中考数学专项训练,与圆有关的证明与计算试题及答案

合集下载

中考数学压轴题专项练习:圆的证明与计算题及答案

中考数学压轴题专项练习:圆的证明与计算题及答案

题库:圆的证明与计算题1.如图,AB是⊙O的直径,点D是»AE上的一点,且∠BDE=∠CBE,BD与AE 交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,延长ED、BA交于点P,若P A=AO,DE=2,求PD的长.第1题图(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠BDE=∠EAB,∠BDE=∠CBE,∴∠EAB=∠CBE,∴∠ABE+∠CBE=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)解:∵BD平分∠ABE,∴∠ABD=∠DBE,如解图,连接DO,第1题解图∵OD=OB,∴∠ODB=∠OBD,∵∠EBD=∠OBD,∴∠EBD=∠ODB,∴OD∥BE,∴PDPE=POPB,∵P A=AO,∴P A=AO=OB,∴POPB=23,∴PDPE=23,∴PDPD+DE=23,∵DE=2,∴PD=4.2.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DF⊥AC,垂足为点F.(1)求证:DF是⊙O的切线;(2)若AE=4,cos A=25,求DF的长.第2题图(1)证明:如解图,连接OD,第2题解图∵OB=OD,∴∠ODB=∠B,又∵AB=AC,∴∠C=∠B,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴∠DFC=90°,∴∠ODF=∠DFC=90°,∵OD是⊙O的半径,G∴DF 是⊙O 的切线; (2)解:如解图,过点O 作OG ⊥AC ,垂足为G ,∴AG =12AE =2.∵cos A =AG OA =2OA =25,∴OA =5,∴OG =OA 2-AG 2=21,∵∠ODF =∠DFG =∠OGF =90°,∴四边形OGFD 为矩形,∴DF =OG =21.3如图,在⊙O 中,直径CD ⊥弦AB 于点E ,AM ⊥BC 于点M ,交CD 于点N ,连接AD .(1)求证:AD =AN ;(2)若AB =42,ON =1,求⊙O 的半径.第3题图(1)证明:∵∠BAD 与∠BCD 是同弧所对的圆周角,∴∠BAD =∠BCD ,∵AE ⊥CD ,AM ⊥BC ,∴∠AEN =∠AMC =90°,∵∠ANE =∠CNM ,∴∠BAM =∠BCD ,∴∠BAM =∠BAD ,在△ANE 与△ADE 中,⎩⎪⎨⎪⎧∠BAM =∠BAD AE =AE∠AEN =∠AED, ∴△ANE ≌△ADE (ASA),∴AN =AD ; (2)解:∵AB=42,AE ⊥CD ,∴AE =12AB =22,又∵ON =1,∴设NE =x ,则OE =x -1,NE =ED =x ,OD =OE +ED =2x -1,如解图,连接AO ,则AO =OD =2x -1,第3题解图 ∵△AOE 是直角三角形,AE =22,OE =x -1,AO =2x -1,∴(22)2+(x-1)2=(2x-1)2,解得x1=2,x2=-43(舍),∴AO=2x-1=3,即⊙O的半径为3.4.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF.(1)求证:∠1=∠F;(2)若sin B=55,EF=25,求CD的长.第4题图(1)证明:如解图,连接DE.第4题解图∵BD是⊙O的直径,∴∠DEB=90°.∵E是AB的中点,∴DA=DB,∴∠1=∠B. ∵∠B=∠F,∴∠1=∠F;(2)解:∵∠1=∠F,∴AE=EF=25,∴AB=2AE=4 5.在Rt△ABC中,AC=AB·sin B=4,∴BC=AB2-AC2=8.设CD=x,则AD=BD=8-x.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即42+x2=(8-x)2,解得x=3,∴CD=3.5.如图,直线DP和⊙O相切于点C,交直径AE的延长线于点P,过点C作AE 的垂线,交AE于点F,交⊙O于点B,作Y ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的度数.第5题图(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵CB ⊥AE ,∴AD ⊥AE ,∴∠DAO =90°,又∵直线DP 和⊙O 相切于点C ,∴DC ⊥OC ,∴∠DCO =90°,∴在Rt △DAO 和Rt △DCO 中,⎩⎨⎧DO =DO AO =CO, ∴Rt △DAO ≌Rt △DCO (HL),∴DA =DC ;(2)解:∵CB ⊥AE ,AE 是⊙O 的直径,∴CF =FB =12BC ,又∵四边形ABCD 是平行四边形,∴AD =BC ,∴CF =12AD ,又∵CF ∥DA ,∴△PCF ∽△PDA ,∴PC PD =CF AD =12,即PC =12PD ,DC =12PD .由(1)知DA =DC ,∴DA=12PD ,∴在Rt △DAP 中,∠P =30°.∵DP ∥AB ,∴∠F AB =∠P =30°,又∵∠ABE =90°,∴∠AEB =90°-30°=60°.6.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 交于点D ,过点D 作⊙O 的切线交AC 于点E .(1)求证:∠ABD =∠ADE ;(2)若⊙O 的半径为256,AD =203,求CE 的长.第6题图(1)证明:如解图,连接OD .第6题解图∵DE 为⊙O 的切线,∴OD ⊥DE ,∴∠ADO +∠ADE =90°.∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ADO +∠ODB =90°.∴∠ADE =∠ODB ,∵OB =OD ,∴∠OBD =∠ODB ,∴∠ABD =∠ADE ;(2)解:∵AB =AC =2×256=253,∠ADB =∠ADC =90°,∴∠ABC =∠C ,BD =CD .∵O 为AB 的中点,∴OD 为△ABC 的中位线,∴OD ∥AC ,∵OD ⊥DE ,∴AC ⊥DE ,在Rt △ACD 中,CD =AC 2-AD 2=(253)2-(203)2=5, ∵∠C =∠C ,∠DEC =∠ADC =90°, ∴△DEC ∽△ADC ,∴CEDC=DCAC,即CE5=5253,∴CE=3.7.如图,在△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB,点E是BC上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.第7题图(1)证明:如解图①,连接OD,第7题解图①则∠DOB=2∠DCB,又∵∠A=2∠DCB,∴∠A=∠DOB,又∵∠A+∠B=90°,∴∠DOB+∠B=90°,∴∠BDO=90°,即OD ⊥AB ,又∵OD 是⊙O 的半径, ∴AB 是⊙O 的切线.(2)解:如解图②,过点O 作OM ⊥CD 于点M ,连接DE ,第7题解图②∵OD =OE =BE =12BO ,∠BDO =90°, ∴∠B =30°, ∴∠DOB =60°, ∴∠DCB =30°, ∴OC =2OM =2, ∴OD =2,∴BD =OD tan60°=2 3.8.如图,PB 为⊙O 的切线,B 为切点,过B 作OP 的垂线BA ,垂足为C ,交⊙O 于点A ,连接P A ,AO ,并延长AO 交⊙O 于点E ,与PB 的延长线交于点D . (1)求证:P A 是⊙O 的切线;(2)若cos ∠CAO =45,且OC =6,求PB 的长.第8题图1)证明:如解图,连接OB,(∵OA=OB,∴∠OAB=∠OBA,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴P A=PB,∴∠P AB=∠PBA,∴∠P AO=∠PBO.∵PB为⊙O的切线,∴∠OBP=90°,∴∠P AO=90°,∵OA 为⊙O 的半径, ∴P A 是⊙O 的切线; (2)解:∵cos ∠CAO =45,∴设AC =4k ,AO =5k ,由勾股定理可知OC =3k , ∴sin ∠CAO =35,tan ∠COA =43, ∴CO OA =35,即6OA =35,解得OA =10, ∵tan ∠POA =tan ∠COA =AP AO =43, ∴AP10=43,解得AP =403, ∵P A =PB , ∴PB =P A =403.9.如图,在△ABC 中,以BC 为直径的⊙O 交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是⊙O 的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =23,tan ∠AEC =53,求⊙O 的直径.第9题图(1)证明:∵BC 是⊙O 的直径, ∴∠BDC =90°, ∴∠ABC +∠DCB =90°, ∵∠ACD =∠ABC , ∴∠ACD +∠DCB =90°, ∴∠ACB =90°, 即BC ⊥CA ,又∵BC 是⊙O 的直径, ∴CA 是⊙O 的切线;(2)解:在Rt △AEC 中,tan ∠AEC =53, ∴AC EC =53,EC =35AC .在Rt △ABC 中,tan ∠ABC =23, ∴AC BC =23,BC =32AC . ∵BC -EC =BE =6,∴32AC -35AC =6,解得AC =203, ∴BC =32×203=10, 即⊙O 的直径为10.10.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E ,交AB 延长线于点F .(1)求证:DE⊥AC;(2)若AB=10,AE=8,求BF的长.第10题图(1)证明:如解图,连接OD,AD,第10题解图∵DE与⊙O相切于点D,∴OD⊥DE.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴D为BC中点,又∵O为AB中点,∴OD∥AC,∴DE⊥AC;(2)解:∵AB=10,∴OB=OD=5.由(1)知OD∥AC,∴△ODF∽△AEF,∴ABBFOBBFAFOFAEOD++==,设BF=x,则有10585++=xx解得x=310,∴BF=310.11.如图,已知AB为⊙O的直径,F为⊙O上一点,AC平分∠BAF且交⊙O于点C,过点C作CD⊥AF于点D,延长AB、DC交于点E,连接BC、CF.(1)求证:CD是⊙O的切线;(2)若AD=6,DE=8,求BE的长;(3)求证:AF+2DF=AB.第11题图(1)证明:如解图,连接OC.第11题解图∵AC 平分∠BAD ,∴∠OAC =∠CAD , 又∠OAC =∠OCA ,∴∠OCA =∠CAD , ∴CO ∥AD . 又CD ⊥AD , ∴CD ⊥OC ,又∵OC 是⊙O 的半径, ∴CD 是⊙O 的切线;(2)解:在Rt △ADE 中,∵AD =6,DE =8, 根据勾股定理得:AE =10, ∵CO ∥AD , ∴△EOC ∽△EAD , ∴ADOCEA EO =. 设⊙O 的半径为r ,∴OE =10-r .∴61010rr -=, ∴r =415,∴BE =10-2r =25;(3)证明:如解图,过点C 作CG ⊥AB 于点G . ∵∠OAC =∠CAD ,AD ⊥CD , ∴CG =CD ,在Rt △AGC 和Rt △ADC 中, ∵CG =CD ,AC =AC ,∴Rt△AGC≌Rt△ADC(HL),∴AG=AD.又∵∠BAC=∠CAD,∴BC=CF,在Rt△CGB和Rt△CDF中,∵BC=FC,CG=CD,∴Rt△CGB≌Rt△CDF(HL),∴GB=DF.∵AG+GB=AB,∴AD+DF=AB,即AF+2DF=AB.12.如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC的中点,OE交CD于点F.(1)若∠BCD=36°,BC=10,求BD︵的长;(2)判断直线DE与⊙O的位置关系,并说明理由;(3)求证:2CE2=AB·EF.第12题图(1)解:如解图,连接OD,第12题解图∵∠BCD =36°,∴∠BOD =2∠BCD =2×36°=72°, ∵BC 是⊙O 的直径,BC =10, ∴OB =5, ∴l BD ︵=72π×5180=2π;(2)解:DE 是⊙O 的切线;理由如下: ∵BC 是⊙O 的直径,∴∠ADC =180°-∠BDC =90°, 又∵点E 是线段AC 中点, ∴DE =12AC =EC , 在△DOE 与△COE 中, ⎩⎪⎨⎪⎧OD =OC OE =OE DE =CE, ∴△DOE ≌△COE (SSS). ∵∠ACB =90°,∴∠ODE =∠OCE =90°, ∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线;(3)证明:由(2)知,△DOE ≌△COE , ∴OE 是线段CD 的垂直平分线,∴点F 是线段CD 中点,∵点E 是线段AC 中点,则EF =12AD ,∵∠BAC =∠CAD ,∠ADC =∠ACB ,∴△ACD ∽△ABC ,则AC AB =AD AC ,即AC 2=AB ·AD ,而AC =2CE ,AD =2EF ,∴(2CE )2=AB ·2EF ,即4CE 2=AB ·2EF ,∴2CE 2=AB ·EF .13.如图,PB 为⊙O 的切线,B 为切点,直线PO 交⊙O 于点E 、F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF .(1)求证:直线P A 为⊙O 的切线;(2)求证:EF 2=4OD ·OP ;(3)若BC =6,tan F =12,求AC 的长.第13题图(1)证明:如解图,连接OB ,第13题解图∵PB 是⊙O 的切线,∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D ,∴AD =BD ,∴点D 为AB 的中点,即OP 垂直平分AB ,∴∠APO =∠BPO ,∵∠ADP =∠BDP =90°,∴△APD ≌△BPD ,∴AP =BP ,在△P AO 和△PBO 中,⎩⎪⎨⎪⎧P A =PB ∠APO =∠BPO OP =OP,∴△P AO ≌△PBO (SAS ),∴∠P AO =∠PBO =90°,∵OA 为⊙O 的半径,∴直线P A 为⊙O 的切线;(2)证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴OA OP =OD OA ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∴tan F =AD DF =x DF =12,∴DF =2x ,∴OA =OF =2x -3,在Rt △AOD 中,由勾股定理得(2x -3)2=x 2+32,解得x 1=4或x 2=0(不合题意,舍去),∴OA =2x -3=5,∵AC 为⊙O 的直径,∴AC =2OA =10.14.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交直径AB 于点F ,连接BE .(1)求证:AC 平分∠DAB ;(2)求证:PC =PF ;(3)若tan ∠PCB =34,BE =52,求PF 的长.第14题图(1)证明:如解图,连接OC ,第14题解图 ∵OA =OC ,∴∠OAC =∠OCA ,∵PC 是⊙O 的切线,且AD ⊥CD ,∴∠OCP =∠D =90°,∴OC ∥AD ,∴∠CAD =∠OCA =∠OAC ,即AC 平分∠DAB ;(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠PCB+∠ACD=90°,又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.∵CE平分∠ACB,∴∠ACE=∠BCE,∵∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE,∴∠PFC=∠PCF,∴PC=PF;(3)解:如解图,连接AE,∵∠ACE=∠BCE,∴AE︵=BE︵,∴AE=BE,又∵AB是直径,∴∠AEB=90°,AB=2BE=10,∴OB=OC=5,∵∠PCB=∠P AC,∠P=∠P,∴△PCB∽△P AC,∴PBPC=BCCA,∵tan∠PCB=tan∠CAB=34,∴PBPC=BCCA=34,设PB=3x,则PC=4x,在Rt△POC中,根据勾股定理得,(3x +5)2=(4x )2+52,解得x 1=0,x 2=307. ∵x >0,∴x =307,∴PF =PC =1207.15.如图,AB 是⊙O 的直径,C 、G 是⊙O 上两点,且点C 是劣弧»AG 的中点,过点C 的直线CD ⊥BG 的延长线于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F .(1)求证:CD 是⊙O 的切线;(2)若ED =3DB ,求证:3OF =2DF ;(3)在(2)的条件下,连接AD ,若CD =3,求AD 的长.第15题图(1)证明:如解图①,连接OC 、AC 、CG ,∵AC ︵=CG ︵,∴AC =CG ,∴∠ABC =∠CBG ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠OCB =∠CBG ,∴OC ∥BG ,∵CD ⊥BG ,∴OC ⊥CD ,∵OC 是⊙O 的半径,∴CD 是⊙O 的切线;第15题解图○1(2)证明:∵O C ∥BD ,∠CFO =∠DFB ,∴∠OCB =∠CBD ,∠EOC =∠EBD ,∴△OCF ∽△DBF ,△EOC ∽△EBD ,∴OC BD =OF DF ,OC BD =OE BE ,∴OF DF =OE BE ,∵ED =3DB ,∠EDB =90°,∴∠E =30°,∴OC =12OE ,∵OA =OC ,∴AE =OA =OC =OB ,∴OF DF =OE BE =2OA 3OA =23,即3OF =2DF ; (3)解:如解图②,过A 作AH ⊥DE ,交DE于点H ,∵∠E =30°,∴∠EBD =60°,∵∠ABC =∠CBD ,∴∠CBD =12∠EBD =30°,∵CD =3,∴BD =CD tan30°=33,∴BE =33sin30°=63,DE =3BD =9,∵AE =13BE ,AH ∥BD ,∴AH =13BD =3,DH =23DE =6,∴AD =(3)2+62=39.第15题解图○216.如图,在Rt △ABC 中,∠ACB =90°,AO 是△ABC 的角平分线.以O 为圆心,OC 长为半径作⊙O ,连接AO 交⊙O 于点E ,延长AO 交⊙O 于点D.(1)求证:AB 是⊙O 的切线;(2)若tan D=12,求AEAC的值;(3)设⊙O的半径为3,求AB的长.第16题图(1)证明:如解图,过O作OF⊥AB交AB于F,∵∠ACB=90°,∴AC⊥BC,∵AO是△ABC的角平分线,OF⊥AB,∴CO=FO,∴FO为⊙O的半径,∴AB是⊙O的切线;第16题解图(2)解:如解图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB =90°,∴∠ACE +∠ECO =90°,∴∠ACE =∠OCD ,∵OC =OD ,∴∠OCD =∠ODC ,∴∠ACE =∠ODC ,∵∠CAE =∠CAE ,∴△ACE ∽△ADC ,∴AE AC =CE DC ,∵tan D =CE CD =12,∴AE AC =12;(3)解:由(2)知AE AC =12,设AE =c ,则AC =2c ,在Rt △ACO 中,∴(2c )2+32=(c +3)2,解得c =2或c =0(舍去),∴AF =AC =2c =4,∵在△BFO 和△BCA 中,∠B =∠B ,∠BFO =∠BCA =90°, ∴△BFO ∽△BCA ,∴BF BC =FO CA =BO AB ,设BF=x,BO=y,∴x3+y=34=y4+x,解得x=727,y=757,∴AB=AF+BF=4+727=1007.17.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD.过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.第17题图(1)证明:∵圆心O在BC上,∴BC是⊙O的直径,∴∠BAC=90°.如解图,连接OD.第17题解图∵AD平分∠BAC,∴∠BAC=2∠DAC.∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°.即OD⊥BC.∵PD∥BC,∴OD⊥PD.又OD是⊙O的半径,∴PD是⊙O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC.又∠ABC=∠ADC,∴∠P=∠ADC.∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD.∴△PBD∽△DCA;(3)解:∵△ABC是直角三角形,∴BC2=AB2+AC2=62+82=100.∴BC=10.∵OD垂直平分BC,∴DB=DC.∵BC是⊙O的直径,∴∠BDC=90°.在等腰直角三角形BDC中.DC=DB=5 2.∵△PBD∽△DCA,∴PBDC=BDCA,即PB=DC·BDCA=52×528=254.18.如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D,连接OE,AC,且∠P=∠E,∠POE=2∠CAB.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=2OD,且PB=9,求tan P的值.第18题图(1)证明:如解图,连接OC,第18题解图∴∠COB =2∠CAB , 又∵∠POE =2∠CAB , ∴∠COD =∠EOD , 又∵OC =OE , ∴CE ⊥AB ;(2)证明:∵CE ⊥AB ,∠P =∠E , ∴∠P +∠PCD =∠E +∠PCD =90°, 又∠OCD =∠E ,∴∠OCD +∠PCD =∠PCO =90°, ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线;(3)解:设⊙O 的半径为r ,OD =x ,则BD =2x ,r =3x , ∵CD ⊥OP ,OC ⊥PC , ∴Rt △OCD ∽Rt △OPC ,∴OC 2=OD ·OP ,即(3x )2=x (3x +9), 解得x =32或x =0(舍去), ∴⊙O 的半径r 为92,同理可得PC 2=PD ·PO =(PB +BD ) ·(PB +OB )=162, ∴PC =92,在Rt △OCP 中,tan P =OC PC =24.19.如图,AC 是⊙O 的直径,弦BE ⊥AC 于H ,F 为⊙O 上的一点,过点F 的直线与AC 的延长线交于点D ,与BE 的延长线交于点M ,连接AF 交BM 于G ,且MF =MG .(1)求证:MD 为⊙O 的切线;(2)求证:当MD ∥AB 时,FG 2=MF ·EG ;(3)在(2)的条件下,若cos M=45,FD =6,求AG 的长.第19题图(1)证明:∵MF =MG , ∴∠MFG =∠MGF =∠AGB , 如解图,连接FO , ∵OF =AO , ∴∠OF A =∠OAF , ∵BE ⊥AC ,∴∠AGH +∠OAF =∠MFG +∠OF A =90°, 即∠MFO =90°, ∵OF 为⊙O 的半径, ∴MD 为⊙O 的切线; (2) 证明:∵MD ∥AB , ∴∠M =∠ABM ,如解图,连接EF,∵∠EFG=∠ABM,∴∠M=∠EFG,∵∠MGF=∠FGE,∴△MGF∽△FGE,∴FGMG=EGFG,又∵MG=MF,∴FG2=MF·EG;第19题解图:∵∠M=∠ABM,cos M=45,∴设AH=3k,AB=5k,HB=4k,如解图,连接OB,∵∠FOD=∠M,FD=6,∴FO=8=OB=OA,∴OH=8-3k,∴OH 2+HB 2=OB2,∴(4k)2+(8-3k)2=82,(3)解解得k =4825或k =0(舍去), ∵MD ∥AB , ∴∠MFG =∠BAF , ∴∠BGA =∠BAG , ∴AB =GB =5k , ∴GH =k , ∴AG =10k , ∴AG =482510.20.如图①,AB 是⊙O 的直径,C 是圆上一点,∠BAC 的平分线交⊙O 于点D ,过D 作DE ⊥AC 交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)若AB =10,AC =6,求BD 的长;(3)如图②,若F 是OA 的中点,FG ⊥OA 交直线DE 于点G ,若FG =194,tan ∠BAD =34,求⊙O 的半径.图① 图②第20题图(1)证明:如解图①,连接OD ,第20题解图①∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如解图①,连接BC,交OD于点N,∵AB是⊙O的直径,∴∠BCA=90°,∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=12AC,∴∠ONB =90°,且ON =3,OB =5,则BN =4,ND =2, ∴BD =42+22=25;(3)解:如解图②,设FG 与AD 交于点H ,第20题解图②根据题意,设AB =5x ,AD =4x ,则AF =54x ,FH =AF ·tan ∠BAD =54x ·34=1516x ,AH =AFcos ∠BAD =54x 45=2516x ,HD =AD -AH =4x -2516x =3916x , 由(1)可知,∠HDG +∠ODA =90°, 在Rt △HF A 中,∠F AH +∠FHA =90°, ∵∠OAD =∠ODA ,∠FHA =∠DHG , ∴∠DHG =∠HDG ,∴GH =GD ,过点G 作GM ⊥HD ,交HD 于点M , ∴MH =MD ,∴HM =12HD =12×3916x =3932x ,∵∠F AH +∠AHF =90°,∠MHG +∠HGM =90°, ∴∠F AH =∠HGM ,H在Rt △HGM 中,HG =HMsin ∠HGM =3932x 35=6532x ,∵FH +GH =194, ∴1516x +6532x =194, 解得x =85,∴此⊙O 的半径为52×85=4.中考数学压轴题专项练习:圆的证明与计算题及答案。

中考数学专题复习《圆的证明与计算》检测题(含答案)

中考数学专题复习《圆的证明与计算》检测题(含答案)

专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。

2023 年九年级数学中考专题训练——圆的计算和证明(附答案)

2023 年九年级数学中考专题训练——圆的计算和证明(附答案)

