数学人教版七年级下册一题多解与多变

合集下载

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题知识网络重难突破知识点一列二元一次方程组解应用题列二元一次方程组解应用题的一般步骤:1.审:审题,明确各数量之间的关系。

2.设:设未知数3.找:找题中的等量关系4.列:根据等量关系列出两个方程,组成方程组5.解:解方程组,求出未知数的值6.答:检验方程组的解是否符合题意,写出答案。

题型一二元一次方程组的应用- 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。

试问经理,该怎样分发这1400元奖金?变式1-1(2018·大石桥市期末)已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.变式1-2(2019·贵港市期末)某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.题型二二元一次方程组的应用–行程问题典例2(2018·广州市期末)从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少.变式2-1(2020·辉县市期中)一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?变式2-2(2019·许昌市期末)为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.题型三二元一次方程组的应用–工程问题典例3(2020·甘南县期中)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)变式3-1(2020·成都市期末)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?变式3-2(2019·成都市期末)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?题型四二元一次方程组的应用–数字问题典例4(2019·靖远县期末)一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?变式4-1(2020·海淀区期末)小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。

人教版七年级数学下册第八章列二元一次方程组解数字、工程、计费问题课件

人教版七年级数学下册第八章列二元一次方程组解数字、工程、计费问题课件

解:
(1)依题意得
x-y=100 5x=6y
(2)解(1)中所列方程组,得
x=600 y=500
答:甲队每天铺设600 m,乙队每天铺设500 m.
题型 3 计费问题
应用1 阶梯电(水)价问题
6.(中考·朝阳)为响应国家节能减排的号召,鼓励居民 节约用电,各省先后出台了居民用电“阶梯价格”制 度,如表中是某省的电价标准(每月).
_1_0__0_c_+___1_0__b_+_;a
(2)用数位上的数字表示数的方法:个位上的数字×1,十位上的数字×10,百位上 的数字×100,以此类推,然后把它们加起来就可以表示一个多位数.
2.有一个两位数,若把个位数字扩大为原来的 2 倍,十位数字 减去 4,所得的数是原两位数的13;而把个位数字与十位数字 互换,所得的两位数比原两位数小 9.求原两位数.
(2)甲的套餐费用为199元,其中含600 MB的月流量;丙的 套餐费用为244.2元,其中包含1 GB的月流量,二人均 定制了超过1 000 min的每月语音通话时间,并且丙的 语音通话时间比甲多300 min.求m的值.
解:
(1)依题意得:
100a+(500-100)×0.07(600-500)b=48 100a+(500-100)×0.07(1024×2-500)b=120.4
设这个三位数的百位数字为x ,去掉百位数字后剩下的两位数为y.
”5乙01说M:B“~我2乘0(出G2B租)车用走了数8 km位,付上了16的元. 数字表示数的方法:个位上的数字×1,
15+(1000-500)×0.
1x+01(8M-B3~)y5=0016MB十位上的数字×10,百位上的数字×100,以此类推,
例如:方女士家5月份用电500 kW·h,电费=180×0.6+ 220×二档电价+100×三档电价=352(元); 李先生家5月份用电460 kW·h,交费316元.

人教版七年级数学下第8章二元一次方程组8.4 三元一次方程组的解法习题课件

人教版七年级数学下第8章二元一次方程组8.4 三元一次方程组的解法习题课件

脐橙品种
ABC
每辆汽车运载量/吨 6 5 4
每吨脐橙获利/百元 12 16 10
如何安排三种脐橙装运,才能使此次销售获利达到 14.08 万元?
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
解:设装运 A,B,C 三种脐橙的车辆数分别为 x,y,z 辆,
x+y+z=20,
依题意,得6x+5y+4z=100, 72x+80y+40z=1 408.
3
7
=__2__;将 x 的值代入变形得到的二元一次方程组中,求得 y=__6__;最
5
后将 x 和 y 的值同时代入①得 z=__6__.
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
x=-2,
y=2,
y=2,
3.方程组x+y=0,
的解是___z_=__4______.
x-y+z=0
x=2, 解由①、④组成的方程组,得z=1.
x=2, 将z=1 代入③,得 y=4.
x=2,
∴原方程组的解为y=4, z=1.
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
15.已知x+5 y=y+6 z=z+7 x,且 xyz≠0,求 x∶y∶z 的值.
解:设x+5 y=y+6 z=z+7 x=k
七年级 数学 下册 人教版
*8.4 三元一次方程组的解法
名师点拨
预习反馈
基础训练
能力训练
综合拓展
七年级 数学 下册 人教版
1.三元一次方程组的解法 (1)解三元一次方程组的基本思想仍是消元.一般地,应利用代入法 或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方 程组,求出两个未知数,最后再求出另一个未知数.

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (73)

人教版七年级数学下册第九章第三节一元一次不等式组复习题(含答案) (73)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案)解下列方程或不等式(组):(1)()3142x x -+≥ (2)()3511211x x x -<+⎧⎨->⎩【答案】(1)1x ≥-;(2)382x << 【解析】【分析】(1)先去括号,再移项合并同类项即可;(2)先根据解一元一次不等式的一般步骤:去括号、移项、合并同类项、系数化为1,解得各自的解集,再求得不等式组的解集即可.【详解】(1)原不等式去括号得:3342x x -+≥移项得:3234x x -≥-合并同类项1x ≥-∴原不等式的解集为:1x ≥-;(2)先解不等式:3511x x -<+移项得:3115x x -<+合并同类项得:216x <系数化成1得:8x <再解不等式:()211x ->去括号得:221x ->移项得:212x>+合并同类项得:23x>系数化成1得:32x>∴原不等式组的解集为:38 2x<<【点睛】本题考查一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.52.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【答案】(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可;②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b , ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+,∴54b, ∴1b =最大值,此时12a b +=,费用为1180元.(ⅲ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去.当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++,∴72b ≤, ∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.53.解不等式组523(2)15x x x x ->-⎧⎨->-⎩,并把不等式组的解集表示在数轴上. 【答案】﹣2<x ≤3,见解析.【解析】【分析】首先解每个不等式,两个不等式解集的公共部分就是不等式组的解集.【详解】解:523(2)15x x x x ->-⎧⎨->-⎩①② 由①得:x >﹣2,由②得:x ≤3,∴不等式组的解集为:﹣2<x ≤3.在数轴表示为.【点睛】本题考查解一元一次不等式组,熟练掌握计算法则是解题关键.54.解不等式组:523(1)37122x xx x-+⎧⎪⎨-≥-⎪⎩>,并把它的解在数轴上表示出来.【答案】52<x≤4【解析】【分析】依次求出各不等式,再找到其公共解集. 【详解】解:523(1)37122x xx x-+⎧⎪⎨-≥-⎪⎩>①②,解不等式组:解①得:x>52解①得:x≤4,故不等式组的解是52<x≤4.故答案为:52<x≤4.【点睛】此题主要考查不等式的解集,解题的关键是熟知不等式的性质.55.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①x ﹣(3x +1)=﹣5;②23x +1=0;③3x ﹣1=0 中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是 (填序号); (2)若不等式组1321x x x +>-+⎧⎨-<⎩的某个关联方程 2x-m=1 的解是整数, 求 m 的值;(3)若方程12﹣12 x =12 x ,3+x =2(x +1 2)都是关于 x 的不等式组22x x m x m <-⎧⎨-≤⎩的关联方程,直接写出 m 的取值范围. 【答案】(1)①;(2)m =3;(3)0≤m <0.5.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为2的方程即可;(3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由x ﹣(3x+1)=﹣5,解得,x =2,故方程①x ﹣(3x+1)=﹣5 是不等式组的关联方程,由23x +1=0 得,x =32-,故方程②23x +1=0 不是不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程, 由 3x ﹣1=0,得 x =13,故方程③3x ﹣1=0 不是不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程, 故答案为:①;(2)由不等式组1321x x x +>-+⎧⎨-<⎩,解得,1<x <3,则它的关联方程的解是整数,x=2 关联方程 2x-m=1 的解,故 m =3;(3)由12 ﹣12 x =12 x ,得 x =0.5,由 3+x =2(x +12)得 x =2, 由不等式组 22x x m x m<-⎧⎨-⎩ ,解得,m <x ≤2+m , ∵方程 12﹣1 2 x =12x ,3+x =2(x +1 2 )都是关于 x 的不等式组22x x m x m <-⎧⎨-⎩的关联方程, ∴ 0.522m m <⎧⎨+⎩ ,得 0≤m <0.5, 即 m 的取值范围是 0≤m <0.5. 【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.56.(1)解不等式:2x ≤3(x ﹣1)+4(并把解集在数轴上表示出来)(2)解不等式组21321 3232x xx++⎧->⎪⎨⎪-≥⎩【答案】(1) x ≥-1; 解集在数轴上表示见解析;(2) x<-2.【解析】【分析】(1)先解出不等式的解集,再在数轴上表示;(2)先分别求出个不等式的解集,再求不等式组的解集.【详解】解:(1)2x ≤3(x﹣1)+42x≤3x-3+4-x≤1x≥-1在数轴上表示如下:(2)213213232x xx++⎧->⎪⎨⎪-≥⎩①②由①得x<-2由②得x<1所以不等式组的解集为:x<-2 【点睛】本题考查不等式和不等式组的解法,运用数轴确定不等式组的解集是解答本题的关键.57.解不等式组11211x x ①②+-⎧⎨-≤⎩;请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得____________________;(Ⅱ)解不等式②,得____________________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为_______________________.【答案】(Ⅰ)2x -;(Ⅱ)1x ≤;(Ⅲ)见解析;(Ⅳ)21x -.【解析】【分析】(I )先移项合并,再未知数的系数化为1,即可得到不等式的解集; (II )先移项合并,再未知数的系数化为1,即可得到不等式的解集; (III )根据求出每一个不等式的解集,将解集表示在数轴上表示出来; (IV )取不等式①②的解集的公共部分即可.【详解】解:(Ⅰ).解不等式①,得2x -,故答案为:2x -,(Ⅱ)解不等式②,得1x ≤;故答案为:1x ≤,(III )把不等式①和②的解集在数轴上表示出来.如图:(IV )原不等式组的解集为:21x - ;故答案为: 21x - ;【点睛】本题考查了解一元一次不等式组以及把不等式组的解集画在数轴上,掌握不等式的解法是解题的关键.58.解下列不等式组,并把解集在数轴上表示出来.(1) 2+134+)17(-x x ⎧⎨⎩①<≥② ;(2) 3(2)8143x x x x +>+⎧⎪⎨-≥⎪⎩①② 【答案】(1)1⩽x<3;(2)1<x ⩽4【解析】【分析】(1)求出不等式的解集,根据不等式的解集找出不等式组的解集即可.(2)求出不等式的解集,根据不等式的解集找出不等式组的解集即可.【详解】(1)∵解不等式①得:x ⩾1,解不等式②得:x<3,∴不等式组的解集为:1⩽x<3,在数轴上表示不等式组的解集为:(2)∵解不等式①得:x>1,解不等式②得:x ⩽4,∴不等式组的解集为:1<x ⩽4,在数轴上表示不等式组的解集为:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则59.解不等式或方程组:(1)221123x x +--≥; (2)4143314312x y x y +=⎧⎪⎨---=⎪⎩①,②. 【答案】(1)14x ≤; (2)3114x y =⎧⎪⎨=⎪⎩. 【解析】【分析】(1)根据一元一次不等式解法去分母、去括号、移项、合并同类项,即能得到答案.(2)先把方程组整理成一般形式,再利用加减消元法解答.【详解】(1) 解:去分母,得3(2+x)≥2(2x-1)-6去括号,得6+3x ≥4x-2-66+2+6≥4x-3x合并同类项,得14≥x即x ≤14(2)方组可化为x+4y=14① 3x −4y=−2②,①+②得,4x=12,解得x=3,把x=3代入①得,3+4y=14,解得y=114所以,原方程组的解是x=3 y=114 经验证x=3 y=114是原方程组的解. 【点睛】 本题考察了(1)一元一次不等式的解法, 解一元一次不等式的步骤一般为:去分母、去括号、移项、合并同类项、系数化为1,具体要使用哪些步骤要根据具体情况而定.(2)解二元一次方程组,灵活掌握加减消元法,进行解题是关键.60.定义:对于任何有理数m ,符号[]m 表示不大于m 的最大整数.例如:[4.5]4=,[8]8=,[ 3.2]4-=-.(1)填空:[]π=________,[ 2.1]5-+=________;(2)如果52[]43x -=-,求满足条件的x 的取值范围; (3)求方程43[]50x x -+=的整数解.【答案】(1)3,2;(2)1772x <≤;(3)5x =-【分析】(1)根据题目中所给的运算方法求解即可;(2)根据题目中所给的运算方法得到不等式组52433x --≤<-,解不等式组即可求得x 的取值范围;(3)把43[]50x x -+=化为45[]3x x +=,根据题目中所给的运算方法可得4513x x x +-<≤,解不等式组可得85x -<≤-,已知[]x 是整数,设453x n +=(n 是整数),可得354n x -=,即可得35854n --<≤-,解得不等式组可得95n -<≤-,再由n 是整数确定8,7,6,5n =----,因题目求方程43[]50x x -+=的整数解,即可得只有当5n =-,方程的整数解为5x =-.【详解】(1)3,2(2)由题:52433x --≤<- 解得不等式组的解集为:1772x <≤(3)由题得:45[]3x x +=∴4513x x x +-<≤ 解得不等式组的解集为:85x -<≤-∵[]x 是整数设453x n +=(n 是整数) ∴354n x -= 35854n --<≤- 解得不等式组的解集为:95n -<≤-∵n 是整数∴8,7,6,5n =----,∵x 是方程43[]50x x -+=的整数解,∴只有当5n =-,方程的整数解为5x =-.【点睛】本题是阅读理解题,还考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式组的解集.。

