1.5正弦函数的图像与性质基础练习题
高一教案数学正弦函数图像及性质总结复习练学习试题
高一数学正弦函数图像及性质练习题π1.函数y=sin(4-2x)的单调增区间是〔〕A .[kπ-3π8,k3ππ+8](k∈Z) B.[kππ+8,k5ππ+8](k∈Z)C .[kπ-π8,k3ππ+8](k∈Z) D.[k3ππ+8,k7ππ+8](k∈Z)2.函数1y=5sin (3x-π3)的定义域是__________,值域是________,最小正周期是________,最值是________3.函数y=3sin〔1x-π〕.41〕用“五点法〞作函数的图象;2〕求此函数的最小正周期;3〕求此函数的单调递增区间.用五点法作出以下函数的图像:y 3sinx5.对于函数y=sin(13π-x〕,下面说法中正确的选项是2-----------------------------------------()( A)函数是周期为π的奇函数(B)函数是周期为π的偶函数( C)π(D)函数是周期函数是周期为2的奇函数6 .为2π的偶函数作出函数6.y3sin(2x3R:),x3(1〕求此函数的周期、最值和取最值时X的集合;2〕求此函数的单调区间。
7.函数ysin(2x 5)的图像的单调区间是28.求函数的周期、最值及取得最值时X的集合(9.用五点作图法画出函数图像1〕求函数的周期T=?2〕求函数最值及取最值时X的集合。
正弦函数的性质与图像、余弦函数的图像与性质和正切函数题目与答案
正弦函数的性质与图像、余弦函数的图像与性质和正切函数题⽬与答案))))))))正弦函数的性质与图像、余弦函数的图像与性质和正切函数正弦函数的性质与图像【要点链接】1.正弦函数的图像(1)掌握正弦函数的图像的画法;(2)会熟练运⽤五点法画有关正弦函数的简图.y?sinx要掌握:2.对于正弦函数R;定义域为(1)(2)值域[-1,1];2;(3)最⼩正周期3]2[2k[2kk??,2k??,],k?Z;单调增区间(4),单调减区间2222(5)是奇函数,图像关于原点对称.同时要求会求有关正弦函数的⼀些简单组合的函数的定义域、值域与最值、单调性、周期与判断奇偶性问题.【随堂练习】3y]?sinxx?[0,2y的交点个数为(的图像与,1.)2C.2 D.3A.0B.1,0][f((x)x)f可以为(上为减函数,则为奇函数,且在2.)2f(x)x??sinxf(x)?sin..BA f(x)?1?sinxf(x)?1?sinx.C D.1?x?siny的值域是(3).函数226261]][[0,[0,],][0, B .C ...AD 222224.下列不等式正确的是()954sinsinsinsin().A B.77775?sin?sin()?sin(?))?sin(?.D.C73761?x,xy?1?sinx的.函数5 ,当取得这个最⼤值时⾃变量R的最⼤值为2取值的集合是.1sin2?0?,则满⾜6.已知的.的范围为__________ 23][0,)f(x2,最⼩值为,在.上是减函数的奇函数__ 7.构造⼀个周期为22 1xsiny?? 8在长度为⼀个周期的闭区间的简图..利⽤“五点法”画出函数2??2,?]xsinsinx?x?1,?[?y?的值域..求函数9 44))))))))).))))))))答案3y]x?[0,2y?sinx的图像,的图像与在同⼀坐标系内画出,1.C 2可以看出交点个数为2.,0][上为增函数;对于A,在C、D都既不是奇函数,也不是偶函数.2.B 2211113y?][0,??sinxsin?x??0??,则,⼜在根号下,则知..3D222222?932524)sin(?sin??sin?sin(sin??sin)?sin,,4.B777777725???sin(?)??sinsin(?)?0sin(?)??sin?sin,,776637则B正确.33,kZxx2k}{yxsin1取最⼤值当5.,时,取到最⼩值222??,k?2kZ?}{xx?.此时2?15[),2[0,y]?)?[0,2?sinxxy画出在上的图像,看图可得.与6.26633x?xsin?sin?)(xf可以判断满⾜要求.7.22解:列表:8.3x2022xsiny00011111113?x?y?sin222222y作图:3 212?32x22O 1?2??22?x?,][sin],?x?[,得解:.由.922445122?)??(sinx?xy??sinx?sin?1,42?51?x?xsin y,即取最⼤值,为;时,当426?212??sinx??x?y时,,即.当取最⼩值,为224))))))))).))))))))1?25,[].所以函数的值域为24备选题4y??1?.函数1的最⼤值是()xsin2?55D.5.B C.3 A.231443y4?3?1?2?sinx,则C.,选1.C ,则3sin32?x?5?]?y?sinx,x[,1?y.已知函数的图像与直线围成⼀个封闭的平⾯图形,则该222封闭图形的⾯积为()2 D4 C..A.2 B.S?SS?S,,.C 如图,由对称性知2y4123?2则封闭图形的⾯积与长为,宽为1的矩形的⾯积相等,则封闭图形的⾯积1?2为.SS41?5x OS?S2232余弦函数的图像与性质【要点链接】.余弦函数的图像1 掌握余弦函数的图像的画法;(1) 会熟练运⽤五点法画有关余弦函数的简图.(2)x?cosy.对于余弦函数要掌握:2R;(1)定义域为;1]值域[-1,(2)?2最⼩正周期;(3)]1)?,()?12,2kk],[2k[(2k Z?k;(4)单调增区间单调减区间y.是偶函数,图像关于轴对称(5)周期与单调性、同时要求会求有关余弦函数的⼀些简单组合的函数的定义域、值域与最值、. 判断奇偶性问题【随堂练习】x2cos1?y?1.)的值域为(3,1][?1]3,?[[?1,3][1,3]?..A D.B.C?)sin(x?y??x).函数2 R)((2,0]?[],[?.是偶函数,且在上是减函数上是增函数B.是奇函数,且在A22,][?][0,上是减函数.是奇函数,且在C.是偶函数,且在上是减函数D22x?y?cos)3.函数的图像的⼀条对称轴⽅程是())))))))).))))))))x??x??x?x..B.D.C A428xy?cos xsiny??的图像,这个平移可以为(.把函数的图像经过平移可以得到)4??个单位B.向右平移A.向左平移个单位22??个单位DC.向左平移.向右平移个单位1?y 5.函数___________________.的定义域为1x?2cos1?y 6.函数_______________.的值域为xcos2?x??cosy?sinx ____________________.函数7.的定义域是.判断下列函数的奇偶性:81?xxxcosf(x)?x?lg?(x)?sinxcosxf.)(1 ()2 ;1?x?y?cosx]?[0,2y?2?cosxx,9.⽤五点法作出函数,的图像,并说明它和函数?]?[0,2x的图像的关系.答案cosx?[?1,1]?2cosx?[?2,2]1?2cosx?[?1,3].,则因为,则A 1.xcos)y?sin(x][0,上是减函数.2.,则它是偶函数,且在 C 2??x y??cosx的图像的⼀条对称轴.是画出图像可知直线3.Dxcos)?ysin(x?xsiny个单位∵,则把函数的图像向右平移4.B 22x?cosy的图像.可以得到23??cosx??0?x?12cos}Z,kx?2k??{x,那么,5.知24 23cosx?x),[?,则定义域为值为内的在⼀个周期⽽243??,k??Z}{xx?2k.411[,1][,1]3??cosxcosx?11?2?1?.,知值域为因为,则6.33])k??1,(2[2k k?Zsinx?0cosx?0,由正弦线与余弦线知,,,7.可得2?3kx2k??2?k2k??x2k??Z,那么两者的交集,其中且22]?1),(2k[2k?Z?k.,即为定义域,为2)x?f(??xxcosx?)x)?(f?x)(?x?(?)cos(?x? 1),(.8解:)(xf是奇函数.所以1,1)(?(2.)知函数的定义域为))))))))).))))))))1?(?x)1?x??sinxcosx?lgf(?x)?sin(?x)cos(?x)?lgx?1?(?x)1x?1?x11?)sinxcosx?lg()?sinxcosx?lg?f(x??,x1?x1?)xf(是偶函数.所以xcosy?xcos2?y?的图像.9.解:在同⼀坐标系中作出与⾸先列表为3x20 22xcos 1 1 0 0 -1 xcos-1 0 0 1 -1x?2cos12231y画图为3x2?cosy? 21xy?cos2x O3 122xcosyxcosy x][0,2x,轴对称可以得到可以看出,将函数的图像关于xcosxcosyy][0,2x?[0,2x]?函数的图像,再将函数,,?][0,2?cosxx?y?2,的图像向上平移2个单位即可得到函数的图像.备选题?7??[0,)?]?f(?x)xf(x)?cosxf(且______.时,则的奇函数,若函数,是周期为1.321771?os)??c?)?f()?f?f?(?f)?(2(.1.2332333??C)f(x?y[0,1]ABC中,,若函数2.在△在上为单调递减函数,则下列命题2)正确的是()(sinBf)(sinA)?ff(cosA)?f(cosB.A.B)B)?f(cosf)f(sinA)?f(cosB(sinA C.. DB?B0?A?C?A,则,,则2.C2222?1cosB??sin(?B)?0?sinA)(cosB(sinfA)?f.,则则2正切函数【要点链接】sinZ?,k?R,?tank. 1.正切函数的定义:()?2cos.2.正切函数的图像:掌握正切函数的图像的画法x?tany 3.对于正切函数要掌握:}Z?xk,k,?{xR定义域为(1);2))))))))).))))))))R;(2)值域??)0k?k?Zk,(;(3)周期是,最⼩正周期)k?k?(?,(k?Z)k?Z;(4)在每⼀个开区间是增加的22(5)是奇函数,图像关于原点对称.同时要求会求有关余弦函数的⼀些简单组合的函数的定义域、值域与最值、单调性、周期与判断奇偶性问题.4.正切函数的诱导公式,可结合正弦函数与余弦函数的诱导公式的记忆⽅法去记忆.【随堂练习】tan2)?(1,P等于(.已知⾓的终边经过点),那么111??2B.C.D.A .2 22),sin?P(tansin的终边必在在第三象限,则⾓( )2.若点A.第⼀象限B.第⼆象限C.第三象限D.第四象限13)tan()tan(???.已知,则)3等于(2211?2?DA.2 B..C.22xtany?图像的⼀个对称中⼼为(4.),0)(,0)()(0, (1,0) D..A.C.B4200?)300?cot(?405tan.5.17131713)tan(?)tan(?tan()??)tan(与6.⽐较的⼤⼩为.5445 1?y的定义域为..函数7 x1?tanx)tan(y的定义域和单调区间..求函数832??25?tanx?xy?tan?2aa),x?[为常数).求函数9其中.在时的值域(42答案y?2??tan?2??可得1.B .1x0?0tansin?sinsin??0tan?为第四象限⾓.,且知.2D ,则,则?311cottan()??tan(atn?()?tan????)? 3.A ,则,则222212.?tanyxtanxaytn,0)(的图像的⼀个对称中⼼.的图像可看出,.4A 是2))))))))).))))))))0000001??3)045?ot3(60?6?0)36tan30?c?ot(t4?05)can?0(.5000013?60?cot45??tan(?60)?cot(?45)??tan?.217213??0??tan(?)tan(??)?tan(??)?)?tan(??.,⼜,,64544552??2?)?)?tan(?,0)x?(?tan(xtany?⽽内递增,则在,即可得.542}?Zxk,?k?x?k?{xtany?0x?1?tan,观察7.可得的图像,42}Z,kk??x?k??{x xtany?注意.的周期为,则定义域为42x??kx??k2z?zkk?,即,可得8.解:,,3223??},kx{x2kz.所以函数的定义域是3x??k??k?zk?,,由2223??5k??2k2?x?z?k解得,,33??5??Z,?2k?)(??2kk则知函数的单调区间为,且在其上为增函数.332225?x?a)?a? tanx?2a?tanx?5?(tany,9.解:??)[,x?)?[1,??tanx,∴,2422)a,a?5[5?y?a??tanx1a??,则值域为;,此时时,∴当)6,??[2a?6a?y?21x??1?tana,此时.时,当,则值域为备选题? 1.设)是第⼆象限⾓,则(cos??cos?1tansin?1sintan D.B..C.A 2222222?k?k2kk?????Z?k.,,是第⼆象限⾓,则则1.A22241a?n?2n?t?2n k?2nnk?2n,?Z?1,n?Z当,则;当时,2224??351??2n?n2tan??时,.,则2224)xytan(的定义域是2.函数.433??,k?Zkxkx{x??Z?,?x?k}?,kZ?k?.知.2,则4244))))))))).))))))))同步测试题A组⼀、选择题y?sinx的图像的⼀条对称轴⽅程是(1.函数)5??xx?x??x?CA..D.B.4248sin1cos1tan1的⼤⼩关系为、( )2.、tan1?sin1?cos1sin1?tan1?cos1A.B.sin1?cos1?tan1tan1?cos1?sin1 C.D.??x?sin?x)f(?x)x)?tan(g(,则()3.已知函数,2f(x)g(x)f(x)g(x)都是偶函数与与B.都是奇函数A.f(x)g(x)f(x)g(x)是奇函数是偶函数,是奇函数,D..是偶函数C4.下列各式中为正值的是()7773tan1)cot(tansin?BA..858800230sin105cos6cos6tan.D.C1725)?)cos(?cos(sin(??)?sin(?);;②.对于下列四个命题:①541841000004040sin?tan143?tantan138.其中正确命题的序号是(③;④)A.①③B.①④C.②③D.②④2coscos,sin2,,sintan,中能确定为正值的有(6.若是第⼀象限⾓,则)222 2个以上C.2个D.个A.0 B.1个⼆、填空题x?tany x ________轴的直线与.的图像的相邻两个交点之间的距离为7.平⾏于xtansinx|cosx|?y??.的值域是________8.函数|cosx|tanx|sinx|AB?C)?cosA,B,Ccos(ABC?4个关系式:①是.