1.如图,在ABC中,AB AC=,以AB为直径作O,交BC于点D,交AC于点E,过点B作O 的切线交OD的延长线于点F.(1)求证:A BOF∠=∠;(2)若4AB=,1DF=,求AE的长.2.如图,AB是O的直径,点C在O上,ABC∠的平分线与AC相交于点D,与O过点A的切线相交于点E.(1)猜想EAD的形状,并证明你的猜想;(2)若8AB=,6AD=,求BD的长.3.如图所示,Rt△ABC中∠ACB=90°,斜边AB与⊙O相切于D,直线AC过点O并于⊙O相交于E、F两点,BC与DF交于点G,DH⊥AC于H.(1)求证:∠B=2∠F;(2)若HE=4,cos B=35,求DF的长.4.如图,O的直径23AB=点C为O上一点,CF为O的切线,OE AB⊥于点O,分别交AC,CF于D,E两点.(1)求证:ED EC=;(2)若30∠=︒,求图中两处(点C左侧与点C右侧)阴影部分的面积之和.A5.已知PA,PB分别与O相切于点A,B,C为O上一点,连接AC,BC.∠的大小;(1)如图①,若70∠=︒,求ACBAPB∠的大小.(2)如图②,AE为O的直径交BC于点D,若四边形PACB是平行四边形,求EAC6.如图,AB是O的直径,点C在AB的延长线上,BDC A⊥,交AD的延长线于∠=∠,CE AD点E.(1)求证:CD与O相切:(2)若4CE=,2DE=,求AD的长,7.如图,四边形ABCD为平行四边形,边AD是O的直径,O交AB于F点,DE为O的切线交BC于E,且BE BF=,BD和O交于G点.(1)求证:四边形ABCD为菱形.(2)若O半径52r=,5BG=BF长.8.如图,O为ABC的外接圆,AB为直径,ABC∠的角平分线BD交O于点D,过点D作O 的切线DE,交BC的延长线于点E.(1)求证:DE BC⊥;(2)若1CE=,3DE=O的半径.9.如图,AB是O的直径,CA与O相切于点A,且AB AC=.连接OC,过点A作AD OC⊥于点E,交O于点D,连接DB.(1)求证:ACE BAD△△≌;(2)连接BC交O于点F.若6AD=,求BF的长.10.在Rt ABC中,90C∠=︒,以AC为直径的O与AB相交点D、E是BC的中点.(1)判断ED与O的位置关系,并说明理由;(2)若O的半径为3,DEC A∠=∠,求DC的长.11.如图,在ABC中,以ABC的边AB为直径作O,交AC于点D,DE是O的切线,且DE BC⊥,垂足为点E.(1)求证AB BC=;(2)若3DE=,610AC=O的半径.12.如图,⊙O是△ABC的外接圆,O在AC上,过点C作⊙O的切线,与AB延长线交于点D,过点O作OE BC,交⊙O于点E,连接CE交AB于点F.(1)求证:CE平分∠ACB;(2)连接OD,若CF=CD=6,求OD的长.13.如图,△ABC中,AB=AC,以AB为直径⊙O的交BC于点D,过点D作⊙O的切线DE,交BA 延长线于点E,延长CA交⊙O于点F,交DE于点G,连接DF.(1)求证:点E为线段CF垂直平分线上一点;,BE=8,求AF的长.(2)若sin∠E=3514.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点D是AC的中点,连接OD,交AC于点E ,作BF ∥CD ,交DO 的延长线于点F .(1)求证:四边形BCDF 是平行四边形.(2)若AC =8,连接BD ,tan∠DBF =34,求直径AB 的长及四边形ABCD 的周长.15.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交AC 于点F ,交BC 于点D ,过点D 作⊙O 的切线DE ,交AC 于点E .(1)求证:DE ⊥AC ;(2)若⊙O 的直径为5,25sin B =EF 的长. 16.如图,AB 是⊙O 的直径,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF ⊥PC 于点F ,连接CB .(1)求证:△CBE ∽△CPB ;(2)当43AB =34CF CP =时,求扇形COB 的面积. 17.如图,AB 为O 的直径,ACB ∠的角平分线交O 于点D ,交AB 于点E ,CAB ∠的角平分线交CD 于点F .(1)求证:ADB 为等腰直角三角形;(2)求证:2DF DE DC =⋅.18.如图,AB 是圆O 的直径,C ,D 是圆上的点(在AB 同侧),过点D 的圆的切线交直线AB 于点E .(1)若2AB =,1BC =,求AC 的长;(2)若四边形ACDE 是平行四边形,证明:BD 平分ABC ∠.19.如图,AB 与O 相切于点B ,BC 为O 的弦,OC OA ⊥,OA 与BC 相交于点P .(1)求证:AP AB =; (2)若4OB =,3AB =,求线段BP 的长.20.如图,ABC ∆为O 的内接三角形,AD BC ⊥,垂足为D ,直径AE 平分BAD ∠,交BC 于点F ,连接BE .(1)求证:AEB AFD ∠=∠;(2)若10AB =,5BF =,求DF 的长;(3)若点G 为AB 的中点,连接DG ,若点O 在DG 上,求:BF FC 的值.参考答案:1.(1)见解析 (2)83AE =【分析】(1)首先根据等边对等角可证得C ODB ∠=∠,再根据平行线的判定与性质,即可证得结论;(2)首先根据圆周角定理及切线的性质,可证得AEB OBF ∠=∠,即可证得ABE OFB △∽△,再根据相似三角形的性质即可求得.(1)证明:AB AC =C ABC ∴∠=∠ OB OD =ODB OBD ∴∠=∠C ODB ∴∠=∠AC OD ∴∥A BOF ∴∠=∠(2)解:如图:连接BEAB 是O 的直径,AB =490AEB ∴∠=︒,122OB OD AB === BF 是O 的切线90OBF ∴∠=︒AEB OBF ∴∠=∠又A BOF ∠=∠ABE OFB ∴△∽△AE AB OB OF∴=又213OF OD DF =+=+=423AE ∴=,解得83AE = 【点评】本题考查了等腰三角形的性质,平行线的判定与性质,圆周角定理,切线的性质,相似三角形的判定与性质,作出辅助线,证得ABE OFB △∽△是解决本题的关键.2.(1)等腰三角形,证明见解析; (2)145.【分析】(1)利用角平分线和∠C =∠BAE =90°,得出∠E =∠4,从而得到AD =AE 可得三角形的形状;(2)先证明△BCD ∽△BAE ,利用相似比得到得出即34AE DC AB BC ==,若设CD =3x ,则BC =4x ,BD =5x ,再利用勾股定理得到(4x )2+(6+3x )2=82,然后解方程求出x 后计算5x 即可.(1)猜想:△EAD 是等腰三角形,证明:∵BE 平分∠ABC ,∴∠1=∠2,∵AB 为直径,∴∠C =90°,∴∠2+∠3=90°,∵AE 为切线,∴AE ⊥AB ,∴∠E +∠1=90°,∴∠E =∠3,而∠4=∠3,∴∠E =∠4,∴AE =AD ,∴△EAD 是等腰三角形;(2)∵∠2=∠1,∴Rt △BCD ∽Rt △BAE ,∴CD :AE =BC :AB , 即34AE DC AB BC ==, 设CD =3x ,BC =4x ,则BD =5x ,在Rt △ABC 中,AC =AD +CD =3x +6,∵(4x )2+(6+3x )2=82,解得x 1=1425,x 2=-1(舍去), ∴BD =5x =145. 【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径;也考查了利用勾股定理和相似比进行几何计算.3.(1)见解析; (2)85【分析】(1)连接OD ,由题意可得:90ODA =∠°,再根据∠ACB =90°,可得B AOD ∠=∠,由圆周角定理可得2AOD F ∠=∠,即可求解;(2)由(1)可得B AOD ∠=∠,则3cos 5OH AOD OD ∠==,设OD OE r ==,求得半径r ,由勾股定理求得DH ,再由勾股定理即可求得DF .(1)解:连接OD ,如下图:∵AB 与⊙O 相切于D ,∴OD AB ⊥,即90ODA =∠°,∴90A AOD ∠+∠=︒,又∵∠ACB =90°,∴A B ∠∠=︒+90,∴B AOD ∠=∠,由圆周角定理可得:2AOD F ∠=∠,∴2B F ∠=∠;(2)解:∵DH ⊥AC∴90DHO ∠=︒,由(1)得B AOD ∠=∠, ∴3cos cos 5OH B AOD OD =∠==, 设OD OE OF r ===,则4OH r =-, 则435r r -=,解得10r =, 则6OH =,16HF OH OF =+= 由勾股定理可得:228DH OD OH -=, 由勾股定理可得:2285DF DH HF +=【点评】此题考查了圆的综合应用,涉及了切线的性质定理,圆周角定理,三角形内角和的性质,解直角三角形,勾股定理,解题的关键是灵活运用相关性质进行求解.4.(1)见解析 3π-【分析】(1)连接OC ,则OC CF ⊥,故90ACE ACO ∠+∠=︒,又90ADO A ∠+∠=︒,且A ACO ∠=∠,可得ACE ADO EDC ∠=∠=∠,故ED EC =; (2)过点C 作CG AB ⊥于G ,结合三角函数的知识求得CG 与CE 的长,从而利用COE BOC COB COH S S S S S =+--△△阴影扇形扇形求得阴影部分的面积之和.(1)证明:连接OC ,CF 是O 的切线,∴OC CF ⊥,∴90ACO ACE ∠+∠=︒,OE AB ⊥,∴90ADO A ∠+∠=︒,OA OC =,∴A ACO ∠=∠,∴ACE ADO ∠=∠, 又ADO CDE ∠=∠,∴ACE CDE ∠=∠,∴ED EC =.(2)解:过点C 作CG AB ⊥于G ,30A ACO ∠=∠=︒,∴260BOC A ∠=∠=︒, ∴33sin 6032CG OC =︒==, 9030COE BOC ∠=︒-∠=︒,90OCE ∠=︒,∴3tan 3031CE OC =︒==. 1133122COE S OC CE =⨯⨯==△, 260(3)3602COB S ππ=⨯⨯=扇形, 230(3)3604COH S ππ=⨯⨯=扇形, 113333222BOC S OB CG =⨯⨯==△ ∴333324COE BOC COB COH S S S S S πππ-=+--=-=△△阴影扇形扇形 【点评】本题属于圆的综合题,涉及到了圆的切线的性质,扇形面积的计算方法,以及三角函数相关知识,解题的关键是学会常用辅助线的作法.5.(1)55°(2)30°【分析】(1)连接OA 、OB ,根据切线的性质可得∠OAP =∠OBP =90°,再根据四边形内角和等于360度求出AOB ∠,再由圆周角定理即可求出结果;(2)连接AB ,EC ,由切线长定理以及平行四边形的性质可证明四边形PACB 是菱形,进而证明△ABC 是等边三角形,进一步可得结论.(1)如图①,连接OA 、OB ,∵P A ,PB 是⊙O 的切线,∴∠OAP =∠OBP =90°,∵∠APB =70°,∴∠AOB =360°-90°-90°-70°=110°∴∠ACB =12∠AOB =11102⨯︒=55°; (2)如图②,连接AB ,EC ,∴,BAE BCE ∠=∠∵PA ,PB 分别与O 相切于点A ,B ,∴,PA PB =∵四边形PACB 是平行四边形,∴四边形PACB 是菱形,∴,AC BC =∵PA 是O 的切线,且AE 是O 的直径,∴,AE PA ⊥∵四边形APBC 是平行四边形,∴PA //BC∴,AE BC ⊥即∠90,ADB ︒=∴∠90,BAD ABD ︒+∠=∵AE 是O 的直径,∴∠90,ACE ︒=即∠90,ACD BCE ︒+∠=∵∠,BAD BCE =∠∴∠,ABD ACB =∠∴,AB AC =∴,AB AC BC ==即△ABC 是等边三角形,∴∠60,ABC BAC ACB ︒=∠=∠=∵,AE BC ⊥ ∴116030.22EAC BAC ︒︒∠=∠=⨯= 【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定与性质,平行四边形的性质,菱形的判定与性质等知识,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(1)见解析(2)6【分析】(1) 连接OD ,然后根据圆的性质和已知可以得到90ODC ∠=︒,即可证得CD 与O 相切;(2)由已知可以得到AEC CED ∽,再根据三角形相似的性质和已知条件即可求出AD 的值.(1)证明:连接OD ,∵AB 为O 的直径,∴90ADB ∠=︒,即90ODB ADO ∠+∠=︒,∵OA OD =,∴ADO A ∠=∠,又∵BDC A ∠=∠;∴90ODB BDC ∠+∠=︒,即90ODC ∠=︒∴CD 是O 切线.(2)∵CE AE ⊥,∴90∠=∠=︒E ADB ,∴DB //EC ,∴DCE BDC ∠=∠,∵BDC A ∠=∠,∴A DCE ∠=∠,∵E E ∠=∠,∴AEC CED ∽, ∴CE AE DE CE=, ∴2CE DE AE =⋅,∴162(2)AD =+,∴6AD =.【点评】本题考查圆的综合应用,熟练掌握圆切线的判定方法、三角形相似的判定和性质是解题关键.7.(1)证明过程见解析(2)2【分析】(1)连接DF ,通过证明Rt △DFB ≌Rt △DEB (HL )得到DF =DE ,证明△ADF ≌△CDE (ASA )得到AF =CE ,即可证明四边形ABCD 是菱形;(2)连接AG,根据等腰三角形三线合一的性质得到DG=GB,设BF=x,则AF=5-x,利用勾股定理可得2222-=-,列出方程求解即可得到BF的长.AD AF DB BF(1)证明:连接DF,如图所示∵DE是切线,AD是直径∴∠ADE=90°,∠DF A=90°∵四边形ABCD是平行四边形∴∠DEB=90°,∠CDF=90°∴∠DFB=∠DEB=90°又∵BF=BE,DB=DB∴Rt△DFB≌Rt△DEB(HL)∴DF=DE∵四边形ABCD是平行四边形∴∠A=∠C又∵∠AFD=∠DEC∴△ADF≌△CDE(AAS)∴AF=CE∴AB=CB∴四边形ABCD是菱形(2)解:连接AG,如图所示∵AD是直径∴∠AGD=90°,即AG⊥BD∵四边形ABCD是菱形∴AB=AD∴DG=GB5∴DB5设BF=x,则AF=5-x∵2222AD AF DB BF -=-∴()(2222555x x --=-,解得x =2∴BF 的长为2【点评】本题考查了菱形的判定、平行四边形的性质、直径所对圆周角是直角、全等三角形的判定与性质、勾股定理等知识,正确作出辅助线,掌握这些知识点是解答本题的关键.8.(1)见解析(2)2【分析】(1)根据切线性质得90ODE ∠=︒,再根据圆及角平分线的性质,证得//OD BC ,最后根据平行线的性质,证得结论.(2)连接OD 交AC 于点F ,证明四边形CEDF 是矩形,再设O 的半径r ,在Rt AOF 中运用勾股定理,建立关于r 的方程,求解即可.(1)证明:如图,连接OD ,DE 与O 相切于点D ,DE OD ∴⊥,90ODE ∴∠=︒,OD OB =,ODB OBD ∴∠=∠, BD 平分ABC ∠,OBD DBC , ODB DBC ,//OD BC ∴,18090E ODE ∴∠=︒-∠=︒,DE BC ∴⊥.(2)解:如图,连接OD 交AC 于点F ,AB 是O 的直径,90ACB ∴∠=︒,18090ECF ACB ∴∠=︒-∠=︒,90ECF E EDF ∴∠=∠=∠=︒,∴四边形CEDF 是矩形.90AFO CFD ∴∠=∠=︒,1DF CE ==,FO AC ∴⊥,3AF CF DE ∴===设O 的半径为r ,则OA OD r ==,222OA OF AF =+,1OF r =-,()22213r r ∴=-+, 解得2r =,O ∴的半径为2.【点评】本题考查了与圆有关的综合问题,灵活运用切线性质,勾股定理进行推理求值是解题的关键.9.(1)证明见解析 310【分析】(1)根据切线的性质可得90BAD CAE ∠+∠=︒,根据圆周角定理的推论可得90BAD ABD ∠+∠=︒,即得出CAE ABD ∠=∠.结合题意即可利用“AAS ”证明ACE BAD △△≌;(2)连接AF .由垂径定理可得132AE ED AD ===.再根据全等三角形的性质可得6CE AD ==,3AE ED BD ===,利用勾股定理可求出35AC AB ==.再根据圆周角定理的推论结合等腰三角形“三线合一”的性质即可求出13102BF BC ==.(1)证明:∵CA 与O 相切于点A ,∴90BAC ∠=︒,∴90BAD CAE ∠+∠=︒.∵AB 为直径,∴90BDA ∠=︒,∴90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠.∵AD OC ⊥,∴90AEC ADB ∠=∠=︒.又∵AB AC =,∴()ACE BAD AAS ≌△△;(2)如图,连接AF .∵AD OC ⊥, ∴132AE ED AD ===. ∵ACE BAD △△≌,∴6CE AD ==,3AE ED BD ===∴在Rt AEC 中,22223635AC AE CE AB ++=, ∴2310BC ==∵AB 为直径,∴90AFB ∠=︒.∵AB =AC , ∴13102BF BC ==. 【点评】本题为圆的综合题.考查切线的性质,圆周角定理,三角形全等的判定和性质,等腰直角三角形的性质以及勾股定理.掌握与圆相关的知识点是解题关键.10.(1)相切;理由见解析(2)2π【分析】(1)连接OD,CD,再根据直径所对的圆周角是直角及直角三角形斜边上的中线性质证明OD⊥DE即可;(2)根据DEC A∠=∠证明三角形DEC是等边三角形,即可得到DC的圆心角是120°,再根据弧长公式计算即可.(1)ED与⊙O相切.理由:连接OD,CD.∵AC是直径,∴∠ADC=90°,在Rt△BDC中,E为BC的中点,∴DE=EC,∴∠3=∠2,又∵OD=OC,∴∠1=∠4,∵∠1+∠2=90°,∴∠ODE=∠3+∠4=90°,∴ED与⊙O相切;(2)∵∠A+∠1=90°,∠1+∠2=90°,∴∠A=∠2,∵∠DEC=∠A,∴∠2=∠3=∠DEC=60°,∴∠A=60°,∴∠DOC=2∠A=120°,∴弧DC的长=12032 180ππ⨯=.【点评】本题考查圆的性质及弧长公式,熟记直径所对的圆周角是直角、切线的证明、弧长公式是解题的关键.11.(1)见解析;(2)5【分析】(1)连接OD、BD,根据切线的性质得到OD⊥DE,推出OD∥BC,证得∠ODB=∠CBD,由此推出∠OBD=∠CBD,根据AB为O的直径,得到∠ADB=∠CDB=90°,证得△ABD≌△CBD(ASA),即可得到AB=BC;(2)根据AB=BC,BD⊥AC,求出AD=CD=13102AC=CE=9,证得△CDE∽△CBD,求出CB,即可得到O的半径.(1)证明:连接OD、BD,∵DE是O的切线,∴OD⊥DE,∵DE BC⊥,∴OD∥BC,∴∠ODB=∠CBD,∵OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠CBD,∵AB为O的直径,∴∠ADB=∠CDB=90°,∵BD=BD,∴△ABD≌△CBD(ASA),∴AB=BC;(2)∵AB=BC,BD⊥AC,∴AD=CD=1310 2AC=∵DE=3,∴()222293103 CE CD DE=--,∵∠C=∠C,∠CED=∠CDB=90°,∴△CDE∽△CBD,∴2CD CE CB=⋅,∴(22109310CDCBCE===,∴AB=CB=10,∴O的半径为5.【点评】此题考查了切线的性质定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,熟记各知识点并综合应用是解题的关键.12.(1)见解析(2)37【分析】(1)根据OC=OE,可得∠OCE=∠E,再由OE BC,可得∠E=∠BCE,从而得到∠OCE=∠BCE,即可求证;(2)根据CD=CF,可得∠BCD=∠BCE=∠OCE,再由CD是⊙O的切线,可得∠BCD=30°,再证得∠A=∠BCD=30°,根据直角三角形的性质,即可求解.【解析】(1)证明:∵OC=OE,∴∠OCE=∠E,∵OE BC,∴∠E=∠BCE,∴∠OCE=∠BCE,∴CE平分∠ACB;(2)解:如图,∵CD=CF,∴∠BCD=∠BCE,∵CE平分∠ACB,∴∠BCD=∠BCE=∠OCE,∵CD是⊙O的切线,∴∠ACD=90°,即∠BCD+∠ACB=90°,∴∠BCD=30°,∵AC是⊙O的直径,∴∠ABC=90°,∴∠A+∠ACB=90°,∴∠A=∠BCD=30°,∵CD=6,∴AD=2CD=12,∴2263AC AD CD-=∴33OC=∴2237OD OC CD=+=【点评】本题主要考查了切线的性质,圆周角定理,直角三角形的性质,勾股定理,熟练掌握切线的性质,圆周角定理,直角三角形的性质,勾股定理是解题的关键.13.(1)见解析(2)AF=185.【分析】(1)根据圆周角定理可得AD⊥BC,再由等腰三角形的性质可得BD=CD,进而得出OD是三角形的中位线,由切线的性质可得OD∥FC,证出三角形DFC是等腰三角形即可;(2)在Rt△ODE中,根据锐角三角函数可求出半径OD,进而得出直径AB,在Rt△ABF 中,由锐角三角函数可求出AF.(1)证明:如图,连接OC,AD,∵AB=AC,∴∠ABC=∠ACB,又∵∠ABC=∠F,∴∠F=∠ACB,∴DF=DC,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴FC⊥DE,∵DF=DC,∴DE是FC的垂直平分线,即点E为线段CF垂直平分线上一点;(2)解:连接BF,在Rt△ODE中,设OD=x,则OE=BE-OB=8-x,∵sin∠E=35=ODOE,∴8xx=35,解得x=3,经检验x=3是原方程的根,∴AB=2OD=6,∵AB是⊙O的直径,∴∠AFB=90°,∴DG∥BF,∴∠E=∠ABF,在Rt△ABF中,AB=6,sin∠ABF=sin∠E=35,∴AF =AB •sin ∠ABF =6×35=185. 【点评】本题考查切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系,掌握切线的性质,圆周角定理,等腰三角形的判断和性质,直角三角形的边角关系是正确解答的前提.14.(1)见解析(2)AB =10,周长16+45【分析】(1)根据AB 是⊙O 的直径,得∠C =90°,根据点D 是AC 的中点,得CA ⊥DF ,即有∠AEO =90°,则有BC DF ∥,即可得证;(2)先利用平行及圆周角定理证得∠DBF =∠BAC ,则根据正切值和勾股定理即可求出CB 、AB ,在Rt △AEO 中,利用勾股定理得OE =3,在Rt △AED 中,利用勾股定理,得AD 5则四边形的周长可得.(1)证明:∵AB 是⊙O 的直径,∴∠C =90°,∵点D 是AC 的中点,∴DO 垂直平分AC ,且AD =DC ,∴CA ⊥DF ,AE =EC ,∴∠AEO =90°,∴BC DF ∥,∵BF CD ∥,∴四边形BCDE 是平行四边形;(2)∵BC DF ∥,∴∠DBF =∠CDB ,又∵根据圆周角定理有∠CDB =∠BAC ,∴∠DBF =∠BAC ,即tan ∠BAC =34, ∵AC =8,∴CB =6,则在Rt △ACB 中,利用勾股定理可得AB =10,即AO =5=OD ,∵AE =EC =12AC ,∴AE=EC=4,在Rt△AEO中,利用勾股定理得OE=3,∴DE=OD-OE=5-3=2,在Rt△AED中,利用勾股定理,得AD5CD5∴四边形ABCD的周长=AB+BC+CD+AD5545【点评】本题考查了平行四边的判定与性质、同弧所对的圆周角相等、同弧所对的弦相等、勾股定理以及解直角三角形的知识,利用正切值以及同弧所对的圆周角相等是解答本题的关键.15.(1)见解析(2)1【分析】(1)连接OD,由AB=AC,OB=OD,则∠B=∠ODB=∠C,则OD∥AC,由DE为切线,即可得到结论成立;(2)如图所示,连接BF,AD,先解直角三角形ACD求出AD的长,从而求出CD的长,然后分别解直角三角形BCF,直角三角形DCE,求出BF,DE,进而求出CF,CE,即可得到EF.(1)解:连接OD,如图:∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠B=∠ODB=∠C,∴OD∥AC,∵DE是切线,∴OD⊥DE,∴AC⊥DE;(2)解:如图所示,连接BF,AD,∵AB是圆O的直径,∴∠AFB=∠ADB=90°,∴∠BFC=90°,∵DE⊥AC,∴∠DEC=90°∵AB=AC,∴BC=2CD,∠ABD=∠C,∴25 sin sinADABD CAC∠===∴2525 AD AC==∴225CD AC AD-∴5BC=∴sin2DE CD C=⋅=,sin=4BF BC C=⋅,∴221CE CD DE=-=,222CF BC BF=-=,∴EF=CF-CE=1.【点评】本题主要考查的是切线的性质、等腰三角形的性质、平行线的性质与判定,解直角三角形、勾股定理,解题的关键是熟练掌握所学的性质定理,正确的求出边的长度..16.(1)见解析(2)2π【分析】(1)先证明∠CEB=∠CBP=90°,再由∠D+∠P=90°,∠CAB+∠CBE=90°,∠CAB=∠D,推出∠CBE=∠P,即可证明结论;(2)设CF=3k,CP=4k,先证明∠F AC=∠CAB,得到CE=CF=3k,再由相似三角形的性质得到BC2=CE•CP;从而求出sin∠CBE323k∠CBE=60°,即可证明△OBC是等边三角形,得到∠COB=60°,据此求解即可.(1)解:∵CE⊥OB,CD为圆O的直径,∴∠CEB=∠DBC=90°,∴∠CEB=∠CBP=90°,∵PF是切线,∴∠DCP=90°,∴∠D+∠P=90°,∵AB是直径,∴∠ACB=90°∴∠CAB+∠CBE=90°,∵∠CAB=∠D,∴∠CBE=∠P,∴△CBE∽△CPB;(2)解:∵34 CFCP=,∴设CF=3k,CP=4k,∵PF是切线,∴OC⊥PF,∵AF⊥PF,∴AF∥OC.∴∠F AC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠F AC=∠CAB,∴CE=CF=3k,∵△CBE∽△CPB,∴CB CE CP CB=,∴BC2=CE•CP;∴BC =23k∴sin ∠CBE 323k= ∴∠CBE =60°,∵OB =OC ,∴△OBC 是等边三角形,∴∠COB =60°, ∵43AB =∴扇形COB 的面积260232360ππ⨯=() 【点评】本题主要考查了圆切线的性质,相似三角形的性质与判定,圆周角定理,角平分线的性质,解直角三角形,扇形面积,等边三角形的性质与判定等等,熟练掌握圆的相关知识是解题的关键.17.(1)证明见解析(2)证明见解析【分析】(1)根据AB 为O 的直径,可得90ADB ACB ∠=∠=︒,由ACB ∠的角平分线交O 于点D ,可得45ACD BCD ∠=∠=︒,AD BD =,AD BD =,进而结论得证;(2)由CAB ∠的角平分线交CD 于点F ,得到CAF BAF ∠=∠,结合(1)可得ACD BAD ∠=∠,再由∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,得到DFA DAF ∠=∠,从而说明DA DF =,最后再证明ADE CDA △∽△,利用相似三角形的性质即可得证.(1)证明:∵AB 为O 的直径,∴90ADB ACB ∠=∠=︒,∵ACB ∠的角平分线交O 于点D ,∴45ACD BCD ∠=∠=︒,∴AD BD =,∴AD BD =,∴ADB 为等腰直角三角形;(2)证明:∵CAB ∠的角平分线交CD 于点F ,∴CAF BAF ∠=∠,由(1)可知:45ACD ∠=︒,AD BD =,90ADB ∠=︒∴45BAD ABD ∠=∠=︒,∴ACD BAD ∠=∠,∵∠=∠+∠DFA CAF ACD ,∠=∠+∠DAF BAF BAD ,∴DFA DAF ∠=∠,∴DA DF =,在ADE 和CDA 中DAE DCA ADE CDA ∠=∠⎧⎨∠=∠⎩, ∴ADE CDA △∽△, ∴AD DE CD AD=, ∴2AD DE DC =⋅,∴2DF DE DC =⋅.【点评】本题考查的是圆和三角形的综合题,考查了直径所对的圆周角为90°,角平分线,圆周角,等腰三角形的判定,相似三角形的判定与性质等知识.对知识的熟练掌握与灵活运用是解题的关键.18.(1)3AC =(2)见解析【分析】(1)根据直径所对的圆周角是直角可得90ACB ∠=︒,再根据勾股定理进行计算即可;(2)连结BD ,连结OD 与AC 交于F 点.根据切线的性质及平行四边形的性质可证明四边形OBCD 是菱形,即可得到结论.(1)∵AB 是圆O 的直径,∴90ACB ∠=︒∴2223AC AB BC =-=,∴3AC =.(2)连结BD ,连结OD 与AC 交于F 点.∵ED 与圆O 相切于D 点,∴OD ED ⊥,∵四边形ACDE 是平行四边形,∴ED AC ∥, CD EA ∥,∴OD AC ⊥,90OFA ACB ∠=︒=∠,∴OD BC ∥,∵CD EB ∥,OD OB =,∴四边形OBCD 是菱形,∴BD 平分ABC ∠.【点评】本题考查了圆周角定理、切线的性质、勾股定理、平行四边形的性质及菱形的判定和性质,熟练掌握知识点是解题的根据.19.(1)见解析 65【分析】(1)根据等角的余角相等,ABP CPO ∠=∠,进而证得APB ABP ∠=∠,最后结论得证;(2)作OH BC ⊥于H ,在Rt POC △中,求出OP ,PC ,OH ,CH 即可解决问题.(1)证明:∵OC OB =,∴OCB OBC ∠=∠,∵AB 是O 的切线,∴OB AB ⊥,∴90OBA ∠=︒,∴90ABP OBC ∠+∠=︒,∵OC AO ⊥,∴=90AOC ∠︒,∴90OCB CPO ∠+∠=︒,∴ABP CPO ∠=∠,∵APB CPO ∠=∠,∴APB ABP ∠=∠,∴AP AB =.(2)解:作OH BC ⊥于H ,在Rt OAB 中,∵4OB =,3AB =, ∴22345OA +,∵3AP AB ==,∴2PO =.在Rt POC △中,∵4OC OB == ∴2225PC OC OP =+=1122POC S PC OH OC OP ==△, ∴455OC OP OH PC == ∴2285CH OC OH =- ∵OH BC ⊥,∴CH BH =,∴1652BC CH = ∴165655PB BC PC =-=-=. 【点评】本题考查切线的性质、解直角三角形、勾股定理、等腰三角形的判定和性质、垂径定理等知识,学会添加适当的辅助线,构造直角三角形解决问题是解本题的关键.20.(1)见解析(2)3DF =22【分析】(1)由题意得BAE DAE ∠=∠,且90ABE ︒∠=,即90BAE AEB ︒∠+∠=,根据AD BC ⊥得90DAE AFD ︒∠+∠=,即可得;(2)根据AEB AFD ∠=∠,AFD BFE ∠=∠得BEF BFE ∠=∠,即BE BF =,根据BAE DAF ∠=∠,90ABE ADF ︒∠=∠=得ΔΔABE ADF ∽,根据10AB =,5BF =得12BE AB =,设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理, 即()()2221052x x =++,即可得;(3)根据点G 为AB 中点,点O 在DG 上得OG 是ABE ∆的中位线,即OG BE ∥,12OG BE =,根据90ABE ︒∠=得OD DF =,AEB ∠和ACB ∠是AB 所对的圆周角得AEB ACB ∠=∠,即ACB AFC ∠=∠,即有AC AF =,设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++,即可得. (1)解:∵直径AE 平分BAD ∠,∴BAE DAE ∠=∠,且90ABE ︒∠=,∴90BAE AEB ︒∠+∠=,∵AD BC ⊥,∴90DAE AFD ︒∠+∠=,∴AEB AFD ∠=∠.(2)解:∵AEB AFD ∠=∠,AFD BFE ∠=∠,∴BEF BFE ∠=∠,∴BE BF =,∵BAE DAF ∠=∠,90ABE ADF ︒∠=∠=,∴ΔΔABE ADF ∽,∵10AB =,5BF =, ∴51102BE BF DF AB AB AD ====, 设DF x =,则2AD x =,在Rt ABD ∆中,根据勾股定理,222AB BD AD =+,即()()2221052x x =++,解得:13x =,25x =-,舍去负值,得到3DF =.(3)解:如图所示,∵点G 为AB 中点,点O 在DG 上,∴OG 是ABE ∆的中位线,∴OG BE ∥,12OG BE =, ∵90ABE ︒∠=,∴DG AB ⊥,ABD ∆是等腰直角三角形,AOG AEB AFD ∠=∠=∠,∴OD DF =,∵AEB ∠和ACB ∠是AB 所对的圆周角,∴AEB ACB ∠=∠,∴ACB AFC ∠=∠,即有AC AF =,∵AD CF ⊥,∴DF CD =.设BF a =,DF b =, 有11222BE OD a b DG BD BF DF a b ++===++, 解得2a b =, ∴::222BF FC a b ==.【点评】本题考查了圆与三角形,解题的关键是掌握垂径定理,相似三角形的判断与性质,中位线,勾股定理.。