人教版七年级数学下册 平面坐标系常考题(一)解析

人教版七年级数学下册 平面坐标系常考题(一)解析

一、选择题1.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,分别沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2018次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)2.如图所示,一个动点在第一象限内及x轴、y轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x轴,y轴平行的方向运动,且每秒移动一个单位长度,那么动点运动到点(7,7)的位置时,所用的时间为()秒.A.30 B.42 C.56 D.723.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.154.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A .(45,9)B .(45,13)C .(45,22)D .(45,0) 5.如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2017的坐标为( )A .(504,504)B .(﹣504,504)C .(﹣504,﹣504)D .(﹣505,504) 6.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 4的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(2,4),点A 2021的坐标为( ) A .(-3,3) B .(-2,2) C .(3,-1) D .(2,4) 7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度,则运动到第2021秒时,点P 所处位置的坐标是( )A .(2020,﹣1)B .(2021,0)C .(2021,1)D .(2022,0) 8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排序,如(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2018个点的横坐标为( )A.44 B.45 C.46 D.479.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3……P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)10.已知点P(x,y)到x轴的距离为2,到y轴的距离为3,且x+y>0,xy<0,则点P 的坐标为()A.(﹣2,3)B.(2,3)C.(3,﹣2)D.(3,2)二、填空题11.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2020个点的坐标是_____.12.如图,所有正方形的中心都在原点,且各边也都与x轴或y轴平行,从内向外,它们的边长依次为2,4,6,8,…顶点依次用A1、A2、A3、A4表示,则顶点A2020的坐标为_____.13.如图,在平面直角坐标系中,半径均为1个单位长度的半圆1O、2O、3O, 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2017秒时,点P的坐标是______.14.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P所在位置的坐标是_______________.15.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(2,2)……根据这个规律,第25个点的坐标为____________,第2018个点的坐标为____________.16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.17.如图所示,已知A 1(1,0),A 2(1,﹣1)、A 3(﹣1,﹣1),A 4(﹣1,1),A 5(2,1),…,按一定规律排列,则点A 2021的坐标是________.18.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0),…,按这样的规律,则点A 2021的坐标为 ____________.19.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.20.一只电子玩具在第一象限及x,y轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点______.三、解答题21.在如图所示的平面直角坐标系中,A(1,3),B(3,1),将线段A平移至CD,C (m,-1),D(1,n)(1)m=_____,n=______(2)点P的坐标是(c,0)①设∠ABP=α,请写出∠BPD和∠PDC之间的数量关系(用含α的式子表示,若有多种数量关系,选择一种加以说明)②当三角形PAB的面积不小于3且不大于10,求点p的横坐标C的取值范围(直接写出答案即可)22.(了解概念)在平面直角坐标系xOy 中,若(,),(,)P a b Q c d ,式子a c b d -+-的值就叫做线段PQ 的“勾股距”,记作PQ d a c b d =-+-.同时,我们把两边的“勾股距”之和等于第三边的“勾股距”的三角形叫做“等距三角形”.(理解运用)在平面直角坐标系xOy 中,()2,3 4,,(),(2),A B C m n .(1)线段OA 的“勾股距”OA d = ;(2)若点C 在第三象限,且2OC AB d d =,求AC d 并判断ABC 是否为“等距三角形”﹔ (拓展提升)(3)若点C 在x 轴上,OBC ∆是“等距三角形”,请直接写出m 的取值范围.23.在平面直角坐标系xOy 中,对于给定的两点P ,Q ,若存在点M ,使得△MPQ 的面积等于1,即S △MPQ =1,则称点M 为线段PQ 的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy 中,点P 的坐标为(1,0).(1)在点A (1,2),B (﹣1,1),C (﹣1,﹣2),D (2,﹣4)中,线段OP 的“单位面积点”是 ;(2)已知点E (0,3),F (0,4),将线段OP 沿y 轴向上平移t (t >0)个单位长度,使得线段EF 上存在线段OP 的“单位面积点”,直接写出t 的取值范围 .(3)已知点Q (1,﹣2),H (0,﹣1),点M ,N 是线段PQ 的两个“单位面积点”,点M 在HQ 的延长线上,若S △HMN ≥2S △PQN ,求出点N 纵坐标的取值范围.24.如图1,在平面直角坐标系中,点O 是坐标原点,边长为2的正方形ABCD (点D 与点O 重合)和边长为4的正方形EFGH 的边CO 和GH 都在x 轴上,且点H 坐标为(7,0).正方形ABCD 以3个单位长度/秒的速度沿着x 轴向右运动,记正方形ABCD 和正方形EFGH 重叠部分的面积为S ,假设运动时间为t 秒,且t <4.(1)点F 的坐标为 ;(2)如图2,正方形ABCD 向右运动的同时,动点P 在线段FE 上,以1个单位长度/秒的速度从F 到E 运动.连接AP ,AE .①求t 为何值时,AP 所在直线垂直于x 轴;②求t为何值时,S=S△APE.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2c m/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点,AB所在直线为x轴,1cm为单位长度,建立一个平面直角坐标系,并用t表示出点P在不同线段上的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在,请求出P点坐标;若不存在,请说明理由.26.如图,在平面直角坐标系中,同时将点A(﹣1,0)、B(3,0)向上平移2个单位长度再向右平移1个单位长度,分别得到A、B的对应点C、D.连接AC,BD(1)求点C、D的坐标,并描出A、B、C、D点,求四边形ABDC面积;(2)在坐标轴上是否存在点P,连接PA、PC使S△PAC=S四边形ABCD?若存在,求点P坐标;若不存在,请说明理由.27.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C 的坐标.(2)如图2,设D 为线段OB 上一动点,当AD ⊥AC 时,∠ODA 的角平分线与∠CAE 的角平分线的反向延长线交于点P ,求∠APD 的度数;(点E 在x 轴的正半轴).(3)如图3,当点D 在线段OB 上运动时,作DM ⊥AD 交BC 于M 点,∠BMD 、∠DAO 的平分线交于N 点,则点D 在运动过程中,∠N 的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.28.如图1,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,C(0,a),D(b ,a),其中a ,b 满足关系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD 的面积为______;(2)如图2,若AC ⊥BC ,点P 线段OC 上一点,连接BP ,延长BP 交AC 于点Q ,当∠CPQ=∠CQP 时,求证:BP 平分∠ABC ;(3)如图3,若AC ⊥BC ,点E 是点A 与点B 之间一动点,连接CE,CB 始终平分∠ECF,当点E 在点A 与点B 之间运动时,BEC BCO ∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.29.如图①,在平面直角坐标系中,点(0,)A a ,(,0)C b ,其中,a 是16的算术平方根,38b =,线段GO 由线段AC 平移所得,并且点G 与点A 对应,点O 与点C 对应.(1)点A 的坐标为 ;点C 的坐标为 ;点G 的坐标为 ; (2)如图②,F 是线段AC 上不同于AC 的任意一点,求证:OFC OAF AOF ∠∠∠=+;(3)如图③,若点F 满足FOC FCO ∠=∠,点E 是线段OA 上一动点(与点O 、A 不重合),连CE 交OF 于点H ,在点E 运动的过程中,2OHC ACE OEC ∠∠∠+=是否总成立?请说明理由.30.如图,已知点()2,A a ,点()6,B b ,且a ,b 满足关系式24(2)0a b -+-=.(1)求点A 、B 的坐标;(2)如图1,点()P m n ,是线段AB 上的动点,AE x ⊥轴于点E ,PH x ⊥轴于点H ,BF x ⊥轴于点F ,连接PE 、PF .试探究m ,n 之间的数量关系; (3)如图2,线段AB 以每秒2个单位长度的速度向左水平移动到线段11A B .若线段11A B 交y 轴于点C ,当三角形1A CO 和三角形1B CO 的面积相等时,求移动时间t 和点C 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙的运动速度是物体甲的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×13=4,物体乙行的路程为12×23=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×13=12,物体乙行的路程为12×3×23=24,在A点相遇;此时甲乙回到原出发点,则每相遇三次,甲乙两物体回到出发点,∵201836722÷=,故两个物体运动后的第2018次相遇地点是第二次相遇地点,即物体甲行的路程为12×2×13=8,物体乙行的路程为12×2×23=16,在DE边相遇,此时相遇点的坐标为(-1,-1)故选:D.【点睛】此题考查点的坐标的规律,长方形的性质,根据题意依次计算得到运动点的坐标的变化规律并运用解决问题是解题的关键.2.C解析:C【分析】归纳走到(n,n)处时,移动的长度单位及方向,再求当n=7时所用的时间即可.【详解】质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n,n)处,走过的长度单位是2+4+6+…+2n=n(n+1),当n=7时,可得n(n+1)=7×8=56,∴走过的时间为56s.【点睛】本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.3.C解析:C【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=()12n n+.当100≤S n,即100≤()12n n+,解得:n≤(舍去),或n≥∵1413,故选:C.【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12nn nS+=”.4.A解析:A【解析】观察图形可知,到每一横坐标结束,经过整数点的点的总个数等于最后点的横坐标的平方,并且横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当横坐标是偶数时,以横坐标为1,纵坐标为横坐标减1的点结束,根据此规律解答即可:横坐标为1的点结束,共有1个,1=12,横坐标为2的点结束,共有2个,4=22,横坐标为3的点结束,共有9个,9=32,横坐标为4的点结束,共有16个,16=42,…横坐标为n的点结束,共有n2个.∵452=2025,∴第2025个点是(45,0).∴第2016个点是(45,9).点睛:本题考查了点的坐标,观察出点个数与横坐标存在平方关系是解题的关键5.D解析:D【解析】分析:根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P 2017的在第二象限,且纵坐标=2016÷4,再根据第二项象限点的规律即可得出结论.本题解析:由规律可得,2017÷4=504…1 ,∴点 P2017 的在第二象限的角平分线上,∵点P5(−2,1), 点P9(−3,2), 点P13(−4,3) ,∴点P2017(−505,504) ,故选D.点睛:本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键要首先确定点的大致位置,处于此位置的点的规律,推出点的坐标.6.D解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(2,4),∴A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505……1,∴点A2021的坐标与A1的坐标相同,为(2,4).故选:D.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.7.C解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出第2021秒时点P的坐标.【详解】半径为1个单位长度的半圆的周长为:1212ππ⨯⨯=,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 1秒走12个半圆,当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0), …,可得移动4次图象完成一个循环, ∵2021÷4=505…1,∴点P 运动到2021秒时的坐标是(2021,1), 故选:C . 【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.8.B解析:B 【详解】试题解析:将其左侧相连,看作正方形边上的点,如图所示.边长为0的正方形,有1个点;边长为1的正方形,有3个点;边长为2的正方形,有5个点;…,∴边长为n 的正方形有2n +1个点,∴边长为n 的正方形边上与内部共有1+3+5+…+2n +1=(n +1)2个点. ∵2018=45×45-7,结合图形即可得知第2016个点的坐标为(45,7). 故选B .【点睛】本题考查了规律型中的点的坐标,解题的规律是找出“边长为n 的正方形边上点与内部点相加得出共有(n +1)2个点”.本题属于中档题,有点难度,解决该题型题目时,补充完整图形,将其当成正方形边上的点来看待,本题的难点在于寻找第2018个点所在的正方形的边是平行于x 轴的还是平行y 轴的.9.D解析:D 【分析】观察规律可知,每4次翻折为一个循环,若4n 的余数为0,则1n x n =-;若4n的余数为1,则n x n =;若4n 的余数为2,则n x n =;若4n的余数为3,则1n x n =-;由此进行判断2021P 是在第505次循环完成后再翻折一次,那么横坐标即为20212021x =. 【详解】解:由题意得:P 1(1,1),P 2(2,0),P 3(2,0),P 4(3,1) P 5(5,1),P 6(6,0),P 7(6,0),P 8(7,1),……由此可以得出规律:每4次翻折为一个循环,若4n的余数为0,则1n x n =-,n P (n -1,1);若4n 的余数为1,则n x n =,n P (n ,1);若4n的余数为2,则n x n =,n P (n ,0);若4n的余数为3,则1n x n =-,n P (n -1,0);∵2021÷4=505余1,∴横坐标即为20212021x =,2021P (2021,1), 故选D. 【点睛】本题主要考查了坐标的规律,解题的关键在于能够准确地根据图形找到坐标的规律进行求解.10.C解析:C 【分析】由点P (x ,y )到X 轴距离为2,到Y 轴距离为3,可得x ,y 的可能的值,由x +y >0,xy <0,可得两数异号,且正数的绝对值较大;根据前面得到的结论即可判断点P 的坐标. 【详解】解:∵点P (x ,y )到x 轴距离为2,到y 轴距离为3,∴|x|=3,|y|=2,∴x=±3,y=±2;∵x+y>0,xy<0,∴x=3,y=﹣2,∴P的坐标为(3,﹣2),故选:C.【点睛】此题考查直角坐标系中点到坐标轴的距离与坐标的关系,有理数加法乘法法则,正确掌握有理数的加法乘法法则是解题的关键.二、填空题11.【分析】横坐标为1的点有1个,横坐标为2的点有2个,横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0解析:()64,3【分析】横坐标为1的点有1个,横坐标为2的点有2个,横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有(1)2n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2020个数一定在第64列,由下到上是第4个数.因而第2020个点的坐标是(64,3).故答案为:(64,3).【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.12.(505,﹣505).【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(﹣n﹣1,﹣n﹣1),A4n+2(﹣n﹣1,n+1),A4n+3(n+1,n+1),A解析:(505,﹣505). 【分析】根据正方形的性质找出部分A n 点的坐标,根据坐标的变化找出变化规律“A 4n +1(﹣n ﹣1,﹣n ﹣1),A 4n +2(﹣n ﹣1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,﹣n ﹣1)(n 为自然数)”,依此即可得出结论. 【详解】观察,发现:A 1(﹣1,﹣1),A 2(﹣1,1),A 3(1,1),A 4,(1,﹣1),A 5(﹣2,﹣2),A 6(﹣2,2),A 7(2,2),A 8(2,﹣2),A 9(﹣3,﹣3),…,∴A 4n +1(﹣n ﹣1,﹣n ﹣1),A 4n +2(﹣n ﹣1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,﹣n ﹣1)(n 为自然数). ∵2020=505×4, ∴A 2020(505,﹣505). 故答案为:(505,﹣505). 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出变化规律“A 4n +1(﹣n ﹣1,﹣n ﹣1),A 4n +2(﹣n ﹣1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,﹣n ﹣1)(n 为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标的变化找出变化规律是关键.13.【解析】 【分析】以时间为点P 的下标,根据半圆的半径以及部分点P 的坐标可找出规律“,,,”,依此规律即可得出第2017秒时,点P 的坐标. 【详解】以时间为点P 的下标. 观察,发现规律:,,,, 解析:()2017,1【解析】 【分析】以时间为点P 的下标,根据半圆的半径以及部分点P 的坐标可找出规律“()4n P n,0,()4n 1P 4n 1,1++,()4n 2P 4n 2,0++,()4n 3P 4n 3,1++-”,依此规律即可得出第2017秒时,点P的坐标. 【详解】以时间为点P 的下标.观察,发现规律:()0P 0,0,()1P 1,1,()2P 2,0,()3P 3,1-,()4P 4,0,()5P 5,1,⋯,()4n P n,0∴,()4n 1P 4n 1,1++,()4n 2P 4n 2,0++,()4n 3P 4n 3,1++-.201750441=⨯+,∴第2017秒时,点P 的坐标为()2017,1,故答案为:()2017,1. 【点睛】本题考查了规律型中点的坐标,解题的关键是找出点P 的变化规律“()4n P n,0,()4n 1P 4n 1,1++,()4n 2P 4n 2,0++,()4n 3P 4n 3,1++-”.本题属于基础题,难度不大,解决该题型题目时,根据圆的半径及时间罗列出部分点P 的坐标,根据坐标发现规律是关键.14.【分析】分析点P 的运动路线及所处位置的坐标规律,进而求解. 【详解】解:由题意分析可得,动点P 第8=2×4秒运动到(2,0) 动点P 第24=4×6秒运动到(4,0) 动点P 第48=6×8秒运 解析:(45,43)【分析】分析点P 的运动路线及所处位置的坐标规律,进而求解. 【详解】解:由题意分析可得,动点P 第8=2×4秒运动到(2,0) 动点P 第24=4×6秒运动到(4,0) 动点P 第48=6×8秒运动到(6,0)以此类推,动点P 第2n(2n+2)秒运动到(2n ,0) ∴动点P 第2024=44×46秒运动到(44,0) 2068-2024=44∴按照运动路线,点P 到达(44,0)后,向右一个单位,然后向上43个单位 ∴第2068秒点P 所在位置的坐标是(45,43) 故答案为:(45,43) 【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.15.(5,0) (45,7) 【解析】分析:观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵解析:(5,0) (45,7) 【解析】分析:观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.详解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,①∵52=25,5是奇数,∴第25个点是(5,0),②∵452=2025,45是奇数,∴第2025个点是(45,0),即第2018个点是(45,7).故答案为:(5,0),(45,7).点睛:本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.16.(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.17.(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2021的坐标.【详解】解:根据题意得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2021÷4=505…1;∴A2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.18.(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解解析:(2021,﹣2)【分析】观察发现,每6个点形成一个循环,再根据点A6的坐标及2021÷6所得的整数及余数,可计算出点A2021的横坐标,再根据余数对比第一组的相应位置的数可得其纵坐标.【详解】解:观察发现,每6个点形成一个循环,∵A6(6,0),∴OA6=6,∵2021÷6=336…5,∴点A2021的位于第337个循环组的第5个,∴点A2021的横坐标为6×336+5=2021,其纵坐标为:﹣2,∴点A2021的坐标为(2021,﹣2).故答案为:(2021,﹣2).【点睛】此题主要考查坐标的规律探索,解题的关键是根据图形的特点发现规律进行求解.19.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P2021在第二象限,∵点P5(﹣2,1),点P9(﹣3,2),点P13(﹣4,3),∴点P2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.20.(3,44)【分析】由题意分析得(0,1)用的次数是1次,即次,(0,2)用的次数是8次,即次,(0,3)用的次数是9次,即次,(0,4)用的次数是24次,即次,(0,5)用的次数是25次,即次解析:(3,44)【分析】由题意分析得(0,1)用的次数是1次,即21次,(0,2)用的次数是8次,即24⨯次,⨯次,(0,5)用(0,3)用的次数是9次,即23次,(0,4)用的次数是24次,即46的次数是25次,即25次,以此类推,(0,45)用的次数是2025次,即245次,后退4次可得2021次所对应的坐标.【详解】由题可知,电子玩具是每次跳一个单位长度,则(0,1)用的次数是1次,即21次,(0,2)用的次数是8次,即24⨯次,(0,3)用的次数是9次,即23次,⨯次,(0,4)用的次数是24次,即46(0,5)用的次数是25次,即25次,…以此类推,(0,45)用的次数是2025次,即245次,2025-1-3=2021,∴第2021次时电子玩具所在位置的坐标是(3,44).故答案为:(3,44).【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而确定次数的规律.三、解答题21.(1)-1,-3.(2)①当点P在直线AB,CD之间时,∠BPD-∠PDC=α.当点P在直线CD的下方时,∠BPD+∠PDC=α.当点P在直线AB的上方时,∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由题意,线段AB向左平移2个单位,向下平移4个单位得到线段CD,利用平移规律求解即可.(2)①分三种情形求解,如图1中,当点P在直线AB,CD之间时,∠BPD-∠PDC=α.如图2中,当点P在直线CD的下方时,∠BPD+∠PDC=α.如图3中,当点P在直线AB的上方时,同法可证∠BPD+∠PDC=α.分别利用平行线的性质求解即可.②求出点P在直线AB两侧,△PAB的面积分别为3和10时,m的值,即可判断.【详解】解:(1)由题意,线段AB向左平移2个单位,向下平移4个单位得到线段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案为:-1,-3.。