设9;的三个内⾓,有下列CBA?sinsin?C?tantan(CA?B)Asin(?B)?sin;③.;④②22.其中不正确的是______________三、解答题?2??tan.已知.10??cos2sin?)求(1;2cos?sin2212cossin.)求(211.判断以下两个命题是否正确?并加以说明.sincos??cossin;、都是第⼀象限⾓,若1 (),则tantan? sin?sin,则、都是第四象限⾓,若.)( 25?]?[0,xbx)x?asin?(f.3,.已知12,最⼩值为1,它的最⼤值为6))))))))).)))))))))f(x(1)求的表达式;x2)?f(x成⽴的(2)求使的值;x)(xf取最⼤值时的值.(3)求组B ⼀、选择题??0),??xcosx,(??3??)(xf)xf(R2,最⼩正周期为是定义域为1.设的函数,若?2??).?sinx,(0?x??15)(?f则)等于(422?01D CA. .B..22x?cosy?cosx.)的值域是(22,0]?[?1,1][[0,1]?1,0][.C. D A.B.xcosy?tanx.函数)的部分图像是(3D.C.A.B.1414)?asin(?tan(?)(4.已知,那么)15151aa|a|??D.AC..B .2222a1?a1?a11?a?⼆、填空题00)cos(720??x)sin(540x1?)f(x?)f(x x _____,写出满⾜的⼀个5.已知.值为00)tan(?x?270sin(?x?360)2?x)(0,2xcossinx?取值范围为成⽴的_________________.内,使6.在三、解答题3)?cos(2??)?tan(sin(??)2???)f(为第三象限⾓,且.已知7.)?sin(cot?13??cos(?)))((ff的值.;(2)若(1)化简,求5221)a?2x?acosx?(2?y2cosx)af(.设关于8的函数的最⼩值为.)f(a的表达式;(1)写出1a?f(a)y 的最⼤值.的)试确定能使2(值,并求出此时函数2))))))))).))))))))答案A组y?sinx的图像可以看出..C 观察1cossin??cos1?1sin1?tan1?tan1costan1?sin1?,⼜2.A .,则444??x?sox?sin?cf(x))(x)??tanx(gx)?tan(f?x3.D 是,易判断,2)(xg是奇函数.偶函数,72373?1)cot??cot?0(tantan?tan?1cot,则为正值.,4.A 588455)?sin(???)??sin(,,则则①正确;B 5.10181018220?40?的正弦线和正切线,知④正确.画出tan2 6是第⼀象限⾓,则在⼀或三象限,则的终边在.C ⼀定为正;22?x2sin⼀定为正.轴的上⽅,则??xy?tan的图像的最⼩正周期相邻两个交点之间的距离就是7..xx1,3}?{的终边不会落在坐标轴上,分⾓知⾓的终边在第⼀、⼆、三、四象限内,8.y1,3}{?.1、-1 ,则值域是的值分别为3、-1、-A?B?CA?B?C?A?BC,则9.①③④知,.C)?B?sincos(B?C)??cosAsin(A,,可得CA?BC)?tan?tan(A?Bcos?sin,.则①③④不正确.2232sincos??2tan1?12?(?2).(1).10解:4?2?2sin?2cos?tan222?1?y?x),yP(x,)设⾓的终边与单位圆的交点为,则(2221?sincos?x?cosysin?.,,那么则22??cos?2sin2222cos?2cos1??sin2sin?22??cos?sin2?72tan?1??.2?5?1tan0060?30?sinsin?cos?cos,.11.解:(1)错误,可举例,但,满⾜(2)正确,证明如下:2k???2n,0)?(??,0)?(Zn?k?Z.,设,;,,122122sinsin?,0)(?x?xsiny?sinsin?上为增函数,,∴,⽽在∵xtany???0???,0)(?x在,⼜上为增函数,则1222tantan?tantan?则,212则.21[0,1]sinx?0?a 12.,由已知可以得)知.1解:(b?)(fxa)(fx?b?0a?,当时,,minmax))))))))).))))))))a?2,b?1f(x)?2sinx?11??3ba?b.,,,那么则f(x)?a?bf(x)?b0?a,,当时,maxmin a??2,b?3f(x)??2sinx?33?a?b?1b.,,则,那么551x]xxsinx[0,2f(x).(2)若,则有,则,,或2666??x1x?f(x)?2sin31?2sinx?;,则)当时,由(3232sinx?(x)??f03x?2sinx?3??时,由当,则.B组??23515313f(?)s?i(??3)?fn(?)?f? B 1..2442440,0,cosx??2,0][??y画出图像,则它值域为可得.2.D ?0.cosx?2cosx,?2?y?x?x,C.,排除D 当,知选A⽆意义,则、B排除,当3.C 24214??)aP(?1,?0a?是第三象限的⾓,则,可设其终边上⼀点为知,4.A 15a142?)sin(a1rOP则,则.152a1?0cos?(x)sin(1?8x0)xcoxssin10?x)xf(sin30??sinx?,5.,由0tcoin0?x)x)in?(xtans(?9xs2030?x值为知满⾜它的⼀个. ??5?)(,xy?cos)(0,2?sinxy在内的图像,和6.在同⼀坐标系内画出44??5),(x xsinx?cos观察图像知使取值范围为成⽴的.44cotsin??cos(??cos)f)解:(1.7.)?cotsin?(?1313sincos(?sincos()?)?cos(?),则(2),52522222?5y??1)?()y(?1,0y?的终边上⼀点为,⼜,则可设,得6262cos?)f(6?y?2,则,则则.552aa22?cosy?1?2a?2cosx?2ax?(2a?1)?)x?2(cos1,1]??cosx[ 1)(,,8.解:222aa?y?2a?1?1?1??2?2??a时,,即当;min22aa?41y?1?1?cos2x?a 时,,即当时,;min2a1y?1??1?axcos2时,时,.当,即min2))))))))).))))))))1,a??2,??1?2f(a)??a?2a?1,?2?a?2,则?2?2.?,a1?4a??1?)(af1a??)由(2,,得2112?)x?y?2(cos y1x?cos.有最⼤值为时,,当5 此时22备选题)1.下列函数是奇函数的是(xtan?xy)x?sin(tancos(sinx)yy?sinxtanxy?B.D...AC)(x)??f?tanx)??sin(tanxf(?x)?sin[tan(?x)]?sin(对于D中函数,,1.D)sin(tanxy?是奇函数.其定义域关于原点对称,则2+a)=(sinx-1y a??1sinxsinx.若函数2时取最⼤值,在时取得最⼩值,在a则实数)满⾜(1a1?1?a?0a0?a?1 D.A.C.B.2+-a)y1=(sinx1,1]?sinx?[ax?sin,函数注意,的对称轴为2.B0a??1?.由题意观察图像,则xtanx?y??cos..函数的定义域为__________________3}Z,kx?2{x2kk0?tanxcosx?0 3可得.,则函数的图像可得,2}?kZ,2kk?2?2k?x?x?2k??Zk,?}{x{x,且,求交集222x?tany?cosx?}?Z,?k?x?2{x2kk.可得函数的定义域为2sintantan??sin? :4.求证.sintantan?sin?22?y??rOP?x),yP(x,则.4证明:设⾓,的终边上⼀点为22yy22tan?sin)(tan??sinsin)(tan??则22rx22222xry1y?y122222??sin?tan(y?)?y?y.sin?tansintan??.∴22222222rxxrrxrxsintan?sintan?))))))))).。
(完整版)正弦函数的图像及性质练习题
(完整版)正弦函数的图像及性质练习题正弦函数是数学中重要的三角函数之一。
它的图像呈现周期性变化的波形,具有一些特殊的性质。
以下是一些关于正弦函数图像及性质的练题,帮助加深对该函数的理解。
练题1画出正弦函数$f(x) = \sin(x)$在$x$轴上的一个完整周期的图像。
标明原点$(0,0)$和与$x$轴交点$(2\pi,0)$。
练题2正弦函数的图像在何种情况下与$x$轴相切?给出一个具体的例子。
练题3在一个完整周期内,正弦函数的最大值是多少?最小值是多少?它们出现在图像的什么位置?练题4对于正弦函数$f(x) = \sin(ax)$,$a$的取值会如何影响函数图像的周期和振幅?给出两个具体的例子。
练题5将正弦函数$f(x) = \sin(x)$的图像上所有点的横坐标的值增加$\pi/2$,得到新的函数图像$g(x)$。
$g(x)$与$f(x)$有什么关系?画出$g(x)$的图像。
练题6正弦函数的图像具有的对称性是什么?说明是关于哪个点对称,并给出一个具体的例子。
练题7对于一般的正弦函数$f(x) = a\sin(bx+c)+d$,$a$、$b$、$c$和$d$的取值会如何影响函数图像的振幅、周期、平移和垂直方向的偏移?给出一个具体的例子。
练题8正弦函数有无界范围吗?是否可以取到任意实数值?解释你的答案。
练题9正弦函数在实际问题中的应用有哪些?举出一个具体的例子,并分析为什么正弦函数适用于该问题。
以上是一些关于正弦函数图像及性质的练题,希望能够帮助你巩固对该函数的理解。
通过解答这些题目,你可以更好地掌握正弦函数的特点和应用。
请注意,这些题目只涉及正弦函数的基本性质和应用,更深入的研究还需要进一步的研究和探索。
正弦函数、余弦函数的图象和性质及答案
正弦函数、余弦函数的图象和性质一、选择题(本大题共5小题,每小题3分,共15分)1.设M 和m 分别表示函数y=31cosx -1的最大值和最小值,则M+m 等于( )A .32 B. ﹣32 C. ﹣34D. ﹣2 2.函数f (x )=sin x -|sin x |的值域为 ---------------------------------------------- ( ) (A) {0}(B) [-1,1](C) [0,1](D) [-2,0]3.函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=4.函数cos y x =的一个单调增区间是----------------------------------- ( )A .,44ππ⎡⎤-⎢⎥⎣⎦B .3,44ππ⎡⎤⎢⎥⎣⎦C .3,2ππ⎡⎤⎢⎥⎣⎦D .3,22ππ⎡⎤⎢⎥⎣⎦5.对于函数y =sin(132π-x ),下面说法中正确的是------------------------ ( ) (A) 函数是周期为π的奇函数 (B) 函数是周期为π的偶函数 (C) 函数是周期为2π的奇函数 (D) 函数是周期为2π的偶函数6.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( )A .23B .32C .2D .3二、填空题(本大题共5小题,每小题3分,共15分)7.函数值sin1,sin2,sin3,sin4的大小顺序是 . 8.函数y =1sin 2-x 的定义域是 . 9.函数y =sin(π4-2x)的单调递增区间是 .10.已知奇函数y =f (x )对一切x ∈R 满足f (x +1)=f (x -1),当x [1-∈,]0时,f (x )=943+x ,则f (5log 31)=________.三、解答题(本大题共5小题,每小题6分,共30分)11.求函数f (x )=2sin (x+3π)的值域,⎥⎦⎤⎢⎣⎡-∈2,2ππx 。
北师大高一数学《正弦函数的图像和性质》练习题
正弦函数的图像与性质1、函数的部分图像如图所示,则().A. B.C. D.2、为了得到函数的图象,只需将函数图象上所有的点()A.向左平行移动个单位长度,再将纵坐标伸长为原来的4倍(横坐标不变)B.向左平行移动个单位长度,再将纵坐标缩短为原来的倍(横坐标不变)C.向左平行移动个单位长度,再将纵坐标扩大为原来的4倍(横坐标不变)D.向右平行移动个单位长度,再将纵坐标扩大为原来的4倍(横坐标不变3、若将函数的图像向右平移个单位,所得函数为偶函数,则的最小正值是________.4、函数y =2sin(π3-2x )的单调递增区间为()A .[-π12+k π,5π12+k π](k ∈Z )B .[5π12+k π,11π12+k π](k ∈Z )C.[π6+kπ,2π3+kπ](k∈Z) D.[-π3+kπ,π6+kπ](k∈Z)5、当x=π4时,函数f(x)=sin(x+φ)取得最小值,则函数y=f(3π4-x)()A.是奇函数且图象关于点(π2,0)对称B.是偶函数且图象关于点(π,0)对称C.是奇函数且图象关于直线x=π2对称D.是偶函数且图象关于直线x=π对称6、设向量,若函数在区间上单调递增,则实数的取值范围为____.7、已知角的终边经过点,函数图像的相邻两条对称轴之间的距离等于,则的值为.8、设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<π2)的最小正周期为π,且满足f(-x)=-f(x),则函数f(x)的单调增区间为______________.9、已知函数(,)的部分图象如图所示,则下列判断错误的是()A.函数的最小正周期为2B.函数的值域为C.函数的图象关于对称D.函数的图象向左平移个单位后得到的图象10、将函数的图象向右平移个单位长度后得到函数的图象,若的图象都经过点,则的值为_____________.11、答案与解析1【答案】A【解析】当时,,排除C,D.当时,,代入A满足.故选A.2【答案】A【解析】因为,,所以将的图象向左平行移动个单位长度,再将纵坐标伸长为原来的4倍(横坐标不变)可得的图象.选A.3【答案】4.B[y=2sin(π3-2x)=-2sin(2x-π3),故π2+2kπ≤2x-π3≤3π2+2kπ(k∈Z)时,函数单调递增,解得5π12+kπ≤x≤11π12+kπ(k∈Z),即函数y=2sin(π3-2x)的单调递增区间为[5π12+kπ,11π12+kπ](k∈Z).]5答案C解析∵当x=π4时,函数f(x)取得最小值,∴sin(π4+φ)=-1,∴φ=2kπ-3π4(k∈Z),∴f (x )=sin(x +2k π-3π4)=sin(x -3π4),∴y =f (3π4-x )=sin(-x )=-sin x,∴y =f (3π4-x )是奇函数,且图象关于直线x =π2对称.678[k π-π4,k π+π4](k ∈Z )解析因为f (x )=sin(ωx +φ)+cos(w x +φ)=2sin(ωx +φ+π3)(ω>0,|φ|<π2)的最小正周期为π,且满足f (-x )=-f (x ),所以ω=2,φ=-π3,所以f (x )=2sin 2x ,令2x ∈[2k π-π2,2k π+π2](k ∈Z ),解得函数f (x )的单调增区间为[k π-π4,k π+π4](k ∈Z ).91011。
