ac 4-b 2>0 ④ab<0中,正确的结论有 ( ) A.1个 B.2个 C.3个 D.4个16、如图:点P 是弦AB 上一点,连OP 作PC ⊥OP ,PC 交⊙O ,若AP =4,PB =2,则的长是 ( )A. 2B. 2C. 22D. 317、为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是( )A. 1、2 B. 2、1 C. 2、3 D. 3、2 三、 (本题每题5分,共20分)18、计算1303)2(2514-÷-+⎪⎭⎫ ⎝⎛+- 19、计算22)145(sin 230tan 3121-︒+︒--20、计算)+()-(+-abba ]ab a b b a a [2÷ 21、解方程11-x 1-1-x 22= 四、解答题(每题7分,共28分)22、已知关于x 的一元二次方程0)32(22=+-+m x m x 的两个不相等的实数根α、β满足111,求m 的值。
人教版九年级数学(上下全册)综合测试卷(附带参考答案)
人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
中考数学总复习《三角形的综合题》练习题及答案
中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。
中考数学 综合能力提升练习一(含解析)-人教版初中九年级全册数学试题
综合能力提升练习一一、单选题1.如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度与时间的函数关系的图象可能是( )①②③④A. ①B. ③C. ①或③D . ②或④2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A. 3B. 5C. 8D. 112﹣x﹣2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是()x 1 2 3 42x2﹣x﹣2 ﹣14 13 26A. 4B. 3C. 2D. 14.三棱柱的顶点个数是()A. 3B. 4C. 5D. 62+3x+1=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根 C. 没有实数根 D. 只有一个实数根6.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A. a2﹣b>0B. a+|b|>0 C. a+b2>0 D. 2a+b>07.满足x-5>3x+1的x的最大整数是()A. 0B. -2C. -3D. -48.如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2, a3, a4,…,a2010,则+++…+=()A. B. 2021 054 C. 2022060D.二、填空题9.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠B=________ °.10.如图,等腰直角三角形 ABC 中,∠BAC=90°,AB=AC,点 M,N 在边 BC 上,且∠MAN=45°.若 BM=1, =3,则 MN 的长为________ .11.计算:( +1)(3﹣)=________.12.一个多边形的每一个内角为108°,则这个多边形是________ 边形,它的内角和是________m________时,不等式mx<7的解集为x>-5℃,冷库乙的温度是-15℃,则温度高的是冷库________.三、计算题15.计算:16.计算:()2+(π﹣2016)0﹣4cos60°+()﹣3.17.先化简,再求值:÷(a﹣),其中a=2+ ,b=2﹣.18.计算(1)计算:+()﹣1﹣2cos60°+(2﹣π)0;(2)化简:.19.已知x﹣y=5,xy=4,求x2+y2的值.20.解方程:﹣= .四、解答题21.如图,△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC于E,AE=2,求CE的长.22.如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且.(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△AC D是否相似?并说明理由.23.计算:|﹣3|﹣2.24.解方程组:.五、综合题25.甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲坐地铁先出发,甲出发0.2小时后乙开汽车前往.设甲行驶的时间为x(h),甲、乙两人行驶的路程分别为y1(km)与y2(km).如图①是y1与y2关于x的函数图象.(1)分别求线段OA与线段BC所表示的y1与y2关于x的函数表达式;(2)当x为多少时,两人相距6km?(3)设两人相距S千米,在图②所给的直角坐标系中画出S关于x的函数图象.答案解析部分一、单选题1.如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度与时间的函数关系的图象可能是( )①②③④A. ①B. ③C. ①或③D . ②或④【答案】C【考点】二次函数的图象【解析】【分析】由图中可知:长度d是一开始就存在的,如果点P向上运动,那么d的距离将逐渐变大;当点P运动到和0,A在同一直线上时,d最大,随后开始变小;当运动到点A时,距离d为0,然后继续运动,d开始变大;到点P时,回到原来高度相同的位置.①对,②没有回到原来的位置,应排除.④回到原来的位置后又继续运动了,应排除.如果点P向下运动,那么d的距离将逐渐变小,到点A的位置时,距离d为0;继续运动,d的距离将逐渐变大;当点P运动到和0,A在同一直线上时,d最大,随后开始变小,到点P时,回到原来高度相同的位置.③对.故选C.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A. 3B. 5C. 8D. 11【答案】C【考点】三角形三边关系【解析】【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,小于:3+8=11.则此三角形的第三边可能是:8.故选:C.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值X围,再进一步选择.2﹣x﹣2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是()x 1 2 3 42x2﹣x﹣2 ﹣14 13 26A. 4B. 3C. 2D. 1【答案】D【考点】估算一元二次方程的近似解【解析】【解答】解:根据表格中的数据,知:方程的一个解x的X围是:1<x<2,所以方程的其中一个解的整数部分是1.故选D.【分析】根据表格中的数据,可以发现:x=1时,2x2﹣x﹣2=﹣1;x=2时,2x2﹣x﹣2=4,故一元二次方程2x2﹣x﹣2=0的其中一个解x的X围是1<x<2,进而求解.4.三棱柱的顶点个数是()A. 3B. 4C. 5D. 6【答案】D【考点】认识立体图形【解析】【解答】解:一个直三棱柱由两个三边形的底面和3个长方形的侧面组成,根据其特征及欧拉公式V+F﹣E=2可知,它有6个顶点,故选:D.【分析】一个直三棱柱是由两个三边形的底面和3个长方形的侧面组成,根据其特征及欧拉公式V+F﹣E=2进行填空即可.2+3x+1=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根 C. 没有实数根 D. 只有一个实数根【答案】A【考点】根的判别式【解析】【解答】解:∵a=1,b=3,c=1,∴△=b2﹣4ac=32﹣4×1×1=5>0,∴有两个不相等的实数根.故选A.【分析】首先求得△=b2﹣4ac的值,然后即可判定一元二次方程x2+3x+1=0的根的情况.6.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A. a2﹣b>0B. a+|b|>0 C. a+b2>0 D. 2a+b>0【答案】A【考点】数轴【解析】【解答】解:根据数轴得a<﹣1,0<b<1,∴a2>1,b2<1,∴a2﹣b>0,故A正确;∴a+|b|<0,故B错误;∴a+b2<0,故C错误;∴2a+b<0,故D错误,故选A.【分析】根据数轴可得出a<﹣1,0<b<1,再判断a2, b2的X围,进行选择即可.7.满足x-5>3x+1的x的最大整数是()A. 0B. -2C. -3D. -4【答案】D【考点】解一元一次不等式,一元一次不等式的整数解【解析】【分析】先移项,再合并同类项,最后化系数为1,即可求得结果.x-5>3x+1-2x>6x<-3所以满足条件的x的最大整数是-4故选D.【点评】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.8.如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2, a3, a4,…,a2010,则+++…+=()A. B. 2021 054 C. 2022060D.【答案】B【考点】反比例函数的图象,反比例函数的性质,探索数与式的规律【解析】【分析】设CP=m,由tanA==得AC=mn,则A(1-m,1+mn),将A点坐标代入y=中,得出a n=1-m的表达式,寻找运算规律.【解答】依题意设CP=m,∵P点横坐标为1,则C点横坐标为1-m,即a n=1-m,又∵tanA==,∴AC=mn,则A(1-m,1+mn),将A点坐标代入y=中,得(1-m)(1+mn)=1,1-m+mn-m2n=1,m(n-1-mn)=0,则n-1-mn=0,1-m=,则a n=1-m=,即=n,∴+++…+=2+3+4+…+2010==2021054.故选B.【点评】本题主要考查反比例函数的图象和性质,关键是根据三角函数值设直角三角形的边长,表示A点坐标,根据A点在双曲线上,满足反比例函数解析式,从而得出一般规律.二、填空题9.