2020最新中考数学专项练习:与圆有关的证明与计算题

2020最新中考数学专项练习:与圆有关的证明与计算题

中考数学专项练习:与圆有关的证明与计算题本文档中含有大量公式,转换为网页过程中可能会出现公式位置错误的可能,但下载后均可正常显示,欢迎下载!一、单选题1.如图,AB 是O e 的弦,OC AB ⊥交O e 于点C ,点D 是O e 上一点,30ADC ∠=︒,则BOC ∠的度数为( ).A .30°B .40°C .50°D .60°【答案】D 【分析】由垂径定理、等腰三角形的性质和平行线的性质证出∠OAC =∠OCA =∠AOC ,得出△OAC 是等腰三角形,得出∠BOC =∠AOC =60°即可.【详解】解:如图,∵30ADC ∠=︒,∴260AOC ADC ∠=∠=︒.∵AB 是O e 的弦,OC AB ⊥交O e 于点C ,∴»»AC BC=. ∴60AOC BOC ∠=∠=︒.故选:D .2.如图,AB 为O e 的切线,切点为A ,连接AO BO 、,BO 与O e 交于点C ,延长BO 与O e 交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为( )A .54oB .36oC .32oD .27o【答案】D 【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=o903654AOB ∴∠=-=o o oOD OA =QOAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠Q27ADC ADO ∴∠=∠=o故选D3.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°【答案】A 【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC .因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A .【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.4.如图,一条公路的转弯处是一段圆弧,点O 是这段弧所在圆的圆心,40AB m =,点C 是¶AB 的中点,且10CD m =,则这段弯路所在圆的半径为( )A .25mB .24mC .30mD .60m【答案】A 【分析】根据题意,可以推出AD =BD =20,若设半径为r ,则OD =r ﹣10,OB =r ,结合勾股定理可推出半径r 的值.【详解】解:OC AB ⊥Q ,20AD DB m ∴==,在Rt AOD ∆中,222OA OD AD =+,设半径为r 得:()2221020r r =-+,解得:25r m =, ∴这段弯路的半径为25m故选:A .5.如图,点C 为扇形OAB 的半径OB 上一点,将OAC ∆沿AC 折叠,点O 恰好落在»AB上的点D 处,且¼¼:1:3BD AD ''=(¼BD'表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【答案】D 【分析】连接OD ,求出∠AOB ,利用弧长公式和圆的周长公式求解即可.【详解】解:连接OD 交AC 于M .由折叠的知识可得:12OM OA =,90OMA ∠=︒, 30OAM ∴∠=︒,60AOM ∴∠=︒,Q 且¼¼:1:3BD AD ''=,80AOB ∴∠=︒设圆锥的底面半径为r ,母线长为l ,802180l r ππ=, :2:9r l ∴=.故选:D .6.如图,边长为ABC ∆的内切圆的半径为( )A .1B C .2 D .【答案】A 【分析】连接AO 、CO ,CO 的延长线交AB 于H ,如图,利用内心的性质得CH 平分∠BCA ,AO 平分∠BAC ,再根据等边三角形的性质得∠CAB =60°,CH ⊥AB ,则∠OAH =30°,AH =BH =1 2 AB =3,然后利用正切的定义计算出OH 即可.【详解】设ABC ∆的内心为O ,连接AO 、BO ,CO 的延长线交AB 于H ,如图,∵ABC ∆为等边三角形,∴CH 平分BCA ∠,AO 平分BAC ∠,∵ABC ∆为等边三角形,∴60CAB ︒∠=,CH AB ⊥,∴30OAH ︒∠=,12AH BH AB ===在Rt AOH ∆中,∵OH tan tan30AHOAH ︒∠==,∴1OH ==, 即ABC ∆内切圆的半径为1.故选A .7.如图,在Rt △ABC 中,∠ABC =90°,AB=BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )A.42π- B.42π+ C.π D.2π【答案】A【分析】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,利用∠A 的正切值求出∠A =30°,继而可求得OH 、AH 长,根据圆周角定理可求得∠BOC =60°,然后根据S 阴影=S △ABC -S △AOD -S 扇形BOD 进行计算即可.【详解】连接OD ,过点O 作OH ⊥AC ,垂足为 H ,则有AD =2AH ,∠AHO =90°,在Rt △ABC 中,∠ABC =90°,AB=BC =2,tan ∠A=BC AB ==, ∴∠A =30°,∴OH =12OAAH =AO •cos ∠A32=,∠BOC =2∠A =60°, ∴AD =2AH =3,∴S 阴影=S △ABC -S △AOD -S 扇形BOD=2601123222360π⨯⨯-⨯⨯-2π-,故选A.8.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是( )A.4 B.6.25 C.7.5 D.9【答案】A【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF 为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.【详解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,∴OE=OF=r,∴S四边形AEOF=r²,连接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴11()22AB AC BC r AB AC++=⋅,∴r=2,∴S 四边形AEOF =r ²=4,故选A .9.如图,AB 是O e 的直径,C ,D 是O e 上的两点,且BC 平分ABD ∠,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )A .OC BD PB .AD OC ⊥ C .CEF BED ∆≅∆ D .AF FD =【答案】C 【分析】由圆周角定理和角平分线得出90ADB ∠=︒,OBC DBC ∠=∠,由等腰三角形的性质得出OCB OBC ∠=∠,得出DBC OCB ∠=∠,证出OC BD P ,选项A 成立;由平行线的性质得出AD OC ⊥,选项B 成立;由垂径定理得出AF FD =,选项D 成立;CEF ∆和BED ∆中,没有相等的边,CEF ∆与BED ∆不全等,选项C 不成立,即可得出答案.【详解】∵AB 是O e 的直径,BC 平分ABD ∠,∴90ADB ∠=︒,OBC DBC ∠=∠,∴AD BD ⊥,∵OB OC =,∴OCB OBC ∠=∠,∴DBC OCB ∠=∠,∴OC BD P ,选项A 成立;∴AD OC ⊥,选项B 成立;∴AF FD =,选项D 成立;∵CEF ∆和BED ∆中,没有相等的边,∴CEF ∆与BED ∆不全等,选项C 不成立,故选C .10.如图,在Rt ABC ∆中,90304ACB A BC ∠=︒∠=︒=,,,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )A .43πB .232π-C .132π-D .13π【答案】A 【分析】根据三角形的内角和得到60B ∠︒=,根据圆周角定理得到12090COD CDB ∠︒∠︒=,=,根据扇形和三角形的面积公式即可得到结论.【详解】解:∵在Rt ABC ∆中,9030ACB A ∠︒∠︒=,=,60B ∴∠︒=,120COD ∴∠︒=,4BC Q =,BC 为半圆O 的直径,90CDB ∴∠︒=,2OC OD ∴==,CD ∴==图中阴影部分的面积2120214136023COD COD S S ππ∆⋅⨯-⨯=扇形=﹣= 故选:A .二、填空题11.如图,O e 的两条相交弦AC 、BD ,60ACB CDB ︒∠=∠=,AC =O e 的面积是_______.【答案】4π.【分析】由A BDC ∠=∠,而60ACB CDB ︒∠=∠=,所以60A ACB ︒∠=∠=,得到ACB ∆为等边三角形,又AC =O e 的面积.【详解】解:∵A BDC ∠=∠,而60ACB CDB ︒∠=∠=,∴60A ACB ︒∠=∠=,∴ACB ∆为等边三角形,∵AC =∴圆的半径为2,∴O e 的面积是4π,故答案为4π.12.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积是______.(结果保留π)【答案】π-1【分析】延长DC ,CB 交⊙O 于M ,N ,根据圆和正方形的面积公式即可得到结论.【详解】解:延长DC ,CB 交⊙O 于M ,N , 则图中阴影部分的面积=14×(S 圆O −S 正方形ABCD )=14×(4π−4)=π−1, 故答案为:π−1.13.如图,CD 为O e 的直径,弦AB CD ⊥,垂足为E ,»»AB BF=,1CE =,6AB =,则弦AF 的长度为______.【答案】485【分析】连接OA 、OB ,OB 交AF 于G ,如图,利用垂径定理得到3AE BE ==,设O e 的半径为r ,则1OE r =-,OA r =,根据勾股定理得到22231()r r +-=,解得=5r ,再利用垂径定理得到OB AF ⊥,AG FG =,则2225AG OG +=,222()56AG OG +-=,然后解方程组求出AG ,从而得到AF 的长.【详解】连接OA 、OB ,OB 交AF 于G ,如图,∵AB CD ⊥,132AE BE AB ∴===, 设⊙O 的半径为r ,则1OE r =-,OA r =, 在Rt OAE ∆中,22231()r r +-=,解得=5r ,∵»»AB BF=, OB AF ∴⊥,AG FG =,在Rt OAG ∆中,2225AG OG +=,①在Rt ABG ∆中,222()56AG OG +-=,② 解由①②组成的方程组得到245AG =, 4825AF AG ∴==. 故答案为485. 14.如图,分别以等边三角形的每个顶点以圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为__________.【答案】a π【分析】勒洛三角形的周长为3段相等的弧,计算弧长即可.【详解】勒洛三角形的周长为3段相等的弧,每段弧的长度为:60πa 1πa.1803⋅= 则勒洛三角形的周长为:1πa 3πa.3⨯=故答案为:πa.15.如图,在平面直角坐标系中,已知D e 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,点B 坐标为(0,,OC 与D e 交于点C ,30OCA ∠=︒,则圆中阴影部分的面积为_____.【答案】2π-【分析】由圆周角定理可得30OBA C ∠=∠=︒,在Rt △AOB 中,利用解直角三角形求出OA 、AB 的长,然后根据S 阴=S 半-S △ABO 求解即可.【详解】连接AB ,∵90AOB ∠=︒,∴AB 是直径,根据同弧对的圆周角相等得30OBA C ∠=∠=︒,∵OB =∴tan tan 302OA OB ABO OB ︒=∠===,sin 304AB AO ︒=÷=,即圆的半径为2,∴2212222ABO S S S ππ⨯=-=-⨯⨯=-△阴影半圆故答案为:2π-.16.如图,AB 是圆O 的弦,OC AB ⊥,垂足为点C ,将劣弧¶AB 沿弦AB 折叠交于OC的中点D ,若AB =,则圆O 的半径为_____.【答案】【分析】连接OA ,设半径为x ,用x 表示OC ,根据勾股定理建立x 的方程,便可求得结果.【详解】解:连接OA ,设半径为x ,Q 将劣弧»AB 沿弦AB 折叠交于OC 的中点D , 23OC x ∴=,OC AB ⊥, 1102AC AB ∴==, 222OA OC AC -=Q ,222()103x x ∴-=, 解得,32x =.故答案为32.17.如图,扇形OAB 中,90AOB ∠=︒.P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D ,若2,1PD CD ==,则该扇形的半径长为___________【答案】5【分析】连接OP ,设半径为r ,在直角三角形OCP 中利用勾股定理将CO 用r 表示,得到AC ,又有△ACD ∽△AOB ,利用AC DC AO BO=,解出r 即可 【详解】连接OP ,设半径为r ,则OP =OA =OB =r ,PC =PD +CD =3,在直角三角形OCP 中,222OC PC OP +=,即得OC 2=r 2-9,得到OC得到AC =r ACD ∽△AOB ,所以AC DC AO BO =1r =,得到r 1=,解出r =5;故填518.如图,在圆心角为90°的扇形OAB 中,2OB =,P 为»AB 上任意一点,过点P 作PE OB ⊥于点E ,设M 为OPE ∆的内心,当点P 从点A 运动到点B 时,则内心M 所经过的路径长为_____.【答案】2【分析】以OB 为斜边在OB 的右边作等腰/Rt P OB ∆,以/P 为圆心PB 为半径作⊙/P ,在优弧OB 上取一点H ,连接HB ,HO ,BM ,MP .求出135OMP ︒∠=,证()OMB OMP SAS ∆≅∆,得135OMB OMP ︒∠=∠=,由180H OMB ︒∠+∠=,证,,,O M B H 四点共圆,故点M 的运动轨迹是»OB,由弧长公式可得. 【详解】如图,以OB 为斜边在OB 的左边作等腰/Rt P OB ∆,以/P 为圆心/P B 为半径作⊙/P ,在优弧OB 上取一点H ,连接HB ,HO ,BM ,MP .∵PE OB ⊥,∴90PEO ∠=o ,∵点M 是内心,∴135OMP ︒∠=,∵OB OP =,MOB MOP ∠=∠,OM OM =,∴()OMB OMP SAS ∆≅∆,∴135OMB OMP ︒∠=∠=, ∵1452H BPO ︒∠=∠=, ∴180H OMB ︒∠+∠=,∴,,,O M B H 四点共圆,∴点M 的运动轨迹是»OB,∴内心M 所经过的路径长==,. 19.如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A ,点C ,交OB 于点D ,若3OA =,则阴影部分的面积为_____.【答案】34π【分析】根据题意连接OC ,可得阴影部分的面积等于两个阴影部分面积之和,再根据弧AC 所对的阴影部分面积等于弧AC 所对圆心角的面积减去OAC ∆的面积,而不规则图形BCD 的面积等于OBC ∆的面积减去弧DC 所对圆心角的面积.进而可得阴影部分的面积.【详解】解:根据题意连接OC,90903060OA OC OAB B ︒︒︒︒=∠=-∠=-=QACO ∴∆为等边三角形60AOC ︒∴∠=∴阴影部分面积1=26013333cos3036022ππ︒⨯⨯-⨯⨯=-∴阴影部分面积2=21330332236044ππ⨯-⨯⨯=- ∴阴影部分面积=阴影部分面积1+阴影部分面积2=34π 故答案为34π。

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。

2023年中考数学专题训练——圆的计算和证明(附答案)

2023年中考数学专题训练——圆的计算和证明(附答案)