高中数学 第一章 三角函数 1.5.1 正弦函数的图像练习 北师大版必修4
§5 正弦函数的图像与性质5.1 正弦函数的图像1.在同一坐标系中,函数y=sin x,x∈[0,2π)与y=sin x,x∈[2π,4π)的图像()A.重合B.形状相同,位置不同C.关于y轴对称D.形状不同,位置不同解析:观察正弦曲线,可知y=sin x,x∈[0,2π)与y=sin x,x∈[2π,4π)的图像形状相同,位置不同.答案:B2.函数y=2+sin x,x∈(0,4π]的图像与直线y=2的交点的个数是()A.1B.2C.3D.4解析:在同一平面直角坐标系中画出函数y=2+sin x,x∈(0,4π],直线y=2的图像(如图所示),可得两图像的交点共有4个,故选D.答案:D3.(2016吉林一中高中检测)如图,曲线对应的函数是()A.y=|sin x|B.y=sin|x|C.y=-sin|x|D.y=-|sin x|解析:x>0时,y=-sin x;x<0时,y=sin x,∴y=-sin|x|.答案:C4.方程sin x-=0在[0,2π]上实数根的个数是()A.0B.1C.2D.3解析:画出y=sin x以及y=在[0,2π]上的图像,可知它们有两个交点,因此方程有2个实数根.答案:C5.在[0,2π]上,满足sin x≥的x的取值范围是()A.B.C.D.解析:如图所示,在同一坐标系内作出y=sin x在[0,2π]上的图像和y=的图像即可得到结论.答案:C6.用五点法作函数y=3-4sin x在[0,2π]上的图像时,五个关键点的坐标分别是.答案:(0,3),,(π,3),,(2π,3)7.用五点法作函数y=2sin 2x的图像时,首先描出的五个点的横坐标是.解析:分别令2x=0,,π,,2π,求出x的值分别为0,,π.答案:0,,π8.若函数y=3sin x的图像与直线y=a在[π,2π]上有两个不同的交点,则实数a的取值范围是.解析:作出函数y=3sin x的图像,可知要使其与直线y=a在[π,2π]上有两个不同的交点,则-3<a≤0.答案:(-3,0]9.作出函数y=sin x-2在[0,2π]上的图像.解:列表:x0 π2πsinx0 1 0 -1 0sin x-2 -2-1-2-3-2描点,用光滑的曲线顺次连接各点,可得y=sin x-2(x∈[0,2π])的图像(如图所示).10.导学号03070029利用正弦函数的图像,求满足下列关系的角x的值或范围.(1)1-2sin x=0;(2)+sin x≤0.解:(1)方程化为sin x=,在[0,2π)内,方程sin x=的解为.故所求的角x的集合为或x=.(2)不等式化为sin x≤-,在[0,2π)内满足不等式的角x的集合为≤x≤.故所求的角x的集合为.11.导学号03070030方程sin x=在x∈上有两个实数解,求a的取值范围.解:设y1=sin x,x∈,y2=,y1=sin x,x∈的图像如图.由图可知,当<1,即-1<a≤1-时,y1=sin x,x∈的图像与y2=的图像有两个交点,即方程sin x=在x∈上有两个实数解,所以a的取值范围是(-1,1-].。
正弦函数的图像与性质习题
积分
正弦函数的积分是正弦函数的原函数, 即∫ sin(x) dx = -cos(x) + C(C为常 数)。
03
正弦函数的习题
基础习题
01
02
03
04
基础习题1
请画出正弦函数的图像,并描 述其基本性质。
基础习题2
求出下列函数的最小正周期, 并指出其奇偶性。
基础习题3
已知函数$f(x) = sin x + cos x$,求$f(x)$的最大值和最小
周期性和对称性
周期性
正弦函数具有周期性,其周期为 $2pi$。这意味着函数图像每隔 $2pi$ 会重复出现。
对称性
正弦函数具有轴对称性和中心对 称性。函数图像关于 $y$ 轴对称 ,同时关于点 $(pi, 0)$ 对称。
振幅和相位变化
振幅变化
通过改变正弦函数中的系数,可以改 变函数的振幅。振幅决定了图像的宽 度和高度的变化。
正弦函数的图像与性质习
• 正弦函数的图像 • 正弦函数的性质 • 正弦函数的习题 • 习题答案与解析
01
正弦函数的图像
图像的生成
定义域
正弦函数的定义域为全体实数, 即 $-infty < x < infty$。
函数表达式
正弦函数的基本形式为 $y = sin x$。
图像绘制
在直角坐标系中,可以通过描点法 或计算法绘制正弦函数的图像。
值。Leabharlann 基础习题4求函数$y = sin x + cos x$在 区间$[0, pi]$上的最大值和最
小值。
进阶习题
进阶习题1
已知函数$f(x) = asin x + bcos x$,求$f(x)$的导数和极值。
2019-2020年高中数学第一章三角函数1.5正弦函数的图像与性质课后导练北师大版必修
2019-2020年高中数学第一章三角函数1.5正弦函数的图像与性质课后导练北师大版必修基础达标1.sin600°的值是()A. B.- C. D.解析:利用诱导公式2kπ+α,将sin600°化为sin(600°-2×360°).sin600°=sin(600°-720°)=sin(-120°)=.答案:D2.若sin(π-α)=,则sin(-5π+α)的值为()A. B. C.± D.0解析:化简已知和结论,易找出条件和结论的关系.由sin(π-α)=,知sinα=,而sin(-5π+α)=sin(-6π+π+α)=sin(π+α)=-sinα.∴sin(-5π+α)=.答案:B3.角α终边有一点P(t,t)(t≠0),则sinα的值是()A. B. C.± D.1解析:因P(t,t),∴P在第一或第三象限的角平分线上,∴sinα=±.答案:C4.函数y=的定义域是()A.[kπ-,kπ+],(k∈Z)B.[2kπ+,2kπ+π],(k∈Z)C.[kπ+,(k+1)π],(k∈Z)D.[2kπ,2kπ+π],(k∈Z)解析:由sinx≥0知2kπ≤α≤2kπ+π(k∈Z).答案:D5.y=属于()A.{1,-1}B.{1}C.{-1}D.{1,0,-1}解析:当sinx>0时,y=1;当sinx<0时,y=-1,故y∈{-1,1}.答案:A6.已知角θ的终边落在y=2x上,则sinα=_________.解析:取y=2x上的点(1,2),则r=,∴sinα=,同理取点(-1,-2),得sinα=.答案:±7.若x∈[-π,π],且sinx=,则x等于…()A.或B.-或C.或D.或-解析:考虑到是特殊值,因此角x必为特殊角,可先确定出符合条件的最小正角.由于sinx=,所以x的终边落在第三或第四象限.在[-π,π]内,只有-和.答案:D8.设sinx=t-3,则t的取值范围是()A.RB.(2,4)C.(-2,2)D.[2,4]解析:当x∈R时,-1≤sinx≤1,∴-1≤t-3≤1,∴2≤t≤4.答案:D9.判断下列函数的奇偶性.(1)f(x)=xsin(π+x);(2)f(x)=.解析:(1)函数的定义域为R,关于原点对称.f(x)=xsin(π+x)=-xsinx,f(-x)=-(-x)sin(-x)=-xsinx=f(x)∴f(x)是偶函数.(2)∵sinx-1≥0,∴sinx=1,x=2kπ+,(k∈Z),函数定义域是不关于原点对称的区间,故为非奇非偶函数.10.求下列函数的周期.(1)y=sinx;(2)y=2sin().解析:(1)如果令m=x,则sinx=sinm是周期函数,且周期为2π.∴sin(x+2π)=sinx,即sin[(x+4π)]=sinx,∴sin12x的周期4π.(2)∵2sin(+2π)=2sin(),即2sin[(x+6π)-]=2sin(),∴2sin()的周期是6π.综合运用11.若sinx>,则x满足()A.k·360°+60°<x<k·360°+120°B.60°<x<120°C.k·360°+15°<x<k·360°+75°D.k·180°+30°<x<k·180°+150°解析:可借助于单位圆中的正弦线或三角函数图象来解决.画出单位圆或正弦曲线草图,可确定满足sinx>的x应是k·360°+60°<x<k·360°+120°.答案:A12.下列函数中,周期为π、图象关于直线x=对称的函数是()A.y=2sin(+)B.y=2sin(-)C.y=sin(2x+)D.y=sin(2x-)解析:sin(ωx+φ)的周期是,对称轴方程是ωx+φ=kπ+(k∈Z),由周期为π,排除A、B.将x=代入2x+得,将x=代入2x-得,故选D.答案:D13.用五点法作y=2sin2x的图象时,首先应描出的五点的横坐标可以是()A.0,,π,,2πB.0,,,,πC.0,π,2π,3π,4πD.0,,,,解析:先写出y=sinx五点的横坐标.0,π,,2π.当2x=0时,x=0;当2x=时,x=;当2x=π时,x=;当2x=时,x=;当2x=2π时,x=π,故选B.答案:B14.y=|sinx|+sinx的值域是________.解析:当sinx≥0时,y=2sinx,这时0≤y≤2;当sinx<0时,y=0,∴函数的值域是[0,2].答案:[0,2]15.以一年为一个周期调查某商品出厂价及该商品在商店的销售价格时发现:该商品的出厂价是在6元的基础上按月份随正弦曲线波动的.已知3月份出厂价最高为8元,7月份出厂价最低为4元;而该商品在商店内的销售价格是在9元的基础上也是按月份随正弦曲线波动的,并且已知3月份价格最高为10元,7月份价格最低为8元.假设某商店每月购进这种商品m件,且当月能售完,请估计哪个月份赢利最大,并说明理由.解析:由条件得:出厂价格函数是y1=2sin(x-)+6;销售价格函数为y2=sin(x-)+9.则利润函数为y=m(y2-y1).=m[sin(x-)+9-2sin(x-)-6]=m[3-sin(x-)].所以当x=7时,y=4m.所以7月份赢利最大.拓展探究16.烟筒弯头是由两个圆柱形的烟筒焊在一起做成的,现在要用长方形铁皮做成一个直角烟筒弯头(两个圆柱呈垂直状),如右图,若烟筒的直径为12 cm,最短母线为6 cm,应将铁皮如何剪裁,才能既省工又省料?解析:如下图(2)所示,两个圆柱形烟筒的截面与水平面成45°角,设O是圆柱的轴与截面的交点,过O作水平面,它与截面的交线为CD,它与圆柱的交线是以O为圆心的圆,CD 是此圆的直径.又设B是这个圆上任意一点,过B作BE垂直CD于E,作圆柱的母线AB,交截平面与圆柱的交线于A,易知∠AEB=45°,所以AB=BE.设BD弧长为x,它所取的圆心角∠DOB=α,根据弧长公式,知α=.又设AB=y,在Rt△BOE 中,sinα=,故BE=6sinα,从而y=AB=BE=6sinα,即y=6sin.所以,铁皮在接口处的轮廓线是正弦曲线y=6sin(0≤x≤12π),其图象如下图(4).因为将两个圆柱形铁皮上的曲线对拼起来,正好可以完全吻合,所以最节约且最省工的裁剪方式如下图(5).。
正弦函数的性质与图像练习题含答案
正弦函数的性质与图像练习题含答案1. 求出sin x≥的解集()A. B.C. D.2. 已知函数f(x)=cos(2x−π6)(x∈R),下列命题正确的是()A.若f(x1)=f(x2)=0,则x1−x2=kπ(k∈Z)B.f(x)的图象关于点(π12, 0)对称C.f(x)的图象关于直线x=π3对称D.f(x)在区间(−π3, π12)上是增函数3. 已知函数f(x)的周期为4π,且,则f ()的值与下列哪个函数值相等()A. B. C.f(π) D.4. f(x)是R 上的奇函数,对任意实数x 都有f(x)=−f(x −32),当x ∈(12, 32)时,f(x)=log 2(2x −1),则(2018)+f(2019)=( ) A.0 B.1 C.−1 D.25. 函数y =1−sin x 的最大值为( ) A.1 B.0 C.2 D.−16. 已知四个命题:p 1:∃x 0∈R ,sin x 0−cos x 0≥√2;p 2:∀x ∈R ,tan x =sin x cos x;p 3:∃x 0∈R,x 02+x 0+1≤0;p 4:∀x >0,x +1x ≥2.以下命题中假命题是( ) A.p 1∨p 4 B.p 2∨p 4 C.p 1∨p 3 D.p 2∨p 37. 已知函数f(x)=sin (ωx +φ)(ω>0, 0<φ<π2)在(π8, 5π8)上单调,且f(−π8)=f(3π8)=0,则f(π2)的值为( ) A.√22B.1C.−1D.−√228. 已知函数f(x)=ax 3+bx ,a ,b ∈R ,若f(−2)=−1,则f(2)=( ) A.−2 B.1 C.3 D.−39. 已知函数f(x)是定义在R 上的奇函数,且f(x −4)=−f(x),在[0, 2]上f(x)是增函数,则下列结论:①若0<x 1<x 2<4,且x 1+x 2=4,则f(x 1)+f(x 2)>0;②若0<x 1<x 2<4,且x 1+x 2=5,则f(x 1)>f(x 2);③若方程f(x)=m 在[−8, 8]内恰有四个不同的解x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=±8,其中正确的有( ) A.0个 B.1个 C.2个 D.3个10. 已知f(x)=cos 2x +2sin x,x ∈[π4,π],则f(x)的值域是( ) A.[1, 2] B.[1,12+√2]C.[−∞, 2]D.[−2, 2]11. 若函数f(x)=sin (2x +θ)的图象关于直线x =−π6对称,则|θ|的最小值是________.12. 在[0, 2π]内,使sin x≥−成立的x的取值范围是________.13. 函数f(x)=√3sin x cos x+cos2x的最大值为________.14. 已知[x]表示不超过x的最大整数,如[−1.2]=−2,[1.5]=1,[3]=3.若f(x)=2x,)=________,函数g(x)的值域为________.g(x)=f(x−[x]),则g(3215. 求函数的对称轴和对称中心..16. 已知函数f(x)=sin x⋅cos x−√3cos2x+√32(1)化简函数f(x),并用“五点法”画出函数f(x)在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);]时,求函数f(x)的最大值和最小值及相应的x的值.