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠B=________ °.【答案】50【考点】三角形内角和定理【解析】【解答】解:∵在△ABC中,∠A=30°,∠C=2∠B,∠A+∠B+∠C=180°,∴30°+3∠B=180°,∴∠B=50°.故答案是:50.【分析】根据三角形内角和是180°列出等式∠A+∠B+∠C=180°,据此易求∠B的度数.10.如图,等腰直角三角形 ABC 中,∠BAC=90°,AB=AC,点 M,N 在边 BC 上,且∠MAN=45°.若 BM=1, =3,则 MN 的长为________ .【答案】【考点】全等三角形的判定与性质,勾股定理的应用【解析】【解答】将逆时针旋转得到,连接,是等腰直角三角形,在和中,由勾股定理得,【分析】根据旋转的性质得到对应边、对应角相等;由△ABC是等腰直角三角形,得到△MAN≌△FAN,得到对应角、对应边相等,再根据勾股定理求出MN 的长.11.计算:( +1)(3﹣)=________.【答案】2【考点】二次根式的混合运算【解析】【解答】解:原式= ( +1)(﹣1)= ×(3﹣1)=2 .故答案为2 .【分析】先把后面括号内提,然后利用平方差公式计算.12.一个多边形的每一个内角为108°,则这个多边形是________ 边形,它的内角和是________【答案】五;540°【考点】多边形内角与外角【解析】【解答】解:∵多边形的每一个内角都等于108°,∴多边形的每一个外角都等于180°﹣108°=72°,∴边数n=360°÷72°=5,内角和为(5﹣2)×180°=540°.故答案为:五;540°.【分析】先求出这个多边形的每一个外角的度数,再用360°除以一个外角的度数即可得到边数.m________时,不等式mx<7的解集为x>【答案】<0【考点】不等式的性质【解析】【解答】根据不等式mx<7的解集为x>,可以发现不等号的方向发生了改变,根据不等式的性质,所以m<0.【分析】可根据不等式的性质,两边同时除以负数,不等号发生改变.-5℃,冷库乙的温度是-15℃,则温度高的是冷库________.【答案】甲【考点】有理数大小比较【解析】【解答】解:∵-5>-15∴温度高的是冷库甲故答案为:甲【分析】比较-5和-15的大小,可解答。
2023年中考九年级数学一轮复习提升练习 综合题 :反比例函数
2023年中考九年级数学一轮复习提升练习(综合题):反比例函数一、综合题1.已知:如图1,函数y1=k x和y2=xk(k>1)的图象相交于点A和点B.(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H.①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x(x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM△x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x…-4-3-2-1−12−13−141413121234…y…−414−313−212−2−212−313−4144143132122212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;(4)方程x+1x=−2x+1是否有实数解?说明理由.8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(2)若反比例函数y= kx(k≠0)的图象经过点H,则k=;(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=k x的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=n x与y2=4n x的图象上,对角线AC△BD于点P,AC△x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC△x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= k x(k>0)的图象过CD的中点E.(1)求证:△AOB△△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m x的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤ mx的解集.14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1x与y2=k2x(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C.当OA=1时,AB=,BC=,BCAB=;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB=12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=k x(x>0)的图象交于点M,过M 作MH△x轴于点H,且tan△AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.答案解析部分1.【答案】(1)解:由题意,联立 {y =k x y =x k,解得 {x =k y =1 或 {x =−ky =−1 , ∵ 点 A 在第一象限,点 B 在第二象限,且 k >1 ,∴A(k ,1),B(−k ,−1)(2)解:①△CEF 是等腰直角三角形,理由如下: 设直线 BC 的解析式为 y =k 0x +b 0 ,将点 B(−k ,−1),C(1,k) 代入得: {−kk 0+b 0=−1k 0+b 0=k ,解得 {k 0=1b 0=k −1 , 则直线 BC 的解析式为 y =x +k −1 ,当 y =0 时, x +k −1=0 ,解得 x =1−k ,即 F(1−k ,0) , 同理可得:点 E 的坐标为 E(1+k ,0) , ∴CF =√(1−k −1)2+(0−k)2=√2k , CE =√(1+k −1)2+(0−k)2=√2k , EF =1+k −(1−k)=2k ,∴CE =CF ,CE 2+CF 2=4k 2=EF 2 , ∴△CEF 是等腰直角三角形;②由题意,设点 D 的坐标为 D(m ,k m ) ,则 m >k >1 , ∵△CEF 是等腰直角三角形, ∴∠CFE =∠CEF =45° , ∴∠BFH =∠AEG =135° ,设直线 BD 的解析式为 y =k 1x +b 1 ,将点 B(−k ,−1),D(m ,k m ) 代入得: {−kk 1+b 1=−1mk 1+b 1=k m ,解得 {k 1=1m b 1=k−m m, 则直线 BD 的解析式为 y =1m x +k−m m,当 y =0 时, 1m x +k−m m =0 ,解得 x =m −k ,即 H(m −k ,0) ,同理可得:点 G 的坐标为 G(k +m ,0) ,∴DH=√(m−k−m)2+(0−k m)2=k m√1+m2,DG=√(k+m−m)2+(0−k m)2=k m√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4 x(2)解:由题意可得:(△)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ).(△)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s 3k−1)3.【答案】(1)12(2)解:由题意D(m,6 m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6 m).∵B(2m,0),C(3m,6 m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G. ∵EF//CG,∴CEBE=FGBF=√2+1)m(√2+1)m−2m=√2√2−1=√2;(4)解:∵CEBE=√2∴BE=√2+1,要使得BE最小,只要AD最小,∵AD=√m2+36m2=√(m−6m)2+12,∴AD的最小值为2√3,∴BE的最小值为2√3√2+1=2√6−2√3.4.【答案】(1)解:将A(﹣3,m+8)代入反比例函数y= mx得,m−3=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣6 x,将点B(n,﹣6)代入y=﹣6x得,﹣6n=﹣6,解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1, =3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2,联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k×(﹣1)=2(1+k 2)>0,∴x 1、x 2 是方程的两根,∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k=5√22,整理得:2k 2+5k+2=0, 解得:k=﹣2,或 k=12;(3)解:∵直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F, ∴ F (√2,√2). 如图:设P (x ,1x ),则M (﹣1x +√2,1x),则PM=x+1x ﹣√2=√(x +1x −√2)2=√x 2+1x 2−2√2(x +1x )+4, ∵PF=√(x −√2)2+(1x −√2)2=√x 2+1x2−2√2(x +1x )+4, ∴PM=PF .∴PM+PN=PF+PN≥NF=2,当点P 在NF 上时等号成立,此时NF 的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3).