2023年中考专题训练——圆的计算和证明1.AB为⊙O直径,BC为⊙O切线,切点为B,CO平行于弦AD,作直线DC.(1)求证:DC为⊙O切线;(2) 若AD·OC=8,求⊙O半径.2.如图,四边形ABCD内接于⊙O,∠BAD =90°,AC是对角线.点E在BC的延长线上,且∠CED =∠BAC.(1)判断DE与⊙O的位置关系,并说明理由;(2)BA与CD的延长线交于点F,若DE∥AC,AB=4,AD =2,求AF的长.3.如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=6.(1)求⊙O的面积;(2)若D为⊙O上一点,且△ABD为等腰三角形,直接写出CD的长为.4.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°,且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果精确到0.01)5.如图,△AB .C 内接于⊙0,点D 在半径OB 的延长线上,∠BCD=∠A=30°.(1)判断直线CD 与⊙0的位置关系,并说明理由(2)若⊙0的半径为1,求阴影部分面积.6.如图,已知Rt ABC ∆中,90ACB ∠=︒,E 为AB 上一点,以AE 为直径作O 与BC 相切于点D ,连接ED 并延长交AC 的延长线于点F .(1)求证:AE AF =;(2)若5,4AE AC ==,求BE 的长.7.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC 交⊙O 于点F .(1)AB 与AC 的大小有什么关系?请说明理由;(2)若AB =8,∠BAC =45°,求:图中阴影部分的面积.8.如图,在△ABC 中,BA =BC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,BC 的延长线于⊙O 的切线AF 交于点F .(1)求证:∠ABC =2∠CAF ;(2)若AC =10,CE :EB =1:4,求CE 的长.9.如图,在⊙O 中,半径OA 与弦BD 垂直,点C 在⊙O 上,∠AOB =80°(1) 若点C 在优弧BD 上,求∠ACD 的大小(2) 若点C 在劣弧BD 上,直接写出∠ACD 的大小10.如图,在等腰ABC 中,120BAC ∠=︒,AD 是BAC ∠的角平分线,且6AD =,以点A 为圆心,AD 长为半径画弧EF ,交AB 于点E ,交AC 于点F ,(1)求由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF ,将扇形AEF 围成一个圆锥的侧面,AE 与AF 正好重合,圆锥侧面无重叠,求这个圆锥的高h .11.如图,四边形是平行四边形,以AB 为直径的O 经过点D, E 是O 上一点,且45AED ∠=︒.(1)判断CD与O的位置关系,并说明理由;(2) 若BC=2 .求阴影部分的面积.(结果保留π 的形式).12.如图,AB是⊙O的直径,点D是⊙O外一点,AB=AD,BD交⊙O于点C,AD交⊙O于点E,点P是AC的延长线上一点,连接PB、PD,且PD⊥AD(1)判断PB与⊙O的位置关系,并说明理由;(2)连接CE,若CE=3,AE=7,求⊙O的半径.13.如图,AB是⊙O的弦,半径OE⊥AB,P为AB的延长线上一点,PC与⊙O相切于点C,CE与AB交于点F.(1)求证:PC=PF;(2)连接OB,BC,若OB∥PC,BC=tan P=34,求FB的长.14.已知,P A、PB是⊙O的切线,切点分别为A、B,AC是⊙O的直径.(1)如图1,若∠BAC=25°,求∠P的度数;(2)如图2,延长PB、AC相交于点D.若AP=AC,求cos D的值.15.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为3,BC=4,求CE的长.16.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28°.(1)求∠ACM的度数;(2)在MN上是否存在一点D,使AB•CD=AC•BC,为什么?17.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,AE CE,过点C作CD∥AB 交BE的延长线于D,AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF,若∠AOF=3∠FOE且AF=3,求CF的长.18.如图,△ABC内接于⊙O,且AB=AC,D是AC上一点,AD与BC交于E,AF⊥DB,垂足为F.(1)求证:∠ADB=∠CDE;(2)若AF=DC=6,AB=10,求△DBC的面积.19.如图,AB是半圆O的直径,C是AB延长线上一点,CD与半圆O相切于点D,连接AD,BD.(1)求证:∠BAD=∠BDC;(2)若sin∠BDC,BC=2,求⊙O的半径.20.同学们都学习过《几何》课本第三册第199页的第11题,它是这样的:如图,A为⊙O 的直径EF上的一点,OB是和这条直径垂直的半径,BA和⊙O相交于另一点C,过点C的切线和EF的延长线相交于点D,求证:DA=DC.(1)现将图1中的直径EF所在直线进行平行移动到图2所示的位置,此时OB与EF垂直相交于H,其它条件不变.①求证:DA=DC;②当DF:EF=1:8,且DF AB•AC的值.(2)将图2中的EF所在直线继续向上平行移动到图3所示的位置,使EF与OB的延长线垂直相交于H,A为EF上异于H的一点,且AH小于⊙O的切线交EF于D,试猜想:DA=DC是否仍然成立?证明你的结论.参考答案:1.(1证明见解析;(2)2.【分析】(1)连接OD ,要证明DC 是 O 的切线,只要证明∠ODC=90°即可.根据题意,可证△OCD ≌△OCB ,即可得∠CDO=∠CBO=90°,由此可证DC 是 O 的切线;(2)连接BD ,OD .先根据两角对应相等的两三角形相似证明△ADB ∽△ODC ,再根据相似三角形对应边成比例即可得到r 的值.【解析】解:(1)证明:连接OD.∵OA=OD ,∴∠A=∠ADO.∵AD ∥OC ,∴∠A=∠BOC ,∠ADO=∠COD ,∴∠BOC=∠COD.∵在△OBC 与△ODC 中,{OB ODBOC DOC OC OC=∠=∠=,∴△OBC ≌△ODC(SAS),∴∠OBC=∠ODC ,又∵BC 是O 的切线,∴∠OBC=90°,∴∠ODC=90°,∴DC 是O 的切线;(2)连接BD.∵在△ADB 与△ODC 中,{90A COD ADB ODC ∠=∠∠=∠=︒∴△ADB ∽△ODC ,∴AD:OD=AB:OC ,∴AD ⋅OC=OD ⋅AB=r ⋅2r=2r²,即2r²=8,故r=2.2.(1)DE与⊙O相切,证明见解析;(2)83 AF .【分析】(1)连接BD,先根据圆周角定理证明BD是⊙O的直径,证明∠BDC+∠CDE=90°,即BD⊥DE,即可得出DE与⊙O相切;(2)先根据平行线的性质得∠BHC=∠BDE=90°,由垂径定理得AH=CH,由垂直平分线的性质得BC=AB=4,CD=AD=2,证明△FAD∽△FCB,列比例式得CF=2AF,设 AF=x,则DF=CF-CD=2x-2,根据勾股定理列方程可解答.【解析】解:(1)DE与⊙O相切,理由是:连接BD,如下图,∵四边形ABCD内接于⊙O,∠BAD=90°,∴BD是⊙O的直径,即点O在BD上,∴∠BCD=90°,∴∠CED+∠CDE=90°.∵∠CED=∠BAC,又∵∠BAC=∠BDC,∴∠CED=∠BDC,∴∠BDC+∠CDE=90°,即∠BDE=90°,∴DE⊥BD于点D,∴DE与⊙O相切.(2)如下图,BD与AC交于点H,∵DE ∥AC ,∴∠BHC=∠BDE=90°.∴BD ⊥AC .∴AH=CH .∴BC=AB=4,CD=AD=2.∵∠FAD=∠FCB=90°,∠F=∠F ,∴△FAD ∽△FCB ,2=4AF AD CF CB ∴=, ∴CF=2AF ,设 AF=x ,则DF=CF-CD=2x-2.在Rt △ADF 中,DF 2=AD 2+AF 2,∴(2x-2)2=22+x 2.解得: 128,03x x ==(舍去), 83AF ∴=. 【点评】本题考查圆周角定理,垂径定理,垂直平分线的性质定理,相似三角形的性质和判定,切线的判定,勾股定理.(1)证明切线最常用的办法,即如果直线与圆有交点,则连接交点与圆心的半径,只有证明这条半径与该直线垂直即可,此问中能依据90°圆周角所对的弦是直径证明BD 是⊙O 的直径是解题关键;(2)中能通过证明△FAD ∽△FCB ,得出CF=2AF 是解题关键.3.(1)25π;(2272【分析】(1)先利用圆周角定理得到90ACB ∠=︒.再利用勾股定理计算出AB ,然后利用圆的面积公式计算;(2)作直径DD AB '⊥,BH CD ⊥于H ,如图,利用垂径定理得到AD BD =,再证明ADB ∆为等腰直角三角形得到252DB AB =,利用BCH ∆为等腰直角三角形得到232CH BH ==42DH =72CD =股定理计算CD '即可.【解析】解:(1)AB 是O 的直径,90ACB ∴∠=︒.8AC ∴=,6BC =,10AB ∴=.O ∴的面积2525ππ=⨯=;(2)作直径DD AB '⊥,BH CD ⊥于H ,如图,则AD BD =,AD BD ∴=,45ACD BCD ∠=∠=︒, AB 是O 的直径,90ADB ∴∠=︒,ADB ∴∆为等腰直角三角形,DB AB ∴== 又∵45BCD BAD ∠=∠=︒,∴BCH ∆为等腰直角三角形,CH BH ∴===在Rt BDH ∆中,DHCD CH DH ∴=+=DD '是O 的直径,90DCD ∴∠'=︒,CD ∴'=综上所述,CD【点评】本题考查了与圆有关的计算,涉及了圆周角定理、垂径定理和勾股定理.解题关键是正确画出图形得出ADB ∆为等腰直角三角形,并用勾股定理求解.4.(1)OE=32;(2)32π. 【分析】(1)根据∠D=60°,可得出∠B=60°,继而求出BC ,判断出OE 是△ABC 的中位线,就可得出OE 的长;(2)连接OC ,将阴影部分的面积转化为扇形FOC 的面积.【解析】解:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB 是⊙O 的直径,∴∠ACB=90°,∵OE ⊥AC ,∴OE ∥BC ,又∵点O 是AB 中点,∴OE 是△ABC 的中位线,∴OE=1232BC =;(2)连接OC ,则易得△COE ≌△AFE ,故阴影部分的面积=扇形FOC 的面积,S 扇形FOC =260333260π⨯=π. 即可得阴影部分的面积为32π. 【点评】此题考查扇形的面积,含30°角的直角三角形的计算及圆周角定理等,解题关键在于将不规则图形转化为规则图形进行求解.5.(1)相切,理由见解析;(236π 【分析】(1)根据“同弧所对的圆周角等于圆心角的一半”求出∠O 的度数,再根据半径相等求出△OCB 为等边三角形,即可得出答案;(2)根据∠O 的度数和半径求出CD 的长度,进而求出△COD 的面积,利用扇形面积公式求出扇形OCB 的面积,三角形的面积减去扇形的面积即可得出答案.【解析】解:(1)∵∠A=30°∴∠O=2∠A=60°又OB=OC∴△OBC 为等边三角形,∠OCB=60°又∠BCD=30°∴∠OCD=∠OCB+∠BCD=90°∴CD 与⊙O 相切(2)由(1)可知△OCD 为直角三角形,∠O=60°又半径为1,即OC=1∴CD OC tan O ∠==∴12OCD S CO CD =⨯⨯=2OCB 601S 3606ππ⨯⨯==扇形∴OCB S S 6OCD S π=-=阴影扇形 【点评】本题考查的是圆的综合,难度适中,牢记圆中的相关定理和性质是解决本题的关键. 6.(1)见解析;(2)53BE =. 【分析】(1)连接OD ,根据切线的性质得到OD ⊥BC ,根据平行线的判定定理得到OD ∥AC ,求得∠ODE=∠F ,根据等腰三角形的性质得到∠OED=∠ODE ,等量代换得到∠OED=∠F ,于是得到结论;(2)根据平行得出BOD BAC ∆∆∽,再由BO OD AB AC=可得到关于BE 的方程,从而得出结论. 【解析】(1)证明:连接OD ,∵BC 切O 于点D ,∴OD BC ⊥.∴90ODC ︒∠=.又90ACB ︒∠=,∴//OD AC ,∴ODE F ∠=∠.∵OE OD ,∴OED ODE ∠=∠,∴OED F ∠=∠.∴AE AF =.(2)解:∵//OD AC ,∴BOD BAC ∆∆∽,∴BO OD AB AC=. ∵5,4AE AC ==,∴ 2.5OE OD ==, ∴ 2.5 2.554BE BE +=+, ∴53BE =. 【点评】本题考查了切线的性质,平行线的性质,相似三角形的判定和性质,等腰三角形的判定与性质等知识,正确的作出辅助线是解题的关键.7.(1)AB =AC ;(2)242π-【分析】(1)连接AD ,根据圆周角定理可以证得AD 垂直且平分BC ,然后根据垂直平分线的性质证得AB =AC ;(2)连接OD 、过D 作DH ⊥AB ,根据扇形的面积公式解答即可.【解析】(1)AB =AC .理由是:连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°,即AD ⊥BC ,又∵DC =BD ,∴AB =AC ;(2)连接OD 、过D 作DH ⊥AB .∵AB =8,∠BAC =45°,∴∠BOD =45°,OB =OD =4,∴DH 2∴△OBD 的面积=1422422⨯⨯扇形OBD 的面积=24542360ππ⋅⋅=, 阴影部分面积=242π-【点评】本题考查了圆周角定理以及等腰三角形的性质定理,理解弧的度数和对应 圆心角的度数的关系是关键.8.(1)见解析;(2)CE =2.【分析】(1)首先连接BD ,由AB 为直径,可得∠ADB=90°,又由AF 是⊙O 的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;(2)首先连接AE,设CE=x,由勾股定理可得方程:()2=x2+(3x)2求得答案.【解析】(1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°.∵AF是⊙O的切线,∴∠F AB=90°,即∠DAB+∠CAF=90°.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90°,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)解:如图,连接AE,∴∠AEB=90°,设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2,即(2=x2+(3x)2,∴x=2.∴CE=2.【点评】此题考查了切线的性质,三角函数以及勾股定理,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用是解题关键.9.(1)∠ACD=40°;(2)∠ACD=40°或140°.【分析】(1)由AO⊥BD,根据垂径定理可得AD AB,再利用等弧对等角,以及圆周角定理即可求出结果;(2)如图所示,点C 有两个位置,分别利用圆周角定理的推论和圆周角定理求出即可.【解析】解:(1)∵AO ⊥BD ,∴AD AB =,∴∠AOB =2∠ACD ,∵∠AOB =80°,∴∠ACD =40°;(2)如图,①当点C 1在AB 上时,∠AC 1D =∠ACD =40°;②当点C 2在AD 上时,∵∠AC 2D +∠ACD =180°,∴∠AC 2D =140°. 综上所述,∠ACD =40°或140°.【点评】本题考查了圆周角定理及其推论和垂径定理等知识,熟练掌握上述知识、正确分类是解本题的关键.10.(1)312π;(2)42h =【分析】(1)利用等腰三角形的性质得到AD BC ⊥,BD CD =,则可计算出BD 63=后利用扇形的面积公式,利用由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积ABC EAF =S S -扇形进行计算;(2)设圆锥的底面圆的半径为r ,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到120π62πr 180⋅⋅=,解得r 2=,然后利用勾股定理计算这个圆锥的高h . 【解析】∵在等腰ABC 中,BAC 120∠=︒,∴B 30∠=︒,∵AD 是BAC ∠的角平分线,∴AD BC ⊥,BD CD =, ∴BD 3AD 63== ∴BC 2BD 3==∴由弧EF 及线段FC 、CB 、BE 围成图形(图中阴影部分)的面积2ABC EAF 1120π6=S S 6123312π2360⋅⋅-=⨯⨯=扇形. (2)设圆锥的底面圆的半径为r ,根据题意得120π62πr180⋅⋅=,解得r2=,这个圆锥的高h【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰三角形的性质和扇形的面积公式.11.(1)相切,证明见解析(2)3-23π.【分析】(1)连接BD,OD求出∠ABD=∠AED=45°,根据DC∥AB推出∠CDB=45°求出∠ODC=90°根据切线的判定推出即可(2)求出∠AOD=∠BOD=90°,求出AO,OD分别求出△AOD扇形DOB,平行四边形ABCD 的面积相减即可求出答案【解析】(1)解CD与⊙O的位置关系是相切理由是连接BD,OD∵∠AED=45°∴∠ABD=∠AED=45°∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDB=45°∵OD=OB,∴∠ODB=∠OBD=45°∴∠ODC=45°+45°=90°∵OD为半径,∴CD与⊙O的位置关系是相切;(2)解AB∥CD,∠ODC=90°∴∠DOB=90°=∠DOA,∵四边形ABCD是平行四边形,∴AD=BC=2,在△AOD中由勾股定理得:2AO2=222∴S △AOD=12 OA×OD=12×2×2S 扇形BOD=26022=3603⨯ππ S 平行四边形ABCD=AB×2×2∴阴影部分的面积是:4-1-23π=3-23π.【点评】此题考查切线的判定,勾股定理,扇形面积,平行四边形的性质,解题关键在于作辅助线12.(1)PB 与⊙O 相切,理由见解析;(2)⊙O 的半径为4.5.【分析】(1)根据线段垂直平分线的性质可得PB =PD ,通过证明△ABP 与△ADP 全等,根据全等三角形对应角相等可得∠ABP =∠ADP =90°,再根据切线的判定定理即可得证;(2)根据全等三角形的性质得∠BAC =∠DAC ,得到BC =CE =3,然后证明△DCE 与△DAB 相似,然后根据相似三角形的对应边成比可推导得出DC •DB =DE •DA ,代入相关数据即可求得答案.【解析】(1)PB 与⊙O 相切,理由如下:∵AB 是⊙O 的直径,∴AC ⊥BD ,又AB =AD ,∴AP 是线段BD 的垂直平分线,∴PB =PD ,在△ABP 和△ADP 中, AB AD PB PD AP AP =⎧⎪=⎨⎪=⎩,∴△ABP ≌△ADP (SSS),∴∠ABP =∠ADP =90°,∴PB 与⊙O 相切;(2)连接CE ,∵△ABP≌△ADP,∴∠BAC=∠DAC,∴BC CE=,∴BC=CE=3,∵AB=AD,AC⊥BD,∴BC=CD=3,∵四边形ABCE是⊙O的内接四边形,∴∠DBA+∠CEA=180°,∵∠DEC+∠CEA=180°,∴∠DBA=∠DEC,又∵∠CDE=∠ADB,∴△DCE∽△DAB,∴DC:DA=DE:DB,∴DC•DB=DE•DA,即3×6=DE×(DE+7),解得,DE=2,∴DA=2+7=9,∴AB=AD=9,∴⊙O的半径为4.5.【点评】本题考查了切线的判定,圆内接四边形的性质,相似三角形的判定与性质,熟练掌握相关的性质定理与判定定理是解题的关键.13.(1)证明见解析;(2)FB=2【分析】(1)连接OC,根据切线的性质以及OE⊥AB,可知∠E+∠EF A=∠OCE+∠FCP=90°,从而可得∠EF A=∠FCP,继而可推得∠CFP=∠FCP,再根据等角对等边即可证得;(2)过点B作BG⊥PC于点G,由OB∥PC,OB=OC,BC=,从而求得OB=3,继而证得四边形OBGC是正方形,从而有OB=CG=BG=3,从而有34BGPG=,求得PG=4,再利用勾股定理可求得PB长,继而可求出FB长.【解析】解:(1)连接OC,∵PC是⊙O的切线,∴∠OCP=90°,∵OE=OC,∴∠E=∠OCE,∵OE⊥AB,∴∠E+∠EF A=∠OCE+∠FCP=90°,∴∠EF A=∠FCP,∵∠EF A=∠CFP,∴∠CFP=∠FCP,∴PC=PF;(2)过点B作BG⊥PC于点G,∵OB∥PC,∴∠COB=90°,∵OB=OC,BC=2∴OB=3,∵BG⊥PC,∴四边形OBGC是正方形,∴OB=CG=BG=3,∵tan P=34,∴34 BGPG,∴PG=4,∴由勾股定理可知:PB=5,∵PF=PC=7,∴FB=PF﹣PB=7﹣5=2.【点评】本题考查了切线的性质,勾股定理,等腰三角形的判定,正方形的判定,锐角三角函数的定义等,解题的关键是正确添加辅助线,灵活运用相关知识求解.14.(1)50°;(2)cosD=45.【分析】(1)连接OB.根据平行的想得到PA⊥AO,PB⊥OB,根据四边形的内角和即可得到结论;(2)连结OP交AB于点E,再连OB、BC,根据切线的性质得到∠PAC=∠PBO=90°,推出OP是AB的垂直平分线,根据相似三角形的性质即可得到结论.【解析】(1)证明:如图1,连接OB.∵PA、PB分别切⊙O于A、B两点,∴PA⊥AO,PB⊥OB,∴∠PAO=∠PBO=90°.∵∠BAC=25°,OB=OA,∴∠BOA=180°﹣25°﹣25°=130°,∴∠P=360°﹣90°﹣90°﹣130°=50°;(2)解:如图2,连结OP交AB于点E,再连OB、BC,∵PA、PB是⊙O的切线,∴∠PAC=∠PBO=90°,∵AP=AC,AC是⊙O的直径,∴12OAPA=,∵PB=PA,OB=OA,∴OP是AB的垂直平分线,∵∠OAP=90°,AE⊥OP,∴△OEA∽△AEP∽△OAP,∴OA OE OP OA=,设OE=a,可得AE=BE=BC=2a,PE=4a,∴OP=5a,∴OA,PA=PB=,∵∠ABC=∠AEO=90°,∴OP∥BC,∴△DBC∽△DPO,∴CDOD=BDOD=BCOP=25.∴BD 45,OD=535,∴cos D=BDOD=45.【点评】本题考查了切线的性质,四边形的内角和,相似三角形的判定和性质,平行线的判定,正确的作出辅助线是解题的关键.15.(1)DE与⊙O相切,证明详见解析;(2)EC=1.【分析】(1)连接OD,由题意可得∠CBD=∠ODB=∠DBO,可得OD∥BE,可证DE⊥OD,即可证DE与⊙O相切;(2)过点D作DF⊥AB于点F,连接DC,由题意可证Rt△DF A≌Rt△DEC,Rt△DBF≌Rt△DBE,可得AF=EC,BF=BE,即可求EC的长.【解析】解:(1)DE与⊙O相切理由如下:连接OD∵OB=OD∴∠OBD=∠ODB∵∠ABC的平分线交⊙O于点D,∴∠ABD=∠CBD∴∠CBD=∠ODB∴OD∥BE∵DE⊥BC于点E.∴DE⊥OD∴DE与⊙O相切(2)过点D作DF⊥AB于点F,连接DC,∵∠ABD=∠CBD,DE⊥BE,DF⊥AB∴DF=DE,AD DC=∴AD=CD∵AD=CD,DF=DE∴Rt△DF A≌Rt△DEC(HL)∴AF=EC∵DF=DE,DB=DB∴Rt△DBF≌Rt△DBE(HL)∴BF=BE∵BA=BF+AF=BE+AF=BC+EC+CE=6∴4+2CE=6∴EC=1【点评】本题考查了直线与圆的位置关系,圆周角定理,全等三角形判定和性质,添加恰当辅助线构造全等三角形是本题的关键.16.(1)∠ACM=62°;(2)存在符合条件的点D,使AB•CD=AC•BC,理由见解析.【分析】(1)求∠ACM的度数,需求出∠B的度数;在Rt ABC∆中,已知∠A的度数,即可求出∠B、∠ACM的度数;(2)乘积的形式通常可以转化为比例的形式:①AB BCAC CD=,此时需证Rt ABC Rt CBD∆~∆,那么过B作MN的垂线,那么垂足即为符合条件的D点;②AB ACBC CD=,此时需证Rt ABC Rt ACD∆~∆,则过A作MN的垂线,垂足也符合D点的条件.两者的证明过程一致,都是通过弦切角得出一组对应角相等,再加上一组直角得出三角形相似.【解析】(1)∵AB是半圆的直径,∴∠ACB=90°,∴∠B=90°﹣∠A=62°,∵直线MN与以AB为直径的半圆相切于点C,∴∠ACM=∠B=62°;(2)存在符合条件的点D,使AB•CD=AC•BC,①过A作AD⊥MN于D,则AB•CD=AC•BC,证明:∵MN是半圆的切线,且切点为C,∴∠ACD=∠B,∵∠ADC=∠ACB=90°,∴△ABC∽△ACD,∴AB AC BC CD=,即AB•CD=AC•BC;②过B作BD⊥MN于D,则AB•CD=AC•BC,证明过程同①,因此MN上存在至少一点D,使AB•CD=AC•B C.【点评】本题考查了弦切角定理及相似三角形的判定和性质,要求学生能够熟练掌握相似的判断和性质并应用.17.(1)证明见解析;(2)53π【分析】(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得:,AB BC=,由一组对边平行且相等可得四边形ABCD是平行四边形,由AB=BC可得结论;(2)先设∠FOE=x,则∠AOF=3x,根据∠ABC+∠BAD=180°,列方程得:4x+2x+12(180-3x)=180,求出x的值,接着求CF所对的圆心角和半径的长,根据弧长公式可得结论.【解析】(1)证明:∵AE CE=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴AB BC=,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形;(2)∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OF A=12(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+12(180﹣3x)=180,x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=3,∴CF的长=1003180π⨯=53π.【点评】本题考查平行四边形和菱形的判定和性质、等边三角形的判定和性质、弧长公式,平行线的性质等知识,解题的关键是学会设未知数,列方程求角的度数,证明三角形是等边三角形是解题的突破点,属于中考常考题型.18.(1)证明见解析(2)18【分析】(1)根据AB=AC,可得出∠ABC=∠BCA,再根据圆内接四边形的性质可得出∠CDE=∠ABC,从而得出答案;(2)作AM⊥CD于点M,根据题意可得出BF,还可证明△ACM≌△ABF,从而可得出△DBC 的面积.【解析】(1)证明:∵AB=AC,∴∠ABC=∠BCA=∠ADB,∵四边形ABCD是圆内接四边形,∴∠CDE=∠ABC,∴∠ADB=∠CDE;(2)解:作AM⊥CD于点M,∵AB=10,AF=6,∴BF=8,∵AD平分∠BDM,AM=AF=6,∴△ACM≌△ABF,∴CM=BF=8,∴DF=DM=CM﹣CD=2.∴BD=BF+DF=10=AB.∴∠BAD=∠ADB=∠ADM,∴AB∥CD,∴S△DBC=S△ADC=12CD×AM=18.【点评】本题考查了等腰三角形的性质、全等三角形的判定和性质以及圆周角定理,熟练掌握这些性质是解题的关键.19.(1)证明见解析(2)3【分析】(1)连接OD,如图,先由切线的性质得∠ODB+∠BDC=90°,再由圆周角定理得到∠ODB+∠ODA=90°,则∠BDC=∠ODA,加上∠ODA=∠BAD,然后等量代换即可得到结论;(2)利用正弦定义得sin∠A=sin∠BDC=5BDAB设5,AB=5x,则5,然后证明△CBD∽△CDA,则利用相似比可计算出CD和AB,从而得到圆的半径.【解析】(1)证明:连接OD,如图,∵CD与半圆O相切于点D,∴OD⊥CD,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB是半圆O的直径,∴∠BDA=90°,即∠ODB+∠ODA=90°,∴∠BDC=∠ODA,∵OD =OA ,∴∠ODA =∠BAD ,∴∠BAD =∠BDC ;(2)解:∵sin ∠A =sin ∠BDC∴BD AB =设BD ,AB =5x ,则AD ,∵∠BAD =∠BDC ,∠BCD =∠DCA ,∴△CBD ∽△CDA ,∴12BC CD BD CD AC AD ====, 而BC =2,∴CD =4,AC =8,∴AB =AC ﹣BC =6,∴⊙O 的半径位3.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解决(2)小题的关键是构建△CBD 与△CDA 相似.20.(1)①见解析②24(2)结论DA =DC 仍然成立【分析】(1)①连接OC ,利用切线的性质则可得到OC ⊥DC ,然后得到∠DCA=90°-∠ACO=90°-∠B=∠DAC ,利用等角对等边得到DA=DC 即可;②利用DF :EF=1:8,然后利用切线长定理求得DC 的长,进而得到DC 、AD 的长,然后利用切线长定理得:AB•AC=AE•AF=24;(2)结论仍然成立,延长BO 交⊙O 于K ,连CK ,利用切线的性质可以得到∠DCA=∠CKB=90°-∠CBK ,从而得到∠DCA=∠BAH ,问题得证.【解析】(1)①证明:连OC ,则OC ⊥DC ,∴∠DCA=90°﹣∠ACO=90°﹣∠B,又∠DAC=∠BAE=90°﹣∠B,∴∠DAC=∠DCA∴DA=DC,②∵DF:EF=1:8,DF2∴EF=8DF=2,又DC为切线,∴DC2=DF•DE22=18,∴DC=2∴AD=DC=2∴AF=AD﹣DF=2∴AE=EF﹣AF=2,∴AB•AC=AE•AF=24;(2)结论DA=DC仍然成立,理由如下:延长BO交⊙O于K,连CK,则∠KCB=90°,又DC为⊙O的切线,∴∠DCA=∠CKB=90°﹣∠CBK,又∠BAH=90°﹣∠HBA,而∠CBK=∠HBA,∴∠DCA=∠BAH,∴DA=DC.【点评】本题考查了切线的性质、垂径定理及切割线定理的内容,是一道比较复杂的切线的性质的综合题,难度较大.。

2020中考数学专项训练7.圆的证明与计算(附解析)

2020中考数学专项训练7.圆的证明与计算(附解析)

圆的证明与计算1.如图,已知△ABC 内接于⊙O ,P 是圆外一点,PA 为⊙O 的切线,且PA =PB ,连接OP ,线段AB 与线段OP 相交于点D .(1)求证:PB 为⊙O 的切线;(2)若PA =45PO ,⊙O 的半径为10,求线段PD 的长.第1题图(1)证明:如解图,连接OA 、OB ,第1题解图∵PA =PB ,OA =OB ,OP =OP ,∴△OAP ≌△OBP (SSS),∴∠OAP =∠OBP ,∵PA 为⊙O 的切线,∴∠OAP =90°,∴∠OBP =90°,∵OB 为⊙O 的半径,∴PB 为⊙O 的切线;(2)解:∵PA =45PO ,⊙O 的半径为10,∴在Rt △AOP 中,OA =PO 2-(45PO )2=10,解得PO =503,∴cos ∠AOP =AO OP =OD AO ,∴OD =6,∴PD =PO -OD =323.2.如图,在△ABC 中,AB =AC ,点D 为BC 上一点,且AD =DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连接DE .(1)求证:AC 是⊙O 的切线;(2)若cos C =35,AC =24,求直径AE 的长.第2题图(1)证明:∵AB =AC ,AD =DC ,∴∠C =∠B ,∠DAC =∠C ,∴∠DAC =∠B ,又∵∠E =∠B ,∴∠DAC =∠E ,∵AE 是⊙O 的直径,∴∠ADE =90°,∴∠E +∠EAD =90°,∴∠DAC +∠EAD =90°,即∠EAC =90°,∴AE ⊥AC ,∵OA 是⊙O 的半径,∴AC 是⊙O 的切线;(2)解:如解图,过点D 作DF ⊥AC 于点F ,第2题解图∵DA =DC ,∴CF =12AC =12,在Rt △CDF 中,∵cos C =CF CD =35,∴DC =20,∴AD =20,在Rt △CDF 中,由勾股定理得1622==CF CD DF -,∵∠ADE =∠DFC =90°,∠E =∠C ,∴△ADE ∽△DFC ,∴AE DC =AD DF ,即AE 20=1620,解得AE =25,即⊙O 的直径AE 为25.3.如图,在△ABC 中,AB =BC ,以AB 为直径作⊙O ,交BC 于点D ,交AC于点E,过点E作⊙O的切线EF,交BC于点F.(1)求证:EF⊥BC;(2)若CD=2,tan C=2,求⊙O的半径.第3题图(1)证明:如解图,连接BE,OE.第3题解图∵AB为⊙O的直径,∴∠AEB=90°.∵AB=BC,∴点E是AC的中点,∵点O是AB的中点,∴OE∥BC,∵EF是⊙O的切线,∴EF ⊥OE .∴EF ⊥BC ;(2)解:如解图,连接AD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∵CD =2,tan C =CDAD 2,∴AD =4.设AB =x ,则BD =x -2.在Rt △ABD 中,由勾股定理得AB 2=AD 2+BD 2,即x 2=42+(x -2)2,解得x =5,即AB =5,∴⊙O 的半径为25.4.如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E .(1)求证:∠DAC =∠DCE ;(2)若AB =2,sin D =13,求AE 的长.第4题图(1)证明:∵AD 是⊙O 的切线,∴∠DAB =90°.∵AB 是⊙O 的直径,∴∠ACB =90°.∵∠DAC +∠CAB =90°,∠CAB +∠ABC =90°,∴∠DAC =∠ABC .∵OC =OB ,∴∠ABC =∠OCB ,又∵∠DCE =∠OCB ,∴∠DAC =∠DCE ;(2)解:∵AB =2,∴AO =1.∵sin D =AO OD =13,∴OD =3,DC =2,在Rt △DAO 中,由勾股定理得AD =OD 2-OA 2=22,∵∠DAC =∠DCE ,∠D =∠D ,∴△DEC ∽△DCA ,∴DC DA =DE DC,即222=DE 2,解得DE =2,∴AE =AD -DE = 2.5.如图,AB 是⊙O 的弦,D 为半径OA 的中点,过点D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于点F ,且BC 是⊙O 的切线.(1)求证:CE =CB ;(2)连接AF ,BF ,求∠ABF 的度数;(3)若CD =15,BE =10,DE AE =513,求⊙O 的半径.第5题图(1)证明:如解图,连接OB ,第5题解图∵BC 是⊙O 的切线,∴OB ⊥BC ,即∠OBC =90°,∴∠OBA +∠CBE =90°,∵OA =OB ,∴∠OAB =∠OBA ,∴∠OAB+∠CBE =90°,又∵CD ⊥OA ,∴∠OAB +∠DEA =90°,又∵∠CEB =∠DEA ,∴∠CBE =∠CEB ,∴CE =CB ;(2)解:如解图,连接OF ,∵DA =DO ,CD ⊥OA ,∴AF =OF ,又∵OA =OF ,∴△AOF 是等边三角形,∴∠AOF =60°,∴∠ABF =12∠AOF =30°;(3)解:如解图,过点C 作CG ⊥AB 于点G ,∵CD ⊥OA ,∴∠ADE =∠CGE =90°,又∵∠AED =∠CEG ,∴△ADE ∽△CGE ,∴DE AE =EG CE =513,∵CE =BC ,∴BG =EG =12BE =5,∴CE =13,∴DE =CD -CE =2,∴AE =265,∴在Rt △ADE 中,由勾股定理得AD 22DE AE -==245,∴OA =2AD =485,∴⊙O 的半径为485.6.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,AD =DC ,分别延长BA ,CD 交于点E ,作BF ⊥EC ,交EC 的延长线交于点F ,连接BD .(1)求证:△BFC ∽△BDA ;(2)若AE =AO ,求cos ∠ADE ;(3)在(2)的条件下,若BC =6,求BF 的长.第6题图(1)证明:∵AB 是⊙O 的直径,∴∠BDA =90°.∵BF ⊥EC ,∴∠BFC =90°,∵四边形ABCD 是⊙O 的内接四边形,∴∠BCF =∠BAD ,∴△BFC ∽△BDA ;(2)解:如解图,连接OD ,AC ,第6题解图∵△BFC ∽△BDA ,∴BF BD =BC AB,∵OD 是⊙O 的半径,AD =CD ,∴OD 垂直平分AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴OD ∥BC ,∴△EOD ∽△EBC ,∴OE BE =OD BC,∵AE =AO ,即OE =2OB ,BE =3OB ,∴OD BC = BE OE 23,∴BC =32OD ,∴BF BD =BC AB =32OD 2OD =34,∵∠ADB =90°,∴∠ADE +∠BDF =90°,∵∠BDF +∠DBF =90°,∴∠ADE =∠DBF ,在Rt △BDF 中,cos ∠DBF =BF BD =34,∴cos ∠ADE =34;(3)解:∵BC =32OD ,BC =6,∴OD =4,∴AE =4,BE =12,∵△EOD ∽△EBC ,∴DE CE =OD BC,∴CE =32DE ,又∵∠EDA =∠EBC ,∠E =∠E ,∴△AED ∽△CEB ,∴AE CE =DE BE,∴DE ·CE =AE ·BE ,∴DE ·32DE =4×12,∴DE =42(负值舍去),∴CD =22,∴AD =22,∵△BFC ∽△BDA ,∴CF BC =AD AB ,∴CF 6=228,∴CF =322,在Rt △BCF 中,根据勾股定理得,BF =BC 2-CF 2=3142.7.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连接AC ,过 BD上一点E 作EG ∥AC 交CD 的延长线于点G ,连接AE 交CD 于点F ,且EG =FG ,连接CE .(1)求证:△ECF ∽△GCE ;(2)求证:EG是⊙O的切线;3,AH=3,(3)延长AB交GE的延长线于点M,若tan∠G=4求EM的值.第7题图(1)证明:∵AC∥EG,∴∠G=∠ACG,∵AB是⊙O的直径,AB⊥CD,∴ AD= AC,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE;(2)证明:如解图,连接OE,第7题解图∴∠GFE =∠GEF =∠AFH ,∵OA =OE ,∴∠OAE =∠OEA ,∵∠AFH +∠FAH =90°,∴∠GEF +∠AEO =90°,∴∠GEO =90°,∴GE ⊥OE ,∵OE 是⊙O 的半径,∴EG 是⊙O 的切线;(3)解:如解图,连接OC ,设⊙O 的半径为r .在Rt △AHC 中,tan ∠ACH =tan ∠G =HC AH =43,∵AH =3,∴HC =4.在Rt △HOC 中,∵OC =r ,OH =r -3,HC =4,∴(r -3)2+42=r 2,解得r =625,∴∠CAH =∠M ,∵∠OEM =∠AHC=90°,∴△AHC ∽△MEO ,∴OE HC EM AH =,即62543=EM ,∴825=EM .8.如图,AB 为⊙O 的直径,C 、G 是⊙O 上两点,过点C 的直线CD ⊥BG 交BG 的延长线于点D ,交BA 的延长线于点E ,连接BC ,交OD 于点F ,且BC 平分∠ABD .(1)求证:CD 是⊙O 的切线;(2)若32=FD OF ,求∠E 的度数;(3)连接AD ,在(2)的条件下,若CD =23,求AD 的长.第8题图(1)证明:如解图,连接OC ,第8题解图∵OC =OB ,BC 平分∠ABD ,∴∠OCB =∠OBC ,∠OBC =∠DBC ,∴∠DBC =∠OCB ,∴OC ∥BD ,∴∠BDC =∠ECO ,∵CD ⊥BD ,∴∠BDC =90°,∴∠ECO =90°,∵OC 是⊙O 的半径,∴CD 是⊙O 的切线;(2)解:由(1)知,OC ∥BD ,∴∠OCF =∠DBF ,∠COF =∠BDF ,∴△OCF ∽△DBF ,∴DB OC FD OF =,∵32=FD OF ,∴32=DB OC ,∵OC ∥BD ,∴△EOC ∽△EBD ,∴EB EO BD OC =,∴32=EB EO ,设OE =2a ,则EB =3a ,∴OB =a ,∴OC =a ,∵∠OCE =90°,OC =21OE ,∴∠E =30°;(3)解:∵∠E =30°,∠BDE =90°,∴∠EBD =60°,∵BC 平分∠DBE ,∴∠OBC =∠DBC =EBD ∠21=30°,∵CD =23,∴BC =43,BD =6,∵32=DB OC ,∴OC =4,如解图,过点D 作DM ⊥AB 于点M ,∴∠DMB =90°,∵BD =6,∠DBM =60°,∴BM =3,DM =33,∵OC =4,∴AB =8,∴AM =AB -BM =5,∵∠DMA =90°,DM =33,∴AD =13222=+AM DM .9.如图,在△ABC 中,∠ACB =90°,O 是AB 上一点,以OA 为半径的⊙O 与BC 相交于点D ,与AB 交于点E ,AD 平分∠FAB ,连接ED 并延长交AC 的延长线于点F .(1)求证:BC 为⊙O 的切线;(2)求证:AE =AF ;(3)若DE =3,sin ∠BDE =31,求AC 的长.第9题图(1)证明:如解图,连接OD .第9题解图∵AD平分∠F AB,∴∠CAD=∠DAB,∵OA=OD,∴∠DAB=∠ODA,∴∠CAD=∠ODA,∴AC∥OD,∴∠ODB=∠ACB=90°,∴OD⊥BC,∵OD为⊙O的半径,∴BC为⊙O的切线;(2)证明:由(1)知OD∥AC,∴∠ODE=∠F.∵OD=OE,∴∠OED=∠ODE,∴∠OED=∠F.∴AE =AF ;(3)解:∵AE 是⊙O 的直径,∴∠ADE =90°.∴∠DAF +∠F =90°,∵AE =AF ,∴DF =DE =3.∵∠ACB =90°,∴∠CDF +∠F =90°,∴∠DAF =∠CDF =∠BDE .在Rt △ADF 中,31sin sin =∠=∠=BDE DAF AF DF ,∴AF =3DF =9.在Rt △CDF 中,31sin sin =∠=∠=BDE CDF DF CF ,∴131==DF CF .∴AC =AF -CF =8.10.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,连接DE 交线段OA 于点F .(1)求证:DH是⊙O的切线;FD的值;(2)若AE=AH,求EF(3)若EA=EF=1,求⊙O的半径.第10题图(1)证明:如解图,连接OD,第10题解图∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∵OD 是⊙O 的半径,∴DH 是⊙O 的切线;(2)解:∵∠E =∠B ,AB =AC ,∴∠E =∠B =∠C ,∴ED =DC ,∵DH ⊥EC ,∴EH =CH ,∵AE =AH ,∴AE =31AC ,∵AO =BO ,OD ∥AC ,∴OD 是△ABC 的中位线,∴OD =21AC ,∴23=AE OD,∵AE ∥OD ,∴△AEF ∽△ODF ,∴23==AE OD EF FD ;(3)解:设⊙O 的半径为r ,即OD =OB =r ,∵EF =EA ,∴∠EFA =∠EAF ,∵OD ∥EC ,∴∠FOD =∠EAF ,则∠FOD =∠EAF =∠EFA =∠OFD ,∴DF =OD =r ,∴DE =DF +EF =r +1,∴BD =CD =DE =r +1,在⊙O 中,∵∠BDE =∠EAB ,∴∠BFD =∠EFA =∠EAB =∠BDE ,∴BF =BD =r +1,∴AF =AB -BF =2OB -BF =2r -(1+r )=r -1,∵∠BFD =∠EFA ,∠B =∠E ,∴△BFD ∽△EFA ,∴FD BF FA EF =,∴rr r 111+=-,解得r =251+(负值已舍),∴⊙O 的半径为251+.。