(2)当x∈[0, π2参考答案与试题解析正弦函数的性质与图像练习题含答案一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】C【考点】三角函数线正弦函数的图象三角不等式【解析】此题暂无解析【解答】此题暂无解答2.【答案】D【考点】正弦函数的奇偶性和对称性【解析】利用余弦函数的对称性质可知,2x−π6=kπ可得对称轴,2x−π6=kπ+π2,可得其对称中心,根据2kπ−π≤2x−π6≤2kπ单调递减,可得增区间.【解答】函数f(x)=cos(2x−π6)(x∈R),其周期T=2π2=π,一个周期有两个零点,即f(x1)=f(x2)=0,则x1−x2=12kπ(k∈Z)故A不对.余弦函数的性质可知:由2x−π6=kπ+π2,可得其对称中心为(π3+12kπ, 0),经考察,故B不对.由2x−π6=kπ可得其对称中轴x=12kπ+π12,(k∈Z),经考察,故C不对.由2kπ−π≤2x−π6≤2kπ可得增区间为[kπ−5π12, kπ+π12],∴f(x)在区间(−π3, π12)上是增函数.3.【答案】C【考点】三角函数的周期性【解析】此题暂无解析【解答】此题暂无解答4.【答案】A【考点】正弦函数的奇偶性和对称性【解析】主要考查函数的周期性和奇偶性,考查转化与化归能力、运算求解能力【解答】解:∵f(x)是R上的奇函数,且f(x)=−f(x−32),∴f(x+32)=−f(x),∴f(x+32+32)=−f(x+32)=f(x),即f(x+3)=f(x).∴函数f(x)的最小正周期为3,∴f(2018)+f(2019)=f(672×3+2)+f(673×3+0) =f(2)+f(0)=f(−1+3)+f(0) =f(−1)+f(0)=−f(1)=0.故选A.5.【答案】C【考点】正弦函数的定义域和值域正弦函数的图象三角函数的最值【解析】此题暂无解析【解答】此题暂无解答6.【答案】D【考点】命题的真假判断与应用【解析】此题暂无解析【解答】此题暂无解答7.【答案】D【考点】正弦函数的图象【解析】由已知可得函数f(x)的最小正周期为T=2πω,解得0<ω≤1,结合已知列关于ω,φ的方程组,求解可得ω,φ得到函数解析式,进一步求得f(π2)的值.【解答】由题意得,函数f(x)的最小正周期为T=2πω,∵f(x)在(π8, 5π8)上单调,∴T2=πω≥π2,得0<ω≤2.且f(−π8)=f(3π8)=0,所以T2=3π8−(−π8)=π2,解得ω=2.由于f(−π8)=0,所以sin[2×(−π8)+φ]=0,整理得φ=π4.所以f(x)=sin(2x+π4),则f(π2)=sin(π+π4)=−√22.8.【答案】B【考点】函数奇偶性的性质与判断【解析】根据题意,分析可得f(x)为奇函数,进而由奇函数的性质分析可得答案.【解答】根据题意,函数f(x)=ax3+bx,其定义域为R,有f(−x)=a(−x)3+b(−x)=−(ax3+bx)=−f(x),即函数f(x)为奇函数,又由f(−2)=−1,则f(2)=−f(−2)=1;9.【答案】D【考点】奇函数【解析】由条件“f(x−4)=−f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0, 2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0, 2]上为增函数,综合条件得函数的示意图,由图看出,①若0<x1<x2<4,且x1+x2=4,f(x)在[0, 2]上是增函数,则f(x1)>f(x1−4)=f(−x2)=−f(x2);则f(x1)+f(x2)>0;故①正确;②若0<x1<x2<4,且x1+x2=5,f(x)在[0, 2]上是增函数,由图可知:f(x1)>f(x2);故②正确;③当m>0时,四个交点中两个交点的横坐标之和为2×(−6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=−8.当m<0时,四个交点中两个交点的横坐标之和为2×(−2),另两个交点的横坐标之和为2×6,所以x1+x2+x3+x4=8.故③正确;故选D.10.【答案】A【考点】三角函数的最值【解析】将f(x)化简转化为关于sin x的二次函数形式,然后根据sin x的范围求出f(x)的值域即可.【解答】f(x)=cos2x+2sin x=−sin2x+2sin x+1=−(sin x−1)2+2∵x∈[π, π],∴sin x∈[0, 1],4∴当sin x=0时,f(x)min=1;当sin x=1时,f(x)max=2,∴f(x)的值域为:[1, 2].二、填空题(本题共计 4 小题,每题 5 分,共计20分)11.【答案】π6【考点】正弦函数的奇偶性和对称性【解析】结合正弦函数的对称轴处取得函数的最值即可求解.【解答】依题意可知2×(−π6)+θ=kπ+π2(k∈Z),得θ=kπ+5π6(k∈Z),所以|θ|=|kπ+5π6|,故当k=−1时,|θ|取得最小值π6.12.【答案】【考点】三角函数线正弦函数的图象【解析】此题暂无解析【解答】此题暂无解答13.【答案】32【考点】三角函数的最值【解析】运用二倍角的正弦公式和余弦公式、以及辅助角公式,结合正弦函数的值域,即可得到所求最大值.【解答】解:函数f(x)=√3sin x cos x+cos2x=√32sin2x+12cos2x+12=sin(2x+π6)+12,当2x+π6=2kπ+π2,k∈Z,即x=kπ+π6,k∈Z,函数取得最大值1+12=32.故答案为:32.14.【答案】√2,[1, 2)【考点】函数的值域及其求法【解析】代入自变量x ,利用取值求出,代入即可,求出[x]∈(x −1, x],故x −[x]∈[0, 1),代入即可. 【解答】由f(x)=2x ,g(x)=f(x −[x]),g(32)=f (32−[32])=f(32−1)=f(12)=212=√2,由g(x)=2x−[x], [x]∈(x −1, x], 故x −[x]∈[0, 1), 所以g(x)∈[1, 2),三、 解答题 (本题共计 2 小题 ,每题 5 分 ,共计10分 ) 15. 【答案】由,得,所以对称轴为.由,得,所以对称中心为.【考点】正弦函数的图象正弦函数的奇偶性和对称性 【解析】 此题暂无解析 【解答】 此题暂无解答 16. 【答案】解:(1)f(x)=sin x⋅cos x −√3cos 2x +√32=12sin 2x −√32cos 2x =sin (2x −π3),令X =2x −π3,则x =12(X −π3).填表:…(2)因为x∈[0, π2],所以2x∈[0, π],2x−π3∈[−π3, 2π3]…所以当x=0时,即2x−π3=−π3,y=sin(2x−π3)取得最小值−√32;当x=5π12时,即2x−π3=π2,y=sin(2x−π3)取得最大值1…【考点】五点法作函数y=Asin(ωx+φ)的图象正弦函数的图象【解析】(1)先化简函数f(x),然后利用“五点法”进行作图.(2)根据三角函数的最值性质进行求解.【解答】解:(1)f(x)=sin x⋅cos x−√3cos2x+√32=12sin2x−√32cos2x=sin(2x−π3),令X=2x−π3,则x=12(X−π3).填表:y010−10…(2)因为x∈[0, π2],所以2x∈[0, π],2x−π3∈[−π3, 2π3]…所以当x=0时,即2x−π3=−π3,y=sin(2x−π3)取得最小值−√32;当x=5π12时,即2x−π3=π2,y=sin(2x−π3)取得最大值1…试卷第11页,总11页。
正弦余弦函数的图像与性质
正弦、余弦函数的图像与性质一、选择题 1. 函数)32sin(π+=x y 图像的对称轴方程可能是( )A. =x -6π B. =x -12π C. =x 6π D . =x 12π2. 函数)32sin(π+=x y 在区间[]π,0的一个单调递减区间是( )A. ⎥⎦⎤⎢⎣⎡125,0π B. ⎥⎦⎤⎢⎣⎡127,12ππ C. ⎥⎦⎤⎢⎣⎡1211,125ππ D. ⎥⎦⎤⎢⎣⎡2,6ππ 3.函数x xy cos 2cos 2-+=()R x ∈的最大值是( )A.35B. 25C. 3D. 5 4. 下列函数中是奇函数的是( )A. x y sin -=B. )cos(x y -=C. =y x sin D .x x y sin ⋅=5. 函数x y sin =的一个单调递增区间是( ) A. )4,4(ππ-B.)43,4(ππC. )23,(ππD.)2,23(ππ6. 设函数x x x f 3sin 3sin )(+=,则)(x f 是 ( )A. 周期函数,最小正周期为3π B. 周期函数,最小正周期为 32πC. 周期函数,最小正周期为 π2D. 非周期函数7. 设0>a ,对于函数),0(,sin sin )(π<<+=x xax x f 下列结论正确的是 ( ) A.有最大值而无最小值 B . 有最小值而无最大值 C. 有最大值且有最小值 D. 既无最大值又无最小值 8. 已知函数x x x x x f cos sin 21)cos (sin 21)(--+=, 则)(x f 的值域是 ( ) A. []1,1- B. ⎥⎦⎤⎢⎣⎡-1,22 C. ⎥⎦⎤⎢⎣⎡-22,1 D.⎥⎦⎤⎢⎣⎡--22,1 10. 方程x x lg sin =的实数解有( )A. 1个B. 2个 C . 3个 D. 无数个9. 定义在R 上的函数)(x f ,既是偶函数,又是周期函数,若)(x f 的最小正周期为π,当⎥⎦⎤⎢⎣⎡∈2,0πx 时,x x f sin )(=,则)35(πf 的值为( ) A. -21 B. 21 C. -23 D . 2311. 若函数)20(,cos π≤≤=x x y 的图像和直线2=y 围成一个封闭的平面图形,则这个封闭图形的面积为A. 4B. 8C. π2D. π4 12. 若函数x a x y 2cos 2sin +=的图像直线关于8π=x 对称,则a 的值为A . 1 B. 2 C. -1 D. -2 二、填空题 13. 比较大小:①47cos ,23cos ,101sin-的大小顺序为 . ②)sin(cos x 与)cos(sin x )20(π<<x 的大小顺序为 .14. 函数⎪⎭⎫⎝⎛-=24sin lg x y π的单调递增区间是 . 15. 函数)cos(sin x y =的值域是 .16. 函数)(x f y =的图像与直线b x a x ==,及x 轴所围成图形的面积为函数)(x f 在[]b a ,上的面积。
正弦型函数的性质与图像练习题(1)
正弦型函数的性质与图像练习题(1)1. 已知函数f(x)=sin(ωx+π3)−2ω(ω>0)的图象与x轴相切,则f(π)=()A.−32B.−12C.√32−1 D.−√32−12. 已知函数f(x)=A sin(2x−π3)(A≠0),若函数f(x−m)(m>0)是偶函数、则实数m 的最小值是()A.π12B.π6C.7π12D.2π33. 为了得到函数y=cos2x的图像,可将函数y=sin(2x−π6)的图像( )A.向右平移π6个单位长度B.向右平移π3个单位长度C.向左平移π6个单位长度D.向左平移π3个单位长度4. 关于x的方程sin(x+π6)=2m在[0, π]内有相异两实根,则实数m的取值范围为()A.[√34, 12] B.[√34, 12) C.[14, 12) D.[14, 12]5. 已知函数f(x)=14sin2x−√34cos2x,则f(x)的最小正周期和最大值分别为( )A.π,14B.π,12C.2π,1−√32D.2π,√326.将函数f(x)=sin(2x+φ)(|φ|<π2)的图象向左平移π6个单位长度后关于原点对称,则函数f(x)在[0,π2]上的最小值为( ) A.−√32B.−12C.12D.√327. 函数y =A sin (ωx +φ)的部分图象如图所示,则( )A.y =2sin (x +π6) B.y =2sin (2x −π3) C.y =2sin (2x −π6) D.y =2sin (x +π3)8. 下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( )A.f(x)=|cos 2x|B.f(x)=|sin 2x|C.f(x)=cos |x|D.f(x)=sin |x|9. 函数f(x)=2cos x +cos 2x +2(x ∈R)的最大值是( ) A.12B.5C.6D.110. 已知函数f(x)=2sin ωx (其中ω>0),若对任意x 1∈[−3π4,0),存在x 2∈(0,π3],使得f(x 1)=f(x 2),则ω的取值范围为( ) A.ω≥3 B.0<ω≤3C.ω≥92D.0<ω≤9211. 已知函数f(x)=|2sin x −cos 2x1cos x|,则函数f(x)的单调递增区间是________.12. 将函数(ω>0)的图象向左平移个单位,得到函数y =g(x)的图象.若y =g(x)在区间上为增函数,则ω的取值范围是________.13. 已知函数f(x)=2sin(2x+φ)经过点(π3,2),则当x∈[0,π2]时,函数f(x)的值域为________.14. 已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则ω=________;方程f(x)=m(其中1<m<2)在[0,3π]内所有解的和为________.15. 若函数f(x)=2sinωx(0<ω<1)在闭区间[0, π3]上的最大值为√2,则ω的值为________.16.已知函数f(x)=sin(ωx+φ)(ω>0,−π2≤φ<π2)的图象关于直线x=π3对称,且图象上相邻两个最高点间的距离为π,则φ的值为 ________.17. 先将函数图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),再将所得到的图象横坐标伸长为原来的2倍(纵坐标不变)得到函数f(x)的图象.(1)求函数f(x)的解析式;(2)若α,β满足,且,设,求函数g(x)在上的最大值.18. 将函数f(x)=cos(2x−π3)的图象向左平移π6个单位,所得图象对应的函数解析式为________.19. 已知=(sin,),=(cos,1+2),函数f(x)=•.(1)求函数f(x)的最小正周期;(2)将函数y=f(x)的图象上的各点_______得到函数y=g(x)的图象,当时,方程g(x)=a有解,求实数a的取值范围.在以下①、②中选择一个,补在(2)中的横线上,并加以解答,如果①、②都做,则按①给分.①向左平移个单位,再保持纵坐标不变,横坐标缩小为原来的一半;②纵坐标保持不变,横坐标缩小为原来的一半,再向右平移个单位.20. 已知函数.