人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc

人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】知识点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥a 是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20a aa =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.62500250=62525= 6.25 2.5=0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×, 提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根. (2116表示 的算术平方根,116= . (3181的算术平方根为 . (43x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________. 【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根.【答案】解:∵+(3x+y ﹣1)2=0, ∴,解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x 值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a3a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33a a =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是( ) A .如果一个数的立方根是这个数本身,那么这个数一定是0 B .一个数的立方根不是正数就是负数 C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0 【思路点拨】根据立方根的定义判断即可. 【答案】D ;【解析】A .如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B .一个数的立方根不是正数就是负数,错误,还有0;C .负数有立方根,故错误;D .正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义. 举一反三:【变式】下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1D .332727-=-【答案】D.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4)23327(3)1-+--- (5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-- (2)3321145⨯+ (3)331864⋅-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1-+---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可. 【答案与解析】 解:(x ﹣2)3=﹣125, 可得:x ﹣2=﹣5, 解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3. 类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗) 333a b +.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数(基础)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 . 【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数: 332222,,,9,8,9,0,,12,55,0.1010010001 (7)3π-【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有3222,9,8,0,,73--无理数有32,,9,12,55,0.1010010001π-……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如55,39,2,12-.举一反三: 【变式】(2015春•聊城校级月考)在下列语句中: ①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A .②③B .②③④C .①②④D .②④ 【答案】C ;解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;③数的大小,和它是有理数还是无理数无关,故本选项是错误的; ④无限循环小数是有理数,故本选项正确.类型二、实数大小的比较2、比较520.5的大小. 【答案与解析】解:作商,得5250.5=51>,即5210.5>50.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1ab<”分别得到结论“a b >,a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.举一反三:【变式】比较大小___ 3.14π-- 7___54__2323___32 32 9___0- 3___10-- |43|___(7)--- 【答案】<; >; <; <; <; >; <.3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac >bcB .|a ﹣b|=a ﹣bC .﹣a <﹣b <cD .﹣a ﹣c >﹣b ﹣c【答案】D ;【解析】解:∵由图可知,a <b <0<c , ∴A 、ac <bc ,故A 选项错误; B 、∵a <b , ∴a ﹣b <0,∴|a ﹣b|=b ﹣a ,故B 选项错误; C 、∵a <b <0,∴﹣a >﹣b ,故C 选项错误; D 、∵﹣a >﹣b ,c >0,∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确. 故选:D .【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.类型三、实数的运算4、化简:(1)|2 1.4|- (2)|7|74||-- (3)|12|+|23|+|32|--- 【答案与解析】 解:|2 1.4|-2 1.4=-|7|74||-- =|74+7|- =274-|12|+|23|+|32|---2132231=-+-+-=.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.5、若2|2|3(4)0a b c ---=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3; 【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a a ,非负数的和为0,只能每个非负数分别为0 . 举一反三:【变式】已知2(16)|3|30x y z ++++-=,求xyz 的值.【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.∴xyz =(16)(3)312-⨯-⨯=.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数全章复习与巩固(基础)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

人教版数学七年级下册7

人教版数学七年级下册7

2021-2022学年人教版数学七年级下册《7.1平面直角坐标系》课时练(练习、考试专用——带答案解析)一、选择题(本大题共10小题,共30分)1.(2022·山东省·单元测试)一个有序数对可以()A. 确定一个点的位置B. 确定两个点的位置C. 确定一个或两个点的位置D. 不能确定点的位置2.(2022·福建省·单元测试)若点M(2-a,3a+6)到两坐标轴的距离相等,则点M的坐标()A. (6,−6)B. (3,3)C. (−6,6)或(−3,3)D. (6,−6)或(3,3)3.(2022·江西省·期中考试)点P位于x轴的下方,y轴的左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A. (−4,−2)B. (−2,−4)C. (−4,2)D. (−2,4)4.(2022·山东省·单元测试)点P(√2021,-√2022)所在的象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.(2022·广东省·单元测试)课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(-2,0)表示,小军的位置用(0,1)表示,那么你的位置可以表示成()A. (2,3)B. (4,5)C. (3,2)D. (2,1)6.(原创改编)下列说法中,错误的是()A. 平行于x轴的直线上的所有点的纵坐标相同B. 平行于y轴的直线上的所有点的横坐标相同C. 若点P(a,b)在x轴上,则a=0D. (−3,4)与(4,−3)表示两个不同的点7.(2022·山东省·单元测试)若m是任意实数,则点P(m-4,m+1)一定不在()A. 第一象限内B. 第二象限内C. 第三象限内D. 第四象限内8.(2021·全国·单元测试)点P(x,y),且xy>0,x+y<0,则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.(2021·安徽省蚌埠市·单元测试)已知点平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A. −3B. −5C. 1或−3D. 1或−510.(2022·河南省·期中考试)如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2019次相遇地点的坐标是()A. (1,−1)B. (2,0)C. (−1,1)D. (−1,−1)二、填空题(本大题共4小题,共12分)11.(2022·全国·同步练习)已知点P(8-2m,m+1)在x轴上,则点P的坐标为 .12.(2022·上海市市辖区·期末考试)若点P在x轴上,点A坐标是(2,-1),且PA=√2,则点P的坐标是______.13.(2022·全国·同步练习)有一个英文单词的字母顺序对应图中的有序数对分别为(1,2),(1,3),(2,3),(5,1),则这个英文单词为 .14.(2022·江苏省南通市·同步练习)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头方向,每次移动1个单位长度,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),…,则点A2022的坐标是____.三、解答题(本大题共7小题,共58分)15.(2022·安徽省·模拟题)已知平面直角坐标系中有一点M(m−1,2m+3).(1)若点M到x轴的距离为3,求点M的坐标;(2)若点N坐标为(5,−1),且MN∥x轴,求点M的坐标.16.(2022·江西省·模拟题)如图,已知三角形ABC在单位长度为1的方格纸上.17.18.(1)请画出三角形ABC向上平移3个单位长度,再向右平移2个单位长度所得的三角形A'B'C';19.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B'的坐标:B ,B' .20.21.22.23.24.25.26.27.(2022·安徽省·模拟题)如图1,在平面直角坐标系中,C是第二象限内一点,CB⊥y轴于点B,且B(0,b)是y轴正半轴上一点,A(a,0)是x轴负半轴上一点,且|a+2|+|b-3|=0,S四边形AOBC=9.28.(1)求点C的坐标;(2)如图2,点D为线段OB上一动点,且,求点D的坐标.29.(2022·陕西省宝鸡市·期末考试)如图,在平面直角坐标系内,Rt△ABC中∠B为直角。

人教版七年级数学下册第八章 第3节 课件 第1课时 利用二元一次方程组解决实际问题

人教版七年级数学下册第八章 第3节 课件 第1课时 利用二元一次方程组解决实际问题

则有
8x + 5y = 42, 4x + 2y = 20.
解得
x = 4, y = 2.
答:李大叔应聘请甲种饲养员 4 人,乙种饲养员 2 人.
典例精析 例1 某市举办中学生足球比赛,规定胜一场
得 3 分,平一场得 1 分. 市第二中学足球队比赛 11 场,
没有输过一场,共得 27 分,试问该队胜几场,平几场? 分析:题中的未知量有胜的场数和平的场数,
的速度以及长江水的平均流速.
解:设轮船在静水中的速度为 x 千米/时,长江水的
平均流速为 y 千米/时.
即((
x x
y) y)
9 450, 10 450.
解得
x y
47.5, 2.5.
答:轮船在静水中的速度为 47.5 千米/时,长江水
的平均流速为 2.5 千米/时.
1. 计划若干节车皮装运一批货物. 如果每节装 15.5 吨,
题意与分析中图示的两个相等关系,得
2x2 y4,
0.5x 0.5 y 4.
解方程组,得
x5, y 3.
答:甲的速度为 5 km/h,乙的速度为 3 km/h.
练一练:我国的长江由西至东奔腾不息,其中九江东至
南京约有 450 千米 的水程,某船从九江出发 9 个小时就
能到达南京;返回时则用多了 1 个小时. 求此船在静水中
100 m 甲种作物 乙种 作物
设 AE = x m,BE = y m. 根据题意列方程组为
x + y = 200,
A
x
y EB
你觉得该如何答 题比较完整呢?
100x∶200y = 3∶4. 解得 x = 120,
y = 80.