把D(2,3)代入y=1−2mx,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x+1x=﹣2x+1没有实数解,理由为:y=x+1x与y=﹣2x+1在同一直角坐标系中无交点.8.【答案】(1)解:x2﹣9x+18=0,(x﹣3)(x﹣6)=0,x=3或6,∵CD>DE,∴CD=6,DE=3,∵四边形ABCD是菱形,∴AC△BD,AE=EC= √62−32=3 √3,∴△DCA=30°,△EDC=60°,Rt△DEM中,△DEM=30°,∴DM= 12DE= 32,∵OM△AB,∴S菱形ABCD= 12AC•BD=CD•OM,∴12×6√3×6=6OM,OM=3 √3,∴D(﹣32,3 √3)(2)解:(3)解:如图1,①∵DC=BC,△DCB=60°,∴△DCB是等边三角形,∵H是BC的中点,∴DH△BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴△FCB=△FBC=30°,∴△ABF=△ABC﹣△CBF=120°﹣30°=90°,∴AB△BF,CP△AB,Rt△ABF中,△FAB=30°,AB=6,∴FB=2 √3=CP,∴P(92,√3);②如图2,∵四边形QPFC是平行四边形,∴CQ△PH,由①知:PH△BC,∴CQ△BC,Rt△QBC中,BC=6,△QBC=60°,∴△BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE△AC,∴QA=QC=6 √3,∴△QAC=△QCA=60°,△CAB=30°,∴△QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5√3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= k x,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN△x轴,且CN=12,∴点C的坐标为(2,1 2).∵点C在反比例函数y1=nx的图象上,∴n=2× 12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P的坐标为(2,5 2).当y=52时,2x=52,8x=52,解得:x=45,x=165,∴点B的坐标为(45,52),点D的坐标为(165,52),∴BP=2﹣45=65,DP=165﹣2=65,∴BP=DP.又∵AP=CP,AC△BD,∴四边形ABCD为菱形.(3)解:∵四边形ABCD为正方形,∴AC=BD,且点P为线段AC及BD的中点.当x=2时,y1=12n,y2=2n,∴点A的坐标为(2,2n),点C的坐标为(2,12n),AC=32n,∴点P的坐标为(2,54 n).同理,点B的坐标为(45,54n),点D的坐标为(165,54n),BD=125.∵AC=BD,∴32n=125,∴n=8 5,∴点A的坐标为(2,165),点B的坐标为(45,2).设直线AB的解析式为y=kx+b(k≠0),将A(2,165),B(45,2)代入y=kx+b,得:{2k+b=16545k+b=2,解得:{b=65k=1,∴直线AB的解析式为y=x+ 6 5.当x=0时,y=x+ 65=65,∴点E的坐标为(0,6 5),∴当四边形ABCD为正方形时,OE的长度为6 5.12.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC△x轴,∴△AOB=△DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB△Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG△△DCA,∴FG=CA=1,BF=DC=2,△BFG=△DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB=2OA=3OD=12∴OA=6,OD=4∴A(6,0),B(0,12)把A(6,0),B(0,12)分别代入y=kx+b得:{6k+b=0b=12,解之得:m=−4×20=−80∴一次函数的解析式为y=−2x+12令x=−4,则y=20∴C(−4,20)把C(−4,20)代入y=mx得:m=−4×20=−80∴反比例函数的解析式为y=−80 x;(2)解:解方程组{y=−2x+12y=−80x得:{x1=−4y1=20,{x2=10y2=−8∴E(10,−8)∴SΔCDE=SΔADC+SΔADE=12AD⋅(CD+|y E|)=12×(4+6)×(20+8)=140(3)解:如图:当x<-4时,y=mx的图象在y=kx+b的下方,即kx+b>mx;当−4≤ x<0时,y=mx的图象在y=kx+b的上方,即kx+b≤mx;当0<x<10时,y=mx的图象在y=kx+b的下方,即kx+b>mx;当x≥10时,y=mx的图象在y=kx+b的上方,即kx+b≤mx;综上可得,不等式kx+b≤ mx的解集为−4≤ x<0或x≥10.14.【答案】(1)2;4;2;23;43;2;2 数学思考:(2)BCAB=k2−k1 k1证明:∵AB·OA=k1,AC·OA=k2,∴AC·OA−AB·OA=BC·OA=k2−k1,∴BCAB=BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b).∵k2=12,BCAB=k2−k1k1=12,∴12−k1k1=12,解得:k1=8.∵点B在y=8x图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4).15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan△AHO=2,∴OH=1,∴H (1,0),∵MH△x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ=S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=xk2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG△y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,1 4),∴PG =4−14=154,∴S△ABP=12PG(x A−x B)=12×154×8=15(3)解:PE=PF.理由如下:∵点P(a,b)在y1=4x的图象上,∴b=4 a,∵点B的坐标为(−4,−1),设直线PB的表达式为y=mx+n,∴{am+n=4a−4m+n=−1,∴{m=1an=4a−1,∴直线PB的表达式为y=1a x+4a−1,当y=0时,x=a−4,∴E点的坐标为(a−4,0),同理:直线PA的表达式为y=−1a x+4a+1,当y=0时,x=a+4,∴F点的坐标为(a+4,0),过点P作PH△x轴于H,如图所示,∵P点坐标为(,∴H点的坐标为(a,0),∴EH =x H−x E=a−(a−4)=4,FH =x F−x H=a+4−a=4,∴EH=FH,∴PE=PF.。
初三数学综合测试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。
2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)
2023年中考九年级数学高频考点提升练习--圆的综合题1.如图,在⊙ O中,弦AC,BD相交于点M,且∠OAC=∠OBD.(1)求证:AC=BD;(2)若OA=4,∠OAC=30°,当AC⊥BD时,求:①图中阴影部分面积.②弧CD的长.2.已知⊙O中,弦AB=AC,⊙BAC=120°(1)如图①,若AB=3,求⊙O的半径.(2)如图②,点P是⊙BAC所对弧上一动点,连接PB、PA、PC,试请判断PA、PB、PC之间的数量关系并说明理由.3.如图(1),已知矩形ABCD中,AB=6cm,BC=2√3cm,点E为对角线AC 上的动点.连接BE,过E作EB的垂线交CD于点F.(1)探索BE与EF的数量关系,并说明理由.(2)如图(2),过F作AC垂线交AC于点G,交EB于点H,连接CH.若点E从A出发沿AC方向以2√3cm/s的速度向终点C运动,设E的运动时间为ts.①是否存在t,使得H与B重合?若存在,求出t的值;若不存在,说明理由;②t为何值时,△CFH是等腰三角形;③当CG=GH时,求△CGH的面积.4.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)求证:⊙C=2⊙DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)5.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,⊙ABC中,点D 是BC边上一点,连结AD,若AD2=BD⋅CD,则称点D是⊙ABC中BC边上的“好点”.(1)如图2,⊙ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)⊙ABC中,BC=9,tanB=43,tanC=23,点D是BC边上的“好点”,求线段BD的长.(3)如图3,⊙ABC是⊙O的内接三角形,OH⊙AB于点H,连结CH并延长交⊙O于点D.①求证:点H是⊙BCD中CD边上的“好点”.②若⊙O的半径为9,⊙ABD=90°,OH=6,请直接写出CHDH的值.6.如图,⊙O为等边⊙ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是⊙ADB的平分线;(2)设四边形ADBC的面积为S,线段DC的长为x,试用含x的代数式表示S;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,⊙DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.7.