(1)若对任意,都有f(x)≥a成立,求实数a的取值范围;(2)若先将y=f(x)的图象上每个点横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向左平移个单位长度,得到函数y=g(x)的图象,求函数在区间[−π, 3π]内的所有零点之和.参考答案与试题解析正弦型函数的性质与图像练习题(1)一、选择题(本题共计 10 小题,每题 5 分,共计50分)1.【答案】B【考点】三角函数的最值【解析】根据f(x)的最大值为0计算ω,得出f(x)的解析式,再计算f(π).【解答】∵ω>0,且f(x)的图象与x轴相切,∴2ω=1.即ω=12.∴f(x)=sin(12x+π3)−1,∴f(π)=sin5π6−1=−12.2.【答案】A【考点】正弦函数的奇偶性和对称性【解析】由题意利用三角函数的奇偶性以及图象的对称性,求得m的最小值.【解答】∵函数f(x)=A sin(2x−π3)(A≠0),若函数f(x−m)=A sin(2x−2m−π3)(m>0)是偶函数,则2m+π3最小为π2,则实数m的最小值为π12,3.【答案】D【考点】函数y=Asin(ωx+φ)的图象变换【解析】利用诱导公式将函数名化相同,根据三角函数图象平移变换规律可得答案.【解答】解:∵y=cos2x=sin(2x+π2)=sin[2(x+π3)−π6],∴将函数y=sin(2x−π6)的图象向左平移π3个单位可得.故选D.4.【答案】C【考点】正弦函数的图象【解析】把方程2sin(2x+π6)=m化为sin(2x+π6)=m2,画出函数f(x)=sin(2x+π6)在x∈[0, π2]上的图象,结合图象求出方程有两个不等实根时m的取值范围.【解答】解:当x∈[0, π]时,x+π6∈[π6, 7π6],画出函数y=f(x)=sin(x+π6)在x∈[0, π]上的图象如图所示:根据方程sin(x+π6)=2m在[0, π]上有两个不等实根,得12≤2m<1,解得14≤m<12,∴m的取值范围是[14, 12 ).故选C.5.【答案】B【考点】两角和与差的正弦公式正弦函数的周期性三角函数的最值【解析】此题暂无解析【解答】解:f(x)=14sin2x−√34cos2x=12(12sin2x−√32cos2x)=12sin(2x−π3).∴最小正周期T=2π2=π,最大值为12.故选B.6.【答案】A【考点】正弦函数的图象【解析】本题考查三角函数的图象变换、正弦函数的图象与性质.【解答】解:函数f(x)=sin(2x+φ)(|φ|<π2)的图象向左平移π6个单位长度后,得到函数y=sin[2(x+π6)+φ]=sin(2x+π3+φ)的图象,该图象关于原点对称,可得π3+φ=kπ,k∈Z,又|φ|<π2,则φ=−π3,所以f(x)=sin(2x−π3).由x∈[0,π2],得2x−π3∈[−π3,2π3],所以sin(2x−π3)∈[−√32,1],所以函数f(x)在[0,π2]上的最小值为−√32.故选A.7.【答案】C【考点】由y=Asin(ωx+φ)的部分图象确定其解析式【解析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.【解答】解:根据函数y=A sin(ωx+φ)的部分图象,可得A=2,T2=πω=π3+π6=π2,∴ω=2.再根据五点法作图可得2×π3+φ=π2,∴φ=−π6,故f(x)=2sin(2x−π6).故选C.8.【答案】 A【考点】正弦函数的图象 【解析】 此题暂无解析 【解答】解:选项A ,周期为π2,在区间(π4,π2)单调递增,符合题意,选项B ,周期为π2,在区间(π4,π2)单调递减,不符合题意,选项C ,周期为π,不符合题意, 选项D ,周期为π,不符合题意, 故选A . 9.【答案】 B【考点】三角函数的最值 【解析】利用二倍角公式以及三角函数的有界性,结合二次函数的性质求解函数的最值即可. 【解答】解:f(x)=2cos x +cos 2x +2 =2cos x +2cos 2x −1+2 =2(cos 2x +cos x +14)+12=2(cos x +12)2+12,当cos x =1,即x =2kπ(k ∈Z)时,f(x)取得最大值,最大值为f(x)max =5. 故选B . 10.【答案】 C【考点】三角函数的最值 【解析】由函数的奇偶性的定义判断出函数f(x)是奇函数,再由题意和函数的周期公式列出不等式,求出ω的取值范围 【解答】由题意知,函数f(x)=2sin ωx 是奇函数, 因为对任意x 1∈[−3π4, 0],都存在x 2∈(0, π3],使得f(x1)=f(x2),∴(0, π3]至少是32个周期,得到函数f(x)的周期32T=32×2πω≤π3×2=2π3,解得ω≥92,则ω的取值范围为[92, +∞);二、填空题(本题共计 6 小题,每题 5 分,共计30分)11.【答案】[kπ−38π,kπ+π8brack,k∈Z【考点】正弦函数的单调性【解析】根据矩阵的运算可得f(x)=2sin x cos x+cos2x,利用二倍角辅助角化简即可求解f(x)的单调递增区间.【解答】由题意,f(x)=2sin x cos x+cos2x=sin2x+cos2x=√2sin(2x+π4),令−π2+2kπ≤2x+π4≤π2+2kπ,k∈Z.可得:kπ−3π8≤x≤kπ+π8.函数f(x)的单调递增区间为[kπ−38π,kπ+π8brack,k∈Z.12.【答案】(0,]【考点】函数y=Asin(ωx+φ)的图象变换【解析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得到g(x)的解析式,再根据正弦函数的单调增区间,求得ω的取值范围.【解答】将函数(ω>0)的图象向左平移个单位,得到函数y=g(x)=2sin(ωx+-)=2sinωx的图象.若y=g(x)在区间上为增函数,则ω⋅(−)≥−,且ω•≤,求得0<ω≤,则ω的取值范围为(0,],13.【答案】[−1, 2]【考点】三角函数的最值【解析】首先求出函数的关系式,进一步求出函数的值域.【解答】函数f(x)=2sin(2x+φ)经过点(π3,2),则f(π3)=2sin(2π3+φ)=2,解得φ=−π6.故f(x)=2sin(2x−π6),由于x∈[0,π2],故2x−π6∈[−π6,5π6].所以sin(2x−π6)∈[−12,1],所以f(x)的值域为[−1, 2],14.【答案】【考点】由y=Asin(ωx+φ)的部分图象确定其解析式【解析】此题暂无解析【解答】此题暂无解答15.【答案】34【考点】三角函数的最值【解析】由题意通过函数的最大值,函数的性质,求出ω的值即可.【解答】解:函数f(x)=2sinωx(0<ω<1)在闭区间[0, π3]上的最大值为√2,所以sinωx的最大值为√22,所以x=π3时函数取得√22.又因为0<ω<1,所以ωπ3=π4,ω=34.故答案为:34.16.【答案】−π6【考点】由y=Asin(ωx+φ)的部分图象确定其解析式【解析】此题暂无解析【解答】解:由题意,得函数f(x)的最小正周期T=π,∴ω=2ππ=2.∵f(x)的图象关于直线x=π3对称,∴2×π3+φ=kπ+π2,k∈Z,∴φ=kπ−π6,k∈Z.又∵−π2≤φ<π2,∴φ=−π6.故答案为:−π6.三、解答题(本题共计 4 小题,每题 5 分,共计20分)17.【答案】函数=2(cos2x)−,函数图象上所有点的纵坐标伸长为原来的2倍,得y=2cos5x的图象,再将所得到的图象横坐标伸长为原来的2倍,得y=2cos x的图象;所以函数f(x)=8cos x.因为,所以2cosα⋅2cosβ=,即cosαcosβ=,又,则cos(α+β)=cosαcosβ−sinαsinβ=−sinαsinβ=,得sinαsinβ=-,cos(α−β)=cosαcosβ+sinαsinβ=-=,======2tan3x+3tan x−1,设t=tan x,当时,−1≤t≤2,则函数g(x)等价为y=2t2+8t−1,对称轴为t=-,则当t=1时,函数取得最大值,即函数g(x)在上的最大值为4.【考点】函数y=Asin(ωx+φ)的图象变换【解析】(1)利用两角和的正弦公式将函数化简,再由三角函数的图象变换规律可得f(x)的解析式;(2)根据条件求出cos(α−β),利用三角函数的积化和差进行转化,然后利用弦化切,最后利用换元法转化为一元二次函数,结合一元二次函数的最值性质进行求解即可.【解答】函数=2(cos2x)−,函数图象上所有点的纵坐标伸长为原来的2倍,得y=2cos5x的图象,再将所得到的图象横坐标伸长为原来的2倍,得y=2cos x的图象;所以函数f(x)=8cos x.因为,所以2cosα⋅2cosβ=,即cosαcosβ=,又,则cos(α+β)=cosαcosβ−sinαsinβ=−sinαsinβ=,得sinαsinβ=-,cos(α−β)=cosαcosβ+sinαsinβ=-=,======2tan3x+3tan x−1,设t=tan x,当时,−1≤t≤2,则函数g(x)等价为y=2t2+8t−1,对称轴为t=-,则当t=1时,函数取得最大值,即函数g(x)在上的最大值为4.18.【答案】f(x)=cos2x【考点】函数y=Asin(ωx+φ)的图象变换【解析】无【解答】解:f(x)=cos(2x−π3)图象向左平移π6个单位,则根据左加右减的平移原则,∴f(x)=cos(2(x+π6)−π3)=cos2x,∴f(x)=cos2x.故答案为:f(x)=cos2x.19.【答案】∵=,故函数的最小正周期为2π.将的图象按照变换①:向左平移个单位,再保持纵坐标不变,横坐标缩小为原来的一半,可得的图象,当时,,,,若方程g(x)=a有解,则.将的图象按照变换②:纵坐标保持不变,横坐标缩小为原来的一半,再向右平移个单位,可得的图象,当时,,,,若方程g(x)=a有解,则.【考点】函数y=Asin(ωx+φ)的图象变换【解析】(1)利用平面向量的坐标运算,三角函数恒等变换的应用可求函数解析式f(x)=sin(x+)+1,利用正弦函数的周期公式即可求解;(2)将的图象按照变换①:利用函数y=A sin(ωx+φ)的图象变换可求y=g(x)=1−cos(2x+),由已知可求范围,利用余弦函数的性质可求,即可求解;将的图象按照变换②:利用函数y=A sin(ωx+φ)的图象变换可求y=g(x)=sin(2x−)+1,由已知可求范围,利用余弦函数的性质可求,即可求解;【解答】∵=,故函数的最小正周期为2π.将的图象按照变换①:向左平移个单位,再保持纵坐标不变,横坐标缩小为原来的一半,可得的图象,当时,,,,若方程g(x)=a有解,则.将的图象按照变换②:纵坐标保持不变,横坐标缩小为原来的一半,再向右平移个单位,可得的图象,当时,,,,若方程g(x)=a有解,则.20.【答案】函数=sin2x+).对任意,2x−,],sin(2x−,1].再根据对任意,都有f(x)≥a成立,即实数a的取值范围(−∞.若先将y=f(x)的图象上每个点横坐标伸长为原来的2倍(纵坐标不变),得到y=sin(x−)的图象.再将所得图象向左平移个单位长度,故函数在区间[−π,即sin x=在区间[−π.而sin x=在区间[−π,从小到大依次设为a、b、c、d,根据正弦函数的图象的对称性,=,=,∴函数在区间[−π.【考点】函数y=Asin(ωx+φ)的图象变换【解析】(1)由题意利用三角恒等变换,化简函数的解析式,再根据函数的定义域和值域,求得f(x)的最小值,可得a的范围.(2)由题意利用函数y=A sin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的图象和性质,求得函数在区间[−π, 3π]内的所有零点之和.【解答】函数=sin2x+).对任意,2x−,],sin(2x−,1].再根据对任意,都有f(x)≥a成立,即实数a的取值范围(−∞.若先将y=f(x)的图象上每个点横坐标伸长为原来的2倍(纵坐标不变),得到y=sin(x−)的图象.再将所得图象向左平移个单位长度,故函数在区间[−π,即sin x=在区间[−π.而sin x=在区间[−π,从小到大依次设为a、b、c、d,根据正弦函数的图象的对称性,=,=,∴函数在区间[−π.。
正弦函数、余弦函数的图像(附答案)
正弦函数、余弦函数的图像(附答案)正弦函数、余弦函数的图象[学习目标]“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系.知识点一正弦曲线正弦函数y=sin x(x∈R)的图象叫正弦曲线.利用几何法作正弦函数y=sin x,x∈[0,2π]的图象的过程如下:①作直角坐标系,并在直角坐标系y轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0,π6,π3,π2,…,2π等角的正弦线.③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份.④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合.⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象.在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π2,-1),(2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图.思考 在所给的坐标系中如何画出y =sin x ,x∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下:只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象.知识点二 余弦曲线余弦函数y =cos x (x ∈R)的图象叫余弦曲线. 根据诱导公式sin ⎝⎛⎭⎪⎪⎫x +π2=cos x ,x ∈R.只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图).要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),⎝⎛⎭⎪⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎪⎫32π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象?答案题型一“五点法”作图的应用例1利用“五点法”作出函数y=1-sin x(0≤x≤2π)的简图.解(1)取值列表:x 0π2π3π22πsin x 010-11-sin x1012 1 (2)描点连线,如图所示:跟踪训练1作函数y=sin x,x∈[0,2π]与函数y =-1+sin x,x∈[0,2π]的简图,并研究它们之间的关系.