人教版中学七年级数学下册期末解答题难题及答案

人教版中学七年级数学下册期末解答题难题及答案

人教版中学七年级数学下册期末解答题难题及答案一、解答题1.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?2.如图,用两个边长为103的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?3.如图用两个边长为18cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm2请说明理由.4.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.5.小丽想用一块面积为236cm的正方形纸片,如图所示,沿着边的方向裁出一块面积为220cm的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗为什么?二、解答题6.如图,直线HD//GE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.7.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD 于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=36 时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.8.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.(1)求证:AB //CD ;(2)如图(2),点E 在AB ,CD 之间的直线MN 上,P 、Q 分别在直线AB 、CD 上,连接PE 、EQ ,PF 平分∠BPE ,QF 平分∠EQD ,则∠PEQ 和∠PFQ 之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P 点作PH //EQ 交CD 于点H ,连接PQ ,若PQ 平分∠EPH ,∠QPF :∠EQF =1:5,求∠PHQ 的度数.9.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.10.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.三、解答题11.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论. 12.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.13.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°,求∠APC 的度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质来求∠APC .(1)按小明的思路,易求得∠APC 的度数为 度;(2)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP =∠α,∠BCP =∠β.试判断∠CPD 、∠α、∠β之间有何数量关系?请说明理由; (3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.14.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.15.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______;(2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论.四、解答题16.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.17.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 .拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .18.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=()1请判断AB 与CD 的位置关系并说明理由;()2如图2,当90E ∠=且AB 与CD 的位置关系保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠否存在确定的数量关系?并说明理由.()3如图3,P 为线段AC 上一定点,点Q 为直线CD 上一动点且AB 与CD 的位置关系保持不变,①当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?猜想结论并说明理由.②当点Q 在射线CD 的反向延长线上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?直接写出猜想结论,不需说明理由.19.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”;(2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由;(4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .20.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、解答题1.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.2.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=480,解得:因为片的长宽之比为2:3,且面积为480cm2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.3.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为3:2,且面积为30cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,2+2=36(cm2),所以大正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b所以3b所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.4.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m),4×20=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=300,解得:a,∵3a表示长度,∴a>0,∴a∴这个长方形场地的周长为 2(3a+5a)=16a(m),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.5.不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为x,长为2x,然后依据矩形的面积为20列方程求得x的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为236cm,故边长为6cm设长方形宽为x,则长为2x长方形面积2=⋅==2220x x x∴210x=,解得10x=(负值舍去)长为210cm6cm>即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.二、解答题6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后∠HAP;理由见解解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣12析.【分析】(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK//HD//GE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=12∠HAP+12∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣12∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣12∠HAP﹣12∠PCG﹣90°+12∠PCG=90°﹣12∠HAP,即:∠N=90°﹣12∠HAP.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.7.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y+z﹣x,∵PQ平分∠EPH,∴Z=y+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.9.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n =90°时,∠C =∠CBF =90°,∴BC ⊥DG (EF ),AC ⊥DE (GF );当n =120°时,∴AB ⊥DE (GF ).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.10.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.三、解答题11.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a ,则CP//a//b ,根据平行线的性质求解.(2)作CP//a ,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG +∠NEF =90°;(3)见解析【分析】(1)作CP //a ,则CP //a //b ,根据平行线的性质求解.(2)作CP //a ,由平行线的性质及等量代换得∠AOG +∠NEF =∠ACP +∠PCB =90°.(3)分类讨论点P 在线段GF 上或线段GF 延长线上两种情况,过点P 作a ,b 的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.12.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可.【详解】解:(1)作EI∥PQ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.综上所述,∠BAM的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.13.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠A解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案为110°;(2)∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β-∠α,理由是:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE =∠β-∠α;当P在AB延长线时,∠CPD=∠α-∠β,理由是:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键.14.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠,11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.15.(1)136°;(2)∠AOG+∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ+∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由见解析;(3)当点P在GF上时,∠OPQ=140°﹣∠POQ+∠PQF;当点P在线段GF的延长线上时,140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如图1,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如图2,作CP∥a,则CP∥a∥b,根据平行线的性质可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后结合已知条件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到结论;(3)分两种情况,如图3,当点P在GF上时,过点P作PN∥OG,则NP∥OG∥EF,根据平行线的性质可推出∠OPQ=∠GOP+∠PQF,进一步可得结论;如图4,当点P在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴140°﹣∠POQ =∠OPQ +∠PQF .【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.四、解答题16.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.17.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE=S △BDE ,S △ABE=S △AEC ,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S 1=2S 2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE =S △BDE ,S △ABE =S △AEC ,从而得到结论;拓展延伸:(1)作△ABD 的中线AE ,则有BE =ED =DC ,从而得到△ABE 的面积=△AED 的面积=△ADC 的面积,由此即可得到结论;(2)连接AO .则可得到△BOD 的面积=△BOC 的面积,△AOC 的面积=△AOD 的面积,△EOC 的面积=△BOC 的面积的一半, △AOB 的面积=2△AOE 的面积.设△AOD 的面积=a ,△AOE 的面积=b ,则a +3=2b ,a =b +1.5,求出a 、b 的值,即可得到结论. 试题解析:解:解决问题连接AE .∵点D 、E 分别是边AB 、BC 的中点,∴S △ADE =S △BDE ,S △ABE =S △AEC .∵S △BDE =2,∴S △ADE =2,∴S △ABE =S △AEC =4,∴四边形ADEC 的面积=2+4=6.。

七年级下册数学书答案人教版

七年级下册数学书答案人教版

七年级下册数学书答案人教版篇一:人教版七年级数学下册期末测试题及答案七年级数学综合训练题姓名1.81的算术平方根是______,=________.11.解下列方程组: 12.解不等式组,并在数轴表示: ??2x+5y=25,?2x-3<6-x,??4x+3y=15.?1-4x≤5x-2.2.如果1<x<2,化简│x-1│+│x-2│=________.3.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.4.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是________.13.若A(2x-5,6-2x)在第四象限,求a的取值范围.6.点P(a,b)在第四象限,则点P到x轴的距离是()A.a B.bC.│a│ D.│b│AFGCHDB7.已知a<b,则下列式子正确的是()abA.a+5>b+5B.3a>3b;C.-5a>-5bD.>338.如图,不能作为判断AB∥CD的条件是()A.∠FEB=∠ECDB.∠AEC=∠ECD;C.∠BEC+∠ECD=180°D.∠AEG=∠DCH9.以下说法正确的是()14.作图题:A.有公共顶点,并且相等的两个角是对顶角① 作BC边上的高B.两条直线相交,任意两个角都是对顶角② 作AC边上的中线。

C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在同一直线上,这两个角互为对顶角10.下列各式中,正确的是()A.3333± B.; C.±±844415.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,18.已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°, ∠D=42°,求∠ACD 的度数.(8分)各增产花生多少千克?16.已知a、b、c是三角形的三边长,化简:|a-b+c|+|a-b-c|17.填空、已知∠1 =∠2,∠B =∠C,可推得AB∥CD。

人教版七年级数学下册第十章测试题及答案解析

人教版七年级数学下册第十章测试题及答案解析

最新人教版七年级数学下册第十章测试题及答案解析第10章《数据的收集、整理与描述》班级姓名成绩__________(时间:120分钟,满分:100分)选择题(每小题3分,共30分)一、 1. 下列调查中,适宜采用全面调查方式的是()A.对我市中学生心理健康现状的调查B.调查我市冷饮市场雪糕质量情况C.调查我国网民对某事件的看法D.对我国首架大陆民用飞机各零部件质量的检查2.下面的调查中,不适合抽样调查的是()A.调查某种家用电器使用的满意情况B.调查某种炮弹的杀伤力C.调查某种奶粉的质量D.某班主任老师调查本班的学生到校情况3. 下面是四位同学对他们学习小组将要共同进行的一次统计活动分别设计的活动程序,其中正确的是()A. B. C. D.4. 某电脑厂家为了安排台式电脑和手提电脑的生产比例,而进行一次市场调查,调查员在调查表中设计了下面几个问题,你认为哪个提问不合理()A.你明年是否准备购买电脑(1)是(2)否B.如果你明年购买电脑,打算买什么类型的(1)台式(2)手提C.你喜欢哪一类型电脑(1)台式(2)手提D.你认为台式电脑是否应该被淘汰(1)是(2)否5. 为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是()A.某市八年级学生的肺活量B.从中抽取的500名学生的肺活量C.从中抽取的500名学生D.5006. 某厂生产世博会吉祥物:“海宝”纪念章10万个,质检部门为检测这批纪念章质量的合格情况,从中随机抽查500个,合格499个.下列说法正确的是()A.总体是10万个纪念章的合格情况,样本是500个纪念章的合格情况B.总体是10万个纪念章的合格情况,样本是499个纪念章的合格情况C.总体是500个纪念章的合格情况,样本是499个纪念章的合格情况D.总体是10万个纪念章的合格情况,样本是1个纪念章的合格情况7. 大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是()A.0.1B.0.2C.0.3D.0.78. 某校对1 200名女生的身高进行了测量,身高在1.58~1.63(单位:m)这一小组的频率为0.25,则该组的人数为()A.150 B.300C.600 D.9009.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15 C.0.25 D.0.3第9题图10.某班一次数学测验成绩如下:77,74,65,53,95,87,75,87,82,71,67,85,88,90,86,81,87,70,70,86,94,79,69,61,81,76,67,80,81,75,78,91,69,61,81,69,53,91, 63,84,则大部分同学处于的分数段是()A.59.5~69.5B.69.57~79.5C.79.5~89.5D.89.5~99.5二、填空题(每小题3分,共24分)11.聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是 .12.“建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为 .13. 专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视.这个结论是通过得到的(填抽样调查或全面调查).14. 某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调査了10户居民家庭月使用塑料袋的数量,结果如下:(単位:只)65 70 85 74 86 78 74 92 82 94根据统计情况,估计该小区这100户家庭平均使用塑料袋为只.15. 已知在一个样本中有50个数据,它们分别落在5个组内,第一、二、三、四、五组数据的个数分别为2,8,15,,5,则等于,第四组的频率为.16. 一组数据:12,13,15,14,16,18,19,14.则这组数据的极差是 .17.某校要了解七年级新生的身高情况,在七年级四个班中,每班抽10名学生进行检测,在这个问题中,总体是,样本是,样本容量是 .18.一组数据19,22,25,30,28,27,26,21,20,22,24,23,25,29,27,28,27,30,19,20,为了画频率分布直方图,先计算出最大值与最小值的差是,如果取组距为2,应分为组,第一组的起点定为18.5,在26.5~28.5范围内的频数是,频率是 .三、解答题(共46分)19.(6分)小李在家门口进行了一项社会调查,对从家门口经过的车辆进行记录,分析出本地车辆与外地车辆的数据,同时也对汽车牌照的尾号进行了记录.(1)在这过程中他要收集种数据;(2)设计出记录用的表格是怎样的.20.(6分)为了帮助数学成绩差的学生,老师调查了180名这样的学生,设计的问题是“你的数学作业完成情况如何”给出五个选项(独立完成、辅导完成、有时抄袭完成、经常抄袭完成、经常不完成)供学生选择.结果老师发现选择独立完成和辅导完成这两项的学生一共占了52%,明显高于他平时观察到的比例,你能解释这个统计数字失真的原因吗?21.(6分)调查你们班全体同学每周做家务的时间,填写统计表:每周做家务的时间/小0 1 1.5 2 2.5 3 3.5 4时人数/人 2 2 6 8 12 13 4 3(1)采取哪种调查方式最合适?(2)这个班的同学每周做多长时间家务的人最多?做多长时间家务的人最少?(3)请你根据以上的结果,用一句话谈谈自己的感受.22.(6分)下表是光明中学七年级(5)班的40名学生的出生月份的调查记录:月份 1 2 3 4 5 6 7 8 9 10 11 12人数 1 4 5 3 3 1 1 3 3 5 3 8(1)求出10月份出生的学生的频数和频率;(2)现在是1月份,如果你准备为下个月生日的每一位同学送一份小礼物,那你应该准备多少份礼物?23.(6分)下表是甲、乙两人各打靶十次的成绩情况统计表:(单位:环)一二三四五六七八九十甲9 5 7 8 7 7 8 6 7 7 乙 2 4 6 8 7 6 8 9 9 10根据上面的统计表,制作适当的统计图表示甲、乙两人打靶成绩的变化,并回答下列问题.(1)谁成绩变化的幅度大?(2)甲、乙两人哪一次射击的成绩相差最大?相差多少?24.(8分)王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活98%.现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和.25. (8分)某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?第24题图第25题图参考答案1.D 解析:A 、对我市中学生心理健康现状的调查,由于人数多,故应当采用抽样调查;B 、对我市冷饮市场雪糕质量情况的调查,由于市场上雪糕数量较多,普查破坏性较强,应当采用抽样调查的方式;C 、对我国网民对某事件的看法的调查,由于人数多,全面调查耗时长,故应当采用抽样调查;D 、对我国首架大型民用飞机零部件的检查,由于零部件数量有限,而且是首架民用飞机,每一个零部件都关系到飞行安全,故应当采用全面调查.故选D .2.D3.C 解析:统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C .4.D 解析:根据设计问卷调查应该注意的问题可知D 不合理,问题和调查的目的不符合,故选D .5.B 解析:了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量, 这项调查中的样本是500名学生的肺活量,故选B .6.A 解析:总体是10万个纪念章的合格情况,样本是500个纪念章的合格情况,故选A .7.B 解析:跳绳次数在90~110之间的数据有91,93,100, 102四个,故频率为51204 =0.2. 故选B .8.B 解析:根据题意,得该组的人数为1 200×0.25=300(人).故选B .9.D 解析:根据频数分布直方图知绘画兴趣小组的人数为12,所以参加绘画兴趣小组的频率是12÷40=0.3.故选D .10.C 11.31 解析:根据题意知在数据中,共33个数字,其中11个9,故数字9出现的频率是313311 . 12.5013. 抽样调查 解析:这个调查个体数量多,范围广,工作量大,不宜采用全面调查,只能采用抽样调查.14.80 解析:平均数=101(65+70+85+74+86+78+74+92+82+94)=80(只). 15.20 0.4 解析:根据题意,得第四组数据的个数即=50-(2+8+15+5)=20,其频率为5020=0.4. 16.7 解析:由题意可知,极差为19-12=7.17.七年级新生的身高情况 所抽出的40名新生的身高情况 4018. 6 0.3 619.分析:根据题意可知需要收集2种数据,本地车辆与外地车辆的数据,汽车牌照的尾号的数据,设计表格合理即可.解:(1)2;(2)上午 下午 车牌尾号外地车辆本地车辆 20. 分析:调查问卷是管理咨询中一个获取信息的常用方法.设计问卷调查应该注意:1.提问不能涉及人的隐私;2.提问不要问他人已经回答的问题;3.提问的选择答案要尽可能简单详细;4.问题要简明扼要;5.问卷调查要简单易懂.解:抄袭和不完成作业是不好的行为,勇于承认错误不是每个人都能做到的,所以,这样的问题设计得不好,容易失真.21. 分析:(1)利用全面调查和抽样调查的特点即可解决问题;(2)根据表格,可知求这个班同学每周做家务的人数最多的时间即是求这组数据的众数,表格中第二行最小的数字所对应的第一行的时间即为做家务的人数最少的时间;(3)根据实际情况,让学生结合自己谈主观感受即可.解:(1)全面调查;(2)每周做3小时的人最多,做0小时或1小时的人最少.(3)从表中可以看出,这个班的同学每周做家务的时间大部分在2~3个小时,平均每天做一二十分钟,有的甚至一点也不做,我感到我们中学生做家务的时间用得太少,我们不但应该搞好自己的学习,同时也要更多地做些力所能及的家务,一方面减轻父母的负担,另一方面提高我们的自理能力.22. 分析:(1)根据频数与频率的概念可得答案;(2)根据频数的概念,读表可得2月份生日的频数,即可得答案.解:(1)读表可得:10月份出生的学生的频数是5,频率为405=0.125. (2)2月份有4位同学过生日,因此应准备4份礼物.23. 分析:(1)谁的成绩变化幅度大实际上是比较极差的大小,因为极差反映了一组数据变化范围的大小.(2)利用极差公式求即可.解:(1)因为甲中找出数据中最大的值为9,最小值为5,故极差是4,乙中找出数据中最大的值为10,最小值为2,极差是8,所以乙成绩变化的幅度大;(2)从数据中找出成绩相差大的是第一次,相差9-2=7(环).24.分析:根据平均数的求法求出平均数,再用样本估计总体的方法求出产量总和即可解答. 解:40434403650=+++=-甲x (千克),40436484036=+++=-乙x (千克), 总产量为40×100×98%×2=7 840(千克).25. 分析:(1)用10吨~15吨的用户除以所占的百分比,计算即可得解;(2)用总户数减去其他四组的户数,计算求出15吨~20吨的用户数,然后补全统计图即可,用“25吨~30吨”所占的百分比乘360°计算即可得解;(3)用享受基本价格的用户数所占的百分比乘以20万,计算即可.解:(1)10÷10%=100(户);(2)100-10-36-25-9=100-80=20户,画直方图如图,第25题答图25100×360°=90°; (3)102036100++×20=13.2(万户). 答:该地20万用户中约有13.2万户居民的用水全部享受基本价格.附:小学数学学习方法第一:无论是小学数学还是高中数学,理论知识都是大同小异的。