在⊙ABC中,D,E分别是⊙ABC两边的中点,如果弧DE(可以是劣弧、优弧或半圆)上的所有点都在⊙ABC的内部或边上,则称弧DE为⊙ABC的中内弧.例如,图1中弧DE是⊙ABC其中的某一条中内弧.(1)如图2,在边长为4 √3的等边⊙ABC中,D,E分别是AB,AC的中点.画出⊙ABC的最长的中内弧DE,并直接写出此时弧DE的长;(2)在平面直角坐标系中,已知点A(2 √3,6),B(0,0),C(t,0),在⊙ABC中,D,E分别是AB,AC的中点.①若t=2 √3,求⊙ABC的中内弧DE所在圆的圆心P的纵坐标的取值范围;②请写出一个t的值,使得⊙ABC的中内弧DE所在圆的圆心P的纵坐标可以取全体实数值.8.如图,⊙O是⊙ABC的外接圆,AC是直径,过点O作OD⊙AB于点D,延长DO 交⊙O于点P,过点P作PE⊙AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若⊙POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.9.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=32CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ=,DF=.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)当点P在点A右侧时,作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长.10.如图,⊙ABC中,⊙ACB=90°,D是边AB上一点,且⊙A=2⊙DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.11.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM 在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持⊙ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:ABPB=OMBM;(3)若AO=2 √6,且当MO=2PO时,请直接写出AB和PB的长.12.(问题情境)如图①,小区A、B位于一条笔直的道路l的同侧,为了方便A,B两个小区居民投放垃圾,现在l上建一个垃圾分类站C,使得C与A,B的距离之比为2:1.(1)(初步研究)在线段AB上作出点C,使CACB=2.如图,做法如下:第一步:过点A作射线AM,以A为圆心,任意长为半径画弧,交AM于点P1;以P1为圆心,AP1长为半径画弧,交AM于点P2;以P2为圆心,AP1长为半径画弧,交AM于点P3.第二步:连接BP3,作∠AP2C=∠AP3B,交AB于点C.则点C即为所求.请证明所作的点C满足CACB=2.(2)(深入思考)如图,点C在线段AB上,点D在直线AB外,且DADB=CACB=2.求证:DC是∠ADB的平分线.(3)(问题解决)如图,已知点A,B和直线l,点C在线段AB上,且CACB=2.用直尺和圆规完成下列作图.(保留作图痕迹,不写作法)(⊙)在直线AB上作出点E(异于点C),使EAEB=2;(⊙)在直线l上作出点F,使FAFB=2.13.在矩形ABCD中,BC=2AB,点E是对角线AC上任意一点,过点E作AD的垂线分别交AD,BC于点F,G,作FH平行AC交CD于点H.(1)证明:EF=CH.(2)连结GH交AC于点K,若AE:CK=3,求AE:EK的值.(3)作⊙FGH的外接圆⊙O,且AB=1.①若⊙O与矩形的边相切时,求CH的长.②作点E关于GH的对称点E',当E'落在⊙O上时,直接写出⊙FGH的面积。
2019-2020年九年级数学中考 综合题提高练习(含答案)
2019-2020年九年级数学中考综合题提高练习(含答案)一、选择题:1、下列图形:任取一个是中心对称图形的概率是()A. B. C. D.12、不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0 3、如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°4、已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<05、若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠46、二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A.B.C.D.7、如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°8、如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4 B.3 C.2 D.2+9、在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是()A.y1<y2 B.y1>y2 C.y的最小值是﹣3 D.y的最小值是﹣410、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4二、填空题:11、若a m=2,a n=8,则a m+n= .12、分解因式:a3b﹣9ab= .13、将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.14、如果关于x的方程kx2﹣3x﹣1=0有实根,那么k的取值范围是.15、如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .16、如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= .17、如图,直线y=x+4与双曲线y=(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为.18、如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.三、简答题:19、如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B 的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B 的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)20、如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.21、如图,为⊙上一点,点在直径的延长线上,且.(1)求证:是⊙的切线;(2)过点作⊙的切线交的延长线于点,,,求的长.22、如图,抛物线()经过点,与轴的负半轴交于点,与轴交于点,且,抛物线的顶点为;(1)求这条抛物线的表达式;(2)联结、、、,求四边形的面积;(3)如果点在轴的正半轴上,且,求点的坐标;23、已知,四边形ABCD是正方形,∠MAN= 45º,它的两边,边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC =45º,AD⊥BC于点D,且BD=2,CD=3,求AD的长.小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN 对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题。
九年级中考数学综合训练题(4)
九年级中考数学综合训练题(4)一.选择题(共12小题,满分36分,每小题3分)1.(3分)=()A.B.C.D.2.(3分)如图所示的几何体的主视图是()A.B.C.D.3.(3分)如图,P A、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠P=50°,那么∠ACB等于()A.40°B.50°C.65°D.130°4.(3分)为了比较某校同学汉字听写谁更优秀,语文老师随机抽取了10次听写情况,发现甲乙两人平均成绩一样,甲、乙的方差分别为2.7和3.2,则下列说法正确的是()A.甲的发挥更稳定B.乙的发挥更稳定C.甲、乙同学一样稳定D.无法确定甲、乙谁更稳定5.(3分)如图所示,三角形ABC中,∠BAC=90°,过点A画AD⊥BC,则下列说法不正确的是()A.线段AD是点A与直线BC上各点连接的所有线段中最短的B.线段AB是点B到直线AD的垂线段C.点A到直线BC的距离是线段AD的长D.点C到直线AB的距离是线段AC的长6.(3分)某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、b,都有a+b≥2成立.某同学在做一个面积为3 600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备xcm.则x的值是()A.120B.60C.120D.607.(3分)如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在边DC中点E处,若BC=2,则线段AB的长为()A.2B.C.2D.8.(3分)在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>9.(3分)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,AB=2AD=4,则CF长度是()A.B.C.D.110.(3分)如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B(x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2B.k=,b=1C.k=,b=D.k=,b=11.(3分)如图,直线y=kx+b(k<0)交y轴于点A,交x轴于点B,且(AB+OA)(AB ﹣OA)=,则不等式kx+b>0的解集为()A.x>B.x>3C.x<D.x<312.