解按五个关键点列表:x 0π2π3π22πsin x 010-1-1+sin x-1-1-2-1利用正弦函数的性质描点作图:由图象可以发现,把y=sin x,x∈[0,2π]的图象向下平移1个单位长度即可得y=-1+sin x,x ∈[0,2π]的图象.题型二 利用正弦、余弦函数图象求定义域 例2 求函数f (x )=lg sin x +16-x 2的定义域.解 由题意得,x 满足不等式组⎩⎨⎧sin x >0,16-x 2≥0, 即⎩⎨⎧-4≤x ≤4,sin x >0,作出y =sin x 的图象,如图所示.结合图象可得定义域:x ∈[-4,-π)∪(0,π).跟踪训练2 求函数f (x )=lg cos x +25-x 2的定义域.解 由题意得,x 满足不等式组⎩⎨⎧cos x >025-x 2≥0, 即⎩⎨⎧cos x >0-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得定义域: x ∈⎣⎢⎢⎡⎭⎪⎪⎫-5,-32π∪⎝⎛⎭⎪⎪⎫-π2,π2∪⎝⎛⎦⎥⎥⎤32π,5.题型三 利用正弦、余弦函数图象判断零点个数 例3 在同一坐标系中,作函数y =sin x 和y =lg x 的图象,根据图象判断出方程sin x =lg x 的解的个数.解建立坐标系xOy,先用五点法画出函数y=sin x,x∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y=sin x的图象.描出点(1,0),(10,1)并用光滑曲线连接得到y=lg x的图象,如图所示.由图象可知方程sin x=lg x的解有3个.跟踪训练3方程x2-cos x=0的实数解的个数是.答案 2解析作函数y=cos x与y=x2的图象,如图所示,由图象,可知原方程有两个实数解.数形结合思想在三角函数中的应用例4 函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围. 解f (x )=sinx +2|sinx |=⎩⎨⎧3sin x ,x ∈[0,π],-sin x ,x ∈π,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据图可得k 的取值范围是(1,3).1.函数y =sin x (x ∈R)图象的一条对称轴是( ) A .x 轴 B .y 轴 C .直线y =xD .直线x =π22.用五点法画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A .(π6,12)B .(π2,1)C .(π,0)D .(2π,0)3.函数y =sin x ,x ∈[0,2π]的图象与直线y =-12的交点为A (x 1,y 1),B (x 2,y 2),则x 1+x 2= .4.利用“五点法”画出函数y =2-sin x ,x ∈[0,2π]的简图.5.已知0≤x≤2π,试探索sin x与cos x的大小关系.一、选择题1.函数y =-sin x ,x ∈⎣⎢⎢⎡⎦⎥⎥⎤-π2,3π2的简图是( )2.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( ) A .重合B .形状相同,位置不同C .关于y 轴对称D .形状不同,位置不同3.方程sin x =x10的根的个数是( )A .7B .8C .9D .104.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )5.如图所示,函数y =cos x |tan x |(0≤x <3π2且x ≠π2)的图象是( )6.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 二、填空题 7.函数y =log 12sin x 的定义域是 .8.函数y =2cos x +1的定义域是 . 9.函数f (x )=sin x +116-x2的定义域为 .10.设0≤x≤2π,且|cos x-sin x|=sin x-cos x,则x的取值范围为.三、解答题11.用“五点法”画出函数y=12+sin x,x∈[0,2π]的简图.12.根据y=cos x的图象解不等式:-32≤cos x≤12,x∈[0,2π].13.分别作出下列函数的图象. (1)y =|sin x |,x ∈R ; (2)y =sin|x |,x ∈R.当堂检测答案1.答案 D 2.答案 A 3.答案 3π 解析 如图所示, x 1+x 2=2×3π2=3π.4.解 (1)取值列表如下:x0 π2 π 3π22πsin x 010-1y=2-sin x2123 2(2)描点连线,图象如图所示:5.解用“五点法”作出y=sin x,y=cos x(0≤x≤2π)的简图.由图象可知①当x=π4或x=5π4时,sin x=cos x;②当π4<x<5π4时,sin x>cos x;③当0≤x <π4或5π4<x ≤2π时,sin x <cos x .课时精炼答案一、选择题 1.答案 D 2.答案 B解析 根据正弦曲线的作法可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象只是位置不同,形状相同. 3.答案 A解析 在同一坐标系内画出y =x10和y =sin x 的图象如图所示:根据图象可知方程有7个根.4.答案 D 解析 由题意得y =⎩⎪⎨⎪⎧2cos x ,0≤x ≤π2或32π≤x ≤2π,0,π2<x <32π.显然只有D 合适.5.答案 C解析 当0≤x <π2时,y =cos x ·|tan x |=sin x ;当π2<x ≤π时,y =cos x ·|tan x |=-sin x ; 当π<x <3π2时,y =cos x ·|tan x |=sin x ,故其图象为C.6.答案 D解析 作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形为如图所示的阴影部分.利用图象的对称性可知该阴影部分的面积等于矩形OABC 的面积,又∵OA =2,OC =2π, ∴S 阴影部分=S 矩形OABC =2×2π=4π. 二、填空题7.答案 {x |2k π<x <2k π+π,k ∈Z}解析 由log 12sin x ≥0知0<sin x ≤1,由正弦函数图象知2k π<x <2k π+π,k ∈Z. 8.答案 ⎣⎢⎢⎡⎦⎥⎥⎤2k π-23π,2k π+23π,k ∈Z解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎢⎢⎡⎦⎥⎥⎤2k π-23π,2k π+23π,k ∈Z. 9.答案 (-4,-π]∪[0,π]解析 ⎩⎨⎧ sin x ≥0,16-x 2>0⇒⎩⎨⎧2k π≤x ≤2k π+π,-4<x <4⇒-4<x ≤-π或0≤x ≤π. 10.答案 ⎣⎢⎢⎡⎦⎥⎥⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈⎣⎢⎢⎡⎦⎥⎥⎤π4,5π4.三、解答题11.解 (1)取值列表如下:x 0π2π32π2πsin x 010-112+sin x123212-1212(2)描点、连线,如图所示.12.解函数y=cos x,x∈[0,2π]的图象如图所示:根据图象可得不等式的解集为{x |π3≤x ≤5π6或7π6≤x ≤5π3}. 13.解(1)y=|sinx |=⎩⎨⎧sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z).其图象如图所示,(2)y =sin|x |=⎩⎨⎧sin x (x ≥0),-sin x (x <0).其图象如图所示,。
1.5 正弦型函数的图像-人教A版高中数学必修四讲义(解析版)
1.利用“五点法”作函数y =A sin(ωx +φ)的图象时,要先令“ωx +φ”这一个整体依次取0,π2,π,32π,2π,再求出x 的值,这样才能得到确定图象的五个关键点,而不是先确定x 的值,后求“ωx +φ”的值. 2.由函数y =A sin(ωx +φ)的部分图象确定解析式关键在于确定参数A ,ω,φ的值. (1)一般可由图象上的最大值、最小值来确定|A |.(2)因为T =2πω,所以往往通过求得周期T 来确定ω,可通过已知曲线与x 轴的交点从而确定T ,即相邻的最高点与最低点之间的距离为T2;相邻的两个最高点(或最低点)之间的距离为T .(3)从寻找“五点法”中的第一个零点⎝⎛⎭⎫-φω,0(也叫初始点)作为突破口,以y =A sin(ωx +φ)(A >0,ω>0)为例,位于单调递增区间上离y 轴最近的那个零点最适合作为“五点”中的第一个点.3.在研究y =A sin(ωx +φ)(A >0,ω>0)的性质时,注意采用整体代换的思想,如函数在ωx +φ=π2+2k π(k ∈Z )时取得最大值,在ωx +φ=3π2+2k π(k ∈Z )时取得最小值. 4.函数()sin y A x ωϕ=+的性质⑴ 周期性:函数()sin y A x ωϕ=+(其中A ωϕ,,为常数,且00A ω≠>,)的周期仅与自变量的系数有关.最小正周期为2πT ω=.⑵ 值域:[]A A -,教材要点学科素养 学考 高考 考法指津高考考向1.用五点法画出函数)sin(ϕ+=wx A y 的图像直观想象 水平1 水平11.继续加深理解“五点法”的应用,特别是一些特殊点:端点和对应五点。
2.掌握正余型弦函数以及正切型函数性质的处理方法。
【考查内容】正弦型函数的伸缩变换和平移变换; 利用三角函数的图像变换求解析式。
【考查题型】选择题、填空题【分值情况】5--12分2.正弦型函数与正弦函数的图像直接的关系直观想象 水平2 水平 23.正弦型函数的振幅、周期 数学抽象 水平1 水平14.正弦型函数的频率、相位、和初相数学抽象 水平1 水平1 第五讲 函数)sin(ϕ+=wx A y 的图像 知识通关⑶ 奇偶性:当()π k k ϕ=∈Z 时,函数()sin y A x ωϕ=+为奇函数;当()ππ 2k k ϕ=+∈Z 时,函数()sin y A x ωϕ=+为偶函数. ⑷ 单调区间:求形如()sin y A ωx φ=+或()cos y A ωx φ=+(其中0A ≠,0ω>)的函数的单调区间可以通过图象的直观性求解,或根据解不等式的方法去解答,列不等式的原则是:①把“()0ωx φω+>”视为一个“整体”.②0A >()0A <时,所列不等式的方向与()sin y x x =∈R 、()cos y x x =∈R 的单调区间对应的不等式的方向相同(反).⑸ 对称轴方程:0x x =,其中()0ππ 2x k k ωϕ+=+∈Z . ⑹ 对称中心:()00x ,,其中()0π x k k ωϕ+=∈Z . 5、A ωϕ、、对函数()sin y A x ωϕ=+的图象的影响 ⑵ ϕ对()sin y x ϕ=+的图象的影响.函数()sin y x ϕ=+(0)ϕ≠的图象,可以看做是把sin y x =图像上的各点向左(0)ϕ>或向右(0)ϕ<平移ϕ个单位而得到的.(可简记为左""+右""-) 即sin y x=00ϕϕ>−−−−−−→<时向左时向右平移ϕ个单位得()sin y x ϕ=+⑵ω对()sin y x ϕ=+的图象的影响.函数sin y x ω=(01)ωω>≠,的图象,可以看做是把sin y x =的图象上的各点的横坐标都缩短(1)ω>或伸长(01)ω<<到原来的1ω倍(纵坐标不变)而得到的.即sin y x =的横坐标101ωω>−−−−−−−→<<时缩短时伸长到原来的1ω倍得sin y x ω=. ⑵A (0)A >对()sin y A x ωϕ=+的图象的影响函数sin y A x =(0A >且1A ≠)的图象,可以看做是sin y x =的图象上各点的纵坐标都伸长(1)A > 或缩短(01)A <<到原来的A 倍(横坐标不变)而得到的.即sin y x =的纵坐标101A A >−−−−−−−→<<时伸长时缩短到原来的A 倍得sin y A x =.题型一 平移变换例1 将函数y =sin 2x 的图象向左平移π8个单位长度,所得图象的函数解析式为( ) A .y =sin ⎝⎛⎭⎫2x +π4 B .y =sin ⎝⎛⎭⎫2x -π4 C .y =sin ⎝⎛⎭⎫2x +π8 D .y =sin ⎝⎛⎭⎫2x -π8题型五 图象变换的综合应用例5 下图是函数()sin y A x xωϕ=+∈R ,在区间π5π66⎡⎤-⎢⎥⎣⎦,上的图象.为了得到这个函数的图象,只要将()sin y x x =∈R 的图象上所有的点( )A .向左平移3个单位长度,再把所得点的横坐标缩短到原来的12倍,纵坐标不变B .向左平移π3个单位长度,再把所得点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得点的横坐标缩短到原来的12倍,纵坐标不变D .向左平移π6个单位长度,再把所得点的横坐标伸长到原来的2倍,纵坐标不变解析:由图象知,1A =,2ππω=,解得2ω=; 故sin(2)y x ϕ=+π5π736π212+=,7sin 2π112ϕ⎛⎫⋅+=- ⎪⎝⎭,从73π2ππ()62k k ϕ+=+∈Z . 故π2π3k ϕ=+()k ∈Z .此函数的解析式为πsin 23y x ⎛⎫=+ ⎪⎝⎭.答案 A变式训练5 将函数y =2sin ⎝⎛⎭⎫x +π3的图象向左平移m (m >0)个单位长度后,所得图象对应的函数为偶函数,则m 的最小值为( ) A.π12 B.π6 C.π3 D.5π6解析: 因为函数y =2sin ⎝⎛⎭⎫x +π3的图象向左平移m 个单位长度,所得图象对应的函数为y =2sin ⎝⎛⎭⎫x +π3+m ,所以π3+m =k π+π2,k ∈Z ,即m =k π+π6,k ∈Z .又m >0,所以m 的最小值为π6,答案 B题型六 函数y =A sin ()ωx +φ,|φ|<π2性质的应用例6 设函数f (x )=sin(2x +φ)(-π<φ<0), 函数y =f (x )的图象的一条对称轴是直线x =π8.(1) 求φ的值;(2) 求函数y =f (x )的单调区间及最值. 解析: (1)由2x +φ=k π+π2,k ∈Z ,得x =k π2+π4-φ2,k ∈Z ,(1)求函数y=f(x)的解析式;一、选择题1.将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( ) A .y =2sin ⎝⎛⎭⎫2x +π4 B .y =2sin ⎝⎛⎭⎫2x +π3 C .y =2sin ⎝⎛⎭⎫2x -π4 D .y =2sin ⎝⎛⎭⎫2x -π3 解析: 函数y =2sin ⎝⎛⎭⎫2x +π6的周期为T =2π2=π,向右平移14个周期,即向右平移π4个单位长度后,得到图象对应的函数为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3,故选D. 