人教版七年级《数学》下册变式题

人教版七年级《数学》下册变式题

人教版七年级《数学》下册变式题一、课本题典用加减法解下列方程组:( 人教版七年级《数学》下册第103页3(2))分析:方程组中两个方程的未知数b的系数都是1,故把两个方程相减,可消掉未知数b,得关于a的一元一次方程,解出未知数α的值,进而解出未知数b。

解:②-①得:α=1将α=1代入方程①得:b=1∴点评:方程组中同一个未知数的系数相等或互为相反数时,用减法或加法消去该未知数;方程组中同一个未知数的系数的绝对值不等时,将该未知数的系数变成最小公倍数,再用加减法消去该未知数。

演变:变式1:解方程组(1)(2)答案:(1)(2)变式2:已知和都满足等式y=KX+b(1)求K、b的值;(2)求X=8时,y的值;(3)X为多少时,y=3?答案:(1)(2)y=0 (3)X=143:甲、乙两人同解方程组甲正解解为X-2y=33X—8y=132α+b=3①3α+b=4②α=1b =1X+2y=13X-2y=11X=3y=-1X= —1y= -2X=4y=-2X=-2y=-5K=0.5b=-4αx+by=2CX-3y=-2X=1y =-1乙因为抄错C ,解得求α、b 、 C 的值;答案:α=2.5;b=0.5;C =-5方程组 的解共有组。

答案:4。

已知(X -y+1)2 +|2X+y -7|=0,则X 2-3xy+2y 2值为( )A.0B.4C.6D.12答案:B变式4 以方程组 的解为坐标的点(X 、y )在平面直角坐标系中的位置是( )A.第一象限B.第二象限C.第三象限D.第四象限答案:A 。

二、动手演绎题目:一个长方形的长减少5cm ,宽增加2cm ,就成为一个正方形,并且这两个图形的面积相等,这个长方形的长、宽各是多少?(人教课本P104 9)分析:如图设长AB=X cm ;宽BC=y cm ;直接利用长方形、正方形面积相等得方程(X -5)(y+2)=XY 但学生未学多项式乘法,不会化简(X -5)(y+2) B y CX=2y=-6|X+y|+|x|=42|X+y|+3|X|=9y=-x+2y=X -1A D可根据长方形EBCF 的面积等于长方形DFGH 的面积,列方程2(X -5)=5y ,进而列出二元一次方程组根据题意,问什么就设什么,再把中文语言翻译成数学语言,或者找题目中的等式。

2020—2021年人教版初中数学七年级下册不等式的应用答案解析版(精品提分试题).doc

2020—2021年人教版初中数学七年级下册不等式的应用答案解析版(精品提分试题).doc

人教版七年级数学《不等式的应用》解集1.七年级(1)班师生共30人准备在五•一期间到某地去旅游,班主任刘老师了解到甲乙两家旅行社服务项目和服务质量相同,且甲旅行社平时收费为每人300元,但假期对教师实行8折优惠,对学生实行5折优惠:乙旅行社平时收费为每人280元,假期对教师和学生均实行6折优惠。

请你分析刘老师一行将如何选择旅行社。

解:设选择甲旅行杜的费用为y1,选样乙旅行社的费用为y2元.李老师一行有教师x人,则:y1=0.8×300x +0.5×300(30一x),即y1=90x十4500,y2=0.6×280×30=5040当y1=y2时,90x十4500=5040,解得x=6.当y1<y2时,90x十4500<5040,解得x<6.当y1>y2时,90x十4500>5040,解得x>6.∴当李老师一行中有6名教师时。

选样甲乙两家旅行社的费用相同;当教师人数少于6人时.应选择甲旅行社;当教师人数多于6人时.应选样乙旅行社。

2.某学校计划暑假期间组织部分师生到某地旅游,甲、乙两家旅行社的服务项目与服务质量相同,且报价都是每人1000元,经协商,甲旅行社表示可以给予每位游客七五折优惠,乙旅行社表示可免去10位游客的费用,其余八折优惠,该学校选哪家旅行社合算?解:设一共的旅游人数为x人,则选择甲旅行社需要的费用为1000×0.75x=750x(元),选择乙旅行社需要的费用为:1000(x-10)×0.8=800x-8000元.得到750x-(800x-8000)=-50x+8000①当50x+8000>0时,得x<160;②当50x+8000=0时,得x=160;③当50x+8000<0时,得x>160.答:旅游人数小于160人时,选乙旅行社合算;旅游人数大于160人时,选甲旅行社合算;旅游人数刚好为160人时选择两家旅行社都一样.3.某校计划在“十一”期间组织教师到某地参观旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可给予每位游客7.5折优惠.乙旅行社表示可免去一位游客的旅游费用,其余游客8折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解:设该单位参加旅游的人数为x人,选择甲旅行社的费用为y甲元,选择乙旅行社的费用为y乙元.则y甲=200×0.75x=150x,y乙=200×0.8(x-1)=160x-160.当y甲=y乙时,即150x=160x-160,解得x=16;当y甲>y乙时,即150x>160x-160,解得x<16;当y甲<y乙时,即150x<160x-160,解得x>16.所以,当人数为16人时,甲、乙旅行社费用相同,当人数为17~25人时,选甲旅行社费用较少,当人数为10~15时,选乙旅行社费用较少.4.某单位计划“元旦”组织员工到某地旅游,A、B两旅行社的服务质量相同,且组织到该地旅游的价格都是每人300元.该单位在联系时,A旅行社表示可给予每位旅客七五折优惠,B旅行社表示可免去一位旅客的费用,其余八折优惠.(1)当该单位旅游人数多少时,支付给A、B两旅行社的总费用相同.(2)若该单位共有30人参加此次旅游,应选择哪家旅行社,使总费用更少?解:(1)设A旅行社费用为y1,B旅行社费用为y2,该单位旅游人数为x,由题意得:y1=300×0.75x=225x,y2=300×0.8×(x-1)=240x-240,(2分)令y1=y2,即225x=240x-240,解得:x=16,答:该单位的旅游人数为16人时,A、B两家旅行社所收费用相同;(2)若选择A旅行社,y1=225×30=6750元若选择B旅行社,y2=240×30-240=6960元∴应选A旅行社.5.“五一”期间,某校由4位教师和若干学生组成的旅游团到某地旅游,甲旅行社的收费标准是:如果买4张全票,则其余人按七折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,旅游团体票按原价的八折优惠.这两家旅行社的全票价均为每人300元.(1)若有10位学生参加该旅游团,问选择哪家旅行社更省钱?(2)参加旅游团的学生人数是多少时,两家旅行社收费一样?解:(1)住甲旅行社付款4×300+10×0.7×300=3300(元),住乙旅行社付款14×0.8×300=3360(元).从上可知应选择甲旅行社更省钱;(2)设参加旅游团的学生有x人时,两家旅行社收费一样,由题意得,4×300+0.7x×300=0.8(x+4)×300,解得x=8.答:当参加旅游团的学生有8人时,两家旅行社收费一样.6.小明的妈妈暑期准备带领小明和亲戚家的几位小朋友组成旅游团赴某地旅游.甲旅行社的促销办法是“带队的一位大人买全票,其余小朋友按团体票半价优惠”;乙旅行社的促销办法是“包括带队的大人在内,一律按全票价的六折优惠”.如果两家的服务质量相同,票价每张均是240元.(1)小孩人数为多少时,两家旅行社收费总数一样?(2)就小孩人数讨论哪家旅行社更优惠.解:(1)设当小孩人数为x时,两家旅行社收费总数一样,甲旅行社的收费总数:240+120x乙旅行社的收费总数:(x+1)×240×0.6若两家收费相同,则:240+120x=(x+1)×240×0.6解得:x=4故小孩人数为4人时,两家旅行社收费总数一样.(2)甲旅行社的收费总数:240+120x乙旅行社的收费总数:(x+1)×240×0.6由第一问可知,当x=4时,两家收费总数相等;当x<4时,240+120x>(x+1)×240×0.6,故乙旅行社更优惠;当x>4时,240+120x<(x+1)×240×0.6,故甲旅行社更优惠.7.一家三口(父亲、母亲、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母全票,女儿按半价优惠”;乙旅行社告知:“家庭旅游可按团体票计价,即每人均按全价的80%收费”.如果这两家旅行社每人的原票价相同,那么应选择哪家旅行社比较合算?解:设每人的原票价为a元,1=2.5a(元),如果选择甲,则所需要费用为2a+ a2如果选择乙,则所需费用为3a×80%=2.4a(元),因为a>0,2.5a>2.4a,所以选择乙旅行社较合算.8.在“五•一”期间,某公司组织员工外出某地旅游.甲、乙两家旅行社为了吸引更多的顾客,分别推出了赴该地旅游的团体优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按原价五折优惠;乙旅行社的优惠办法是:一律按原价6折优惠.已知这两家旅行社的原价均为a元,且在旅行过程中的各种服务质量相同.如果你是该公司的负责人,你会选择哪家旅行社.解:设有x人参加旅游(1分)当4a+0.5a(x-4)=0.6ax时,x=20(4分)当4a+0.5a(x-4)>0.6ax时,x<20(6分)当4a+0.5a(x-4)<0.6ax时,x>20(8分)答:当参加人数为20人时,任选取一家;当参加人数少于20人时,选乙旅行社;当参加人数多于20人时,选甲旅行社.(9分)(方法不唯一).9.希望小学学生王晶和他的爸爸、妈妈准备在“元旦”期间外出旅游.阳光旅行社的收费标准为:大人全价,小孩半价;而蓝天旅行社不管大人小孩,一律八折.这两家旅行社的基本费一样,都是300元,你认为应该去哪家旅行社较为合算?为什么?解:阳光旅行社的收费为:2×300+150=750(元);蓝天旅行社的收费为:300×0.8×3=720(元).∵720<750,∴应该去蓝天旅行社较为合算.10.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×4000+0.7×4000x=2800x+8000,y2=(x+2)×0.8×4000=3200x+6400,若y1>y2,即2800x+8000>3200x+6400,解得x<4;若y1=y2,即2800x+8000=3200x+6400,解得x=4;若y1<y2,即2800x+8000<3200x+6400,解得x>4.所以①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.11.某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠”;乙旅行社说:“教师在内全部按票价的6折优惠”.若甲、乙两家旅行社原票价每人都是240元.问题:(1)当学生人数为10人时,两家旅行社费用分别为多少?(2)当学生人数是多少时,两家旅行社收费一样多?解:(1)当学生人数为10人,乙旅行社的费用为:144×(10+1)=1584(元).甲旅行社的费用为:120×10+240=1400(元);(2)设学生人数为x,根据题意得:144(x+1)=120x+240,解得:x=4.答:当学生人数为4的时候,两家旅行社的收费一样多.12.暑假期间,两名老师计划带领若干名学生去三亚旅游,他们联系了报价均为每人400元的两家旅行社.经协商,甲旅行社的优惠条件是:两名老师全额收费,学生都按六折收费;乙旅行社的优惠条件是:老师,学生都按七折收费.假设这两名老师带领x名学生去旅游,他们应该选择哪家旅行社?解:设选择甲旅行社时,所需的费用为y1元,选择乙旅行社时,所需的费用为y2元,则y1=400×2+400×0.6x,即y1=240x+800y2=(2+x)×400×0.7,即y2=280x+560由y1=y2,得240x+800=280x+560解得x=6;由y1>y2,得240x+800>280x+560解得x<6;由y1<y2,得240x+800<280x+560解得x>6.所以,当x=6时,甲、乙两家旅行社的收费相同:当x<6时,选择乙旅行社费用较少;当x>6时,选择甲旅行社费用较少.13.“五•一”黄金周期间,我校某班主任要带领“三好学生”去某地参观,甲旅行社说:“如果老师买全票一张,其余学生可享受半价优惠”,乙旅行社说:“包括老师在内,按全票价地六折优惠”,若全票价为240元.(1)若有10名学生,则应参加哪个旅行社更省钱?说明理由.(2)当学生人数是多少时,两家旅行社地收费一样多?解:(1)甲旅行社的收费为:240×10×0.5+240=1440元;乙旅行社的收费为:204×(10+1)×0.6=1584元;∵1584>1440,∴选择甲旅社合适.答:如果有10名学生,应参加甲旅行社.(2)设当学生人数为x人时,两家旅行社收费一样多,则可得:240×x×0.5+240=240(x+1)×0.6,解得:x=4.答:当学生人数是4人时,两家旅行社收费一样多.14.某学校计划暑假组织部分教师到张家界去旅游,估计人数在7~13人之间.甲、乙旅行社的服务质量相同,且对外报价都是300元,该单位联系时,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示,可先免去一位游客的旅游费用,其余游客九折优惠.①分别写出两旅行社所报旅游费用y与人数x的函数关系式.②若有11人参加旅游,应选择那个旅行社?③人数在什么范围内,应选甲旅行社;在什么范围内,应选乙旅行社?解:①对甲旅社,y甲=300×0.8x=240x;对乙旅社,y乙=300×0.9×(x-1)=270x-270;②若选择甲旅行社,y甲=240×11=2640若选择乙旅行社,y乙=300×0.9×(11-1)=2700∴应选甲旅行社.③若选甲旅行社,则令y甲<y乙,即240x<270x-270,解得:x>9若选乙旅行社,则令y甲>y乙,即240x>270x-270,解得:x <9当x=9时,y甲=y乙,即所需费用一样.∴当人数为9人时,选两家旅行都是一样.当人数少于9人时,应选乙旅行社;当人数多于9人时,应选甲旅行社.15.2010年世博会在上海隆重举办,暑假期间,两名家长计划带领若干名学生去参观游览上海世博园,他们联系了报价为每人4000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折;乙旅行社的优惠条件是:家长,学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×4000+0.7×4000x=2800x+8000,y2=(x+2)×0.8×4000=3200x+6400,若y1>y2,即2800x+8000>3200x+6400,解得x<4;若y1=y2,即2800x+8000=3200x+6400,解得x=4;若y1<y2,即2800x+8000<3200x+6400,解得x>4.所以当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.16.某家庭准备利用假期到某地旅游,有甲、乙两家旅行社提供两种优惠方案,甲旅行社的方案是:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社的方案是:家庭旅游算集体票,可按七五折优惠.如果甲、乙两家旅行社的原价相同,请问该家庭选择哪家旅行社外出旅游合算?解:设该家庭除户主外,还有x人参加旅游,甲、乙两旅行社收费总金额分别为y1和y2.一张全票价格为a元,那么y1=a+0.55ax,y2=0.75(x+1)a.∴y1-y2=a+0.55ax-0.75a(x+1)=0.2a(1.25-x).∴当x>1.25时,y1<y2;当x<1.25时,y1>y2.又因x为正整数,所以当x=1,即两口之家应选择乙旅行社;当x≥2,即三口之家或多于三口的家庭应选择甲旅行社.17. (2010•梧州)2010年的世界杯足球赛在南非举行.为了满足球迷的需要,某体育服装店老板计划到服装批发市场选购A、B两种品牌的服装.据市场调查得知,销售一件A品牌服装可获利润25元,销售一件B品牌服装可获利润32元.根据市场需要,该店老板购进A种品牌服装的数量比购进B种品牌服装的数量的2倍还多4件,且A种品牌服装最多可购进48件.若服装全部售出后,老板可获得的利润不少于1740元.请你分析这位老板可能有哪些方案?解:设购进B种品牌服装的数量为x件,购A种品牌服装的数量为2x+4件.则()⎩⎨⎧≥++≤+17403242254842x x x 解得20≤x ≤22. ∵x 为整数,∴x 取20,21,22∴2x+4取44,46,48(4分)答:方案①A 种品牌44件,B 种品牌20件;②A 种品牌甲款46件,B 种品牌21件;③A 种品牌甲款48件,B 种品牌22件.18.甲、乙两家旅行社为了吸引更多的顾客,分别提出了赴某地旅游的团体优惠方法,甲旅行社的优惠方法是:买4张全票,其余人按半价优惠;乙旅行社的优惠方法是:一律按7折优惠,已知两家旅行社的原价均为每人100元;那么随着团体人数的变化,哪家旅行社的收费更优惠?解:设参加旅游的人数为x 人,甲、乙旅行社的收费分别为y 1元、y 2元,依题意得,y 1=4×100+(x-4)×100×21=50x+200,y 2=100x ×107=70x , 由y 1=y 2得:50x+200=70x ,解得:x=10,由y 1>y 2得:50x+200>70x ,解得:x <10,由y 1<y 2得:50x+200<70x ,解得:x >10,综上所述,当人数x=10时,两家旅行社的收费一样多, 当人数x <10时,乙旅行社的收费较优惠,当人数x >10时,甲旅行社的收费较优惠.19.暑假学校准备组织一批学生参加夏令营,联系了甲,乙两家旅行社,他们的服务质量相同,且入营费都是每人200元.经过协商,甲旅行社表示可以给每位入营队员七五折优惠;乙旅行社表示可先免去一位带队老师的费用,其余的入营队员八折优惠.请问应该选择哪家旅行社,才能使费用最少?解:设参加夏令营的有x人,总费用为y元,根据题意得:y甲=200×0.75=150xy乙=200×0.8×(x-1)=160(x-1)(1)若y甲=y乙得x=16(2)若y甲>y乙得x<16(3)若y甲<y乙得x>16答:当参加夏令营的人数等于16人时,两家旅行社的费用一样;当参加夏令营的人数少于16人时,乙旅行社的费用较低,故选乙;当参加夏令营的人数多于16人时,甲旅行社的费用较低,故选甲.20.一个由3个大人和4个孩子组成的家庭去某地旅游.甲施行社的收费标准是:如果买4张全票,则其余人按半价优惠;乙施行社的收费标准是:家庭旅游算团体票,按原价的25%优惠.这两家旅行社的原价均为每人100元.这个家庭选择哪家旅行社所花的费用少?当小孩数是5时,这个家庭选择哪家旅行社所花的费用少?比较随着小孩数的增多,哪家旅行社收费更优惠?100=550元,解:小孩数是4时,甲旅行社费用:4×100+3×2乙旅行社费用:700×(1-25%)=525元,选择乙.100=600元,小孩数是5时,甲旅行社费用:4×100+4×2乙旅行社费用:800×(1-25%)=600,都可以.100=650元,小孩数是6时,甲旅行社费用:4×100+5×2乙旅行社费用:900×(1-25%)=675元,选择甲.故小孩数多于5时,选择甲所花费用少.21.(2002•龙岩)“元旦”期间,某学校由4位教师和若干位学生组成的旅游团,到某风景区旅游.甲旅行社的收费标准是:如果买4张全票,则其余人按7折优惠;乙旅行社的收费标准是:5人以上(含5人)可购团体票,游团体票按原价的8折优惠.这两家旅行社的全票价均为每人300元.(1)若有10位学生参加该旅游团,问选择哪家旅行社更省钱?(2)设参加该旅游团的学生为x人,问人数在什么范围内时,选择乙旅行社更省钱?解:(1)若有10位学生参加该旅游团,则甲旅行社收费为:4×300+(6+4)×300×70%=3300元;乙旅行社收费为:14×300×80%=3360元.所以,若有10位学生参加该旅游团,选择甲旅行社更省钱.(2)依题意得4×300+(x-4)×300×70%>300×80%x解之得x<12又因为乙旅行社的收费标准是:5人以上(含5人)可购团体票,有8折优惠.所以5<x<12时,选择乙旅行社更省钱.22.某校二年级五班班主任带领该班学生去东山旅游,甲旅行社说:“如果班主任买全票,则其余学生可享受半价优惠”;乙旅行社说:“包括班主任在内全部按全票价的6折优惠”,若全票为每张240元.请问甲、乙两家旅行社收费哪家更合算,说明理由.解:设学生人数为x人,甲旅行社的费用为y1元,乙旅行社的费用为y2元.y1=240+120xy2=240×0.6(x+1)=144x+144当y1=y2时240+120x=144x+144,x=4当y1>y2时x<4当y1<y2时x>4答:学生为4人时两旅行社费用一样,超过4人选甲旅行社,不到4人选乙旅行社.。