(3分),,,=﹣…从计算结果中找出规律,并用这一规律计算:(+++…+)(+1)结果为()A.2005B.2006C.2007D.2008二.填空题(共6小题,满分18分,每小题3分)13.(3分)如图,海平面上灯塔O方圆100千米范围内有暗礁.一艘轮船自西向东方向航行,在点A处测量得灯塔O在北偏东60°方向,继续航行100千米后,在点B处测量得灯塔O在北偏东37°方向.请你作出判断,为了避免触礁,这艘轮船是否要改变航向?.(填“是”或“否”,参考数据:sin37°≈0.6018,cos37°≈0.7986,tan37°≈0.7536,cot37°≈1.327,≈1.732).14.(3分)不等式组的整数解的积为.15.(3分)+(b+2)2+|c﹣2022|=0,则(a+b)c的值为.16.(3分)定义新运算“*”.规则:a*b=a(a≥b)或者a*b=b(a<b)如1*2=2,(﹣3)*2=2.若x2+x﹣1=0的根为x1、x2,则x1*x2的值为:.17.(3分)如图,已知矩形DEFG内接于Rt△ABC,D在AB上,E、F在BC上,G在AC 上,∠BAC=90°,AB=6cm,AC=8cm,,则矩形的边长DG=.18.(3分)已知在平面直角坐标系中,点O为坐标原点,过O的直线OM经过点A(6,6),过A作正方形ABCD,在直线OA上有一点E,过E作正方形EFGH,已知直线OC经过点G,且正方形ABCD的边长为2,正方形EFGH的边长为3,则点F的坐标为.三.解答题(共7小题,满分66分)19.(6分)化简求值:(﹣)÷,其中a=+1,b=﹣1.20.(8分)阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”.解决下列问题:(1)菱形的“二分线”可以是.(2)三角形的“二分线”可以是.(3)在图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”,并说明你的画法.21.(10分)掷①②两枚正六面体骰子,它们的点数和可能有哪些值?请在下表中列出来,并用表中的信息求:(1)“点数和为7点”的概率P1;(2)“两颗骰子点数相同”的概率P2;(3)“两颗骰子点数都是相同偶数”的概率P3.22.(10分)已知关于x的方程(a+c)x2+bx﹣(a+2c)=0的两根之和为1,两根的倒数和为﹣2.(1)求这个方程的两根之积;(2)求a:b:c.23.(10分)采购员用一张1万元支票去购物.购单价为590元的A种物品若干件,又购单价为670元的B种物品若干件,其中B种件数多于A种件数,找回了几张100元和几张10元的(10元的不超过9张).如把购A种物品和B种物品的件数互换,找回的100元和10元的钞票张数也恰好相反,则原来购B种物品多少件?24.(10分)如图,已知AC、AB是⊙O的弦,AB>AC.(1)在图(a)中,能否在AB上确定一点E,使得AC2=AE•AB,为什么?(2)在图(b)中,在条件(1)的结论下延长EC到P,连接PB,如果PB=PE,试判断PB和⊙O的位置关系,并说明理由.25.(12分)如图,一次函数y=﹣x+3的图象交x轴于点A,交y轴于点Q,抛物线y=ax2+bx+c (a≠0)的顶点为C,其图象过A、Q两点,并与x轴交于另一个点B(B点在A点左侧),△ABC三内角∠OAC、∠ABC、∠ACB的对边为a1,b1,c1.若关于x的方程a1(1﹣x2)+2b1x+c1(1+x2)=0有两个相等实数根,且a1=b1;(1)试判定△ABC的形状;(2)当时求此抛物线的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使S△ABP=S四边形ACBQ?若存在,求出P点坐标;若不存在,请说明理由.。
2023中考数学综合模拟习题一(含答案)
2023中考数学综合模拟习题一一.选择题(共12小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形2.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a23.下列实数中,最小的数是()A.B.0C.1D.4.下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大5.如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°5题图6题图6.已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3B.1≤x≤3C.x>1D.x<37.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()每天阅读时间(小时)0.51 1.52人数89103A.2,1B.1,1.5C.1,2D.1,18.已知=3,则代数式的值是()A.B.C.D.9.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.10.如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个11.如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:211题图12题图12.如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二.填空题(共6小题)13.若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.14.一个多边形的每一个外角都是18°,这个多边形的边数为.15.已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.16.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠F AE=19°,则∠C=度.16题图17题图17.如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P点是x轴上一动点,当P A+PB最小时,P点的坐标为.18.已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.三.解答题(共7题)19.(1)计算:﹣(1﹣)0+sin45°+()﹣1(2)先化简,再求值:÷(﹣),其中a=+2.20.某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).频数组别单次营运里程“x”(公里)第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD =,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函效的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.22.某销售商准备在某市采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).23.如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.25.如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案二.填空题第13题:12第14题:20 第15题:443第16题:24 第17题:(125,0)第18题:2三.解答题第19题:(1)原式=3√2 2(2)化简,可得,原式=a+2a−2,当a=+2时,原式=1+2√2第20题:(1)①48 ②0.73 ③(画图略)(2)750(3)12第21题:(1) 一次函数的解析式为y =−23x +2反比例函效的解析式为y =−12x(2)E 点坐标为(0,258)或(0,5)或(0,−5)第22题:(1) 解:设一件B 型丝绸的进价为x 元,则一件A 型丝绸的进价为(x+100)元,根据题意,可得,10000x +100=8000x解得,x =400经检验:x =400是原方程的解,且符合题意。
人教版九年级数学中考圆的综合专项练习及参考答案
人教版九年级数学中考圆的综合专项练习类型一 与全等结合1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.第1题图(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;第1题解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°, ∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形, ∴OC =CP =OB =PB , ∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中,⎩⎪⎨⎪⎧AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL).2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ;(3)若sin B =45,求cos ∠BDM 的值.