中考数学专题复习演练:圆的有关计算与证明(含答案)

中考数学专题复习演练:圆的有关计算与证明(含答案)

中考数学习题精选:圆的有关计算与证明解答题1.△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=11cm,BC=16cm,CA=15cm,求AF、BD、CE的长?2.如图,在4×4 的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB 的弧长,周长和面积.(结果保留根号及π).3.如图,直线y=与x轴、y 轴分别相交于A,B两点,圆心P的坐标为(1,0),圆P 与y轴相切于点O.若将圆P沿x 轴向左移动,当圆P与该直线相交时,求横坐标为整数的点P的个数.4.如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF 的中点,AD⊥BC于点D,求证:AD= BF.5.如图,△在ABC中,BE 是它的角平分线,∠C=90°,点D 在AB边上,以DB为直径的半圆O 经过点E,交BC于点F(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为3,求图中阴影部分的面积6.如图,已知是△的外角的平分线,交的延长线于点,延长交△的外接圆于点,连接,.(1)求证:.(2)已知,若△是外接圆的直径,,求的长.7.已知:如图,△在ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD 的长;(3)在(2)的条件下,△求DPE的面积.8.如图,AB是半圆O的直径,AD 为弦,∠DBC=∠A.(1)求证:BC是半圆O 的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD 的长.9.如图1,在正方形ABCD 中,以BC为直径的正方形内,作半圆O,AE切半圆于点F交CD 于点E,连接OA、OE.(1)求证:AO⊥EO;(2)如图2,连接DF 并延长交BC于点M,求的值.10.如图,AD 是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD 于点D.连接AO并延长交BC 于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC 与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.11.如图,点A在⊙O上,点P是⊙O外一点,PA切⊙O于点A,连接OP 交⊙O于点D,作AB⊥OP于点C,交⊙O 于点B,连接PB.(1)求证:PB是⊙O的切线;(2)若PC=9,AB=6,①求图中阴影部分的面积;12.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC 于E,连接AD.(1)求证△:CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.13.如图,AB是⊙O的直径,C是⊙O是一点,过点B作⊙O的切线,与AC延长线交于点D,连接BC,OE//BC 交⊙O 于点E,连接BE 交AC于点H.(1)求证:BE平分∠ABC;(2)连接OD,若BH=BD=2,求OD的长.14.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(2,8),且与x 轴相切于点B.图①图②(1)当x>0,y=5时,求x的值;(2)当x =6 时,求⊙P的半径;(3)求y关于x的函数表达式,请判断此函数图象的形状,并在图②中画出此函数的图象(不必列表,画草图即可).15.如图△,OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA 的中点,阴影部分的面积为,求⊙O的半径r.16.如图,△在ABC中,∠C=90°,∠ABC 的平分线交AC于点E,过点E 作BE的垂线交AB 于点F,⊙O△是BEF 的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF 及AF长.17.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,CE=2.(1)求AB 的长;(2)求⊙O的半径.18.如图,△在ABC中,∠ABC=90°,以AB的中点O为圆心,OA 为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE 与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若cos∠BAD=,BE=,求OE 的长.19.如图,AB 为⊙O的直径,点C在⊙O上,过点C作⊙O 的切线交AB的延长线于点D,已知∠D=30°.(1)求∠A的度数;(2)若点F在⊙O 上,CF⊥AB,垂足为E,CF=,求图中阴影部分的面积.20.如图,在 △R t ABC 中,∠C=90°,点 D ,E ,F 分别在 AC ,BC ,AB 边上,以 AF 为直径的⊙O 恰好经过 D , E ,且 DE=EF .(1)求证:BC 为⊙O 的切线;(2)若∠B=40°,求∠CDE 的度数;(3)若 CD=2,CE=4,求⊙O 的半径及线段 BE 的长.21.如图,⊙的圆心在反比例函数的图像上,且与轴、轴相切于点、 ,一次函数的图像经过点 ,且与轴交于点,与⊙的另一个交点为点.(1)求(2)求的值及点长及的坐标;的大小;(3)若将⊙沿轴上下平移,使其与轴及直线均相切,求平移的方向及平移的距离.参考答案解答题1.解:∵△ABC 的内切圆⊙O 与 BC ,CA ,AB 分别相切于点 D 、E 、F , ∴AF=AE ,BF=BD ,CD=CE .设 AF=AE=x ,则 BF=BD=11﹣x ,EC=DC=15﹣x .根据题意得 11﹣x+15﹣x=16.解得;x=5cm .∴AF=5cm .BD=11﹣x=11﹣5=6cm ,EC=15﹣x=10cm .∴AF=5cm ,BD=6cm ,EC=10cm .2.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴= =,扇形 OAB 的面积= =2π.弧 AB 的长是:= π∴周长=弧 AB 的长+2OA=π+4综上所述,扇形 OAB 的弧长是.π,周长是π+4,面积是 2π.3.解:∵直线 y=与 x 轴、y 轴分别相交于 A,B 两点,∴A 点的坐标为(-3,0),B 点的坐标为(0,),∴AB=2.如图,将圆 P 沿 x 轴向左移动,当圆 P 与该直线相切于 C 时,连结 P C ,则 P C =1,易 △知AP C ∽△ABO,∴=,∴AP =2,∴P 的坐标为(-1,0),同理可得 P 的坐标为(-5,0).-5 与-1 之间的整数(不含-5 和-1)有:-4,-3,-2,故满足题意的点 P 的个数是 31 1 1 1 1 1 1 1 1 24.证明:连接OA,交BF 于点E,∵A是弧BF 的中点,O为圆心,∴OA⊥BF,∴BE=BF,∵AD⊥BC于点D,∴∠ADO=∠BEO=90°,在△OAD△与OBE中,∴△OAD≌△OBE(AAS),∴AD=BE,∴AD=BF5. (1)证明:连结OE,[MISSING IMAGE:,]∵BE平分∠ABC,∴∠ABC=2∠ABE,∵OB=OE,∴∠OBE=∠OEB,∴∠AOE=∠OEB+∠OBE=2∠ABE,∴∠ABC=∠AOE,又∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+∠AOE=90°,∵∠AEO=90°,即OE⊥AC,∴AC为⊙O 的切线.,(2)解:连结 OF , ∵sinA= ,∴∠A=30°,由(1)知 OE ⊥AC ,∴∠AOE=∠ABC=60°, ∵⊙O 半径为 3,∴OD=OE=OF=OB=BF=3,∴∠BOF=∠EOF=∠ABC=60°, ∴S= 扇形在 △R t AOE 中,,∴AO=6,AE=3在 △R tACB 中,,∴AB=9,BC= , AC=∴CE=AC-AE=-3,, CF=BC-BF= -3= ,∴S= ==梯形,∴S =S-S=阴梯形扇形6.(1)解:∵四边形 ∴∵-.内接于圆,,,∴∵△是,的外角平分线,∴∴又∵∴,,,,(2)解:由( )得,OEFOFCEOFCE OEF又∵,∴△∴∽△,,∴,∴又∵∴∵,,,是直径,,∴,∴BD=又∵∠D=∠D,∴△DBF∽△DAC,,∴∴,CD=24,解得:CD=.7.(1)解:∵AB 是⊙O的直径,∴∠ADB=90°,即BD⊥AC∵AB=BC,∴△ABD≌CBD∴∠ABD=∠CBD在⊙O 中,AD与DE分别是∠ABD与∠CBD 所对的弦∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴∵AB=BC=10,CE=2,D是AC的中点,,∴CD=;(3)解:延长EF交⊙O于M,在 △R tABD 中,AD=,AB=10,∴BD=3,∵EM ⊥AB ,AB 是⊙O 的直径,∴ ,∴∠BEP=∠EDB ,∴△BPE ∽△BED ,∴ ∴BP=,,∴DP=BD-BP=,∴ : =DP :BP=13:32,∵ △S BCD= × ×3 =15, :=BE :BC=4:5,∴ △S BDE=12,∴ △S DPE=.8.(1)证明:∵AB 是半圆 O 的直径∴∠D=90°∴∠A+∠DBA=90°∵∠DBC=∠A∴∠DBC+∠DBA=90°∴BC ⊥AB∴BC 是半圆 O 的切线(2)解:∠BEC=∠D=90∘,∵BD ⊥AD ,BD=6,∴BE=DE=3, △S DPE △S BPE△S BDE △S BCD∵∠DBC=∠A,∴△BCE∽△BAD,∴,即∴AD=4.59.(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,AB∥CD,∴AB和CD 为⊙O的切线,∵AE切半圆于点F,∴OA平分∠BAE,OE平分∠AEC,而AB∥CD,∴∠BAE+∠AEC=180°,∴∠OAE+∠OEA=90°,∴∠AOE=90°,∴OA⊥OE(2)解:作FH⊥CD于H,如图,设正方形ABCD的边长为4a,则AF=AB=4a,OB=OC=2a,∵∠AOE=90°,∴∠AOB+∠COE=90°,∵∠AOB+∠OAB=90°,∴∠OAB=∠EOC,∴△R tABO∽△R t OCE,∴AB:OC=OB:CE,即4a:2a=2a:CE,解得CE=a,∴EF=EC=a,∴EA=5a,ED=3a,∵FH∥AD,∴△EFH∽△EAD,∴==,即==,∴FH=a,EH=a,∴DH=3a﹣∴CH=4a﹣∵FH∥CM,a=a,a=a,∴==.10.(1)解:PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)解:∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=3,∴AC=AB=9,在△R tAMC 中,AM==6,设⊙O 的半径为r,则OC=r,OM=AM﹣r=6﹣r,在△R t OCM中,2,即32+(6﹣r)2=r2,解得r=,OM2+CM2=OC∴CE=2r=,OM=6﹣=,∴BE=2OM=,∵∠E=∠MCP,∴△R t PCM∽△R t CEB,∴=,即=,∴PC=.11.(1)证明:如图1,连接OB,∵OP⊥AB,OP经过圆心O,∴AC=BC,∴OP垂直平分AB,∴AP=BP,∵OA=OB,OP=OP,∴△APO≌△BPO(SSS),∴∠PAO=∠PBO,∵PA切⊙O于点A,∴AP⊥OA,∴∠PAO=90°,∴∠PBO=∠PAO=90°,∴OB⊥BP,又∵点B在⊙O 上,∴PB与⊙O相切于点B;(2)解:如图1,∵OP⊥AB,OP经过圆心O,∴BC=AB=3,∵∠PBO=∠BCO=90°,∴∠PBC+∠OBC=∠OBC+∠BOC=90°,∴∠PBC=∠BOC,∴△PBC∽△BOC,∴∴OC===3,∴在△R t OCB中,OB=∴∠COB=60°,==6,tan∠COB==,∴△SOPB=×OP×BC=×=18,S扇DOB==6π,∴S阴影△=SOPB﹣S扇DOB=18﹣6π;②若点E 是⊙O上一点,连接AE,BE,当AE=6时,BE=.3﹣3或3 +312.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O 的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠CAD=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD(2)解:∵AB=2,∴OA=1,在△R t AOC 中,AC=2∴OC=,=3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴,即=.∴CE=∴AE=AC﹣CE=2﹣==,.13.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OE//BC,∴OE⊥AC,∴=,∴∠1=∠2,∴BE平分∠ABC(2)解:∵BD 是⊙O的切线,∴∠ABD=90°,∵∠ACB=90°,BH=BD=2,∴∠CBD=∠2,∴∠1=∠2=∠CBD,∴∠CBD=30°,∠ADB=60°,∵∠ABD=90°,∴AB=2,OB=,∵OD2=OB2+BD.∴OD=2,14.(1)解: 由y=5,得到P(x,5),连接AP,PB,∵圆P与x 轴相切,∴PB⊥x轴,即PB=5,由AP=PB,由勾股定理得,x=2+=2+4=6,∴x=6(2)解: 由x=6,得到P(6,y),连接AP,PB,∵圆P 与x 轴相切,∴PB⊥x轴,即PB=y,由AP=PB,得到=y,解得:y=5,则圆P的半径为5(3)解:同(2),由AP=PB,得到(x﹣2)2+(8﹣y)2=y2 ,整理得:=,即图象为抛物线,画出函数图象,如图②所示;15.(1)证明:连OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴AB是⊙O的切线;(2)解:∵D为OA的中点,OD=OC=r,∴OA=2OC=2r,∴∠A=30°,∠AOC=60°,AC=∴∠AOB=120°,AB=2r ,r ,∴S 阴影部分 △=S OAB﹣S 扇形 ODE •OC •AB ﹣=﹣ , ∴•r •2 r ﹣ r 2=﹣ , ∴r=1,即⊙O 的半径 r 为 116. (1)证明:如图,连接OE . ∵BE ⊥EF ,∴∠BEF=90°,∴BF 是圆 O 的直径.∵BE 平分∠ABC ,∴∠CBE=∠OBE ,∵OB=OE ,∴∠OBE=∠OEB ,∴∠OEB=∠CBE ,∴OE ∥BC ,∴∠AEO=∠C=90°,∴AC 是⊙O 的切线;(2)证明:如图,连结 DE .∵∠CBE=∠OBE ,EC ⊥BC 于 C ,EH ⊥AB 于 H , ∴EC=EH .∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°, ∴∠CDE=∠HFE . =在△CDE△与HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF(3)由(2)得CD=HF,又CD=1,∴HF=1,在△R t HFE 中,EF=∵EF⊥BE,∴∠BEF=90°,∴∠EHF=∠BEF=90°,∵∠EFH=∠BFE,∴△EHF∽△BEF,=,∴=,即=,∴BF=10,∴OE=BF=5,OH=5﹣1=4,∴△R tOHE中,cos∠EOA=∴△R t EOA 中,cos∠EOA=,=,∴∴OA=∴AF==,,﹣5=17.(1)解:∵∴,在中∴∴∵,∴∵是∴∴(2)解:∵∴∵,∴∵的直径,是,.,的半径,,∴又∵∴∴即的半径是18.(1)证明:连接OD,BD,∵AB为圆O的直径,∴∠ADB=90°,在△R tBDC中,E为斜边BC的中点,∴CE=DE=BE=∴∠C=∠CDE,BC,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,即∠C+∠A=90°,∴∠ADO+∠CDE=90°,即∠ODE=90°,∴DE⊥OD,又OD 为圆的半径,∴DE为圆O的切线;(2)证明:∵E是BC的中点,O点是AB 的中点,∴OE△是ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC2=AC•CD.∴BC2=2CD•OE(3)解:∵cos∠BAD=∴sin∠BAC==,,又∵BE=∴AC=,E是BC的中点,即BC=.,又∵AC=2OE,∴OE=AC=19.(1)解:连接OC,∵CD切⊙O于点C∴∠OCD=90°∵∠D=30°∴∠COD=60°∵OA=OC∴∠A=∠ACO=30°;(2)解:∵CF ⊥直径 AB ,CF=4∴CE=2∴在 △R t OCE 中,tan ∠COE=,OE=∴OC=2OE=4=2,∴S =扇形, △S EOC ×2×2 =2 ∴S =S 阴影 扇形 BOC △-S EOC-2 .20.(1)证明:连接 OD 、OE 、DF ,如图,∵AF 为直径,∴∠ADF=90°,而∠C=90°,∴DF ∥BC ,∵DE=EF ,∴=∴OE ⊥DF ,∴OE ⊥BC ,∴BC 为⊙O 的切线(2)解:∵∠OEB=90°,∠B=40°,∴∠BOE=90°﹣40°=50°,BOC = =∴∠OFE=(180°﹣50°)=65°,∴∠CDE=∠AFE=65°(3)解:易得四边形CDHE为矩形,∴HE=CD=2,DH=CE=4,设⊙O 的半径为r,则OH=OE﹣HE=r﹣2,OD=r,在△R tOHD中,(r﹣2)2,解得r=5,2+42=r∵OH⊥DF,∴HF=DH=4,∵HF∥BE,∴△OHF∽△OEB,∴HF:BE=OH:OE,即4:BE=3:5,∴BE=21.(1)解:如图1中,连接AC、AB.∵⊙A 与x轴、y轴相切于点B、C,∴AC⊥OC,AB⊥OB,AC=AB,四边形ABOC是正方形,设A(m,m),∵点A在y=上,∴m2=3,∵m>0,∴点A坐标(,),∴OC=,∴点C坐标(0,),∵一次函数y=x+b的图象经过点C,∴b=,∴一次函数的解析式为y=,令y=0得x=-3,∴D(-3,0),b=(2)解:如图2中,连接BC、BE,作AM⊥CE于M.在△R t DOC 中,∵tan∠CDO=,∴∠CDO=30°,∵AC∥BD,∴∠ECA=∠CDO=30°,∠CAM=60°,∵AM⊥CE,∴∠CAM=∠EAM=60°,∴∠CAE=120°,在△R tAMC 中,CM=AC•cos30°=(3)解:如图3中,,∴CE=2CM=3,∴∠CBE=∠CAE=60°①当⊙A″与直线y=∵AB∥OC,相切于点E,AB与直线CD交于点K,∴∠A″KE=∠DKB=∠DCO=60°,在△R tA″EK中,A″E= AK=CA•tan30°=1,∴AA″=A″K+AK=1+2=3,∴⊙A 向上平移3的单位⊙A与y轴及直线y=,A″K=A″E÷cos30°=2,在△R tCKA中,均相切.②同理可得⊙A 向下平移1个单位⊙A与y轴及直线y=均相切。

中考数学总复习专题提升十与圆有关的计算与证明(含答案)

中考数学总复习专题提升十与圆有关的计算与证明(含答案)

9
6
23 ∴EC= 3 r .
7
( 第 13 题图 ) 解: (1) 连结 OC, OE, OE交 AB于 H,如解图①,
( 第 13 题图解 )
5
︵ ∵E 是 AB的中点,∴ OE⊥ AB,
∴∠ EHF= 90°,∴∠ HEF+∠ HFE= 90° . 又∵∠ HFE=∠ CFD, ∴∠ HEF+∠ CFD= 90° . ∵DC= DF,∴∠ CFD=∠ DCF. 又∵ OC= OE, ∴∠ OCE=∠ OEC, ∴∠ OCE+∠ DCE=∠ HEF+∠ CFD= 90°, ∴OC⊥ CD,
B. 40 °
C. 45 °
D. 50 °
( 第 4 题图 ) S阴影
4.如图,边长为 a 的正六边形内有两个三角形 ( 数据如图 ) ,则 S空白 = ( C) A. 3 B. 4 C. 5 D. 6 5.如图,直径为 10 的⊙ A 经过点 C(0 , 6) 和点 O(0 , 0) ,与 x 轴的正半轴交于点
OA 3 在 Rt △ OAB中, tan ∠ OBA= OB= 3 , ∴∠ OBA= 30°, 如解图①,过点 O作 OH⊥ AB于点 H, 在 Rt △ OBH中, OH=OB· sin ∠ OBA= 3, ∵ 3> 1, ∴原点 O在⊙ P 外;
( 第 12 题图解 ) (2) 如解图②,当⊙ P 过点 B时,点 P 在 y 轴右侧时, ∵PB= PC, ∴∠ PCB=∠ OBA= 30°,
3 (2 + 3 ,
3
3
综上可得:当⊙ P 与 x 轴相切时,切点的坐标为 (2 - 3 , 0) 或 (2 + 3 , 0) .
︵ 13.如图①,在⊙ O中, E 是 AB的中点, C为⊙ O上的一动点 ( C与 E 在 AB异侧 ) ,连结 EC交

中考数学专题训练圆的证明与计算(含答案)

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算1.如图,已知八ABC内接于AO, P是圆外一点,PA为40的切线, = PB,连接0P ,线段AB与线段0P相交于点D.(1)求证:PB为40的切线;- 4⑵ 若PA=4P0, z\0的半径为10,求线段PD的长.5(1)证明:△△△△△0Az\0Bz\ZSPA/SPBA0AA0BA0PA0PA△ 3APz\8BP(SSS) △A210APA210BPA/SPAA210AAAAA210APA90 △A210BPA90 △A0BA210AAAA/SPBA210AAAA_ _ 4_ _ ............(2)解:APA/VP0A210AAAA 10A PA第1题图第1题解图△ △ Rt AOP A Z1OA A A J P O22\21|P O^ A10A人人八人50人A/POA V A3AO OD△ cos AOP/^O P A A O AAODA6A人_ _____ 32APD APOAODA-y.32.AAAAABCA/iAB^CA/lDABCAAAAADADCA/lAAB/SDAAAzOA AEA21OAAAAADE.A 1AAAACA/1OAAAAA2AA C OSA32^C A 24 A A A AE A A.第2题图(1)证明:AABAACAAD ADC △Az^CAz^BAz^DACA^CA△RAC△2△AAZEA21BA△RAC△任△Z^EA/IOAAAAA21ADEA90 △△任△21EAD"0° △A/DACA21EADA90 △△任AC490° △AOAA21OAAAAAACAODAAAA(2)解:AAAAADA DF 丛C△任△第2题解图DAADCCA…1… 人△CF A2ACA12ACF 3ARtzCDFAAA G(C/\C D A5A△DC A 20 △AAD A 20 △ARtzCDFAAAAAAA DF ,CD2-CF216 △A21ADEA21DFCA90 AEA21CAA21ADEA21DFCA噬噜△AE 20A— A20 AA Z^EA25A20 16A21OAA/AEA 25.3.如图,在AABC中,AB=BC,以AB为直径作AO,交BC于点D,交AC 于点E,过点E作AO的切线EF,交BC于点F.(1)求证:EFABC;(2)若 CD=2, tan C=2,求 AO 的半径.第3题图(1)证明:如解图,连接BE, OE.第3题解图AAB为AO的直径,△MEB=90 .AAB=BC,△点E是AC的中点,△点O是AB的中点,AOEABC,△EF是AO的切线,△EF4E.△EFABC;(2)解:如解图,连接AD,八AB为AO的直径,△ AADB=90 ,△CD=2, tan C=AD 2CDAAD=4.设 AB=x,贝U BD=x-2.在 RtAABD 中, 由勾股定理得AB2=AD2+BD2,即 x2=42+ (x— 2) 2, 解得x=5,即AB=5,△ 8的半径为5 .24.AAAAZOWZ1ABAAAAABCAAADA21BCAAAAAE.A 1AAA/SDACA21DCEA..................1人人人人A2A ABA 2A siD △不△ AAE4/X.第4题图(1)证明:Z^DA/IOAAAA△PAB A90 .Z^BA/IOAAAAA21ACBA90 .A/DACA21CABA90 2ICABA/^ABCA 90 △A/DACA/^BC.AOCAOBAA.BCBCOCOCBAAAZDCEAz^OCBAA21DACA21DCEA(2)解:AABA2 △AAOA1.△sinD A ODAODA3ZDC A2 △ARtzDAOAA△△△△△AD △ OD2AOA2A2 2 △A21DACA21DCEA21DA/1DAA21DECA21DCAA A DC A DE A DA A DC 人2人DEA2 ,2 A2△RE △ ,2 △AAEAAD ADE △ 2.5.AAABA21OAAZDAA/DAAAAAADACDAOAA21ABA21EAA/OA1AAACEACBAA2AAAFABFAA/ABFAAAA人人-人人人 DE人5人人…人人人A3A/CDA 15ABE4 1OZ A E A13AAZ O AA A-(:第5题图(1)证明:△△△△△OB4A第5题解图BBCAOJAAAAAOBABCA AzOBCA 90 △A21OBAA21CBEA90 △AOAAOBAA21OABA21OBAAA21OAB+ACBEA 90 △A21CDAOAAA21OABA21DEAA90 △AA/CEBA21DEAAA21CBEA21CEBAACEACBA(2)解:△△△△△/△ADA ADO ACD AOAA AAF AOF △Az^OAAOFAA21AOFAAAAAAA/AOF=60O△」_1 _____ ____ _A21ABFA2^AOFA30 △(3)解:△△△△△C\CG》B△工△△CD AOAAA21ADEA21CGEA900△AA/AEDA21CEGAA21ADEA21CGEA人DE人EG人5人A AE A CE A13AACEABCAACEA13A人 (26)△DE -旌.-------- 24△ △•■△△△△△△" ..AE DE△石△486.AAAA/lABCDAAAzO^BA/lOAAAADADCAAAABAACDAAA EA/®FAECA21ECAAAAA/W\AZBD.△ 1 △△△ ABFC△2DAAA2AAE/^OAA cosADEAA3AAA 2AAAA/BCA6AzBFAA.第6题图(1)证明:Z^BA/IOAAAAA21BDAA90 .ABF /SECAA21BFCA90 △AAAABCDA/1OAAAAAAAA21BCFA21BADAA21BFCA21BDAA(2)解:△△△△△OD3C4A21BFCA21BDAABF BC△BD'^A B'AODA/lOAAAzADACDA AODAAAACAZ^BA/IOAAAA△ AACB=90 △AODABCA △任OD△心X OE ODA BE A BC AZ^E^OA21OEA2OB/SBEA3OBAOD OE 2△■占M—— -ABC BE 3ABC Z^ODA3瑞瑞舄△:△△ 21ADB A 90 △A21ADEA21BDFA90 △A21BDFA21DBFA90 △A21ADEA21DBFAR第6题解图/SRt/SBDFAA cosDBF 混率△ cos ADE2^A4(3)解:ABCz^ODABCA6AAODA4A /^EA4ZBEA12 △ △任OD△心CA 人DE人OD人A CE A BC A…人3 人ACEA2DEA △ △/EDA△八EBC△任△小£△A21AEDA21CEBA 人AE人DE人A C E A BE AADE CEAAE BEAADE 3D E A4X 12 △ /SDEA4V2( AAAA )△ACDA2V2A/^DA2V2AA21BFCA21BDAA 人CF 人AD 人A CF A2_J A△BC△母△造△ 8 △… 3 2ACF A^AARtzBCFAAAAAAAAAABFA . BC2A CF2Z^3~214.7.AAABAA OAAA/ICD^BAAAzHAAAAC△△知作EG3C交CD的延长线于点 G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:z\ECF△&CE;(2)求证:EG是AO的切线;(3)延长AB交GE的延长线于点 M ,若tan工=3 ,AH=3,4求EM的值.第7题图(1)证明:3cAEG,△8=3CG,「AB是AO的直径,ABACD,△A D = A C ,△3EF=AACD,△8=MEF,△任CF=4ECG,△任CF△&CE;(2)证明:如解图,连接OE,第7题解图△GF=GE,△&FE=^GEF=AAFH,△OA=OE,△3AE=4OEA,△AAFH+^FAH=90 ,△&EF+AAEO=90 ,△&EO=90 ,AGEAOE,VOEMAO的半径,△EG是AO的切线;(3)解:如解图,连接OC,设AO的半径为r.在 Rt「AHC 中,一一AH 3tan zACH=tan 应=空=± , HC 4AAH=3,AHC=4.在 Rt^HOC 中,△OC=r, OH=r—3, HC=4, △ (r —3) 2+42=r2,解得r= 25 ,6△GM AAC,△ 3AH=2\M,△ 3EM=AAHC=90 △ AAHC/XNEO,AH HCEM OE ,即高8.如图,AB 为AO 的直径,C 、G 是AO 上两点,过点 C 的直线CD^BG 交BG 的延长线于点D,交BA 的延长线于点E,连接BC,交OD 于点F, 且BC 平分4ABD.(1)求证:CD 是AO 的切线;⑵若OF 2,求4E 的度数; FD 3⑶连接AD,在(2)的条件下,若CD=2V3,求AD 的长.H第8题图(1)证明:如解图,连接OC,△ EM 25 8△OC=OB, BC 平分 AABD, △3CB=z\OBC, AOBC=ADBC,AzX)BC=AOCB,AOC ABD,Az^BDC=AECO,△CD ABD,△ z!BDC=90 ,△任CO=90 ,△OC 是AO 的半径,△CD 是AO 的切线;(2)解:由(1)知,OC^BD, △8CF=4DBF, △COFMBDF,A21OCFA21DBF, △.史FD△器AOC ABD, △任OC △任BD,△如 FD3,设 OE=2a,则 EB=3a,△OB=a,△OC=a,△3CE=90 , OC=1OE, 2△任=30 ;(3)解:△任=30 , ABDE=90 ,△任BD=60 ,VBC 平分 ADBE,/. AOBC=ADBC=1 EBD=30 , 2△CD=2 .3 ,ABC=4 3, BD=6,△空2 , DB 3△OC=4,如解图,过点D作DM3B于点M ,△RMB=90 ,ABD=6, ADBM=60 ,ABM=3, DM=3 3 ,△OC=4,△AB=8,AAM=AB—BM=5,△ RMA=90 , DM=3J3,AAD= VDM 2 AM 2 2V13 .9.如图,在3BC中,八ACB=90°,。