人教版七年级数学下册第九章第二节一元一次不等式复习试题(含答案) (65)

人教版七年级数学下册第九章第二节一元一次不等式复习试题(含答案) (65)

人教版七年级数学下册第九章第二节一元一次不等式习题(含答案)学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过400元,则最多可以购买菊花多少盆?【答案】最多可以购买菊花20盆.【解析】【分析】设需要购买绿萝x 盆,则需要购买菊花(30-x )盆,根据“购买菊花和绿萝的总费用不超过400元”列出不等式并解答.【详解】解:设需要购买菊花x 盆,则需要购买绿萝()30x -盆,则()16830400x x +-≤,解之得:20x ≤.答:最多可以购买菊花20盆 .【点睛】考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.42.重百超市对出售A 、B 两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a 的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.【答案】(1)a=10;(2)当0<x≤33时,选择方案一得最大优惠;当x >33时,采用方案二更加优惠,理由见解析【解析】【分析】(1)根据题意列出50×120×0.7+40×150×(1-a%)=9600方程解答即可;(2)根据题意列出两种方案的需付款,进而比较即可.【详解】解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即只能即0<x≤33时,选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当0<x≤33时,选择方案一得最大优惠;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)【点睛】本题考查一元一次方程和一元一次不等式的应用,解题的关键是明确题意,列出正确的方程或不等式,找出所求问题需要的条件.43.(1)计算:22(9)3---÷+(2)解不等式:2(5)4x->x>.【答案】(1)4;(2)7【解析】【分析】(1)先计算乘方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【详解】(1)原式13344=++=4; (2)2(5)4x ->,2104x -> ,214x >,7x >.【点睛】此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.44.m 是什么自然数时,关于x 的方程()18-82m x x m +=+的解不小于零【答案】m 的值为0,1,2.【解析】【分析】先将m 看成已知,然后解关于x的一元一次方程,然后根据解不小于零,x 的值,列出不等式并求解,最后结合m为自然数的条件即可解答.【详解】解:188()2m x x m -+=+188820m x x m ----=10188x m m -=-++10189x m =-18910m x -= 由题意得x 0≥即189010m -≥1890m -≥2m ≤∵m 为自然数∴m 的值为0,1,2【点睛】本题考查了解一元一次不等式和一元一次方程,弄清题意、列出关于m 的不等式是解答本题的关键.45.解不等式21232x x +--<,并求出非正整数解. 【答案】5x >-,非正整数解为-4,-3,-2,-1,0.【解析】【分析】先求出不等式的解集,然后确定不等式的非正整数解即可.【详解】解:2(2)3(1)12x x +--<243312x x +-+<5x >-非正整数解为-4,-3,-2,-1,0.【点睛】本题考查了解一元一次不等式和不等式的整数解,根据不等式的解集确定非正整数解是解本题的关键.46.某书店最近有,A B 两本散文集比较畅销,近两周的销售情况是:第一周A 销售数量是15 本,B 销售数量是10本,销售总价是230元;第二周A 销售数量是20本,B销售数量是10本,销售总价是280元.()1求,A B散文集的销售单价,()2若某班准备用不超过407元钱购买,A B散文集共45本,求最多能买多少本A散文集?【答案】(1)A散文集的销售单价为每本10元,B散文集的销售单价为每本8元;(2)最多能够买23本A散文集.【解析】【分析】(1)根据题意,列出二元一次方程组求解即可;(2)根据题意,列出不等式,求解即可.【详解】()1设A散文集的销售单价为每本x元,B散文集的销售单价为每本y元根据题意,得1510230 2010280x yx y+=⎧⎨+=⎩解得108 xy=⎧⎨=⎩答:A散文集的销售单价为每本10元,B散文集的销售单价为每本8元()2设能够买a本A散文集,得:()10845407a a+-≤,解得:23.5a≤,则最多能够买23本A散文集【点睛】此题主要考查二元一次方程组以及不等式的实际应用,解题关键是理解题意,列出关系式.47.某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?【答案】(1)A种款式的服装采购了65件,B种款式的服装采购了35件;(2)A种款式的服装最多能采购22件.【解析】【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,根据总价=单价×数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,根据总价=单价×数量结合总费用不超过3300元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【详解】解:(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,依题意,得:80x+40(100﹣x)=6600,解得:x=65,∴100﹣x=35.答:A种款式的服装采购了65件,B种款式的服装采购了35件.(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,依题意,得:80m+40(60﹣m)≤3300,解得:m≤221.2∵m为正整数,∴m的最大值为22.答:A种款式的服装最多能采购22件.【点睛】本题考查的是一元一次方程以及不等式在实际生活中的应用,难度不高,认真审题,列出方程是解决本题的关键.48.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示设安排x件产品运往A地,(1)当n=200时,①根据信息填表:②若运往B地的件数不多于运往C地的件数,求该企业最少需要多少运费?(2)若总运费为5800元,求n的最小值.【答案】(1)①见解析;②企业运费最少需要3840元;(2)n有最小值为221【解析】【分析】(1)①根据题意,直接把产品数量和运费填入表格,即可;②由“运往B 地的件数不多于运往C地的件数”,列出关于x的不等式,求出x的范围,再根据总运费的表达式,求出答案即可;(2)根据题意,列出关于n和x的等式,得到n与x关系式,结合n﹣3x ≥0,求出x的范围,进而即可求解.【详解】(1)①根据信息填表,如下:②由题意,得:200﹣3x≤2x,解得:x≥40,总运费=56x+1600,∵56>0,∴总运费随x增大而增大,∴x=40,该企业运费最少,最少总运费=56×40+1600=3840(元),答:企业运费最少需要3840元;(2)由题意,得:30x+8(n﹣3x)+50x=5800,整理,得n=725﹣7x,∵n﹣3x≥0,∴725﹣7x﹣3x≥0,∴﹣10x≥﹣725,∴x≤72.5,又∵x≥0,∴0≤x≤72.5且x为正整数,∵n随x的增大而减少,∴当x=72时,n有最小值为221.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.49.某水果生产基地销售苹果,提供两种购买方式供客户选择方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克.方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元).(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式;(备注:按方式购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱;(3)若客户甲采用方式1购买,客户乙采用方式2购买,甲、乙共购买苹果5000千克,总费用共计18000元,则客户甲购买了多少千克苹果?【答案】(1)31200y x =+;(2)当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)客户甲购买了1400千克苹果.【解析】【分析】(1)根据按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价,即可得到答案;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y 元,分别求出12y y <,12y y =,12y y >的解,即可得到答案;(3)设客户甲购买了x 千克苹果,则乙客户购买了(5000-x)千克苹果,分两种情况,分别列出方程,即可求解.【详解】(1)由题意得:31200y x =+;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y元,当1500x >时,2 3.5y x =,若12y y <,则31200 3.5x x +<,解得2400x >,若12y y =,则31200 3.5x x +=,解得2400x =,若12y y >,则31200 3.5x x +>,解得2400x <.答:当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)设客户甲购买了x 千克苹果,①若50001500x -<,即3500x >,由题意得:(31200)4(5000)18000x x ++-=,解得:3200x =,经检验,不合题意,舍去;②若50001500x -≥,即3500x ≤,由题意得:(31200) 3.5(5000)18000x x ++-=,解得:1400x =,经检验,符合题意.答:客户甲购买了1400千克苹果.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,根据数量关系,列出一次函数解析式和一元一次不等式,是解题的关键.50.今年受猪瘟影响,从年初开始,猪肉价格不断走高.消费者王阿姨发现,9月20日当天猪肉的价格是年初的1.5倍;9月20日当天,王阿姨购买4千克猪肉比年初多花了48元.(1)那么9月20日当天猪肉的价格为每千克多少元?(2)9月20日,按照(1)中的猪肉价格,某售卖点共卖出1000千克猪肉.9月21日,政府决定投入储备猪肉并规定其销售价在9月20日的基础上下调0.7%a 出售.该焦卖点按规定价出售一批储备猪肉和非储备猪肉,该售卖点的非储备猪肉仍按9月20日的价格出售,9月21日当天的两种猪肉总销量比9月20日增加了20%,且储备猪肉的销量占总销量的56,两种猪肉销售的总金额比9月20日至少提高了1%10a ,求a 的最大值. 【答案】(1)9月20日当天猪肉的价格为每千克36元;(2)a 的最大值为25.【解析】【分析】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意列出方程,求解即可;(2)根据题意,分别得出9月20日销售金额、储备猪肉每千克的销售价、9月21日当天的两种猪肉总销量、储备猪肉的销量和销售金额、非储备猪肉的销量和销售金额,列出总金额的不等式,解得即可.【详解】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意,得1.54448x x ⨯-=解得24x =经检验24x =是方程的解,∴1.5241.536x =⨯=答:9月20日当天猪肉的价格为每千克36元;(2)由题意,得9月20日销售金额为:36×1000=36000元 储备猪肉每千克的销售价:36(1-0.7%a )9月21日当天的两种猪肉总销量为:1000(1+20%)储备猪肉的销量为:1000(1+20%)×56储备猪肉销售金额为:36(1-0.7%a )×1000(1+20%)×56非储备猪肉的销量为:1000(1+20%)×16非储备猪肉销售金额为:36×1000(1+20%)×169月21日两种猪肉销售的总金额为:36(1-0.7%a )×1000(1+20%)×56+36×1000(1+20%)×16≥36000(1+1%10a ) 解得%25%a ≤故a 的最大值为25.【点睛】此题主要考查一元一次方程和不等式的实际应用,解题关键是理解题意,列出关系式.。

人教版数学七年级下册第8章 二元一次方程组 复习题(解析版)

人教版数学七年级下册第8章 二元一次方程组 复习题(解析版)