第2题图(1)证明:如解图,连接OD ,∵CA 、CD 分别与⊙O 相切于点A 、D , ∴OA ⊥AC ,OD ⊥CD , 在Rt △OAC 和Rt △ODC 中,⎩⎪⎨⎪⎧OA =OD OC =OC,∴Rt△OAC≌Rt△ODC(HL),∴AC=DC;(2)证明:由(1)知,△OAC≌△ODC,∴∠AOC=∠DOC,∴∠AOD=2∠AOC,∵∠AOD=2∠OBD,∴∠AOC=∠OBD,∴BD∥CM;(3)解:∵BD∥CM,∴∠BDM=∠M,∠DOC=∠ODB,∠AOC=∠B,∵OD=OB=OM,∴∠ODM=∠OMD,∠ODB=∠B=∠DOC,∵∠DOC=2∠DMO,∴∠DOC=2∠BDM,∴∠B=2∠BDM,如解图,作OE平分∠AOC,交AC于点E,作EF⊥OC于点F,第2题解图∴EF =AE ,在Rt △EAO 和Rt △EFO 中,∵⎩⎪⎨⎪⎧OE =OE AE =EF , ∴Rt △EAO ≌Rt △EFO (HL), ∴OA =OF ,∠AOE =12∠AOC ,∴点F 在⊙O 上,又∵∠AOC =∠B =2∠BDM , ∴∠AOE =∠BDM , 设AE =EF =y , ∵sin B =45,∴在Rt △AOC 中,sin ∠AOC =AC OC =45,∴设AC =4x ,OC =5x ,则OA =3x ,在Rt △EFC 中,EC 2=EF 2+CF 2, ∵EC =4x -y ,CF =5x -3x =2x , ∴(4x -y )2=y 2+(2x )2, 解得y =32x ,∴在Rt △OAE 中,OE =OA 2+AE 2=(3x )2+(32x )2=352x ,∴cos ∠BDM =cos ∠AOE =OA OE =3x 352x=255.3. 如图,⊙O 是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E . (1)求证:∠1=∠BCE ; (2)求证:BE 是⊙O 的切线; (3)若EC =1,CD =3,求cos ∠DBA .第3题图(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵, ∴AB =BD在△ABF 与△DBE 中, ⎩⎪⎨⎪⎧∠BAF =∠BDE ∠AFB =∠DEB AB =DB, ∴△ABF ≌△DBE (AAS), ∴BF =BE , ∵BE ⊥DC ,BF ⊥AC , ∴∠1=∠BCE ; (2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°, ∵∠BCE +∠EBC =90°,且∠1=∠BCE , ∴∠BAC =∠EBC , ∵OA =OB , ∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°, ∴∠EBO =90°, 又∵OB 为⊙O 的半径, ∴BE 是⊙O 的切线;第3题解图(3)解:在△EBC 与△FBC 中,⎩⎪⎨⎪⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS), ∴CE =CF =1.由(1)可知:AF =DE =1+3=4, ∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.类型二 与相似结合4. 如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.第4题图(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°, ∵BD 平分∠ABC , ∴∠DBC =36°, ∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA ,∴AE DE =EF EA, ∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC , ∴AG 垂直平分BC , ∴AG 过圆心O , ∵AD ∥BC , ∴AD ⊥AG , ∴AD 是⊙O 的切线.第4题解图5. 如图,AB 为半圆的直径,O 为圆心,OC ⊥AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F .(1)求证:∠CED =45°;(2)求证:AE =BD ;(3)求AO OF的值.第5题图(1)证明:∵∠CDA =12∠COA =12×90°=45°, 又∵CE ⊥DC ,∴∠DCE =90°,∴∠CED =180°-90°-45°=45°;(2)解:如解图,连接AC ,∵D 为BC ︵的中点,∴∠BAD =∠CAD =12×45°=22.5°, 而∠CED =∠CAE +∠ACE =45°,∴∠CAE =∠ACE =22.5°,∴AE =CE ,∵∠ECD =90°,∠CED =45°,∴CE =CD ,又∵CD ︵=BD ︵,∴CD =BD ,∴AE =CE =CD =BD ,∴AE =BD ;第5题解图(3)解:设BD =CD =x ,∴AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又∵AB 是直径,则∠ADB =90°,∴△AOF ∽△ADB ,∴AO OF =AD DB =x +2x x=1+ 2. 6. 如图,AB 为⊙O 的直径,P 点为半径OA 上异于点O 和点A 的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE ⊥AB ,OE //AD 交BE 于E 点,连接AE 、DE ,AE 交CD 于点F .(1)求证:DE 为⊙O 的切线;(2)若⊙O 的半径为3,sin ∠ADP =13,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.第6题图(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE,∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;第6题解图(3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE∠PAD =∠BOE ,∴△APD ∽△OBE ,∴PD BE =AP OB ,∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .7. 如图①,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,OD ∥AC ,OD 交⊙O 于点E ,且∠CBD =∠COD .(1)求证:BD 是⊙O 的切线;(2)若点E 为线段OD 的中点,求证:四边形OACE 是菱形.(3)如图②,作CF ⊥AB 于点F ,连接AD 交CF 于点G ,求FG FC的值.第7题图(1)证明:∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠ABC +∠BAC =90°,∵OD ∥AC ,∴∠ACO =∠COD .∵OA=OC,∴∠BAC=∠ACO,又∵∠COD=∠CBD,∴∠CBD=∠BAC,∴∠ABC+∠CBD=90°,∴∠ABD=90°,即OB⊥BD,又∵OB是⊙O的半径,∴BD是⊙O的切线;(2)证明:如解图,连接CE、BE,∵OE=ED,∠OBD=90°,∴BE=OE=ED,∴△OBE为等边三角形,∴∠BOE=60°,又∵AC∥OD,∴∠OAC=60°,又∵OA=OC,∴△OAC为等边三角形,∴AC=OA=OE,∴AC∥OE且AC=OE,∴四边形OACE是平行四边形,而OA=OE,∴四边形OACE是菱形;第7题解图(3)解:∵CF⊥AB,∴∠AFC=∠OBD=90°,而AC∥OD,∴∠CAF=∠DOB,∴Rt△AFC∽Rt△OBD,∴FCBD=AFOB,即FC=BD·AFOB,又∵FG∥BD,∴△AFG∽△ABD,∴FGBD=AFAB,即FG=BD·AFAB,∴FC FG =AB OB=2, ∴FG FC =12. 8. 如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC ⊥OB 交⊙O 于点C ,作直径CD 过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:AC 平分∠FAB ;(2)求证:BC 2=CE ·CP ;(3)当AB =43且CF CP =34时,求劣弧BD ︵的长度.第8题图(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA=OC,∴∠OAC=∠OCA,∴∠CAF=∠OAC,∴AC平分∠FAB;(2)证明:∵AB是⊙O的直径,∴∠ACB=90°,∵∠DCP=90°,∴∠ACB=∠DCP=90°,又∵∠BAC=∠D,∴△ACB∽△DCP,∴∠EBC=∠P,∵CE⊥AB,∴∠BEC=90°,∵CD是⊙O的直径,∴∠DBC=90°,∴∠CBP=90°,∴∠BEC=∠CBP,∴△CBE ∽△CPB ,∴BC PC =CE CB, ∴BC 2=CE ·CP ;(3)解:∵AC 平分∠FAB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34, ∴CE CP =34, 设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32, ∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.类型三 与全等相似结合9. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG .(1)求证:AB =CD ;(2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.第9题图(1)证明:∵AC 为直径,∴∠ABC =∠ADC =90°,∴∠ABC =∠BAD =90°,∴BC ∥AD ,∴∠BCA =∠CAD ,又∵AC=CA,∴△ABC≌△CDA(AAS),∴AB=CD;(2)证明:∵AE为⊙O的切线且O为圆心,∴OA⊥AE,即CA⊥AE,∴∠EAB+∠BAC=90°,而∠BAC+∠BCA=90°,∴∠EAB=∠BCA,而∠EBA=∠ABC,∴△EBA∽△ABC,∴EBAB=BABC,∴AB2=BE·BC,由(1)知AB=CD,∴CD2=BE·BC;(3)解:由(2)知CD2=BE·BC,即CD 2=92BC ①, ∵FG ∥BC 且点F 为AC 的三等分点,∴G 为AB 的三等分点,即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③, 将③代入①得,CD =332. 10.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).第10题图 (1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.。