答案 D2.把函数y =sin ⎝⎛⎭⎫2x -π4的图象向右平移π8个单位长度,所得图象对应的函数是( ) A .非奇非偶函数 B .既是奇函数又是偶函数 C .奇函数 D .偶函数解析: y =sin ⎝⎛⎭⎫2x -π4的图象向右平移π8个单位得到y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π8-π4=sin ⎝⎛⎭⎫2x -π2=-cos 2x 的图象, y =-cos 2x 是偶函数. 答案 D4.若函数f (x )=sin ⎝⎛⎭⎫ωx +π6-1(ω>0)的周期为2π3,则函数f (x )图象的对称轴方程为( ) A .x =k π+π3(k ∈Z )B .x =k π-π3(k ∈Z )C .x =k π3+π9(k ∈Z )D .x =k π3-π9(k ∈Z )解析: 由函数y =sin ⎝⎛⎭⎫ωx +π6-1的周期为2π3,知2π|ω|=2π3,又ω>0,所以ω=3, 则对称轴方程为3x +π6=π2+k π,k ∈Z ,即x =π9+k π3,k ∈Z .答案 C5.下列表示函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图正确的是( )解析: 将y =sin x 的图象上所有点的横坐标缩短为原来的12,再将所有点向右平移π6个单位长度即可得到y =sin ⎝⎛⎭⎫2x -π3的图象,依据此变换过程可得到A 中图象是正确的.也可以分别令2x -π3=0,π2,π,3π2,2π得到五个关键点,描点连线即得函数y =sin ⎝⎛⎭⎫2x -π3的图象. 答案 A6.把函数f (x )=2cos(ωx +φ)(ω>0,0<φ<π)的图象上每一点的横坐标伸长到原来的2倍,纵坐标不变,然后再向左平移π6个单位长度,得到一个最小正周期为2π的奇函数g (x ),则ω和φ的值分别为( )A .1,π3B .2,π3 C.12,π6 D.12,π3解析: 依题意得f (x )第一次变换得到的函数解析式为m (x )=2cos ⎝⎛⎭⎫ω2x +φ, 则函数g (x )=2cos ⎝⎛⎭⎫ωx 2+ωπ12+φ. 因为函数的最小正周期为2π,所以ω=2, 则g (x )=2cos ⎝⎛⎭⎫x +π6+φ. 又因为函数为奇函数,所以φ+π6=k π+π2,k ∈Z ,又0<φ<π,则φ=π3.答案 B8.要得到y =tan 2x 的图象,只需把y =tan ⎝⎛⎭⎫2x -π6的图象( ) A .向左平移π6个单位得到B .向左平移π12个单位得到C .向右平移π12个单位得到D .向右平移π6个单位得到解析: 设向左平移φ个单位得到y =tan 2x 的图象,y =tan ⎣⎡⎦⎤2(x +φ)-π6=tan ⎝⎛⎭⎫2x +2φ-π6,∴2φ-π6=0,∴φ=π12, ∴向左平移π12个单位得到.答案 B9.已知将函数()cos4f x x =的图象向右平移()0ϕϕ>个单位长度后所得的图象关于y 轴对称,则ϕ的值可能为( )A .6π B .3π C .8π D .4π 解析:将函数()cos4f x x =的图象向右平移()0ϕϕ>个单位长度后,得到()cos 44y x ϕ=-的图象,由题意,得()4k k ϕπ=∈Z ,则()4k k πϕ=∈Z ,取1k =,得4πϕ=. 答案 D10.若函数()sin()f x A x ωϕ=+(其中0A >,||)2πϕ<图象的一个对称中心为(3π,0),其相邻一条对称轴方程为712x π=,该对称轴处所对应的函数值为1-,为了得到()cos2g x x =的图象,则只要将()f x 的图象( )A .向右平移6π个单位长度 B .向左平移12π个单位长度 C .向左平移6π个单位长度 D .向右平移12π个单位长度解析:根据已知函数()()sin f x A x ωϕ=+(其中0A >,)2πϕ<的图象过点,03π⎛⎫ ⎪⎝⎭,7,112π⎛⎫-⎪⎝⎭, 可得1A =,1274123πππω⋅=-,解得:2ω=.再根据五点法作图可得23πϕπ⋅+=,可得:3πϕ=, 可得函数解析式为:()sin 2.3f x x π⎛⎫=+ ⎪⎝⎭故把()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度, 可得sin 2cos236y x x ππ⎛⎫=++= ⎪⎝⎭的图象,故选B . 答案 B二、填空题11.将函数y =sin(-2x )的图象向左平移π4个单位长度,所得函数图象的解析式为________.解析: y =sin(-2x )――――――――――→左移π4个单位长度y =sin ⎣⎡⎦⎤-2⎝⎛⎭⎫x +π4, 即y =sin ⎝⎛⎭⎫-2x -π2=-sin ⎝⎛⎭⎫2x +π2=-cos 2x .答案 y =3sin ⎝⎛⎭⎫13x -114.已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭______. 解析: 函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><是奇函数,所以()00f =,代入可得0ϕ=,()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x . 则()1sin 2g x A x ω⎛⎫= ⎪⎝⎭,()g x 的最小正周期为2π,则2212ππω= ,解得2ω=,所以()sin g x A x =,因为4g π⎛⎫=⎪⎝⎭sin 4A π=,解得2A =,所以()2sin 2f x x =,则2sin 33882f ππ⨯⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭答案三、解答题15.使函数y =f (x )的图象上的每一点的纵坐标保持不变,横坐标缩短到原来的12倍,然后再将其图象沿x轴向左平移π6个单位长度得到的曲线与y =sin 2x 的图象相同,求f (x )的表达式.解析:方法一 (正向变换)y =f (x )―――――→横坐标缩短到原来的12倍y =f (2x )――――――→沿x 轴向左平移π6个单位长度 y =f ⎝⎛⎭⎫2⎝⎛⎭⎫x +π6,即y =f ⎝⎛⎭⎫2x +π3, ∴f ⎝⎛⎭⎫2x +π3=sin 2x . 令2x +π3=t ,则2x =t -π3,∴f (t )=sin ⎝⎛⎭⎫t -π3,即f (x )=sin ⎝⎛⎭⎫x -π3. 方法二 (逆向变换)根据题意,y =sin 2x ―――――→沿x 轴向右平移π6个单位长度 y =sin 2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3――――――→横坐标伸长到原来的2倍纵坐标不变y =sin ⎝⎛⎭⎫x -π3.16.函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,0≤φ≤π2在x ∈(0,7π)内只取到一个最大值和一个最小值,且当x =π时,y max =3;当x =6π时,y min =-3.(1)求此函数的解析式; (2)求此函数的单调递增区间.解析: (1)由题意得A =3,12T =5π,所以T =10π,所以ω=2πT =15,则y =3sin ⎝⎛⎭⎫15x +φ.因为点(π,3)在此函数图象上, 则3sin ⎝⎛⎭⎫π5+φ=3. 又因为0≤φ≤π2,有φ=π2-π5=3π10,所以y =3sin ⎝⎛⎭⎫15x +3π10.(2)当-π2+2k π≤15x +3π10≤π2+2k π,k ∈Z ,即-4π+10k π≤x ≤π+10k π,k ∈Z 时, 函数y =3sin ⎝⎛⎭⎫15x +3π10单调递增.所以此函数的单调递增区间为[-4π+10k π,π+10k π](k ∈Z ).18.已知定义在区间⎣⎡⎦⎤-π,23π上的函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ≤π)的图象关于直线x =-π6对称,当x ∈⎣⎡⎦⎤-π6,2π3时,f (x )的图象如图1-5-5所示.图1-5-5(1)求f (x )在⎣⎡⎦⎤-π,23π上的解析式; (2)求方程f (x )=22的解. 解析: (1)由题图知:A =1,T =4⎝⎛⎭⎫2π3-π6=2π,则ω=2πT =1, 在x ∈⎣⎡⎦⎤-π6,2π3时,将⎝⎛⎭⎫π6,1代入f (x )得, f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π6+φ=1,因为0<φ≤π,所以φ=π3, 所以在x ∈⎣⎡⎦⎤-π6,2π3时,f (x )=sin ⎝⎛⎭⎫x +π3. 同理在x ∈⎣⎡⎦⎤-π,-π6时, f (x )=sin ⎝⎛⎭⎫x -23π. 综上,f (x )=⎩⎨⎧sin ⎝⎛⎭⎫x +π3,x ∈⎣⎡⎦⎤-π6,2π3,sin ⎝⎛⎭⎫x -23π,x ∈⎣⎡⎦⎤-π,-π6.(2)由f (x )=22在区间⎣⎡⎦⎤-π6,2π3内可得x 1=5π12,x 2=-π12. 因为y =f (x )关于x =-π6对称,有x 3=-π4,x 4=-3π4.则f (x )=22的解为-π4,-3π4,5π12,-π12.一、选择题1.要得到y =sin ⎝⎛⎭⎫x 2+π3的图象,只要将函数y =sin x2的图象( ) A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移2π3个单位长度D .向右平移2π3个单位长度答案 C2.函数f (x )=sin(ωx +φ)的图象上所有的点向左平移π2个单位长度.若所得图象与原图象重合,则ω的值不可能等于( )A .4B .6C .8D .12解析: 对于B 选项,f (x )=sin(6x +φ)的图象向左平移π2个单位长度,得y =sin ⎣⎡⎦⎤6⎝⎛⎭⎫x +π2+φ=sin(6x +φ+π)=-sin(6x +φ)的图象. 答案 B图1-5-3 A .y =sin ⎝⎛⎭⎫x +π6 B .y =sin ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫4x -π3 D .y =cos ⎝⎛⎭⎫2x -π6 解析: 由图象知,14T =π12-⎝⎛⎭⎫-π6=π4,∴T =π=2πω,∴ω=2,把y =cos 2x 的图象向右平移π12个单位即得所给图象,∴所求函数为y =cos 2⎝⎛⎭⎫x -π12=cos ⎝⎛⎭⎫2x -π6. 答案 D5.若将函数y =2sin 2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z )B .x =k π2+π6(k ∈Z )C .x =k π2-π12(k ∈Z )D .x =k π2+π12(k ∈Z )解析: 由题意将函数y =2sin 2x 的图象向左平移π12个单位长度后得到函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6, 由2x +π6=k π+π2,k ∈Z ,得函数的对称轴为x =k π2+π6(k ∈Z ),故选B.答案 B6.函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析: 由图象知,周期T =2⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . 故选D. 答案 D8.已知函数()sin(),(0)6f x x ωω=+> 图象上相邻两条对称轴的距离为2,把()f x 图象上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的图象向右平移53π个单位长度,得到函数()g x 的图象,则( )A .()cos 4g x x =-B .()cos 4g x x =C .()cos g x x =-D .()cos g x x =解析:依题意,22T π=,所以T π=,所以2ππω=,解得2ω=,所以()sin(2)6f x x π=+.把()f x 图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到曲线sin()6y x π=+,再把曲线sin()6y x π=+向右平移53π个单位长度,得到曲线5sin()36y x ππ=-+,即cos y x =,故()cos g x x =。
完整版)正余弦函数图象与性质练习题
完整版)正余弦函数图象与性质练习题正弦函数和余弦函数是初中数学中常见的三角函数,它们的图像和性质也是高中数学中必须掌握的内容。
一、选择题1.函数 $y=2\sin(2x+\frac{\pi}{3})$ 的图像关于点($-\frac{\pi}{6}$,0)对称。
2.函数 $y=2\sin(\frac{\pi}{6}-2x)$ 在区间$[\frac{\pi}{12},\frac{\pi}{2}]$ 上是增函数。
3.设 $a$ 为常数,且 $a>1$,$-\frac{\pi}{2}\leq x\leq 2\pi$,则函数 $f(x)=\cos 2x+2a\sin x-1$ 的最大值为 $2a+1$。
4.函数 $y=\sin(2x+\frac{5}{2}\pi)$ 的一个对称轴方程是$x=\frac{5}{4}\pi$。
5.方程 $\cos(x+\frac{5}{2}\pi)=\frac{1}{2}x$ 在区间$(0,100\pi)$ 中有 $102$ 个解。
6.函数 $y=\sin(2x+\pi)$ 是以 $\pi$ 为周期的偶函数。
7.如果函数 $y=\sin 2x+\alpha\cos 2x$ 的图像关于直线$x=-\frac{\pi}{8}$ 对称,则 $\alpha=-2$。
8.函数 $y=2\cos 2x+1$ 的最小正周期为 $\pi$。
9.已知函数 $f(x)=\sin(\pi x-\frac{\pi}{2})-1$,则命题“$f(x)$ 是周期为 $2$ 的偶函数”是正确的。
10.函数 $y=-\cos x+\frac{\cos x}{\sin x}$ 的定义域为$(2k\pi+\pi,2k\pi+\frac{3}{2}\pi]$。
11.定义在 $\mathbb{R}$ 上的函数 $f(x)$ 既是偶函数又是周期函数,且最小正周期为 $\pi$,当$x\in[\frac{\pi}{2},\pi]$ 时,$f(x)=\sin x$,则$f(\frac{5\pi}{3})=-\frac{1}{2}$。