第8章二元一次方程组复习题一.选择题(共25小题)1.(2019•无锡)已知方程组,则x﹣y的值为()A.B.2 C.3 D.﹣22.(2019•朝阳)关于x,y的二元一次方程组的解是,则m+n的值为()A.4 B.2 C.1 D.03.(2019•鸡西)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种4.(2019•长春)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.5.(2019•齐齐哈尔)学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有()A.3种B.4种C.5种D.6种6.(2019•贺州)已知方程组,则2x+6y的值是()A.﹣2 B.2 C.﹣4 D.47.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.8.(2019•天门)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种9.(2019•孝感)已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣6 D.610.(2019•荆门)已知实数x,y满足方程组则x2﹣2y2的值为()A.﹣1 B.1 C.3 D.﹣311.(2019•兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为()A.B.C.D.12.(2019•乐山)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11 B.7,53 C.7,61 D.6,5013.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.14.(2019•宁波)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元15.(2019•巴中)已知关于x、y的二元一次方程组的解是,则a+b的值是()A.1 B.2 C.﹣1 D.016.(2019•台州)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=17.(2019•舟山)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y 两,根据题意可列方程组为()A.B.C.D.18.(2019•台湾)某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?()参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A.16 B.19 C.22 D.2519.(2019•青海)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g20.(2018•朝阳)鸡兔同笼,从上面数,有20个头;从下面数,有60条腿,设鸡有x只,兔有y只,则下列方程组正确的是()A.B.C.D.21.(2018•牡丹江)如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35 B.45 C.55 D.6522.(2018•齐齐哈尔)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有()A.1种B.2种C.3种D.4种23.(2018•吉林)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.24.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.1525.(2018•杭州)某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=60二.填空题(共5小题)26.(2019•铁岭)若x,y满足方程组,则x+y=.27.(2019•常州)若是关于x、y的二元一次方程ax+y=3的解,则a=.28.(2019•眉山)已知关于x,y的方程组的解满足x+y=5,则k的值为.29.(2019•黔东南州)已知是方程组的解,则a+b的值为.30.(2019•临沂)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.三.解答题(共5小题)31.(2019•娄底)某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:类别成本价(元/箱)销售价(元/箱)甲2535乙3548求:(1)购进甲、乙两种矿泉水各多少箱?(2)该商场售完这500箱矿泉水,可获利多少元?32.(2019•百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?33.(2019•呼和浩特)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.34.(2019•烟台)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?35.(2019•淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?第8章二元一次方程组复习题参考答案与试题解析一.选择题(共25小题)1.【分析】直接利用两方程相减得出x﹣y的值.【解答】解:由方程组可得:2x+y﹣(x+2y)=4﹣1=3,则x﹣y=3,故选:C.【点评】此题主要考查了解二元一次方程组,利用整体思想分析是解题关键.2.【分析】把x与y的值代入方程计算求出m与n的值,代入原式计算即可求出值.【解答】解:把代入得:,解得:,则m+n=0,故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.【分析】设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,根据方程可得三种方案;【解答】解:设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有,,,∴方案一共有3种;故选:B.【点评】本题考查二元一次方程的应用;熟练掌握二元一次方程的解法是解题的关键.4.【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案.【解答】解:设人数为x,买鸡的钱数为y,可列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.5.【分析】设购买A品牌足球x个,购买B品牌足球y个,根据总价=单价×数量,即可得出关于x,y 的二元一次方程,结合x,y均为正整数即可求出结论.【解答】解:设购买A品牌足球x个,购买B品牌足球y个,依题意,得:60x+75y=1500,∴y=20﹣x.∵x,y均为正整数,∴,,,,∴该学校共有4种购买方案.故选:B.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程.6.【分析】两式相减,得x+3y=﹣2,所以2(x+3y)=﹣4,即2x+6y=﹣4.【解答】解:两式相减,得x+3y=﹣2,∴2(x+3y)=﹣4,即2x+6y=﹣4,故选:C.【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.7.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.8.【分析】可列二元一次方程解决这个问题.【解答】解:设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为正整数,∴,,,.故选:B.【点评】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.9.【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+x=1,解得,∴==故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.【分析】首先解方程组,求出x、y的值,然后代入所求代数式即可.【解答】解:,①+②×2,得5x=5,解得x=1,把x=1代入②得,1+y=2,解得y=1,∴x2﹣2y2=12﹣2×12=1﹣2=﹣1.故选:A.【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y的方程组是关键.11.【分析】根据题意,可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.12.【分析】设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设有x人,物价为y,可得:,解得:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.13.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.【分析】设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10﹣8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y﹣4,∴y=x+7,∴5x+3y+10﹣8x=5x+3(x+7)+10﹣8x=31.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.【分析】将代入即可求出a与b的值;【解答】解:将代入得:,∴a+b=2;故选:B.【点评】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.16.【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.17.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.18.【分析】设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意列出二元一次方程,求出其解.【解答】解:设此旅行团有x人单程搭乘缆车,单程步行,其中去程及回程均搭乘缆车的有y人,根据题意得,,解得,,则总人数为7+9=16(人)故选:A.【点评】本题是二元一次方程组的应用,主要考查了列二元一次方程组解应用题,关键是读懂题意,找出等量关系,列出方程组.19.【分析】根据图可得:3块巧克力的重=2个果冻的重;1块巧克力的重+1个果冻的重=50克,由此可设出未知数,列出方程组.【解答】解:设每块巧克力的重x克,每个果冻的重y克,由题意得:,解得:.故选:C.【点评】此题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的相等关系,列出方程组.20.【分析】设鸡有x只,兔有y只,根据鸡和兔共有20个头60条腿,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设鸡有x只,兔有y只,依题意,得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.21.【分析】设小长方形的长为x,宽为y,观察图形可得出关于x、y的二元一次方程组,解之即可求出x、y的值,再利用阴影部分的面积=大矩形的面积﹣5×小矩形的面积,即可求出结论.【解答】解:设小矩形的长为x,宽为y,根据题意得:,解得:,∴S阴影=15×12﹣5xy=45.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.【分析】设安排女生x人,安排男生y人,由“累计56个小时的工作时间”列出方程求得正整数解.【解答】解:设安排女生x人,安排男生y人,依题意得:4x+5y=56,则x=.当y=4时,x=9.当y=8时,x=4.当y=0时,x=14.即安排女生9人,安排男生4人;安排女生4人,安排男生8人.安排女生14人,安排男生0人.共有3种方案.【点评】考查了二元一次方程的应用.注意:根据未知数的实际意义求其整数解.23.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.24.【分析】设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据前两束气球的价格,即可得出关于x、y的方程组,用前两束气球的价格相加除以2,即可求出第三束气球的价格.【解答】解:设一个笑脸气球的单价为x元/个,一个爱心气球的单价为y元/个,根据题意得:,方程(①+②)÷2,得:2x+2y=18.故选:B.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.【点评】考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20,避免二.填空题(共5小题)26.【分析】方程组利用加减消元法求出解得到x与y的值,代入原式计算即可求出值.【解答】解:,①+②得:4x=20,解得:x=5,把x=5代入②得:y=2,则x+y=2+5=7,故答案为:7【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.27.【分析】把代入二元一次方程ax+y=3中即可求a的值.【解答】解:把代入二元一次方程ax+y=3中,a+2=3,解得a=1.故答案是:1.【点评】本题运用了二元一次方程的解的知识点,运算准确是解决此题的关键.28.【分析】首先解方程组,利用k表示出x、y的值,然后代入x+y=5,即可得到一个关于k的方程,求得k的值.【解答】解:,②×2﹣①,得3x=9k+9,解得x=3k+3,把x=3k+3代入①,得3k+3+2y=k﹣1,解得y=﹣k﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:2【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y的方程组是关键.29.【分析】把代入方程组得:,相加可得出答案.【解答】解:把代入方程组得:,①+②得:3a+3b=3,a+b=1,故答案为:1.【点评】本题考查了二元一次方程组的解,属于基础题,关键是把未知数替换为a和b后相加即可.30.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三.解答题(共5小题)31.【分析】(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,根据该商场用14500元购进甲、乙两种矿泉水共500箱,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单箱利润×销售数量,即可求出结论.【解答】解:(1)设购进甲矿泉水x箱,购进乙矿泉水y箱,依题意,得:,解得:.答:购进甲矿泉水300箱,购进乙矿泉水200箱.(2)(35﹣25)×300+(48﹣35)×200=5600(元).答:该商场售完这500箱矿泉水,可获利5600元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.32.【分析】(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,依题意,得:,解得:.答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a千米,则乙、丙两地相距(90﹣a)千米,依题意,得:=,解得:a=.答:甲、丙两地相距千米.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.33.【分析】(1)设小王的实际车时间为x分钟,小张的实际行车时间为y分钟,根据两人付给滴滴快车的乘车费相同列方程求解即可;(2)根据“等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟”列二元一次方程,将其与(1)中的二元一次方程联立即可求解.【解答】解:(1)设小王的实际行车时间为x分钟,小张的实际行车时间为y分钟,由题意得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7)∴10.8+0.3x=16.5+0.3y0.3(x﹣y)=5.7∴x﹣y=19∴这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:化简得①+②得2y=36∴y=18 ③将③代入①得x=37∴小王的实际乘车时间为37分钟,小张的实际乘车时间为18分钟.【点评】本题考查了二元一次方程和二元一次方程组在实际问题中的应用,根据等量关系列方程或方程组是解题的关键.34.【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量﹣2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.35.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,求解即可;【解答】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;【点评】本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.。

人教版七年级下册数学《一元一次不等式》不等式与不等式组教学说课复习课件指导

人教版七年级下册数学《一元一次不等式》不等式与不等式组教学说课复习课件指导

(一元一次不等式)

数学建模
不 等

实际问题的解答
检验
数学问题的解 (一元一次不等式的解集)
巩固练习
2.某次知识竞赛共有20道题,每一道题 答 对得10分,答错或不答都扣5分.小明得分 要超过90分,他至少要答对多少道题?
巩固练习
解:设至少要答对 x道题. 10x 5(20 x) 90, 10x 100 5x 90, 10x 5x 90 100, 15x 190, x 12 2 . 3
解一元一次方程的依据是等式的性质.
解一元一次方程的一般步骤是: 去分母,去括号,移项,合并同类项,系数化为1.
例 解下列不等式,并在数轴上表示解集:
(1) 2(1 x) 3
问题(1) 解一元一次不等式的目标是什么?
问题(2) 你能类比一元一次方程的步骤,解这个不等式吗?
例 解下列不等式,并在数轴上表示解集:
怎样将不等式 2 x 2x 1 变形,使变形后的不等
2
3
式不含分母?
例 解下列不等式,并在数轴上表示解集:
(2) 2 x 2x 1
2
3
解:去分母,得 3(2 x) 2(2x 1),
去括号,得 6 3x 4x 2,
移项,得 3x 4x 2 6, 合并同类项,得 x 8,
系数化为1,得 x 8.
步骤
依据
去分母 去括号 移项 合并同类项 系数化为1
不等式的性质2 去括号法则 不等式的性质1 合并同类项法则 不等式的性质2或3
问题8 解一元一次不等式和解一元一次方程 有哪些相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程或 一元一次不等式变形为最简形式.

人教版数学七年级下册知识重点与单元测-第八章8-1二元一次方程(组)的相关概念(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-1二元一次方程(组)的相关概念(能力提升)

第八章 二元一次方程(组)8.1 二元一次方程(组)的相关概念(能力提升)【要点梳理】知识点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个.【典型例题】 类型一、二元一次方程例1.已知方程(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,求m 、n 的值.【答案与解析】解:∵(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,∴n ﹣1=1,|m ﹣1|=1, 解得:n=2,m=0或2,若m=2,方程为2y=2,不合题意,舍去, 则m=0,n=2. 举一反三:【变式1】已知方程3241252m nx y +--=是二元一次方程,则m= ,n= . 【答案】-2,14【变式2】方程(1)(1)0a x a y ++-=,当______a a ≠=时,它是二元一次方程,当时,它是一元一次方程.【答案】1±;11-或 类型二、二元一次方程的解 例2.已知是方程2x ﹣6my+8=0的一组解,求m 的值.【答案与解析】 解:∵是方程2x ﹣6my+8=0的一组解,∴2×2﹣6m ×(﹣1)+8=0,解得m=﹣2. 举一反三:【变式】已知方程2x-y+m-3=0的一个解是11x m y m =-⎧⎨=+⎩,求m 的值.【答案】 解:将11x m y m =-⎧⎨=+⎩代入方程2x-y+m-3=0得2(1)(1)30m m m --++-=,解得3m =.答:m 的值为3.例3.写出二元一次方程204=+y x 的所有正整数解. 【答案与解析】解:由原方程得x y 420-=,因为y x 、都是正整数, 所以当4321, , , =x 时,481216, , , =y . 所以方程204=+y x 的所有正整数解为:⎩⎨⎧==161y x , ⎩⎨⎧==122y x , ⎩⎨⎧==83y x , ⎩⎨⎧==44y x .举一反三: 【变式1】已知是关于x 、y 的二元一次方程ax ﹣(2a ﹣3)y=7的解,求a 的值.【答案】 解:把代入方程ax ﹣(2a ﹣3)y=7,可得:2a+3(2a ﹣3)=7, 解得:a=2.【变式2】在方程0243=-+y x 中,若y 分别取2、41、0、-1、-4,求相应的x 的值.【答案】将0243=-+y x 变形得342yx -=. 把已知y 值依次代入方程的右边,计算相应值,如下表:类型三、二元一次方程组及解 例4.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙看错了方程②中的b .得到方程组的解为54x y =⎧⎨=⎩.试计算:20112010110a b ⎛⎫+- ⎪⎝⎭的值.【答案与解析】 解:把31x y =-⎧⎨=-⎩代入②,得-12+b =-2,所以b =10.把54x y =⎧⎨=⎩代入①,得5a+20=15,所以a =-1, 所以201120112010201011(1)101(1)01010ab ⎛⎫⎛⎫+-=-+-⨯=+-= ⎪ ⎪⎝⎭⎝⎭.举一反三:【变式】已知关于,x y 的二元一次方程组41323x ay x by x y +==⎧⎧⎨⎨+==-⎩⎩的解是 , 求的值a b +. 【答案】解:将13x y =⎧⎨=-⎩代入原方程组得:134332a b -=⎧⎨-+=⎩ ,解得113a b =-⎧⎪⎨=⎪⎩,所以23a b +=-.【巩固练习】一、选择题1.一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) A .5 个 B. 6 个 C.7 个 D.8 个2.方程2x ﹣=0,3x+y=0,2x+xy=1,3x+y ﹣2x=0,x 2﹣x+1=0中,二元一次方程的个数是( )A .5个B .4个C .3个D .2个3.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m 的值为( ) A .4B .﹣4C .D .﹣4.若5x -6y =0,且xy ≠0,则的值等于( )A .23 B. 32C.1D. -1 5.若x 、y 均为非负数,则方程6x=-7y 的解的情况是( ) A .无解 B.有唯一一个解 C.有无数多个解 D.不能确定6.在早餐店里,王伯伯买5个馒头,3个包子,老板少拿2元,只要50元.李太太买了11个馒头,5个包子,老板以售价的九折优待,只要90元.若馒头每个x 元,包子每个y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=-⎧⎨+=÷⎩二、填空题 7.已知方程3241252m nxy +--=是二元一次方程,则m =________,n =_________. 8.若方程组的解为,则点P (a ,b )在第象限.9.在13,72x y ⎧=⎪⎪⎨⎪=⎪⎩ 04x y =⎧⎨=⎩,21x y =⎧⎨=⎩,33x y =⎧⎨=⎩这四对数值中,是二元一次方程组32823x y x y +=⎧⎨-=⎩的解的是________ .10. 方程2x+3y=10 中,当3x-6=0 时,y=_________; 11. 方程|a |+|b |=2 的自然数解是_____________; 12.若二元一次方程组的解中,则等于____________.三、解答题13.请你写出一个二元一次方程组,使它的解是.14.甲、乙二人共同解方程组2623mx y x ny +=-⎧⎨-=-⎩①②由于看错了方程①中的m 值,得到方程组的解为32x y =-⎧⎨=-⎩;乙看错了方程②中的n 的值,得到方程组的解为52x y =-⎧⎨=⎩,试求代数式22m n m n ++的值.15.某球迷协会组织36名球迷租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可租用的汽车有两种:一种是每辆车可乘8人,另一种是每辆车可乘4人.要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最少的租车方案,并简述你的理由.【答案与解析】一、选择题1. 【答案】B;2. 【答案】D;【解析】解:2x ﹣=0是分式方程,不是二元一次方程;3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y﹣2x=0是二元一次方程;x2﹣x+1=0不是二元一次方程.故选:D.3.【答案】【解析】把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.4. 【答案】A;【解析】将5x=6y代入后面的代数式化简即得答案.5. 【答案】B;【解析】76x y=-可知:,x y异号或均为0,所以不可能同时为正,只能同时为0.6. 【答案】B;【解析】根据题意知,x,y同时满足两个相等关系:①老板少拿2元,只要50元;②老板以售价的九折优待,只要90元,故选B.二、填空题7. 【答案】-2,14;【解析】由二元一次方程的定义可得:31241mn+=⎧⎨-=⎩,所以214mn=-⎧⎪⎨=⎪⎩8.【答案】四【解析】:将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P(2,﹣3)在第四象限.9. 【答案】21 xy=⎧⎨=⎩;【解析】把4组解分别代入方程组验证即可.10.【答案】2;【解析】将2x=代入2x+3y=10中可得y值.11.【答案】;12.【答案】-3∶4;【解析】将代入中,得,即;将代入,得,即,即.三、解答题13.【解析】解:答案不唯一,例如:∵,∴x+y=5, x-y=-1,∴所求的二元一次方程组可以是.14.【解析】解:将32xy=-⎧⎨=-⎩代入②中2(3)23n⨯-+=-,32n=.将52xy=-⎧⎨=⎩代入①中-5m+4=-6,m=2.∴229374344 m n mn++=++=.15.【解析】解:(1)设8个座位的车租x辆,4个座位的车租y辆.则8x+4y=36,即2x+y=9.∵ x,y必须都为非负整数,∴ x可取0,1,2,3,4,∴ y的对应值分别为9,7,5,3,1.因此租车方案有5种,任取三种即可.(2)因为8个座位的车座位多,相对日租金较少,所以要使费用最少,必须尽量多租8个座位的车.所以符合要求的租车方案为8个座位的车租4辆.4个座位的车租1辆,此时租车费用为4×300+1×200=1400(元).。