2020年中考数学专项训练:与圆有关的证明及计算(含答案)

2020年中考数学专项训练:与圆有关的证明及计算(含答案)

提分专练与圆有关的证明及计算|类型1|平面直角坐标系中的圆1.[2019·无锡]如图T9-1,一次函数y=kx+b的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且,△OAB的外接圆的圆心M的横坐标为-3.sin∠ABO=√32(1)求这个一次函数的表达式;(2)求图中阴影部分的面积.图T9-12.[2017·酒泉]如图T9-2,AN是☉M的直径,NB∥x轴,AB交☉M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是☉M的切线.图T9-2|类型2|垂径定理与勾股定理联手⏜上的一点,过点P作PC⊥OA,垂足为C.PC与AB交于3.[2019·苏州]如图T9-3,扇形OAB中∠AOB=90°,P为AB点D.若PD=2,CD=1,则该扇形的半径长为.图T9-3|类型3|与圆有关的图形的面积4.[2018·达州]已知,如图T9-4,以等边三角形ABC的边BC为直径作☉O,分别交AB,AC于点D,E,过点D作DF⊥AC于点F.(1)求证:DF是☉O的切线;⏜,DF,EF围成的阴影部分的面积.(2)若等边三角形ABC的边长为8,求由DE图T9-4|类型4|与圆的切线有关的问题5.[2019·巴中]如图T9-5,在菱形ABCD中,连接BD,AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH 为半径的半圆交AC于点M.(1)求证:DC是☉O的切线;(2)若AC=4MC且AC=8,求图中阴影部分的面积;(3)在(2)的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.图T9-5|类型5|圆与四边形结合的问题6.[2019·温州]如图T9-6,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的☉O交AB于另一点F,作直径AD,连接DE并延长交AB于点G,连接CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=3AB时,求☉O的直径长.8图T9-6|类型6|圆与三角函数结合的问题7.如图T9-7,AB是☉O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB. (1)判断BD与☉O的位置关系,并说明理由;,求☉O的直径.(2)若CD=15,BE=10,tan A=512图T9-7|类型7|圆与相似三角形结合的问题8.[2019·滨州]如图T9-8,在△ABC中,AB=AC,以AB为直径的☉O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.(1)求证:直线DF是☉O的切线;(2)求证:BC2=4CF·AC;(3)若☉O的半径为4,∠CDF=15°,求阴影部分的面积.图T9-8【参考答案】1.解:(1)作MN ⊥BO 于N ,由垂径定理得N 为OB 中点,∴MN=12OA ,∵MN=3,∴OA=6,即A (-6,0). ∵sin ∠ABO=√32,OA=6, ∴AB=4√3,OB=2√3,B (0,2√3), 将A ,B 点坐标代入y=kx +b , 得{b =2√3,-6k +b =0,解得{b =2√3,k =√33,∴y=√33x +2√3.(2)由(1)得∠ABO=60°,连接OM ,则∠AMO=120°,AM=MB=12AB=2√3.∴阴影部分面积为S=120π360×(2√3)2-12×6×√3=4π-3√3.2.解:(1)∵A 的坐标为(0,6),N 的坐标为(0,2),∴AN=4, ∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8, ∴由勾股定理可知:NB=4√3,∴B (4√3,2). (2)证明:连接MC ,NC.∵AN 是☉M 的直径, ∴∠ACN=90°, ∴∠NCB=90°,在Rt △NCB 中,D 为NB 的中点, ∴CD=12NB=ND , ∴∠CND=∠NCD.∵MC=MN ,∴∠MCN=∠MNC. ∵∠MNC +∠CND=90°, ∴∠MCN +∠NCD=90°, 即MC ⊥CD ,∴直线CD 是☉M 的切线.3.5 [解析] 连接OP ,∵∠AOB=90°,PC ⊥OA ,∴∠DCA=∠AOB=90°,又∠DAC=∠BAO ,∴△ACD ∽△AOB , ∴ACAO =CDOB ,∵OA=OB ,∴AC=CD=1, 又PD=2,∴CP=3, 设CO=x ,则OP=OA=x +1,∵∠PCO=90°,∴OP 2=OC 2+CP 2,∴x 2+32=(x +1)2,解得x=4,∴OA=x +1=5. 4.解:(1)证明:连接OD ,CD.∵BC 是直径,∴∠BDC=90°.∵△ABC 是等边三角形,∴点D 是AB 的中点. ∵点O 是BC 的中点,∴OD ∥AC. ∵DF ⊥AC ,∴OD ⊥DF .∵OD 是半径,∴DF 是☉O 的切线. (2)连接OD ,OE ,DE.∵同(1)可知点E 是AC 的中点,∴DE 是△ABC 的中位线,△ADE 是等边三角形. ∵等边三角形ABC 的边长为8, ∴等边三角形ADE 的边长为4. ∵DF ⊥AC ,∴EF=2,DF=2√3.∴△DEF 的面积=12EF ·DF=12×2×2√3=2√3.△ADE 的面积=△ODE 的面积=4√3. 扇形ODE 的面积=60·π·42360=8π3.∴阴影部分的面积=△DEF 的面积+△ODE 的面积-扇形ODE 的面积=2√3+4√3−83π=6√3−8π3.5.[解析](1)过点O 作CD 的垂线,通过证明其与半径相等,得到CD 是切线;(2)通过三角函数计算边长和圆心角度数,得到三角形和扇形的面积,继而可得阴影部分面积;(3)根据轴对称的性质找到点P 的位置,进而计算最小值,利用三角函数求PD 的长度.解:(1)证明:过点O 作OG ⊥CD 于点G , ∵菱形ABCD 中,AC 是对角线, ∴CA 平分∠BCD , ∵OH ⊥BC ,∴OH=OG , ∵OH 是☉O 的半径, ∴OG 长等于☉O 的半径长, ∴CD 是☉O 的切线. (2)∵AC=4MC 且AC=8, ∴OC=2MC=4,MC=OM=2, ∴OH=OM=2.在Rt △OHC 中,OH=2,OC=4, ∴HC=√OC 2-OH 2=2√3, ∴tan ∠HOC=HCOH =√3,∴∠HOC=60°,∴S 阴影=S △OCH -S 扇形OHM =12CH ·OH -60π·OH 2360=12×2√3×2-60π·22360=2√3−23π.(3)作点M 关于BD 的对称点N ,连接HN 交BD 于点P ,此时PH +PM 的值最小. ∵ON=OM=OH ,∠MOH=60°, ∴∠MNH=30°,∠MNH=∠HCM , ∴HN=HC=2√3,即PH +PM 的最小值为2√3. 在Rt △NPO 中,OP=ON tan30°=2√33, 在Rt △COD 中,OD=OC tan30°=4√33, ∴PD=OP +OD=2√3.6.解:(1)证明:连接AE.∵∠BAC=90°, ∴CF 是☉O 的直径.∵AC=EC ,∴CF ⊥AE.∵AD 为☉O 的直径,∴∠AED=90°, 即GD ⊥AE ,∴CF ∥DG.∵AD 为☉O 的直径,∴∠ACD=90°, ∴∠ACD +∠BAC=180°,∴AB ∥CD , ∴四边形DCFG 为平行四边形.(2)由CD=38AB ,可设CD=3x ,AB=8x ,由(1)可知FG=CD=3x. ∵∠AOF=∠COD ,∴AF=CD=3x , ∴BG=8x -3x -3x=2x. ∵GE ∥CF ,∴BE EC =BG GF =23. 又∵BE=4,∴AC=CE=6, ∴BC=6+4=10,∴AB=√102-62=8=8x ,∴x=1. 在Rt △ACF 中,AF=3,AC=6, ∴CF=√32+62=3√5, 即☉O 的直径长为3√5.7.解:(1)BD 与☉O 相切.理由如下:连接OB , ∵OB=OA ,DE=DB ,∴∠A=∠OBA ,∠DEB=∠ABD , 又∵CD ⊥OA ,∴∠A +∠AEC=∠A +∠DEB=90°, ∴∠OBA +∠ABD=90°, ∴OB ⊥BD ,∴BD 是☉O 的切线.(2)如图,过点D 作DG ⊥BE 于G , ∵DE=DB ,∴EG=12BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED , ∴△ACE ∽△DGE , ∴∠GDE=∠A , ∵tan A=512,∴sin A=513,∴sin ∠EDG=sin A=EGDE =513,∴DE=13, 在Rt △EDG 中,DG=√DE 2-EG 2=12,∵CD=15,DE=13,∴CE=2, ∵△ACE ∽△DGE ,∴ACDG =CEGE ,∴AC=CE GE·DG=245,∴☉O 的直径=2OA=4AC=965. 8.解:(1)证明:如图所示,连接OD ,∵AB=AC ,∴∠ABC=∠C , ∵OB=OD ,∴∠ODB=∠ABC=∠C , ∵DF ⊥AC ,∴∠CDF +∠C=90°, ∴∠CDF +∠ODB=90°, ∴∠ODF=90°,∴直线DF 是☉O 的切线. (2)证明:连接AD ,则AD ⊥BC , ∵AB=AC ,∴DB=DC=12BC.∵∠CDF +∠C=90°,∠C +∠DAC=90°, ∴∠CDF=∠DAC ,又∠DFC=∠ADC=90°,∴△CFD ∽△CDA , ∴CD AC =CFCD ,∴CD 2=AC ·CF ,∴BC 2=4CF ·AC.(3)连接OE ,作OG ⊥AE 于G.∵∠CDF=15°,∴∠C=75°,∠OAE=30°=∠OEA ,∴∠AOE=120°, ∴AE=2EG=2OE ·cos30°=2×4×√32=4√3. ∴S △OAE =12AE ·OE ·sin ∠OEA=12×4√3×4×12=4√3, ∴S 阴影部分=S 扇形OAE -S △OAE =120360×π×42-4√3=16π3-4√3.。

圆的有关计算与证明(共50题)(解析版)-2023年中考数学真题分项汇编(全国通用)

圆的有关计算与证明(共50题)(解析版)-2023年中考数学真题分项汇编(全国通用)