正弦的性质和图像练习题
正弦的性质和图像练习题一、选择题1. 正弦函数的定义域是()A. 实数集B. 有理数集C. 整数集D. [0, 1]2. 正弦函数的值域是()A. [1, 1]B. [0, 1]C. (∞, +∞)D. [0, +∞]3. 下列函数中,奇函数是()A. y = sin(x)B. y = sin(x) + 1C. y = sin(x^2)D. y = |sin(x)|4. 正弦函数的最小正周期是()A. πB. 2πC. π/2D. 15. sin(π/6) 的值是()A. 1/2B. 1/3C. √3/2D. √2/2二、填空题1. 正弦函数的周期是______。
2. 当x = π/2 时,sin(x) 的值为______。
3. 若 sin(x) = 1/2,则 x 在区间[0, 2π] 内的解为______和______。
4. 正弦函数的图像是______形。
5. 正弦函数的图像在 x 轴上对称轴的方程是______。
三、解答题1. 已知sin(α) = 1/2,求α 在区间[0, 2π] 内的所有解。
2. 求 y = 2sin(x) 的定义域、值域和周期。
3. 证明 y = sin(x) 是奇函数。
4. 描述正弦函数 y = sin(x) 的图像特征。
5. 已知y = Asin(ωx + φ) 的图像,求 A、ω 和φ 的值。
四、作图题1. 在坐标系中画出 y = sin(x) 在区间[2π, 2π] 上的图像。
2. 在同一坐标系中画出 y = sin(x) 和 y = sin(2x) 的图像,并指出它们的区别。
3. 作出y = 3sin(2x π/3) 的图像,并标出五个关键点(最高点、最低点、零点等)。
五、计算题1. 计算sin(π/4) + sin(3π/4) 的值。
2. 计算sin^2(π/6) + cos^2(π/6) 的值。
3. 已知sin(α) = 1/3,求sin(3α) 的值。
正弦函数的图象与性质
一、选择题1.函数y =sin(-x ),x ∈[0,2π]的简图是( )【解析】 ∵y =sin(-x )=-sin x ,由五点法知应选B.【答案】 B2.函数y =2sin x -3的定义域是( ) A .[π6,5π6] B .[π6+2k π,5π6+2k π](k ∈Z ) C .[π3,2π3] D .[π3+2k π,2π3+2k π](k ∈Z )【解析】 由2sin x -3≥0得32≤sin x ≤1.∴π3+2k π≤x ≤2π3+2k π(k ∈Z ),故选D.【答案】 D3.正弦函数y =sin x ,x ∈R 的图象的一条对称轴是( )A .y 轴B .x 轴C .直线x =π2D .直线x =π【解析】 当x =π2时,y 取最大值,∴x =π2是一条对称轴.【答案】 C4.函数y =sin(2x +φ)(0≤φ≤π)是R 上的偶函数,则φ的值是( )A .0B.π4C.π2 D .π【解析】 当φ=π2时,y =sin(2x +π2)=cos 2x ,而y =cos 2x 是偶函数,故选C.【答案】 C5.函数f (x )=3sin(x +π6)在下列区间内递减的是( )A .[-π2,π2]B .[-π,0]C .[-23π,2π3]D .[π2,2π3]【解析】 令2k π+π2≤x +π6≤2k π+3π2,k ∈Z 可得2k π+π3≤x ≤2k π+4π3,k ∈Z ,∴函数f (x )的递减区间为[2k π+π3,2k π+4π3],k ∈Z .【答案】 D二、填空题6.y =sin(ωx +π3)(ω>0)的周期是23π,则ω=________.【解析】 T =2π|ω|=23π,且ω>0,∴ω=3.【答案】 37.函数y =sin 2x +sin x -1的值域为________.【解析】 y =(sin x +12)2-54,∵-1≤sin x ≤1,∴0≤(sin x +12)2≤94.-54≤y ≤1.【答案】 [-54,1]8.如果直线y =m 与函数y =sin x ,x ∈[0,2π]的图象只有一个交点,则m =________;有且只有两个交点,则m 的取值范围是________.【解析】 画出y =sin x ,x ∈[0,2π]及y =m 的图象如下:由图可知,当m =1或m =-1时二图象只有一个交点;当-1<m <1且m ≠0时,二图象有且只有两个交点.【答案】 1或-1 (-1,0)∪(0,1)三、解答题9.求函数y =3sin(π3-x 2)的单调递增区间.【解】 y =3sin(π3-x 2)=-3sin(x 2-π3).由π2+2k π≤x 2-π3≤3π2+2k π,k ∈Z ,解得:5π3+4k π≤x ≤11π3+4k π,k ∈Z ,∴函数y =3sin(π3-x 2)的单调增区间为[5π3+4k π,11π3+4k π](k ∈Z ).10.已知函数f (x )=2a sin(2x -π3)+b 的定义域为[0,π2],最大值为1,最小值为-5,求a 和b 的值.【解】 ∵0≤x ≤π2,∴-π3≤2x -π3≤23π, ∴-32≤sin(2x -π3)≤1,易知a ≠0.当a >0时,f (x )max =2a +b =1,f (x )min =-3a +b =-5.由⎩⎨⎧ 2a +b =1-3a +b =-5, 解得⎩⎨⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1,f (x )min =2a +b =-5.由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 11.已知直线y =a ,函数y =sin x ,x ∈[0,2π],试探求以下问题.(1)当a 为何值时,直线y =a 与函数y =sin x 的图象只有一个交点?(2)当a 为何值时,直线与函数图象有两个交点?(3)当a 为何值时,直线与函数图象有三个交点?(4)当a 为何值时,直线与函数图象无交点?【解】 作出直线y =a ,与函数y =sin x ,x ∈[0,2π]的图象(如图所示),由图象可知.(1)当a =1或-1时,直线与函数图象有一个交点.(2)当-1<a <0或0<a <1时,直线与函数图象有两个交点.(3)当a =0时,直线与函数图象有三个交点.(4)当a <-1或a >1时,直线与函数图象无交点.。
1.5正弦函数的图像与性质练习2
1.5正弦函数的图像与性质一、选择题(共6小题,每题5分,共30分)1.以下对正弦函数y =sin x 的图像描述不正确的是()A .在x ∈[2k π,2k π+2π](k ∈Z )上的图像形状相同,只是位置不同B .介于直线y =1与直线y =-1之间C .关于x 轴对称D .与y 轴仅有一个交点2.M 和m 分别是函数y =13sin x -1的最大值和最小值,则M +m 等于()A.23B .-23C .-43D .-23.函数y =4sin x +3在[-π,π]上的递增区间为()A.-π,-π2 B.-π2,π2C.-π,π2D.π2,π4.在[0,2π]内,使sin x ≥12成立的x 的取值范围是()A.0,π6B.π6,56πC.π6,23π D.56π,π5.y =1+sin x ,x ∈[0,2π]的图像与y =32交点的个数是()A .0B .1C .2D .36.函数y =sin ()A .原点对称B .y 轴对称C.直线x =-π3对称D .直线x =π6对称二、填空题(共2小题,每题5分,共10分)7.下列说法正确的是________(只填序号).①y =|sin x |的定义域为R ;②y =3sin x +1的最小值为1;③y =-sin x 为奇函数;④y =sin x -1的单调递增区间为2k π+π2,2k π+3π2(k ∈R ).8.函数y =74+sin x -sin 2x 的最大值为________,此时x 的值为________.(1)试写出f (x )的单调区间;(2)若f (x )在-π2,a 上单调递减,求实数a 的取值范围.10.用五点法作出函数y =1-2sin x ,x ∈[-π,π]上的简图,并回答下列问题:(1)观察函数的图像,写出满足下列条件的x 的区间:①y >1,②y <1;(2)若直线y =a 与y =1-2sin x 有两个交点,求a 的取值范围;(3)求函数y =1-2sin x 的最大值、最小值及相应的自变量的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
, ,
,
故选:C.
【点睛】
本题考查集合的交运算以及正弦函数的值域,考查运算求解能力,属于基础题.
10.D
【解析】
试题分析: ,所以函数 的最小正周期为 ,函数 在区间 上是增函数,函数 的图像关于直线 对称,函数 是偶函数.
C.函数 的图像关于直线 对称D.函数 是奇函数
11.函数 图象的一条对称轴方程为()
A. B. C. D.
12.函数 的周期,振幅,初相分别是
A. B. C. D.
二、填空题
13.函数 的最小正周期为_____________
14.函数 的最小正周期是_______
15.y=3sin 在区间 上的值域是________.
1.5正弦函数的图像与性质基础练习题
一、单选题
1.已知函数 的图象过点 ,则 图象的一个对称中心为()
A. B. C. D.
2.使不等式 成立的 的取值集合是()
A.
B.
C.
D.
3.函数 的最小正周期为( )
A. B. C. D.
4.函数 的最小正周期是()
A. B. C. D.
5.函数 的最大值为()
考点:1.三角函数的周期性;2.三角函数的奇偶性;3.图像得对称轴;4.函数的单调性.
11.B
【分析】
根据正弦函数的对称性,使用整体法直接计算,让然后简单判断即可.
【详解】
对于函数 ,
令 ,得 ,
令 ,则
可得函数 的图象的一条对称轴方程为 ,
故选:B.
【点睛】
本题考查正弦型函数的对称性,掌握基础三角函数的性质以及整体法的使用,属基础题.
12.C
【分析】
本题的函数解析式已知,由其形式观察出振幅,初相,再由公式求出函数的周期,对照四个选项得出正确选项
【详解】
解: 函数
振幅是2,初相是
又 的系数是 ,故函数的最小正周期是
对照四个选项知应选
故选: .
【点睛】
本题考查 中参数的物理意义,解题的关键是理解 , , 的意义,根据解析式及相关公式求出此三个参数的值.属于基础题.
(2)根据正弦函数的五个点,列表得函数 的五个点.描点,连线即可.
【详解】
(1)函数
所以振幅为2,
周期 ,
初相为
(2)函数
利用五点法作图,列表如下:
X
描点,连线如下图所示:
【点睛】
本题考查了三角函数中振幅、周期、初相的定义,三角函数五点作图法,属于基础题.
A.1B.0C.2D.
6.已知函数 的图像关于直线 对称,则 可能取值是( ).
A. B. C. D.
7.函数 的一条对称轴是()
A. B. C. D.
8.函数 的最小值是()
A. B. C.1D.2
9.已知集合 , ,则 ()
A. B. C. D.
10.已知函数 ,下面结论错误的是( )
A.函数 的最小正周期为 B.函数 在区间 上是增函数
即y=3sin 的值域为 .
故答案为:
【点睛】
此题考查求正弦型三角函数的值域,利用了整体代入法求解,属于基础题.
16.
【分析】
根据 的最值,直接列出式子 ,计算即可.
【详解】
根据题意,得 ,解得 .
故答案为:
【点睛】
本题考查含正弦函数的值域问题,熟悉正弦函数的有界性,考查计算,属基础题.
17.
【分析】
利用正弦函数的对称轴和对称中心,整体代换,即可求出结论.
【详解】
由 ,
由 ,
所以函数 的对称轴为 ,
对称中心为 .
故答案为: ; .
【点睛】
本题考查三角函数的性质,整体代换是解题的关键,属于基础题.
18.(1)振幅为2,周期 ,初相为 ;(2)见解析.
【分析】
(1)根据解析式可直接得振幅、周期、初相;
【分析】
根据正弦函数的对称轴方程,即可得对称轴 进而可知正确选项;
【详解】
令 则
故选:C.
【点睛】
本题考查了正弦函数的性质,根据对称轴方程求对称轴,属于简单题;
8.A
【分析】
当 时,函数取得最小值.
【详解】
当 时,函数 的最小值是 ,
故选:A.
【点睛】
本题主要考查三角函数最值,属基础题.
9.C
【分析】
2.C
【分析】
本题首先可以根据 得出 ,然后根据正弦函数的相关性质即可得出结果.
【详解】
因为 ,
所以 , ,
故 的取值集合是 ,
故选:C.
【点睛】
本题考查解三角形不等式,考查正弦函数的相关性质,考查计算能力,体现了基础性,是简单题.
3.C
【解析】
由题意 ,故选C.
【名师点睛】函数 的性质:
(1) .
当 等于 时, 有最大值 .
故选:C.
【点睛】
本题考查正弦函数的最值,属于简单题.
6.D
【分析】
根据正弦型函数的对称性,可以得到一个等式,结合四个选项选出正确答案.
【详解】
因为函数 的图像关于直线 对称,所以有
,当 时, ,故本题选D.
【点睛】
本题考查了正弦型函数的对称性,考查了数学运算能力.
7.C
13.
【解析】
函数 的最小正周期为
故答案为
14.
【分析】
根据周期的求法即可得到结果.
【详解】
因为 ,所以最小正周期是 ,
故答案为: .
【点睛】
本题主要考查正弦函数的周期公式,属于基础题.
15.
【分析】
由x∈ 求出2x- ∈ ,从而可得3sin ∈
【详解】
当x∈ 时,2x- ∈ ,
sin ∈ ,故3sin ∈ ,
20. 的部分图象如图所示.
(1)写出 的最小正周期及 的值;
(2)求 的单调递增区间.
参考答案
1.C
【分析】
将 代入函数可得 ,则 ,令 即可求得对称中心.
【详解】
由题知 ,又 ,
所以 ,则 ,
令 ,则 ,
当 时, ,
即 为 图象的一个对称中心,
可验证其他选项不正确.
故选:C.
【点睛】
本题考查了三角函数的性质,考查了求三角函数的对称中心,计算量不大,属于基础题.
三、双空题
16.设函数 ,当 时, 的最大值是 ,最小值是 ,则 ________,对称中心为_____________.
四、解答题
18.已知函数 .
(1)求它的振幅、周期、初相;
(2)用“五点法”作出它在一个周期内的图象.
19.已知函数f(x)=2asin +b的定义域为 ,函数最大值为1,最小值为-5,求a和b的值.
(2)最小正周期
(3)由 求对称轴.
(4)由 求增区间;由 求减区间.
4.B
【分析】
直接利用函数 的最小正周期是 求解即可.
【详解】
因为函数 的最小正周期是 ,
所以函数 的最小正周期是 ,
故选:B.
【点睛】
本题主要考查正弦型函数的最小正周期,属于基础题.
5.C
【分析】
根据正弦函数的值域求解.
【详解】