中考数学总复习《四边形的综合题》练习题附带答案
中考数学总复习《四边形的综合题》练习题附带答案一、单选题1.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b (a>b),则(a−b)等于()A.3B.4C.5D.6 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ABD=60°,则∠BOC的大小为()A.30°B.60°C.90°D.120°3.若一个多边形的内角和是外角和的2.5倍,则该多边形为()A.五边形B.六边形C.七边形D.八边形4.如图,矩形ABCD对角线相交于点O,∠AOB=60°,AB=4,则矩形的对角线AC 为()A.4 B.8 C.4√3D.10 5.一个长方形的周长为28厘米,长的2倍比宽的3倍多3厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=√3cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm 7.如图,矩形纸片ABCD中,AB=4,AD=8 ,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为()A.3B.4C.5D.6 8.如图,⊙O的半径为4,点P是⊙O外的一点PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时PA的长度为()A.10B.212C.11D.434 9.已知平行四边形一边长为8,一条对角线长为6,则另一条对角线α满足()A.10<α<22B.4<α<20C.4<α<28D.2<α<1410.如图,两张等宽的纸条交又重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.a2B.5cm C.2√7cm D.6cm 11.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将∠BCE绕着正方形的中心O按逆时针方向旋转到∠CDF的位置,则旋转角是( )A .45°B .60°C .90°D .120°12.Rt∠ABC 两直角边的长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm二、填空题13.如图,点E 在边长为2的正方形ABCD 内,满足∠AEB =90°,若∠DAE =30°,则图中阴影部分的面积为 .14.把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为 °.15.已知 ▱ABCD 中一条对角线分 ∠A 为35°和45°,则 ∠B = 度. 16.如图,在一块长AB =26m ,宽BC =18m 的长方形草地上,修建三条宽均为3m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 m 217.如图,在∠ABC 中,∠ABC =90°,E 为AC 的中点,AD∠BE 交BC 于D ,若AD=152,BE =5,则BD = .18.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值是.三、综合题19.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=−ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2−4x+7的“对顶”抛物线的表达式;(2)将抛物线y=x2−4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y=x2−4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN是正方形时求正方形AMBN的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.20.解答题(1)如图1,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF ;(2)如图2,AB 是∠O 的直径,点C 在AB 的延长线上,CD 与∠O 相切于点D ,若∠C=20°,求∠CDA 的度数.21.如图,▱ABCD 放置在平面直角坐标系申,已知点A (-2,0)、B (-6,0)、D(0,3).点C 在反比例函数y=k x的图象上。
中考数学《圆的综合题》专项练习题及答案
中考数学《圆的综合题》专项练习题及答案一、单选题1.如图,在一块正三角形飞镖游戏板上画一个正六边形(图中阴影部分),假设飞镖投中游戏板上的每一点是等可能的(若投中边界或没有投中游戏板,则重投1次),任意投掷飞镖1次,则飞镖投中阴影部分的概率为()A.13B.49C.12D.232.如图,AB为⊙O的直径,弦DC垂直AB于点E,⊙DCB=30°,EB=3,则弦AC的长度为()A.3 √3B.4√3C.5√3D.6√33.如图,AB是⊙O的弦,半径OC⊙AB于点D,且AB=6cm,OD=4cm。
则DC的长为()A.cm B.1cm C.2cm D.5cm4.如图,四边形ABCD内接于⊙ O,AB为⊙ O的直径,∠ABD=20∘,则∠BCD的度数是()A.90°B.100°C.110°D.120°5.如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则⊙ABD=()A.⊙ACD B.⊙ADB C.⊙AED D.⊙ACB6.如图,在⊙O中,弦AB⊙CD,若⊙ABC=40°,则⊙BOD=()A.20°B.40°C.50°D.80°7.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个8.已知如图,PA、PB切⊙O于A,B,MN切⊙O于C,交PB于N;若PA=7.5cm,则⊙PMN的周长是()A.7.5cm B.10cm C.15cm D.12.5cm9.若小李同学掷出的铅球在场地航砸出一个直径为10厘米,深2厘米的小坑,则该铅球的直径为()A.20厘米B.19.5厘米C.14.5厘米D.10厘米10.如图,如果从半径为9cm的圆形纸片剪去13圆周的一个扇形,将留下的扇形(阴影部分)围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.5√3cm C.8cm D.3√5cm11.如图,△ABC内接于⊙O,∠B=65o,∠C=70o,若BC=2√2,则弧BC长为()A.πB.√2πC.2πD.√2π12.如下图,点B,C,D在⊙O上,若⊙BCD=130°,则⊙BOD的度数是()A.96°B.98°C.102°D.100°二、填空题13.如图,在扇形AOB中,OA=4,⊙AOB=90°,点P是弧AB上的动点,连接OP,点C是线段OP的中点,连接BC并延长交OA于点D,则图中阴影部分面积最小值为.14.如图,在边长为√2的正方形ABCD中,分别以四个顶点为圆心,以边长为半径画弧,分别与正方形的边和对角线相交,则图中阴影部分的面积为(结果保留π).15.如图,⊙ABC的顶点A,B,C均在⊙O上,若⊙ABC+⊙AOC=90°,则⊙AOC的大小是.16.如图:⊙O为⊙ABC的内切圆,⊙C=90°,AO的延长线交BC于点D,AC=4,CD=1,则⊙O的半径为.17.如图,在正八边形ABCDEFGH中,AC、GC是两条对角线,则tan⊙ACG=.18.如图,菱形ABCD中,已知AB=2,∠DAB=60°将它绕着点A逆时针旋转得到菱形ADEF,使AB与AD重合,则点C运动的路线CE⌢的长为.三、综合题19.如图,AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,点D为AP的中点,连结AC.求证:(1)⊙P=⊙BAC(2)直线CD是⊙O的切线.20.如图,以△ABC的边AB为直径的⊙O交AC于点F,点E是BF⌢的中点,连接BE并延长交AC于点D,若∠CBD=12∠CAB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,cos∠BAC=25,求CD的长.21.如图,⊙O是⊙ABC的外接圆,AC是O的直径,BD=BA=12,BC=5,BE⊙DC,交D的延长线于点E,BD交直径AC于点F.(1)求证:⊙BCA=⊙BAD.(2)求证:BE是⊙O的切线.(3)若BD平分⊙ABC,交⊙O于点D,求AD的长.22.如图,⊙OAB中,OA=OB=10cm,⊙AOB=80°,以点O为圆心,半径为6cm的优弧弧MN分别交OA,OB于点M,N.(1)点P在右半弧上(⊙BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求A T的长.23.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.⌢的中点,CE⊥AB于点E,BD交CE于点F.24.如图,AB是⊙O的直径,C是BD(1)求证:CF=BF;(2)若CD﹦5,AC﹦12,求⊙O的半径和CE的长.参考答案1.【答案】D2.【答案】D3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】B8.【答案】C9.【答案】C10.【答案】D11.【答案】A12.【答案】D13.【答案】4π−8√3314.【答案】4-π15.【答案】60°16.【答案】0.817.【答案】118.【答案】2√33π19.