圆的有关计算与证明(50题)一、单选题1.(2023·新疆·统考中考真题)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B【分析】根据圆周角定理求得∠AOB =60°,然后根据扇形面积公式进行计算即可求解.【详解】解:∵AB=AB,∠ACB =30°,∴∠AOB =60°,∴S =60360π×62=6π.故选:B .【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.2.(2023·江苏连云港·统考中考真题)如图,矩形ABCD 内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是()A.414π-20 B.412π-20 C.20πD.20【答案】D【分析】根据阴影部分面积为2个直径分别为AB ,BC 的半圆的面积加上矩形的面积减去直径为矩形对角线长的圆的面积即可求解.【详解】解:如图所示,连接AC ,∵矩形ABCD 内接于⊙O ,AB =4,BC =5∴AC 2=AB 2+BC 2∴阴影部分的面积是S 矩形ABCD +π×AB 2 2+π×BC22-πAC22S 矩形ABCD +π×14AB 2+BC 2-AC 2=S 矩形ABCD=4×5=20,故选:D .【点睛】本题考查了勾股定理,矩形的性质,熟练掌握勾股定理是解题的关键.3.(2023·湖北荆州·统考中考真题)如图,一条公路的转弯处是一段圆弧(AC),点O 是这段弧所在圆的圆心,B 为AC上一点,OB ⊥AC 于D .若AC =3003m ,BD =150m ,则AC 的长为()A.300πmB.200πmC.150πmD.1003πm【答案】B【分析】根据垂径定理求出AD 长度,再根据勾股定理求出半径长度,最后利用弧长公式即可求出答案.【详解】解:∵OB ⊥AC ,点O 是这段弧所在圆的圆心,∴AD =CD ,,∵OD =OD ,OA =OC ,∴△ADO ≌△CDO ,∴∠AOD =∠COD .∵AC =3003m ,AD =CD ,∴AD =CD =1503m .设OA =OC =OB =x ,则DO =x -150,在Rt △ADO 中,x 2=x -150 2+1503 2,∴x =300m ,∴sin ∠AOD =AD AO=1503300=32.∴∠AOD =60°,∴∠AOC =120°,∴AC =n πR 180=120×π×300180=200πm .故选:B .【点睛】本题考查了圆的垂径定理,弧长公式,解题的关键在于通过勾股定理求出半径长度,从而求出所求弧长所对应的圆心角度数.4.(2023·山东滨州·统考中考真题)如图,某玩具品牌的标志由半径为1cm 的三个等圆构成,且三个等圆⊙O 1,⊙O 2,⊙O 3相互经过彼此的圆心,则图中三个阴影部分的面积之和为()A.14πcm 2 B.13πcm 2 C.12πcm 2 D.πcm 2【答案】C 【分析】根据圆的对称性可知:图中三个阴影部分的面积相等,只要计算出一个阴影部分的面积即可,如图,连接AO 1,AO 2,O 1O 2,阴影AO 1O 2的面积=扇形AO 1O 2的面积,据此即可解答.【详解】解:根据圆的对称性可知:图中三个阴影部分的面积相等;如图,连接AO 1,AO 2,O 1O 2,则AO 1=AO 2=O 1O 2,△AO 1O 2是等边三角形,∴∠AO 1O 2=60°,弓形AO 1,AO 2,O 1O 2的面积相等,∴阴影AO 1O 2的面积=扇形AO 1O 2的面积=60π×12360=16πcm 2,∴图中三个阴影部分的面积之和=3×16π=12πcm 2;故选:C .【点睛】本题考查了不规则图形面积的计算,正确添加辅助线、掌握求解的方法是解题关键.5.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形,曲线DA 1B 1C 1D 1A 2⋯是由多段90°的圆心角的圆心为C ,半径为CB 1;C 1D 1 的圆心为D ,半径为DC 1⋯,DA 1 、A 1B 1 、B 1C 1、C 1D 1⋯的圆心依次为A 、B 、C 、D 循环,则A 2023B 2023�的长是()A.4045π2B.2023πC.2023π4D.2022π【答案】A【分析】曲线DA 1B 1C 1D 1A 2⋯是由一段段90度的弧组成的,半径每次比前一段弧半径+12,得到AD n -1=AA n =4×12(n -1)+12,BA n =BB n =4×12(n -1)+1,得出半径,再计算弧长即可.【详解】解:由图可知,曲线DA 1B 1C 1D 1A 2⋯是由一段段90度的弧组成的,半径每次比前一段弧半径+12,∴AD =AA 1=12,BA 1=BB 1=1,CB 1=CC 1=32,DC 1=DD 1=2,AD 1=AA 2=2+12,BA 2=BB 2=2+1,CB 2=CC 2=2+32,DC 2=DD 2=2+2,⋯⋯,AD n -1=AA n =4×12(n -1)+12,BA n =BB n =4×12(n -1)+1,故A 2023B 2023 的半径为BA 2023=BB 2023=4×12×2023-1 +1=4045,∴A 2023B 2023 的弧长=90180×4045π=40452π.故选:A .【点睛】此题主要考查了弧长的计算,弧长的计算公式:l =n πr180,找到每段弧的半径变化规律是解题关键.6.(2023·四川广安·统考中考真题)如图,在等腰直角△ABC 中,∠ACB =90°,AC =BC =22,以点A 为圆心,AC 为半径画弧,交AB 于点E ,以点B 为圆心,BC 为半径画弧,交AB 于点F ,则图中阴影部分的面积是()A.π-2B.2π-2C.2π-4D.4π-4【答案】C【分析】先利用扇形的面积公式求出扇形ACE 和扇形BCF 的面积,再减去△ABC 的面积即可得.【详解】解:∵△ABC 是等腰直角三角形,∴∠A =∠B =45°,∵AC =BC =22,∴图中阴影部分的面积是S 扇形ACE +S 扇形BCF -S Rt △ABC =45π×22 2360+45π×22 2360-12×22 ×22=2π-4,故选:C .【点睛】本题考查了扇形的面积,熟练掌握扇形的面积公式是解题关键.7.(2023·江苏苏州·统考中考真题)如图,AB 是半圆O 的直径,点C ,D 在半圆上,CD=DB,连接OC ,CA ,OD ,过点B 作EB ⊥AB ,交OD 的延长线于点E .设△OAC 的面积为S 1,△OBE 的面积为S 2,若S 1S 2=23,则tan ∠ACO 的值为()A.2B.223C.75D.32【答案】A【分析】如图,过C 作CH ⊥AO 于H ,证明∠COD =∠BOE =∠CAO ,由S 1S 2=23,即12OA ∙CH 12OB ∙BE =23,可得CH BE =23,证明tan ∠A =tan ∠BOE ,可得CH BE =AH OB =23,设AH =2m ,则BO =3m =AO =CO ,可得OH =3m -2m =m ,CH =9m 2-m 2=22m ,再利用正切的定义可得答案.【详解】解:如图,过C 作CH ⊥AO 于H ,∵CD=BD,∴∠COD =∠BOE =∠CAO ,∵S 1S 2=23,即12OA ∙CH 12OB ∙BE =23,∴CH BE=23,∵∠A =∠BOE ,∴tan ∠A =tan ∠BOE ,∴CH AH=BE OB ,即CH BE =AH OB =23,设AH =2m ,则BO =3m =AO =CO ,∴OH =3m -2m =m ,∴CH =9m 2-m 2=22m ,∴tan ∠A =CH AH=22m2m =2,∵OA =OC ,∴∠A =∠ACO ,∴tan ∠ACO =2;故选:A .【点睛】本题考查的是圆周角定理的应用,勾股定理的应用,锐角三角函数的应用,作出合适的辅助线构建直角三角形是解本题的关键.二、填空题8.(2023·重庆·统考中考真题)如图,在矩形ABCD 中,AB =2,BC =4,E 为BC 的中点,连接AE ,DE ,以E 为圆心,EB 长为半径画弧,分别与AE ,DE 交于点M ,N ,则图中阴影部分的面积为.(结果保留π)【答案】4-π【分析】利用矩形的性质求得AB =CD =2,BE =CE =2,进而可得∠BAE =∠AEB =∠DEC =∠CDE =45°,然后根据S 阴影=2S △ABE -S 扇形BEM 解答即可.【详解】解:∵四边形ABCD 是矩形,AB =2,BC =4,E 为BC 的中点,∴AB =CD =2,BE =CE =12BC =2,∠ABC =∠DCB =90°,∴∠BAE =∠AEB =∠DEC =∠CDE =45°,∴S 阴影=2S △ABE -S 扇形BEM =2×12×2×2-45π×22360 =2×2-12π=4-π;故答案为:4-π.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45°的扇形面积是解题关键.9.(2023·黑龙江绥化·统考中考真题)如图,⊙O 的半径为2cm ,AB 为⊙O 的弦,点C 为AB上的一点,将AB沿弦AB 翻折,使点C 与圆心O 重合,则阴影部分的面积为.(结果保留π与根号)【答案】23π-3cm 2【分析】根据折叠的性质得出△AOC 是等边三角形,则∠AOC =60°,OD =CD =1,根据阴影部分面积=S 扇形AOC -S △AOC 即可求解.【详解】解:如图所示,连接OA ,OC ,设AB ,CO 交于点D∵将AB沿弦AB 翻折,使点C 与圆心O 重合,∴AC =AO ,OC ⊥AB 又OA =OC ∴OA =OC =AC ,∴△AOC 是等边三角形,∴∠AOC =60°,OD =CD =1,∴AD =AO 2-CD 2=3,∴阴影部分面积=S 扇形AOC -S △AOC =60360π×22-12×2×3=23π-3cm 2 故答案为:23π-3cm 2.10.(2023·重庆·统考中考真题)如图,⊙O 是矩形ABCD 的外接圆,若AB =4,AD =3,则图中阴影部分的面积为.(结果保留π)【答案】254π-12【分析】根据直径所对的圆周角是直角及勾股定理得到BD =5,再根据圆的面积及矩形的性质即可解答.【详解】解:连接BD ,∵四边形ABCD 是矩形,∴BD 是⊙O 的直径,∵AB =4,AD =3,∴BD =AB 2+AD 2=5,∴⊙O 的半径为52,∴⊙O 的面积为254π,矩形的面积为3×4=12,∴阴影部分的面积为254π-12;故答案为:254π-12.【点睛】本题考查了矩形的性质,圆的面积,矩形的面积,勾股定理,掌握矩形的性质是解题的关键.11.(2023·江苏扬州·统考中考真题)用半径为24cm ,面积为120πcm 2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .【答案】5【分析】应为圆锥侧面母线的长就是侧面展开扇形的半径,利用圆锥侧面面积公式:S =π⋅r ⋅l ,就可以求出圆锥的底面圆的半径.【详解】解:设圆锥底面圆的半径为r ,l =24,由扇形的面积:S =π⋅r ⋅l =120π,得:r =5故答案为:5.【点睛】本题考查了圆锥侧面面积的相关计算,熟练掌握圆锥侧面面积的计算公式是解题的关键,注意用扇形围成的圆锥,扇形的半径就是圆锥的母线.12.(2023·浙江温州·统考中考真题)若扇形的圆心角为40°,半径为18,则它的弧长为.【答案】4π【分析】根据弧长公式l =n πr180即可求解.【详解】解:扇形的圆心角为40°,半径为18,∴它的弧长为40180×18π=4π,故答案为:4π.【点睛】本题考查了求弧长,熟练掌握弧长公式是解题的关键.13.(2023·浙江宁波·统考中考真题)如图,圆锥形烟囱帽的底面半径为30cm,母线长为50cm,则烟囱帽的侧面积为cm2.(结果保留π)【答案】1500π【分析】根据圆锥侧面展开图是一个扇形,由扇形面积公式S=12lr代值求解即可得到答案.【详解】解:∵圆锥形烟囱帽的底面半径为30cm,母线长为50cm,∴烟囱帽的侧面积S=12lr=12×2π×30×50=1500π(cm2),故答案为:1500π.【点睛】本题考查圆锥侧面展开图及扇形面积公式S=12lr,熟记扇形面积公式是解决问题的关键.14.(2023·天津·统考中考真题)如图,在每个小正方形的边长为1的网格中,等边三角形ABC内接于圆,且顶点A,B均在格点上.(1)线段AB的长为;(2)若点D在圆上,AB与CD相交于点P.请用无刻度的直尺,在如图所示的网格中,画出点Q,使△CPQ为等边三角形,并简要说明点Q的位置是如何找到的(不要求证明).【答案】(1)29(2)画图见解析;如图,取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点G;连接DB与网格线相交于点H,连接HF并延长与网格线相交于点I,连接AI并延长与圆相交于点K,连接CK并延长与GB的延长线相交于点Q,则点Q即为所求【分析】(1)在网格中用勾股定理求解即可;(2)取AC,AB与网格线的交点E,F,连接EF并延长与网格线相交于点M,连接MB;连接DB与网格线相交于点G,连接GF并延长与网格线相交于点H,连接AH并延长与圆相交于点I,连接CI并延长与MB的延长线相交于点Q,则点Q即为所求,连接PQ,AD,BK,过点E作ET⊥网格线,过点G作GS ⊥网格线,由图可得Rt △AJF ≌Rt △BLF AAS ,根据全等三角形的性质可得Rt △IMF ≌Rt △HNF ASA 和△AIF ≌△BHF SAS ,根据同弧所对圆周角相等可得AD=BK,进而得到∠1=∠2和∠PCQ =60°,再通过证明△CAP ≌△CBQ ASA 即可得到结论.【详解】(1)解:AB =22+52=29;故答案为:29.(2)解:如图,取AC ,AB 与网格线的交点E ,F ,连接EF 并延长与网格线相交于点G ;连接DB 与网格线相交于点H ,连接HF 并延长与网格线相交于点I ,连接AI 并延长与圆相交于点K ,连接CK 并延长与GB 的延长线相交于点Q ,则点Q 即为所求;连接PQ ,AD ,BK ,过点E 作ET ⊥网格线,过点G 作GS ⊥网格线,由图可得:∵∠AJF =∠BLF ,∠AFJ =∠BFL ,AJ =BL ,∴Rt △AJF ≌Rt △BLF AAS ,∴FJ =FL ,AF =BF ,∵MJ =NL ,∴FJ -MJ =FL -NL ,即FM =FN ,∵∠IMF =∠HNF ,∠IFM =∠HFN ,∴Rt △IMF ≌Rt △HNF ASA ,∴FI =FH ,∵∠AFI =∠BFH ,AF =BF ,∴△AIF ≌△BHF SAS ,∴∠FAI =∠FBH ,∴AD=BK,∴∠1=∠2,∵△ABC 是等边三角形,∴∠ACB =60°,即∠1+∠PCB =60°,∴∠2+∠PCB =60°,即∠PCQ =60°,∵ET =GS ,∠ETF =∠GSF ,∠EFT =∠GFS ,∴Rt △ETF ≌Rt △GSF AAS ,∴EF =GF ,∵AF =BF ,∠AFE =∠BFG ,∴△AFE ≌△BFG SAS ,∴∠EAF =∠GBF ,∴∠GBF =∠EAF =∠CBA =60°,∴∠CBQ =180°-∠CBA -∠GBF =60°,∴∠CBQ =∠CAB ,∵CA =CB ,∴△CAP ≌△CBQ ASA ,∴CQ =CP ,∵∠PCQ =60°,∴△PCQ 是等边三角形,此时点Q 即为所求;故答案为:如图,取AC ,AB 与网格线的交点E ,F ,连接EF 并延长与网格线相交于点G ;连接DB 与网格线相交于点H ,连接HF 并延长与网格线相交于点I ,连接AI 并延长与圆相交于点K ,连接CK 并延长与GB 的延长线相交于点Q ,则点Q 即为所求.【点睛】本题考查作图-复杂作图,勾股定理、等边三角形的判定、全等三角形的判定与性质等知识,解题关键是理解题意,灵活运用所学知识是关键.15.(2023·江苏苏州·统考中考真题)如图,在▱ABCD 中,AB =3+1,BC =2,AH ⊥CD ,垂足为H ,AH =3.以点A 为圆心,AH 长为半径画弧,与AB ,AC ,AD 分别交于点E ,F ,G .若用扇形AEF 围成一个圆锥的侧面,记这个圆锥底面圆的半径为r 1;用扇形AHG 围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r 2,则r 1-r 2=.(结果保留根号)【答案】324【分析】由▱ABCD ,AB =3+1,BC =2,AH ⊥CD ,AH =3,AD =BC =2,DH =22-3 2=1,cos DAH =AH AD=32,AB =CD =3+1,AB ∥CD ,求解∠DAH =30°,CH =3=AH ,证明∠ACH =∠CAH =45°,可得∠BAC =45°,再分别计算圆锥的底面半径即可.【详解】解:∵在▱ABCD 中,AB =3+1,BC =2,AH ⊥CD ,AH =3,∴AD =BC =2,DH =22-3 2=1,∵cos ∠DAH =AHAD=32,AB =CD =3+1,∴∠DAH =30°,CH =3=AH ,∴∠ACH =∠CAH =45°,∵AB ∥CD ,∴∠BAC =45°,∴45π×3180=2πr 1,30π×3180=2πr 2,解得:r 1=38,r 2=312,∴r 1-r 2=3324-2324=324;故答案为:324【点睛】本题考查的是平行四边形的性质,勾股定理的应用,锐角三角函数的应用,扇形的弧长的计算,圆锥的底面半径的计算,熟记圆锥的侧面展开图的扇形弧长等于底面圆的周长是解本题的关键.16.(2023·四川自贡·统考中考真题)如图,小珍同学用半径为8cm ,圆心角为100°的扇形纸片,制作一个底面半径为2cm 的圆锥侧面,则圆锥上粘贴部分的面积是cm 2.【答案】169π【分析】由题意知,底面半径为2cm 的圆锥的底面周长为4πcm ,扇形弧长为100π×8180=409πcm ,则扇形中未组成圆锥底面的弧长l =409π-4π=49πcm ,根据圆锥上粘贴部分的面积为扇形中未组成圆锥的弧长部分所对应的扇形面积可得圆锥上粘贴部分的面积为12lr =12×49π×8,计算求解即可.【详解】解:由题意知,底面半径为2cm 的圆锥的底面周长为4πcm ,扇形弧长为100π×8180=409πcm ,∴扇形中未组成圆锥底面的弧长l =409π-4π=49πcm ,∵圆锥上粘贴部分的面积为扇形中未组成圆锥的弧长部分所对应的扇形面积,∴圆锥上粘贴部分的面积为12lr =12×49π×8=169πcm 2,故答案为:169π.【点睛】本题考查了扇形的弧长、面积公式.解题的关键在于熟练掌握S 扇形=12lr ,l 扇形=n πr180,其中n 为扇形的圆心角,r 为扇形的半径.三、解答题17.(2023·四川南充·统考中考真题)如图,AB 与⊙O 相切于点A ,半径OC ∥AB ,BC 与⊙O 相交于点D ,连接AD .(1)求证:∠OCA =∠ADC ;(2)若AD =2,tan B =13,求OC 的长.【答案】(1)见解析(2)5【分析】(1)连接OA ,根据切线的性质得出∠OAB =90°,再由平行线的性质得出∠AOC =90°,利用圆周角定理及等腰直角三角形的性质即可证明;(2)过点A 作AH ⊥BC ,过点C 作CF ⊥BA 的延长线于点F ,根据勾股定理及等腰直角三角形的性质得出AH =DH =2,再由正切函数确定BH =32,AB =25,再由正方形的判定和性质及相似三角形的判定和性质求解即可.【详解】(1)证明:连接OA ,如图所示:∵AB 与⊙O 相切于点A ,∴∠OAB =90°,∵OC ∥AB ,∴∠AOC =90°,∴∠ADC =45°,∵OC =OA ,∴∠OCA =45°,∴∠OCA =∠ADC ;(2)过点A 作AH ⊥BC ,过点C 作CF ⊥BA 交BA 的延长线于点F ,如图所示:由(1)得∠OCA =∠ADC =45°,∴ΔAHD 为等腰直角三角形,∵AD =2,∴AH =DH =2,∵tan B =13,∴BH =32,AB =AH 2+BH 2=25,由(1)得∠AOC =∠OAF =90°,∵CF ⊥BA ,∴四边形OCFA 为矩形,∵OA =OC ,∴四边形OCFA 为正方形,∴CF =FA =OC =r ,∵∠B =∠B ,∠AHB =∠CFB =90°,∴△ABH ∽△CBF ,∴BH BF =AH CF 即3225+r=2r ,解得:r =5,∴OC =5.【点睛】题目主要考查圆周角定理,解直角三角形及正方形与相似三角形的判定和性质,理解题意,作出辅助线,综合运用这些知识点是解题关键.18.(2023·四川成都·统考中考真题)如图,以△ABC 的边AC 为直径作⊙O ,交BC 边于点D ,过点C 作CE ∥AB 交⊙O 于点E ,连接AD ,DE ,∠B =∠ADE .(1)求证:AC=BC;(2)若tan B=2,CD=3,求AB和DE的长.【答案】(1)见解析(2)AB=25,DE=25【分析】(1)根据CE∥AB,得到∠ACE=∠BAC,再根据同弧所对的圆周角相等,得到∠ACE=∠ADE=∠B,可证明△ABC是等腰三角形,即可解答;(2)根据直径所对的圆周角为直角,得到tan B=2=ADBD,设BD=x,根据勾股定理列方程,解得x 的值,即可求出AB;解法一:过点E作DC的垂线段,交DC的延长线于点F,证明∠B=∠ECF,求出EF,DF的长,根据勾股定理即可解出DE的长;解法二:连接AE,得到角相等,进而证得△ABC∽△ADE,根据对应边成比例即可解出DE的长.【详解】(1)证明:∵CE∥AB,∴∠BAC=∠ACE,∴∠BAC=∠ACE=∠ADE,∵∠B=∠ADE,∴∠B=∠BAC,∴AC=BC;(2)解:设BD=x,∵AC是⊙O的直径,∴∠ADC=∠ADB=90°,∵tan B=2,=2,即AD=2x,∴ADBD根据(1)中的结论,可得AC=BC=BD+DC=x+3,根据勾股定理,可得AD2+DC2=AC2,即2x2,2+32=x+3解得x1=2,x2=0(舍去),∴BD=2,AD=4,根据勾股定理,可得AB=AD2+BD2=25;解法一:如图,过点E作DC的垂线段,交DC的延长线于点F,∵CE∥AB,∴∠ECF=∠B,∵EF⊥CF,∴tan∠ECF=tan∠B=2,即EF=2,CF∵∠B+∠BAD=90°,∠ADE+∠EDF=90°,∠B=∠ADE,∴∠BAD=∠EDF,∴∠DEF =90°-∠EDF =90°-∠BAD =∠B ,∴DF EF=2,设CF =a ,则DF =DC +CF =a +3,∴EF =2a ,可得方程a +32a=2,解得a =1,∴EF =2,DF =4,根据勾股定理,可得DE =DF 2+EF 2=25.解法二:如图,连接AE ,∵∠B =∠ADE ,∠ACB =∠AED ,∴△ABC ∽△ADE ,∴AB AD=BC DE ,又∵BC =5,AD =4,AB =25,∴254=5DE ,∴DE =25.【点睛】本题考查了圆周角定理,等腰三角形的判定和性质,相似三角形的判定及性质,平行线的性质,勾股定理,正切,利用等量代换证明相关角相等是解题的关键.19.(2023·内蒙古·统考中考真题)如图,AB 是⊙O 的直径,AC 是弦,D 是AC上一点,P 是AB 延长线上一点,连接AD ,DC ,CP .(1)求证:∠ADC -∠BAC =90°;(请用两种证法解答)(2)若∠ACP =∠ADC ,⊙O 的半径为3,CP =4,求AP 的长.【答案】(1)证明见解析(2)8【分析】(1)证法一:连接BD ,得到∠ADB =90°,因为∠BAC =∠BDC ,所以∠ADC -∠BAC =90°;证法二:连接BC ,可得∠ADC +∠ABC =180°,则∠ABC =180°-∠ADC ,根据∠ACB =90°,可得∠BAC +∠ABC =90°,即可得到结果;(2)连接OC ,根据角度间的关系可以证得△OCP 为直角三角形,根据勾股定理可得边OP 的长,进而求得结果.【详解】(1)证法一:如图,连接BD ,∵BC=BC,∴∠BDC=∠BAC,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=∠ADB+∠BDC∵∠BAC=∠BDC,∴∠ADC=90°+∠BAC,∴∠ADC-∠BAC=90°,证法二:如图,连接BC,∵四边形ABCD是⊙O的内接四边形,∴∠ADC+∠ABC=180°,∴∠ABC=180°-∠ADC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∴∠BAC+180°-∠ADC=90°,∴∠ADC-∠BAC=90°,(2)解:如图,连接OC,∵∠ACP=∠ADC,∠ADC-∠BAC=90°,∴∠ACP-∠BAC=90°,∵OA=OC,∴∠BAC=∠ACO,∴∠ACP-∠ACO=90°,∴∠OCP=90°.∵⊙O的半径为3,∴AO=OC=3,在Rt△OCP中,OP2=OC2+CP2,∵CP=4,∴OP2=32+42=25,∴OP=5,∴AP=AO+OP=8,【点睛】本题考查了圆周角定理,直径所对的圆周角为直角,勾股定理,找到角度之间的关系是解题的关键.20.(2023·辽宁大连·统考中考真题)如图1,在⊙O中,AB为⊙O的直径,点C为⊙O上一点,AD为∠CAB的平分线交⊙O于点D,连接OD交BC于点E.(1)求∠BED 的度数;(2)如图2,过点A 作⊙O 的切线交BC 延长线于点F ,过点D 作DG ∥AF 交AB 于点G .若AD =235,DE =4,求DG 的长.【答案】(1)90°(2)210【分析】(1)根据圆周角定理证明两直线平行,再利用平行线的性质证明角度相等即可;(2)由勾股定理找到边的关系,求出线段长,再利用等面积法求解即可.【详解】(1)∵AB 是⊙O 的直径,∴∠ACB =90°,∵AD 平分∠CAB ,∴∠BAD =12∠BAC ,即∠BAC =2∠BAD ,∵OA =OD ,∴∠BAD =∠ODA ,∴∠BOD =∠BAD +∠ODA =2∠BAD ,∴∠BOD =∠BAC ,∴OD ∥AC ,∴∠OEB =∠ACB =90°,∴∠BED =90°,(2)如图,连接BD ,设OA =OB =OD =r ,则OE =r -4,AC =2OE =2r -8,AB =2r ,∵AB 是⊙O 的直径,∴∠ADB =90°,在Rt △ADB 中,有勾股定理得:BD 2=AB 2-AD 2由(1)得:∠BED =90°,∴∠BED =∠BEO =90°,由勾股定理得:BE 2=OB 2-OE 2,BE 2=BD 2-DE 2,∴BD 2=AB 2-AD 2=BE 2+DE 2=OB 2-OE 2+DE 2,∴2r 2-235 2=r 2-r -4 2+42,整理得:r 2-2r -35=0,解得:r =7或r =-5(舍去),∴AB =2r =14,∴BD =AB 2-AD 2=142-235 2=214,∵AF是⊙O的切线,∴AF⊥AB,∵DG∥AF,∴DG⊥AB,∴S△ABD=12AD·BD=12AB·DG,∴DG=AD·BDAB =235×21414=210.【点睛】此题考查了圆周角定理和勾股定理,三角形中位线定理,切线的性质,解一元二次方程,熟练掌握圆周角定理和勾股定理是解题的关键.21.(2023·浙江杭州·统考中考真题)在边长为1的正方形ABCD中,点E在边AD上(不与点A,D重合),射线BE与射线CD交于点F.(1)若ED=13,求DF的长.(2)求证:AE⋅CF=1.(3)以点B为圆心,BC长为半径画弧,交线段BE于点G.若EG=ED,求ED的长.【答案】(1)1 2(2)见解析(3)14【分析】(1)证明△AEB∽△DEF,利用相似三角形的对应边成比例求解;(2)证明△AEB∽△CBF,利用相似三角形的对应边成比例证明;(3)设EG=ED=x,则AE=1-x,BE=1+x,在Rt△ABE中,利用勾股定理求解.【详解】(1)解:由题知,AB=BC=CD=DA=1,若ED=13,则AE=AD-ED=23.∵四边形ABCD是正方形,∴∠A=∠FDE=90°,又∵∠AEB=∠FED,∴△AEB∽△DEF,∴AB DF =AE ED,即1DF=2313,∴DF=12.(2)证明:∵四边形ABCD是正方形,∴∠A=∠C=90°,AB∥CD,∴∠ABE=∠F,∴△ABE∽△CFB,∴AB CF =AE BC,∴AE⋅CF=AB⋅BC=1×1=1.(3)解:设EG=ED=x,则AE=AD-AE=1-x,BE=BG+GE=BC+GE=1+x.在Rt△ABE中,AB2+AE2=BE2,即12+(1-x)2=(1+x)2,解得x=1 4.∴ED=14.【点睛】本题考查了相似三角形的性质与判定,勾股定理的应用,正方形的性质等,熟练掌握相关性质定理是解题的关键.22.(2023·河北·统考中考真题)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水面沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动,如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ的长度,并比较大小.【答案】(1)7cm (2)112cm(3)EF =2533cm ,EQ =25π6cm ,EF >EQ .【分析】(1)连接OM ,利用垂径定理计算即可;(2)由切线的性质证明OE ⊥GH 进而得到OE ⊥MN ,利用锐角三角函数求OD ,再与(1)中OC 相减即可;(3)由半圆的中点为Q 得到∠QOB =90°,得到∠QOE =30°分别求出线段EF 与EQ的长度,再相减比较即可.【详解】解:(1)连接OM ,∵O 为圆心,OC ⊥MN 于点C ,MN =48cm ,∴MC =12MN =24cm ,∵AB =50cm ,∴OM =12AB =25cm ,∴在Rt △OMC 中,OC =OM 2-MC 2=252-242=7cm .(2)∵GH 与半圆的切点为E ,∴OE ⊥GH ∵MN ∥GH∴OE ⊥MN 于点D ,∵∠ANM =30°,ON =25cm ,∴OD =12ON =252cm ,∴操作后水面高度下降高度为:252-7=112cm .(3)∵OE ⊥MN 于点D ,∠ANM =30°∴∠DOB =60°,∵半圆的中点为Q ,∴AQ=QB,∴∠QOB =90°,∴∠QOE =30°,∴EF =tan ∠QOE ⋅OE =2533cm ,EQ =30×π×25180=25π6cm ,∵2533-25π6=503-25π6=2523-π 6>0,∴EF >EQ.【点睛】本题考查了垂径定理、圆的切线的性质、求弧长和解直角三角形的知识,解答过程中根据相关性质构造直角三角形是解题关键.23.(2023·湖北武汉·统考中考真题)如图,OA ,OB ,OC 都是⊙O 的半径,∠ACB =2∠BAC .(1)求证:∠AOB =2∠BOC ;(2)若AB =4,BC =5,求⊙O 的半径.【答案】(1)见解析(2)52【分析】(1)由圆周角定理得出,∠ACB =12∠AOB ,∠BAC =12∠BOC ,再根据∠ACB =2∠BAC ,即可得出结论;(2)过点O 作半径OD ⊥AB 于点E ,根据垂径定理得出∠DOB =12∠AOB ,AE =BE ,证明∠DOB =∠BOC ,得出BD =BC ,在Rt △BDE 中根据勾股定理得出DE =BD 2-BE 2=1,在Rt △BOE 中,根据勾股定理得出OB 2=(OB -1)2+22,求出OB 即可.【详解】(1)证明:∵AB=AB,∴∠ACB =12∠AOB ,∵BC =BC ,∴∠BAC =12∠BOC ,∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC .(2)解:过点O 作半径OD ⊥AB 于点E ,则∠DOB =12∠AOB ,AE =BE ,∵∠AOB =2∠BOC ,∴∠DOB =∠BOC ,∴BD =BC ,∵AB =4,BC =5,∴BE =2,DB =5,在Rt △BDE 中,∵∠DEB =90°∴DE =BD 2-BE 2=1,在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52,即⊙O 的半径是52.【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,解题的关键是作出辅助线,熟练掌握圆周角定理.24.(2023·湖南·统考中考真题)如图所示,四边形ABCD 是半径为R 的⊙O 的内接四边形,AB 是⊙O 的直径,∠ABD =45°,直线l 与三条线段CD 、CA 、DA 的延长线分别交于点E 、F 、G .且满足∠CFE =45°.(1)求证:直线l ⊥直线CE ;(2)若AB =DG ;①求证:△ABC ≌△GDE ;②若R =1,CE =32,求四边形ABCD 的周长.【答案】(1)见解析(2)①见解析,②72+2【分析】(1)在⊙O 中,根据同弧所对的圆周角相等可得∠ACD =∠ABD =45°,结合已知在△CFE 中根据三角形内角和定理可求得∠FEC =90°;(2)①根据圆内接四边形的性质和邻补角可得∠ABC =∠GDE ,由直径所对的圆周角是直角和(1)可得∠ACB =∠GED ,结合已知即可证得△ABC ≌△GDE AAS ;②在⊙O 中由R =1,可得AB =2,结合题意易证DA =DB ,在Rt △ABC 中由勾股定理可求得DA =2,由①可知易得BC +CD =DE +CD =CE ,最后代入计算即可求得周长.【详解】(1)证明:在⊙O 中,∵AD =AD,∴∠ACD =∠ABD =45°,即∠FCE =45°,在△CFE 中,∵∠CFE =45°,∴∠FEC =180°-∠FCD +∠CFE =90°,即直线l ⊥直线CE ;(2)①四边形ABCD 是半径为R 的⊙O 的内接四边形,∴∠ADC +∠ABC =180°,∵∠ADC +∠GDE =180°,∴∠ABC =∠GDE ,∵AB 是⊙O 的直径,∴∠ACB =90°,由(1)可知∠GED =90°,∴∠ACB=∠GED,在△ABC与△GDE中,∠ABC=∠GDE ∠ACB=∠GED AB=DG,∴△ABC≌△GDE AAS,②在⊙O中,R=1,∴AB=2R=2,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=45°,∴∠BAD=90°-∠ABD=45°,∴DA=DB,在Rt△ABC中,∴DA2+DB2=AB2,即2DA2=22,解得:DA=2,由①可知△ABC≌△GDE,∴BC=DE,∴BC+CD=DE+CD=CE=32,∴四边形ABCD的周长为:DA+AB+BC+CD=DA+AB+CE=2+2+32=72+2.【点睛】本题考查了同弧所对的圆周角相等、三角形内角和定理、垂直的定义、圆内接四边形的性质、邻补角互补、直径所对的圆周角是直角、全等三角形的判定和性质、勾股定理解直角三角形以及周长的计算;解题的关键是灵活运用以上知识,综合求解.25.(2023·天津·统考中考真题)在⊙O中,半径OC垂直于弦AB,垂足为D,∠AOC=60°,E为弦AB所对的优弧上一点.(1)如图①,求∠AOB和∠CEB的大小;(2)如图②,CE与AB相交于点F,EF=EB,过点E作⊙O的切线,与CO的延长线相交于点G,若OA=3,求EG的长.【答案】(1)∠AOB=120°,∠CEB=30°(2)3【分析】(1)根据半径OC 垂直于弦AB ,可以得到AC =BC,从而得到∠AOC =∠BOC ,结合已知条件∠AOC =60°即可得到∠AOB =2∠AOC =120°,根据∠CEB =12∠AOC 即可求出∠CEB =30°;(2)根据∠CEB =30°,结合EF =EB ,推算出∠EBF =∠EFB =75°,进一步推算出∠GOE =∠AOE-∠AOG =30°,在Rt △OEG 中,tan ∠GOE =EG OE,OE =OA =3,再根据EG =3×tan30°即可得到答案.【详解】(1)解:在⊙O 中,半径OC 垂直于弦AB ,∴AC =BC ,得∠AOC =∠BOC .∵∠AOC =60°,∴∠AOB =2∠AOC =120°.∵∠CEB =12∠BOC =12∠AOC ,∴∠CEB =30°.(2)解:如图,连接OE .同(1)得∠CEB =30°.∵在△BEF 中,EF =EB ,∴∠EBF =∠EFB =75°.∴∠AOE =2∠EBA =150°.又∠AOG =180°-∠AOC =120°,∴∠GOE =∠AOE -∠AOG =30°.∵GE 与⊙O 相切于点E ,∴OE ⊥GE ,即∠OEG =90°.在Rt △OEG 中,tan ∠GOE =EG OE,OE =OA =3,∴EG =3×tan30°=3.【点睛】本题考查圆周角定理、切线的性质和直角三角函数,解题的关键是灵活运用相关知识.26.(2023·江苏苏州·统考中考真题)如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,AC =5,BC =25,点F 在AB 上,连接CF 并延长,交⊙O 于点D ,连接BD ,作BE ⊥CD ,垂足为E .(1)求证:△DBE ∽△ABC ;(2)若AF =2,求ED 的长.【答案】(1)证明见解析(2)355【分析】(1)分别证明∠ACB=90°=∠BED,∠CAB=∠CDB,从而可得结论;(2)求解AB=AC2+BC2=5,tan∠ABC=ACBC =12,可得BF=3,证明tan∠ABC=tan∠DBE=DE BE =12,设DE=x,则BE=2x,BD=5x,证明△ACF∽△DBF,可得ACBD=AFDF=CFBF,可得DF=2x,EF=x=DE,BD=BF=3,从而可得答案.【详解】(1)证明:∵AB是⊙O的直径,BE⊥CD,∴∠ACB=90°=∠BED,∵∠CAB=∠CDB,∴△DBE∽△ABC.(2)∵AC=5,BC=25,∠ACB=90°,∴AB=AC2+BC2=5,tan∠ABC=ACBC =12,∵AF=2,∴BF=3,∵△DBE∽△ABC,∴∠ABC=∠DBE,∴tan∠ABC=tan∠DBE=DEBE =12,设DE=x,则BE=2x,BD=5x,∵∠AFC=∠BFD,∠CAB=∠CDB,∴△ACF∽△DBF,∴AC BD =AFDF=CFBF,∴55x =2DF,则DF=2x,∴EF=x=DE,∴BD=BF=3,∴DE=355.【点睛】本题考查的是圆周角定理的应用,相似三角形的判定与性质,锐角三角函数的应用,熟记圆的基本性质与重要定理是解本题的关键.27.(2023·四川达州·统考中考真题)如图,△ABC、△ABD内接于⊙O,AB=BC,P是OB延长线上的一点,∠PAB=∠ACB,AC、BD相交于点E.(1)求证:AP 是⊙O 的切线;(2)若BE =2,DE =4,∠P =30°,求AP 的长.【答案】(1)见解析(2)6【分析】(1)由AB =BC ,OB 为半径,可知OB ⊥AC ,∠CAB =∠ACB ,则∠CAB +∠ABO =90°,∠ACB +∠ABO =90°,∠PAB +∠ABO =90°,如图1,连接OA ,由OA =OB ,可得∠OAB =∠ABO ,则∠PAB +∠OAB =90°,即∠OAP =90°,进而结论得证;(2)如图2,记OB 与AC 交点为M ,连接OD ,过O 作ON ⊥DB 于N ,证明△ABO 是等边三角形,则AB =OB =OA ,∠ABM =60°,设⊙O 半径为r ,则BM =AB ⋅cos ∠ABM =12r ,由OB =OD ,ON ⊥DB ,可得BN =12BD =3,证明△BME ∽△BNO ,则BM BN =BE BO ,即12r 3=2r ,解得r =23或r =-23(舍去),根据AP =OA tan ∠P,计算求解即可.【详解】(1)解:如图,连接OA ,OC ,∵AB =BC ,∴AB �=BC �,∴∠AOB =∠COB ,∴OB ⊥AC ,由等边对等角可得∠CAB =∠ACB ,∴∠CAB +∠ABO =90°,∴∠ACB +∠ABO =90°,∵∠PAB =∠ACB ,∴∠PAB +∠ABO =90°,∵OA =OB ,∴∠OAB =∠ABO ,∴∠PAB +∠OAB =90°,即∠OAP =90°,又∵OA 是半径,∴AP 是⊙O 的切线;(2)解:如图2,记OB 与AC 交点为M ,连接OD ,过O 作ON ⊥DB 于N ,∵∠P =30°,∴∠AOP =60°,∴△ABO 是等边三角形,∴AB =OB =OA ,∠ABM =60°,设⊙O 半径为r ,∵AM ⊥BM ,∴BM =AB ⋅cos ∠ABM =12r ,∵OB =OD ,∴△BOD 是等腰三角形,又∵ON ⊥DB ,∴BN =12BD =BE +DE 2=3,∵∠BME =∠BNO =90°,∠EBM =∠OBN ,∴△BME ∽△BNO ,∴BM BN =BE BO ,即12r 3=2r ,解得r =23或r =-23(舍去),∴AP =OA tan ∠P =r 33=6,∴AP 的长为6.【点睛】本题考查了垂径定理,等腰三角形的判定与性质,切线的判定,等边三角形的判定与性质,相似三角形的判定与性质,余弦、正切等知识.解题的关键在于对知识的熟练掌握与灵活运用.28.(2023·湖南·统考中考真题)如图,AB 是⊙O 的直径,AC 是一条弦,D 是AC的中点,DE ⊥AB 于点E ,交AC 于点F ,交⊙O 于点H ,DB 交AC 于点G .(1)求证:AF =DF .(2)若AF =52,sin ∠ABD =55,求⊙O 的半径.【答案】(1)见解析(2)5【分析】(1)根据D 是AC 的中点,DE ⊥AB 于点E ,得到CD =DA =AH ,得到∠ADH =∠DAC 即可得证.(2)根据sin ∠ABD =55=AD AB,设AD =5x ,AB =5x ,运用勾股定理,得到BD =5x 2-5x 2=25x ,结合sin ∠ABD =55=DE BD ,得到DE =2x ,运用勾股定理,得到BE =25x 2-2x 2=4x ,从而得到AE =x ,EF =ED -DF =DE -AF =2x -52,在Rt △AEF 中,利用勾股定理计算x 即可.【详解】(1)∵D 是AC 的中点,∴CD =DA ,∵DE ⊥AB ,AB 是⊙O 的直径,∴DA =AH ,∴CD =DA =AH,∴∠ADH =∠DAC ,∴AF =DF .(2)∵DE ⊥AB ,AB 是⊙O 的直径,。

中考专题复习——圆的相关证明(附答案)

中考专题复习——圆的相关证明(附答案)