人教版七年级数学下册期末解答题测试题及答案

人教版七年级数学下册期末解答题测试题及答案

人教版七年级数学下册期末解答题测试题及答案一、解答题1.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.2.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?3.如图,用两个面积为2200cm的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm?4.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?5.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二、解答题6.如图1,已AB ∥CD ,∠C =∠A . (1)求证:AD ∥BC ;(2)如图2,若点E 是在平行线AB ,CD 内,AD 右侧的任意一点,探究∠BAE ,∠CDE ,∠E 之间的数量关系,并证明.(3)如图3,若∠C =90°,且点E 在线段BC 上,DF 平分∠EDC ,射线DF 在∠EDC 的内部,且交BC 于点M ,交AE 延长线于点F ,∠AED +∠AEC =180°, ①直接写出∠AED 与∠FDC 的数量关系: .②点P 在射线DA 上,且满足∠DEP =2∠F ,∠DEA ﹣∠PEA =514∠DEB ,补全图形后,求∠EPD 的度数7.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.8.已知,AB ∥CD .点M 在AB 上,点N 在CD 上.(1)如图1中,∠BME 、∠E 、∠END 的数量关系为: ;(不需要证明) 如图2中,∠BMF 、∠F 、∠FND 的数量关系为: ;(不需要证明)(2)如图3中,NE 平分∠FND ,MB 平分∠FME ,且2∠E +∠F =180°,求∠FME 的度数;(3)如图4中,∠BME =60°,EF 平分∠MEN ,NP 平分∠END ,且EQ ∥NP ,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ 的度数.9.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.10.已知//AB CD ,点E 在AB 与CD 之间. (1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.三、解答题11.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条AB 、BC 、CD 、DE ,做成折线ABCDE ,如图1,且在折点B 、C 、D 处均可自由转出.(1)如图2,小明将折线调节成50B ∠=︒,85C ∠=︒,35D ∠=︒,判断AB 是否平行于ED ,并说明理由;(2)如图3,若35C D ∠=∠=︒,调整线段AB 、BC 使得//AB CD 求出此时B 的度数,要求画出图形,并写出计算过程.(3)若85C ∠=︒,35D ∠=︒,//AB DE ,请直接写出此时B 的度数. 12.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)13.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 . 14.如图1,//AB CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠+∠=∠;(2)在图2中,画BEP ∠的平分线与DFP ∠的平分线,两条角平分线交于点Q ,请你补全图形,试探索EQF ∠与EPF ∠之间的关系,并证明你的结论;(3)在(2)的条件下,已知BEP ∠和DFP ∠均为钝角,点G 在直线AB 、CD 之间,且满足1BEG BEP n ∠=∠,1DFG DFP n∠=∠,(其中n 为常数且1n >),直接写出EGF ∠与EPF ∠的数量关系.15.(感知)如图①,//,40,130AB CD AEP PFD ︒︒∠=∠=,求EPF ∠的度数.小明想到了以下方法:解:如图①,过点P 作//PM AB ,140AEP ︒∴∠=∠=(两直线平行,内错角相等)//AB CD (已知),//∴PM CD (平行于同一条直线的两直线平行),2180PFD ︒∴∠+∠=(两直线平行,同旁内角互补). 130PFD ︒∠=(已知),218013050︒︒︒∴∠=-=(等式的性质). 12405090︒︒︒∴∠+∠=+=(等式的性质).即90EPF ︒∠=(等量代换).(探究)如图②,//AB CD ,50,120AEP PFC ︒︒∠=∠=,求EPF ∠的度数.(应用)如图③所示,在(探究)的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_______________︒.四、解答题16.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.17.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由; 【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1)(图2)18.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.19.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.20.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、解答题1.正方形纸板的边长是18厘米 【分析】根据正方形的面积公式进行解答. 【详解】解:设小长方形的宽为x 厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得: , ∴,取正值,可得,解析:正方形纸板的边长是18厘米 【分析】根据正方形的面积公式进行解答. 【详解】解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:2162x x ⋅=,∴281x =,取正值9x =,可得218x =, ∴答:正方形纸板的边长是18厘米. 【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.2.(1);(2)<;(3)不能;理由见解析. 【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采解析:(12)<;(3)不能;理由见解析. 【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长; (2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可. 【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:< (3)不能;由已知设长方形长和宽为3xcm 和2xcm ∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出. 【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.3.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析 【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析 【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形. 【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形, ∴大正方形的面积为4002cm , ∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形. 【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.4.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x yx y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.5.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m),4×20=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am.由题意有:3a×5a=300,解得:a,∵3a表示长度,∴a>0,∴a∴这个长方形场地的周长为 2(3a+5a)=16a(m),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二、解答题6.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠DEB,求出∠AED=50°,即可得出∠EPD的度数.∠PEA=514【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.7.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.8.(1)∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND ;(2)120°;(3)不变,30°【分析】(1)过E 作EH ∥AB ,易得EH ∥AB ∥CD ,根据平行线的性质可求解;过F 作FH ∥AB解析:(1)∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND ;(2)120°;(3)不变,30°【分析】(1)过E 作EH ∥AB ,易得EH ∥AB ∥CD ,根据平行线的性质可求解;过F 作FH ∥AB ,易得FH ∥AB ∥CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME +∠END )+∠BMF -∠FND =180°,可求解∠BMF =60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ =12∠BME ,进而可求解.【详解】解:(1)过E 作EH ∥AB ,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ =∠FEN ﹣∠NEQ =12(∠BME +∠END )﹣12∠END =12∠BME ,∵∠BME =60°,∴∠FEQ =12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键. 9.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ;(2解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出∠FMN +∠GHF =180°;(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1,∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.10.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD .【分析】(1)图1中,过点E 作EG ∥AB ,则∠BEG=∠ABE ,根据AB ∥CD ,EG ∥AB ,所以CD ∥EG ,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED =360°-2∠BFD .【分析】(1)图1中,过点E 作EG ∥AB ,则∠BEG =∠ABE ,根据AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG =∠CDE ,进而可得∠BED =∠ABE +∠CDE ;(2)图2中,根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,结合(1)的结论即可说明:∠BED =2∠BFD ;(3)图3中,根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG +∠ABE =180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG +∠CDE =180°,再结合(1)的结论即可说明∠BED 与∠BFD 之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.三、解答题11.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;(2)根据题意作AB∥CD,即可∠B=∠C=35°;(3)分别画图,根据平行线的性质计算出∠B的度数.【详解】解:(1)AB平行于ED,理由如下:如图2,过点C作CF∥AB,∴∠BCF=∠B=50°,∵∠BCD=85°,∴∠FCD=85°-50°=35°,∵∠D=35°,∴∠FCD=∠D,∴CF∥ED,∵CF∥AB,∴AB∥ED;(2)如图,即为所求作的图形.∵AB∥CD,∴∠ABC=∠C=35°,∴∠B的度数为:35°;∵A′B∥CD,∴∠ABC+∠C=180°,∴∠B的度数为:145°;∴∠B的度数为:35°或145°;(3)如图2,过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∴∠B=∠BCF=50°.答:∠B的度数为50°.如图5,过C作CF∥AB,则AB∥CF∥CD,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=130°;如图6,∵∠C=85°,∠D=35°,∴∠CFD=180°-85°-35°=60°,∵AB∥DE,∴∠B=∠CFD=60°,如图7,同理得:∠B=35°+85°=120°,综上所述,∠B的度数为50°或130°或60°或120°.【点睛】本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.12.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据,平行线的性质和周角可求出,则,再根据,,可得,,可求出,,根据即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】 (1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EFMN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.13.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒②CBN;(2)58︒;(3)不变,:2:1∠∠=,理由见解析;APB ADB(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;∠ABN,即可求出结果;(2)由角平分线的定义可以证明∠CBD=12(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD =58°,∴∠ABC+∠DBN =58°,∴∠ABC =29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.14.(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,,再根据角平分线性质可得;(3)由(2)结论可得:.【详解】(1)证明:如图1,过解析:(1)见解析;(2)2360EPF EQF ∠+∠=︒;见解析;(3)360EPF n EGF ∠+∠=︒【分析】(1)过点P 作//PG AB ,根据平行线性质可得;(2)由(1)结论可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,再根据角平分线性质可得EQF BEQ DFQ ∠=∠+∠()13602EPF =︒-∠; (3)由(2)结论可得:()1EGF BEG DFG BEP DFP n ∠=∠+∠=∠+∠()1360EPF n =︒-∠. 【详解】(1)证明:如图1,过点P 作//PG AB ,∵//AB CD ,∴//PG CD ,∴1AEP ∠=∠,2CFP ∠=∠,又∵12EPF ∠+∠=∠,∴AEP CFP EPF ∠+∠=∠;(2)如图2,由(1)可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,∵BEP ∠的平分线与DFP ∠的平分线相交于点Q ,∴1()2EQF BEQ DFQ BEP DFP ∠=∠+∠=∠+∠ []()11360()36022AEP CFP EPF =︒-∠+∠=︒-∠, ∴2360EPF EQF ∠+∠=︒;(3)由(2)可得:EPF AEP CFP ∠=∠+,EGF BEG DFG ∠=∠+∠,∵1BEG BEP n ∠=∠,1DFG DFP n∠=∠, ∴1()EGF BEG DF nG BEP DFP ∠=∠+∠=∠+∠ []()11360()360AEP CFP EPF n n=︒-∠+∠=︒-∠, ∴360EPF n EGF ∠+∠=︒;【点睛】考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键. 15.[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB ∥CD ,∠AEP=50°,∠PFC=120°,即可求∠EPF 的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA 的平分线解析:[探究] 70°;[应用] 35【分析】[探究]如图②,根据AB ∥CD ,∠AEP=50°,∠PFC=120°,即可求∠EPF 的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数.【详解】解:[探究]如图②,过点P 作PM ∥AB ,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).答:∠EPF的度数为70°;[应用]如图③所示,∵EG是∠PEA的平分线,PG是∠PFC的平分线,∴∠AEG=12∠AEP=25°,∠GCF=12∠PFC=60°,过点G作GM∥AB,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G的度数是35°.故答案为:35.【点睛】本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.四、解答题16.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF )=12∠COA=40°;∴∠EOB=40°;(2)∠OBC :∠OFC 的值不发生变化∵CB ∥OA∴∠OBC=∠BOA ,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC :∠OFC=1:2(3)当平行移动AB 至∠OBA=60°时,∠OEC=∠OBA .设∠AOB=x ,∵CB ∥AO ,∴∠CBO=∠AOB=x ,∵CB ∥OA ,AB ∥OC ,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x ,∴x+40°=80°-x ,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.17.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β18.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.19.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知。

人教版七年级数学下册 二元一次方程组解应用题分类练习

人教版七年级数学下册 二元一次方程组解应用题分类练习

人教版七年级数学下册二元一次方程组解应用题分类练习二元一次方程解应用题分类练一、知识点:1.列方程组解应用题的一般步骤:审题、设未知元、列解方程组、检验、作结论等。

2.列方程组解应用题要领:1)将生活语言代数化;2)掌握一定的设元技巧(直接设元,间接设元,辅助设元);3)寻找数量间的等量关系。

二、举例:二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1:一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数。

二、利润问题例2:一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?三、配套问题例3:某厂共有120名生产工人,每个工人每天可生产螺栓50个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?四、行程问题例4:在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米。

两个加油站实施抢劫的两个犯罪团伙作案后同时分别在A、C 两个加油站以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上。

问巡逻车和犯罪团伙的车的速度各是多少?五、货运问题例5:某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?六、工程问题例6:某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档