【答案】(1)解:证明:∵AB是⊙O的直径∴⊙ACB=90°∴⊙ACP=90°∴⊙P+⊙CAP=90°∵AP⊙O是切线∴⊙BAP=90°即⊙CAP+⊙BAC=90°∴⊙P=⊙BAC;(2)解:∵CD是Rt⊙PAC斜边PA的中线∴CD=AD∴⊙DCA=⊙DAC连接OC∵OC=OA∴⊙OCA=⊙OAC∴⊙DCO=⊙DAO=90°∴CD是⊙O的切线.20.【答案】(1)证明:连接AE,如图所示:∵AB是⊙O的直径∴∠AEB=90°∴∠BAE+∠ABE=90°.∵点E为弧BF的中点∴EF⌢=EB⌢∴∠BAE=∠DAE=12∠CAB.又∵∠CBD=12∠CAB∴∠BAE=∠CBD∴∠CBD+∠ABE=90°∴AB⊥CB∴BC是⊙O的切线.(2)解:∵∠BAE=∠DAE,∠AED=∠AEB=90°∴∠ADE=∠ABE∴AD=AB=2×2=4.∵cos∠BAC=2 5∴在Rt△ABC中即4AC=25,得AC=10∴CD=AC−AD=10−4=6.21.【答案】(1)证明:∵BD=BA ∴∠BDA=∠BAD.∵∠BCA=∠BDA∴∠BCA=∠BAD.(2)证明:连结OB,如图∵∠BCA=∠BAD又∵∠BCE=∠BAD∴∠BCA=∠BCE∵OB=OC∴∠BCO=∠CBO∴∠BCE=∠CBO∴OB//ED.∵BE⊥ED∴EB⊥BO.∴BE是⊙O的切线.(3)解:∵AC是⊙O的直径∴∠ABC=90°∴AC=√AB2+BC2=√122+52=13.∵∠BDE=∠CAB∴△BED∽△CBA∴BDAC=DEAB,即1213=DE12∴DE=14413∴BE=√BD2−DE2=6013∴CE=√BC2−BE2=2513∴CD=DE−CE=119 13∵BD平分⊙ABC ∴∠CBD=∠ABD∴AD=CD=119 13.22.【答案】(1)证明:∵⊙AOB=⊙POP′=80°∴⊙AOB+⊙BOP=⊙POP′+⊙BOP即⊙AOP=⊙BOP′在⊙AOP 与⊙BOP′中 OA=OB ⊙AOP=⊙BOP OP=OP′∴⊙AOP⊙⊙BOP′ ∴AP=BP′(2)解:∵A T 与弧相切,连结OT .∴OT⊙A T在Rt⊙AOT 中,根据勾股定理得,A T= √OA 2−OT 2 ∵OA=10,OT=6 ∴AT=823.【答案】(1)1 (2)1424.【答案】(1)证明:∵AB 是 ⊙O 的直径∴∠ACB =90° ∴∠A +∠ABC =90° 又∵CE ⊥AB ∴∠CEB =90° ∴∠BCE +∠ABC =90° ∴∠BCE =∠A∵C 是 BD ⌢ 的中点 ∴CD⌢=CB ⌢ ∴∠DBC =∠A ∴∠DBC =∠BCE ∴CF =BF(2)解:∵CD⌢=CB ⌢,CD =5 ∴∠DBC =∠BDC∴BC=CD=5∵∠ACB=90°∴AB=√AC2+BC2=√122+52=13∴AO=6.5∵∠BCE=∠A,∠ACB=∠CEB=90°∴△CEB⊙ △ACB∴CE=AC⋅BCAB=12×513=6013故⊙O的半径为6.5,CE的长是6013.第11页共11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中考试卷
一、选择题(本题满分24分)
1、21的相反数是( ) A 、21
- B 、21
C 、-2
D 、2
2、下列图形中,中心对称图形是( )
3、下列运算正确的是( )
A 、632a a a =•
B 、a a a =÷23
C 、()923a a =
D 、532a a a =+
4、如图,AB 是⊙O 的直径,点C 在⊙O 上,若∠A =400,则∠B 的度数为( )
A 、800
B 、600
C 、500
D 、400
5、如图所示几何体的俯视图是( )
6、已知反比例函数x m y 1
-=的图象如图所示,则实数m 的取值范围是( )
A 、m>1
B 、m>0
C 、m<1
D 、m<0
7、方程032=-x x 的解为( )
A 、0=x
B 、3=x
C 、3,021-==x x
D 、3,021==x x
8、下列说法正确的是( )
A 、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定
B 、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生
C 、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大
D 、为了解我市学校“阳光体育”活动开展情况,必须采用普查的方法
二、填空题(本题满分30分)
9、=-3 。
10、2011年淮安市人均GDP 约为35200元,35200用科学记数法表示为 。
11、数据1、3、2、1、4的中位数是 。
12、分解因式:=++122a a 。
13、菱形ABCD 中,若对角线长AC =8cm ,BD=6cm ,则边长AB = 。
14、如图,△ABC 中,AB=AC ,A D ⊥BC ,垂足为点D ,若∠BAC=700,则∠BAD= 。
15、如图,⊙M 与⊙N 外切,MN =10cm ,若⊙M 的半径为6cm ,⊙N 的半径为 。
16、若5的值在两个整数a 与a+1之间,则a= 。
17、若圆锥的底面半径为2cm ,母线长炎5cm ,则此圆锥的侧面积为 。
18、如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差 。
三、解答题
19、计算(本题满分8分)
(1)、3)6(201220
2÷-+- (2)、()13112+++•-x x x x x
20、(本题满分6分)
解不等式: x-1>0
3(x+2)<5x
21、(本题满分8分)已知:如图在平行四边形ABCD 中,延长AB 到点E ,
使BE=AB ,连接DE 交BC 于点F 。
求证:△BE F ≌△CDF
22、(本题满分8分)有一个鱼具包,包内装有A 、B 两支 鱼竿,长度分别为3.6cm ,4.5cm ,包内还有绑好鱼钩的b a a ,,21三根钓鱼线,长度分别为3.6cm,3.6cm,4.5cm,若从包内随机取出一支鱼竿,再随机取出一根钓鱼线,则鱼竿和鱼线长度相同的概率是多少?
23、(本题满分10分)实施“节能产品惠民工程”一年半以来,国家通过发放补贴的形式支持推广高效节能空调,1.6升及以下排量节能汽车,节能灯三类产品,其中推广节能汽车约120万辆,小刚同学根据了解到的信息进行统计分析,绘制出两幅不完整的统计图:
题14图 题15图 题18图
(注:图中A表示“高效节能空调”,B 表示“1.6升及以下排量节能汽车”, C表示“节能灯”)(1)国家对上述三类产品共发放补贴金额亿元,“B”所在扇形的圆心角为;(2)补全条形统计图
(3)国家计划再拿出98亿元继续推广上述三类产品,请你预测,可再推广节能汽车多少万辆?
24、(本题满分10分)如图,△ABC中,∠C=900,点D在AC上,已知
∠BDC=450,BD=2
10,AB=20,求∠A的度数。
25、(本题满分10分)某省公布的居民用电阶梯电价听证方案如下:
第一档电量第二档电量第三档电量
月用电量210度以下,每度价格0.52元月用电量210至350度,每度
比第一档提价0.05元
月用电量350度以上,每度电
比第一档提价0.30元
例:若某户月用电量400度,则需缴电费为
210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230元
(1)如果按此方案计算,小华家5月份电费为138.84元,请你求出小华家5月份的用电量;
(2)依此方案请你回答:若小华家某月的电费为a元,则小华家该月用量属于第几档?
26、(本题满分10分)国家和地方政府为了提高农民种粮的积极性,每亩地每年发放种粮补贴120元,种粮大户老王今年种了150亩地,计划明年再承租50~150亩土地种粮以增加收入,考虑各种因素,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系如图所示:
(1)、今年老王种粮可获得补贴多少元?
(2)、根据图象,求y与x之间的函数关系式;
(3)、若明年每亩的售粮收入能达到2140元,求老王明年种粮总收入
W(元)与种粮面积x(亩)之间的函数关系式,当种粮面积为多少
亩时,总收入最高?并求出最高总收入。
产品类型
27、(本题满分12分)如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针方向旋转1350,得到矩形EFGH(点E与O重合).
(1)若GH交y轴于点M,则∠FOM=,OM=
(2)矩形EFGH沿y轴向上平移t个单位。
①直线GH与x轴交于点D,若A D∥BO,求t的值;
②若矩形EFHG与矩形OABC重叠部分的面积为S个平方单位,谋求当0<t
≤2
4 时,S与t之间的函数关系式。
2
28、(本题满分12分)
阅读理解新课标第一网
如图28-1图,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;
将余下部分沿B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角。
小丽展示了确定∠BAC是△ABC的好角的两种情况。
情形一:如题28-2图,沿等腰三角形△ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如题28-3图,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿B1A1C的平分线A1B2折叠,此时点B1与点C重合。
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”或“不是”)
(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系。
根据以上内容猜想:若经过n 次折叠∠BAC是△AB C的好角,则∠B与∠C不妨设∠B>∠C)之间的等量关系为
应用提升
(3)小丽找到一个三角形,三个角分别为150,600,1050,发现600和1050的两个角都是此三角形的好角,请你完成,如果一个三角形的最小角是40,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角。