中考复习专题——圆的相关证明题1.在⊙O 中,AB 为直径,C 为⊙O 上一点.(Ⅰ)如图①,过点C 作⊙O 的切线,与AB 的延长线相交于点P ,若P ∠︒=42,求∠CAB 的大小; (Ⅱ)如图②,D 为上一点,且OD 经过AC 的中点E ,连接DC 并延长,与AB 的延长线相交于点P , 若∠CAB ︒=10,求∠P 的大小.2.已知AB 是⊙O 的直径,C 是⊙O 上一点,过点C 作⊙O 的切线,交AB 的延长线于点P .(Ⅰ)如图①,连接AC ,BC ,若OB BP =,求A ∠和∠P 的大小;(Ⅱ)如图②,过点P 作⊙O 的切线PD ,切点为D ,连接CD ,BD ,若∠BDC =32°,求BDP ∠的大小.图①图②O B COB D CPE AC3.已知点A ,B ,C 是⊙O 上的三个点,︒=∠120AOB . (Ⅰ)如图①,若AC =BC ,求C ∠和CAO ∠的大小;(Ⅱ)如图②,过点C 作⊙O 的切线,交BA 的延长线于点D ,若AC =AD ,求CAO ∠的大小.4.已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E .(Ⅰ)如图①,求证:AC 平分DAB ∠;(Ⅱ)如图②,过B 作BF AD ∥交⊙O 于点F ,连接CF ,若45AC =4DC =,求CF 和⊙O 半径的长. ABCDEO图①ABCDEO图②F5.已知,△DBC内接于⊙O,DB=DC.(Ⅰ)如图①,过点B作射线BE交⊙O于点A,若∠EAD=75°,求∠BDC的度数.(Ⅱ)如图②,分别过点B、点D作⊙O的切线相交于点E,若∠E=30°,求∠BDC的度数.①②6.已知P A,PB分别与⊙O相切于点A,B,PO交⊙O于点F,且其延长线交⊙O于点C,∠BCP=28°,E为CF上一点,延长BE交⊙O于点D.(Ⅰ)如图1,求∠CDB与∠APB的大小;(Ⅱ)如图2,当BC=CE时,求∠PBE的大小.7.在ABC △中90B ∠=︒D 为AC 上一点,以CD 为直径的⊙O 与AB 相切于点E ,与BC 相交于点F ,连接CE .(Ⅰ)如图①,若27ACE ∠=︒,求A ∠和ECB ∠的大小; (Ⅱ)如图②,连接EF ,若//EF AC ,求A ∠的大小.8. 已知:在⊙O 中OA BC ⊥垂足为E ,点D 在⊙O 上.(Ⅰ)如图①若50AOB ∠=︒,求ADC ∠和∠CAO 的大小;(Ⅱ)如图②CD ∥AO ,过点D 作⊙O 的切线,与BC 的延长线相交于点P ,若26∠=︒ABC 求∠P 的大小.图①图②ABCF OED ABCOED F 图①O EDCBA图②POE DCBA9.如图,在⊙O 中,直径AB 与弦CD 相交于点E ,58ABC ∠=︒. (Ⅰ)如图①若85AEC ∠=︒,求BAD ∠和CDB ∠的大小;(Ⅱ)如图②若CD AB ⊥过点D 作⊙O 的切线DF ,与AB 的延长线相交于点F ,求F ∠的大小.10. 已知AB 是⊙O 的直径,CD 、CB 是⊙O 的弦,且AB CD ∥.(Ⅰ)如图①若25ABC ∠=︒,求BAC ∠和ODC ∠的大小;(Ⅱ)如图②过点C 作⊙O 的切线,与BA 的延长线交于点F 若OD CF ∥求ABC ∠的大小.图①图②EABO DCFE ABO DC图②图①11. 如图,⊙O 是△ABC 的外接圆,AE 切⊙O 于点A ,AE 与直径BD 的延长线相交于点E .(Ⅰ)如图①,若∠C =71°,求∠E 的大小;(Ⅱ)如图②,当AE =AB ,DE =2时,求∠E 的大小和⊙O 的半径.12. 已知DA 、DC 分别与⊙O 相切于点A 点C ,延长DC 交直径AE 的延长线于点P . (Ⅰ)如图①若DC =PC ,求∠P 的度数;(Ⅱ)如图②在⊙O 上取一点B ,连接AB 、BC 、BE ,当四边形ABCD 是平行四边形时,求∠P 及∠AEB 的大小. OEEDCBAD O C BA图①图②DECAPOB图① 图②ECAPOD13.如图①,AB 是⊙O 的弦,OE ⊥AB ,垂足为P ,交AB 于点E ,且OP =3PE ,AB =74.(Ⅰ)求⊙O 的半径;(Ⅱ)如图②过点E 作⊙O 的切线CD ,连接OB 并延长与该切线交于点D ,延长OA 交CD 于C ,求OC 的长. 图②图①EP A BCODP EOBA参考答案1.解:(Ⅰ)如图,连接OC∵ ⊙O 与PC 相切于点C ∴ OC PC ⊥,即90OCP ∠=︒ ∵ 42P ∠=︒∴ 9048COB P ∠=︒-∠=︒ 在Rt OPC △中,48CAB ACO COP ∠+∠=∠=︒ ∵OA =OC ∴∠CAB =∠ACO ∴ 24CAB ∠=︒(Ⅱ)∵ E 为AC 的中点∴ OD AC ⊥,即90AEO ∠=︒在Rt AOE △中,由10EAO ∠=︒得9080AOE EAO ∠=︒-∠=︒ ∴ 1402ACD AOD ∠=∠=︒∵ ACD ∠是ACP △的一个外角∴ 30P ACD CAP ∠=∠-∠=︒2. 解:(Ⅰ)如图①连接OC ∵PC 是⊙O 的切线∴︒=∠90OCP ∵OB BP =∴OB BC =∵OC OB =∴BOC ∆为等边三角形, ∴∠BOC=60° ∴︒=∠=∠3021BOC A ∠P=90°-∠COB =30°(Ⅱ)如图② 连接OC 、OD 设CD 交OP 于点E∵PC ,PD 是⊙O 的切线∴PD PC = ︒=∠=∠90ODP OCP ∵OD OC =∴OP 为CD 的垂直平分线 ∴︒=∠=∠90DEP CEP∵∠BDC =32°∴∠OBD =90°-∠BDC =58° ∵OB OD =∴∠ODB =∠OBD =58° ∴∠BDP =90°-58°=32°3.解: (Ⅰ)∵︒=∠120AOB ∴∠ACB= 12 ∠AOB=60°如图① 连接OC∵AC =BC ∴∠AOC=∠BOC∵∠AOC+∠BOC +∠AOB=360° ∴∠AOC =12 (360°-120°)=120° ∵OA OC ∴∠CAO=∠ACO=12(180°-120°)=30°O AB PCOAB D CPE(Ⅱ)如图② 连接OC设∠ACD= x ∵ACAD ∴∠ACD =∠ADC= x∴∠CAB=2x ∵∠AOB=120°OAOB ∴∠OAB =∠OBA= 12(180°-120°)=30°∵CD 是⊙O 的切线∴∠OCD=90° ∵OAOC ∴∠OCA =∠OAC∴90°-x=2x -30° 解得x=40° ∴∠CAB=80°∴∠CAO=∠CAB -∠OAB =50°4.(Ⅰ)证明:连接OC ∵CD 为⊙的切线∴OC CD ⊥即90OCM OCD ∠=∠=︒ ∵AD CD ⊥垂足为D ∴90ADC ∠=︒ ∵90ADC OCM ∠=∠=︒∴OC AD ∥ ∴DAC ACO ∠=∠∵OC OA =∴CAO ACO ∠=∠∴DAC CAO ∠=∠∴AC 平分DAB ∠ (Ⅱ)解:连接AF 延长CO 交AF 于G ∵AB 为⊙的直径 ∴=90AFB ∠︒ ∵OC AD BF AD ∥,∥ ∴CO BF ∥∴90AFB AGC ∠=∠=︒ ∴OC AF ⊥由垂径定理可得AC=CF∴45AC CF == ∵90ADC ∠=︒22O O ABC DEOF GABCDEOM∴90ADC DCO AGC ∠=∠=∠=︒ ∴四边形ADCG 是矩形∴8AD CG == 4CD AG == 在Rt AGO 中,得222AG OG AO += 设OC x =则,8OA x OG x ==- 可得方程()22248x x +-=解得5x =. ∴⊙半径的长为545CF =.5.(Ⅰ)解:∵四边形ABCD 是⊙O 的内接四边形∴∠DAB +∠C =180° ∵∠EAD +∠DAB =180° ∴∠C =∠EAD ∵∠EAD =75° ∴∠C =75° ∵DB =DC∴∠DBC =∠C =75°∴∠BDC =180°﹣∠C ﹣∠DBC =30°(Ⅱ)解:连结OB OD∵EB ED 与⊙O 相切于点B 点D∴ED OD ⊥⊥,EB OB ∴ ︒=∠︒=∠90ODE 90,OBE∵︒=∠+∠+∠+∠360BOD ODE E OBE ︒=∠30E ∴︒=∠150BOD∴︒=∠=∠7521BOD C ∵DB =DC ,∴∠DBC =∠C =75°,∴∠BDC =180°﹣∠C ﹣∠DBC =30° O6. (I )解:连接OB∵P A 、PB 与圆O 相切于点A 点,B∴PO 平分∠APB 且∠PBO =90° ∵∠BCP =28°∴∠BOP =2∠BCP =28°×2=56° ∴∠BPO =90°-∠BOP =90°-56°=34° ∴∠APB =2∠BPO =2×34°=68°又∠BDC =BOC ∠21=)180(21BOP ∠- ∴∠BDC = 62)56180(21=-∴∠APB =68°∠BDC= 62 (II )连接OB∵BC =CE ∴∠CBE =∠CEB∵∠BCP =28° ∴∠CBE =76228180=-∵OB =OC ∴∠OBC =∠OCB =28° ∴∠EBO =∠CBE -∠OBC =76°-28°=48° ∵P A 与圆O 相切于点A∴OB ⊥PB ∴∠PBO =90°∴∠PBE =90°- ∠EBO =90°-48°=42°7.解:(Ⅰ)如图连接OE .∵ AB 与⊙O 相切∴ OE AB ⊥,即90AEO ∠=︒ ∵ 27ACE ∠=︒∴ 254AOE ACE ∠=∠=︒ ∴ 9036A AOE ∠=︒-∠=︒ ∵ OE OC =∴ OEC OCE ∠=∠∵ 90B ∠=︒∴ //OE BC ∴ ECB OEC ∠=∠ ∴ 27ECB ∠=︒ (Ⅱ)如图,连接OE OF∵ //OE BC //EF AC ∴ 四边形OEFC 为平行四边形 ∴ OE CF = ∴ OC OF CF == ∴ 60ACB ∠=︒∴ 9030A ACB ∠=︒-∠=︒ABCOED F ABCF OED8. 解:(Ⅰ)∵OA BC ⊥ ∴AB AC = 90∠=︒AEC∴∠=∠ACB ADC ∵1252∠=∠=︒ACB AOB∴25∠=∠=︒ADC ACB9065∠=︒-∠=︒CAO ACB(Ⅱ)连接BD . 由OA BC ⊥知,90∠=∠=︒AEB BEO∴ 9064∠=︒-∠=︒OAB ABC ∵AO ∥CD ∴90∠=∠=︒BCD BEO ∴BD 是⊙O 的直径又PD 与⊙O 相切∴⊥BD PD . 即90∠=︒BDP∵=OA OB ∴64∠=∠=︒OBA OAB∴642636∠=∠-∠=︒-︒=︒CBD ABO ABC ∴9052∠=︒-∠=︒P CBD9. (Ⅰ)∵∠AEC 是ΔBEC 的一个外角 58ABC ∠=︒85AEC ∠=︒27C AEC ABC ∴∠=∠-∠=︒∵在⊙O 中BAD C ∠=∠27BAD ∴∠=︒ AB 为⊙O 的直径90ADB ∴∠=︒ ∵在⊙O 中58ADC ABC ∠=∠=︒ 又CDB ADB ADC ∠=∠-∠32CDB ∴∠=︒(Ⅱ)连接OD∵CD ⊥AB 90CEB ∴∠=︒.9032E E CB BC =-∴∠=∠︒︒∴264DOB DCB ∠=∠=︒ ∵DF 是⊙O 的切线∴90ODF ∠=︒90906426F DOB ∴∠=︒-∠=︒-︒=︒图②POE DCBA图①O E DCBA10. 解:(Ⅰ)如图连接OC ∵ AB 是⊙O 的直径 ∴ 90ACB ∠=︒∴ 90BAC ABC ∠+∠=︒由25ABC ∠=︒得65BAC ∠=︒又AB CD ∥得25ABC BCD ∠=∠=︒ ∵ OB OC = ∴ 25OCB ABC ∠==∠=︒ 则50OCD OCB BCD ∠=∠+∠=︒ 由OC OD =得50ODC OCD ∠=∠=︒(Ⅱ)如图,连接OC∵CF 切⊙O 于点C ∴OC FC ⊥则90OCF ∠=︒∵ OD CF ∥ ∴ 90DOC OCF ∠=∠=︒ 又OC OD =则45ODC OCD ∠==∠=︒ 由AB CD ∥得45BOD ODC ∠=∠=︒∴135BOC DOC BOD ∠=∠+∠=︒ ∵ OC OB = ∴22.5ABC OCB ∠=∠=︒11. 解:(Ⅰ)连接OA .∵AE 切⊙O 于点A ∴OA ⊥AE ,∴∠OAE =90° ∵∠C =71° ∴∠AOB =2∠C =2×71°=142° 又∵∠AOB +∠AOE =180° ∴∠AOE =38° ∵∠AOE +∠E =90° ∴∠E =90°﹣38°=52° (Ⅱ)连接OA 设∠E = x .∵AB =AE ∴∠ABE =∠E = x ∵OA =OB ∴∠OAB =∠ABO = x ∴∠AOE =∠ABO +∠BAO =2x∵AE 是⊙O 的切线∴OA ⊥AE ,即∠OAE =90°在△OAE 中∠AOE +∠E =90°即2x +x =90°解得30x =︒∴∠E =30° 在Rt △OAE 中OA =21OE∵OA =OD ∴OA =OD =DE∵DE =2∴OA =2即⊙O 的半径为212.解:(Ⅰ)∵DA 、DC 是⊙O 的切线 ∴DA =DC OA ⊥DA ∴∠DAO =90°∵DC =PC ∴DA =DC =PC ∵∠DAP =90° ∴sin P=DP AD =21∴∠P=30° (Ⅱ)连接OC 、AC∵DA ,DC 是⊙O 的切线 ∴DA =DC∵四边形ABCD 是平行四边形∴□ABCD 是菱形 ∴DA =DC =CB =AB ∠ABC =∠ADC ∵∠AOC =2∠ABC ∴∠AOC =2∠ADC∵DA 、DC 是⊙O 的切线∴OA ⊥AD OC ⊥DC ∴∠DAO =∠DCO =90°∵∠ADC +∠DCO+∠AOC +∠DAO =360° ∴∠ADC +∠AOC =180°∴3∠ADC =180°∴∠ADC =60°∴∠P =90°-∠ADC =30°,∠ABC =60°又AB =BC ∴△ABC 是等边三角形 ∴∠ACB =60° ∴∠AEB =∠ACB=60°13. 解:(Ⅰ)∵OE ⊥AB∴1272APAB 设PE =x 则OP =3x OA =OE =4x在Rt OAP △中222OA OP AP =+即2216928x x =+ 解得x =2(负舍)∴4x =8 ∴半径OA 为8 (Ⅱ)∵ CD 为⊙O 的切线 ∴OE ⊥CD又∵OE ⊥AB ∴AB //CD ∴34OA OP OCOE∴323OCECAPODB。

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。

中考数学复习专项训练--圆的切线证明及圆内长度计算(含解析)

中考数学复习专项训练--圆的切线证明及圆内长度计算(含解析)

中考数学复习专项训练--圆的切线证明及圆内长度计算(含解析)一、综合题(共23题;共245分)1.(2021·肇源模拟)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连接PD.(1)求证:PD是⊙O的切线.(2)求证:.(3)若PD=4,,求直径AB的长.2.(2021·南山模拟)如图,内接于,AB为直径,作交AC于点D,延长BC,OD交于点F,过点C作线段CE,交DF于点E且.(1)求证:直线CE是的切线;(2)如果,,求弦AC的长.3.(2021·光明模拟)如图,Rt△ABC中,∠ABC=90°,点O,D分别在AB,AC上,CD=CB,⊙O 经过点B,D,弦DF⊥AB于点E,连接BF.(1)求证:AC为⊙O的切线;(2)若∠C=60°,BF=3,求DF的长.4.(2021·三水模拟)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,=,求CD的长.5.(2021·陕西模拟)如图,在⨀中,AB为⨀的直径,C为⨀上一点,P是的中点,过点P作AC 的垂线,交AC的延长线于点D.(1)求证:DP是⨀的切线;(2)若AC=5,,求AP的长.6.(2021·武汉模拟)已知:如图,在△ABC中,AB=AC,AE是∠BAC的平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cosC=时,求⊙O的半径.7.(2021·铁东模拟)如图,AB为⊙O直径,AC为弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点H,且∠D=2∠A.(1)求证:DC与⊙O相切;(2)若⊙O半径为4,,求AC的长.8.(2021九下·江阴期中)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO 交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,tan∠PDB=,求⊙O的半径.9.(2021九下·叙州期中)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O 的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.10.(2021·兰州模拟)如图,在Rt△ABC中,∠C=90°,以AB上一点O为圆心,OA的长为半径作⊙O,交AC,AB分别于D,E两点,连接BD,且∠A=∠CBD.(1)求证:BD是⊙O的切线;(2)若CD=1,BC=2,求⊙O的半径.11.(2021·白银模拟)如图,在菱形ABCD中,P为对角线AC上一点,AB与经过A、P、D三点的⊙O相切于点A.(1)求证:AP=DP;(2)若AC=8,tan∠BAC=,求⊙O的半径.12.(2021·越城模拟)△ABC内接于⊙O,∠BAC的平分线交⊙O于D,交BC于E(BE>EC),过点D作⊙O 的切线DF,交AB的延长线于F.(1)求证:DF∥BC;(2)连接OF,若tan∠BAC=,BD=,DF=8,求OF的长.13.(2021·越城模拟)如图,已知与相切于点A,直线与相离,于点B,且与交于点的延长线交直线于点C.(1)求证:;(2)若的半径为3,求线段的长.14.(2021·长宁模拟)如图,是的直径,.(1)求证:是的切线;(2)若点是的中点,连接交于点,当,时,求的值.15.(2021·郫都模拟)如图,中,.以AB为直径作,与AC相交于点D,连接BD.点E为上一点,且,连接EO并延长交CB的延长线于点F.(1)求证:;(2)求证:CE是的切线;(3)若,求AC的长.16.(2021·东台模拟)如图,以为直径作半圆O,C是半圆上一点,的平分线交于点E,D为延长线上一点,且.(1)求证:为的切线;(2)若,求的长.17.(2021·开江模拟)如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若DH=9,sinC=,求直径AB的长.18.(2021·淮安模拟)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P.点C 在OP上,且BC=PC.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若OA=3,AB=2,求BP的长.19.(2021·咸宁模拟)如图,AB是⊙O的直径,点E为⊙O上一点,点D是上一点,连接AE并延长至点C,使∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,AD=1,BD=3,求AF的长.20.(2021·黄冈模拟)如图,是的直径,切于点,,的延长线交于点.(1)求证:直线是的切线;(2)若,,求的长.21.(2021九下·咸宁月考)如图,AB是⊙O的直径,AD是弦,OC⊥AD于F,交⊙O于点E,∠BED=∠C.(1)求证:AC为⊙O的切线;(2)若OA=6,AC=8,求tan∠B的值.22.(2021·邹城模拟)如图,为⊙O的直径,弦于点M,过B点作,交的延长线于点E,连接.(1)求证:为⊙O的切线;(2)如果,求⊙O的直径.23.(2021·门头沟模拟)如图,AB是的直径,C是上一点,D是OB中点,过点D作AB的垂线交AC的延长线于点F,FD上有一点E,.(1)求证:CE是的切线;(2)如果,,求AB的长.参考答案一、综合题1.【答案】(1)证明:连接OD,OC,∵PC是⊙O的切线,∴∠PCO=90°,∵AB⊥CD,AB是直径,∴= ,∴∠DOP=∠COP,在△DOP和△COP中,,∴△DOP≌△COP(SAS),∴∠PDO=∠PCO=90°,∵D在⊙O上,∴PD是⊙O的切线;(2)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵∠PDO=90°,∴∠ADO=∠PDB=90°-∠BDO,∵OA=OD,∴∠A=∠ADO,∴∠A=∠PDB,∵∠BPD=∠BPD,∴△PDB∽△PAD,∴,∴;(3)解:∵DC⊥AB,∴∠ADB=∠DMB=90°,∴∠A+∠DBM=90°,∠CDB+∠DBM=90°,∴∠A=∠CDB,∵,∴,∵△PDB∽△PAD,∴∵PD=4,∴PB=2,PA=8,∴AB=8-2=6.【解析】【分析】(1)连接OD、OC,证△PDO≌△PCO,得出∠PDO=∠PCO=90°,根据切线的判定推出即可;(2)求出∠A=∠ADO=∠PDB,根据相似三角形的判定推出△PDB∽△PAD,根据相似三角形的性质得出比例式,即可得出答案;(3)根据相似得出比例式,求得PA、PB的值,利用AB=PA-PB即可求出答案.2.【答案】(1)证明:连接,,,,,,,,,,,,,是的切线;(2)解:在中,,,,,,,,,,,在中,,在和中,,,,,即,.【解析】【分析】(1)连接,由等腰三角形的性质及直角三角形的性质得出,则,则可得出结论;(2)先根据勾股定理求出,,的长,证明,得出比例线段即可求出的长.3.【答案】(1)证明:连接OD,OC,如图:∵CD=CB,OD=OB,OC=OC,∴△OBC≌△ODC(SSS),∴∠ODC=∠OBC=90°,∴OD⊥AC,∴AC是⊙O的切线.(2)解:在四边形OBCD中,∠ODC=∠OBC=90°.∵∠BCD=60°,∴∠BOD=120°,∴∠F=∠BOD=60°.∵DF⊥AB,∴EF=BFcos60°=3× =,∴DF=2EF=3.【解析】【分析】(1)连接OD,OC,根据“SSS”可得△OBC≌△ODC,进而可得结论;(2)根据圆周角性质可得∠F=60°,再利用60°角的余弦可得EF的长,进而可得DF.4.【答案】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA==tan∠BCE==,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴==,∵AD=8,∴CD=4.【解析】【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.5.【答案】(1)证明:连接OP;∵OP=OA;∴∠1=∠2;又∵P为的中点;∴∴∠1=∠3;∴∠3=∠2;∴OP∥DA;∵∠D=90°;∴∠OPD=90°;又∵OP为⨀O半径;∴DP为⨀O的切线(2)解:连接BC,交于OP于点G;∵AB是圆O的直径;∴∠ACB为直角;∵∴sin∠ABC=AC=5,则AB=13,半径为由勾股定理的BC= ,那么CG=6又∵四边形DCGP为矩形;∴GP=DC=6.5-2.5=4∴AD=5+4=9;在Rt△ADP中,AP=【解析】【分析】(1)连接OP,根据等腰三角形的性质及弧、圆周角的关系,可求出∠3=∠2,从而得出OP∥DA,利用平行线的性质得出∠OPD=90°,根据切线的判定定理即证;(2)连接BC,交于OP于点G,根据圆周角定理得出∠ACB=90°,=sin∠ABC=,从而求出AB=13,半径OB=,利用勾股定理求出BC=12,即得CG=6,根据矩形的性质,得出GP=DC=PO-OG=4,继而得出AD=AC+CD=9,在Rt△ADP中,利用勾股定理求出AP的长即可.6.【答案】(1)证明:连接OM,∵OB=OM,∴∠OBM=∠OMB,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,即∠AEB=90°,∵BM平分∠ABC,∴∠OBM=∠MBE,即∠OMB=∠MBE,∴OM∥BC,∴∠AMO=∠AEB=90°,∴AE与⊙O相切(2)解:∵AB=AC,AE是∠BAC的平分线,∴BE=CE,AE⊥BC,∵BC=6,cosC== ,∴BE=CE=3,AB=AC=9,∵OM∥BE,∴△AOM∽△ABE,∴,设半径为r,则,解得:r= ,即⊙O的半径为【解析】【分析】(1)连接OM,根据等腰三角形的性质及角平分线的定义可得∠OBM=∠OMB=∠MBE,利用平行线的判定可证OM∥BC,可得∠AMO=∠AEB=90°,根据切线的判定定理即证;(2)利用等腰三角形三线合一的性质得出BE=CE,AE⊥BC,由cosC==,求出BE=CE=3,AB=AC=9,根据平行线可证△AOM∽△ABE,可得,设半径为r,则,求出r值即可.7.【答案】(1)证明:连接OC,如图1所示:∵DE⊥OA,∴∠HED=90°,∴∠H+∠D=90°,∵∠BOC=2∠A,∠D=2∠A,∴∠BOC=∠D,∴∠H+∠BOC=90°,∴∠OCH=90°,∴DC⊥OC,∴DC与⊙O相切;(2)解:作AG⊥CD于G,如图2所示:则AG∥OC,∵DC⊥OC,∴∠OCH=90°,∵∠BOC=∠D,OC=4,∴cos∠BOC==,∴OH=OC=5,∴AH=OA+OH=4+5=9,CH===3,∵AG∥OC,∴△OCH∽△AGH,∴===,∴AG=OC=,GH=CH=,∴CG=GH﹣CH=﹣3=,∴AC===.【解析】【分析】(1)连接OC,由圆周角定理和已知条件得出∠BOC=∠D,证出∠OCH=90°,得出DC⊥OC,即可得出结论;(2)作AG⊥CD于G,则AG∥OC,由三角函数定义求出OH=OC=5,得出AH=OA+OH=9,由勾股定理得出CH==3,证△OCH∽△AGH,求出AG=OC=,GH=CH=,得出CG=GH﹣CH=,再由勾股定理即可得出答案.8.【答案】(1)证明:,,,,,半径,是的切线.(2)解:如图,连接,,.和是的切线,,,设的半径是,则,切于点,,,,.【解析】【分析】(1)利用三角形的内角和定理可证得∠E=∠PBO,利用垂直的定义可证得∠E=∠PBO=90°,然后利用切线的判定定理可证得结论.(2)连接OC,利用解直角三角形求出BD的长,利用勾股定理求出PD的长;再利用切线长定理可求出PC的长;设圆的半径为r,利用切线的性质证明△OCD是直角三角形,利用勾股定理建立关于r的方程,解方程求出r的值.9.【答案】(1)证明:∵OA= OD,∴∠A=∠ABD= 30°,∴∠A=∠ADO= 30°,∴∠DOB=∠A+∠ADO=60°,∴∠ODB= 180° -∠DOB-∠B = 90°,∵OD是半径,∴BD是⊙O 的切线;(2)解:)∵∠ODB= 90°,∠DBC= 30°,∴ OD=OB,∵OC = OD,∴BC=OC=1,∴⊙O的半径OD的长为1;(3)解:∵OD= 1,∴DE= 2,BD=,∴ BE==,∵BD是⊙O 的切线,BE是⊙O 的割线,∴BD2=BM·BE,.【解析】【分析】(1)根据等腰三角形的性质得到∠A=∠ADO= 30°,求出∠DOB= 60°,再求出∠ODB = 90°,根据切线的判定推出即可;(2)根据直角三角形的性质得到OD=OB,即可得到结论;(3)解直角三角形得到DE=2,BD=,根据勾股定理得到BE==,根据切割线定理即可得到结论.10.【答案】(1)证明:连结DO、DE,∵AE为直径,∴∠ADE=90°∵∠C=90°,∴∠ADE=∠C=90°,∴DE∥CB,∴∠EDB=∠DBC,∵OA=OD,∴∠A=∠ADO,∵∠A=∠CBD,∴∠A=∠CBD=∠ADO=∠EDB,∵∠ODB=∠EDB+∠ODE=∠ADO+∠ODE=∠ADE=90°,∴BD是⊙O的切线;(2)解:∵∠A=∠CBD,∠DCB=∠BCA,∴△DCB∽△BCA,∴,∵CD=1,BC=2,∴,∵DE∥CB,∴∠AED=∠ABC,∠ADE=∠ACB=90°,∴△ADE∽△ACB,∴,∵AD=AC-CD=4-1=3,∴,∴,在Rt△ADE中,∴.【解析】【分析】(1)连接OD、DE,由AE为直径,可得∠ADE=90°,结合∠C=90°,可得DE∥CB,可证∠A=∠CBD=∠ADO=∠EDB,通过计算∠ODB=∠ADE=90°即可得出结论;(2)先证△DCB∽△BCA,可得比列,求出,再证△ADE∽△ACB,可得比列,求出,在Rt△ADE中由勾股定理算出AE ,进而由即可得到结果.11.【答案】(1)证明:连接DP、OP、OA,OP交AD于E,如图1∵直线AB与⊙O相切,∴OA⊥AB,∴∠BAC+∠OAP=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠BAC+∠OPA=90°,∵四边形ABCD为菱形,∴∠BAC=∠DAC,∴∠DAC+∠OPA=90°,∴OP⊥AD,∴,∴AP=PD(2)解:连接BD,交AC于点F,如图2,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC=tan∠DAC= ,∴AF=4,tan∠DAC= ,∴DF=2,∴AD= ,∴AE= ,在Rt△PAE中,tan∠DAC= ,∴PE= ,设⊙O的半径为R,则OE=R- ,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R- )2+()2,∴R= ,即⊙O的半径为.【解析】【分析】(1)连接DP、OP、OA,OP交AD于E,由切线性质可得∠BAC+∠OAP=90°,由菱形的性质可得∠BAC=∠DAC,即∠DAC+∠OPA=90°,由垂径定理可得结果;(2)连接BD,交AC于点F,由菱形的性质可得DB与AC互相垂直平分,可得AF=4,tan∠DAC=,DF=2,根据勾股定理可得AD,即可得AE,由正切值可得PE,根据垂径定理和勾股定理可得半径.12.【答案】(1)证明:连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵AD平分∠BAC,∴∠BAD=∠CAD,∴,∴OD⊥BC,∴DF∥BC;(2)解:连接OB,∵,∴∠BOD=∠BAC,由(1)知OD⊥BC,∴tan∠BOD=,∵tan∠BAC=2 ,∴,设ON=x,BN=2 x,由勾股定理得:OB=3x,∴OD=3x,∴DN=3x﹣x=2x,Rt△BDN中,BN2+DN2=BD2,∴,解得x=2或﹣2(舍),∴OB=OD=3x=6,Rt△OFD中,由勾股定理得:OF===10.【解析】【分析】(1)根据切线的性质得:OD⊥DF,由角平分线得∠BAD=∠CAD,则所对的弧相等,由垂径定理得:OD⊥BC,从而得结论;(2)先得∠BOD=∠BAC,根据tan∠BOD=,设ON=x,BN=,利用勾股定理解决问题.13.【答案】(1)证明:如图,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l,∴∠BCA+∠BPC=90°,∵OA=OP,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC(2)解:如图,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB= ,在Rt△PBC中,PC= ,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴,即,解得:AP=【解析】【分析】(1)连接OA,根据切线的性质得到∠OAB=90°,根据等腰三角形的性质、对顶角相等得到∠BAC=∠BCA,根据等腰三角形的判定定理证明结论;(2)连接AO并延长交⊙O于D,连接PD,根据勾股定理求出BC,PC,证明△DAP∽△PBC,根据相似三角形的性质列出比例式,计算即可.14.【答案】(1)证明:∵AB是⊙O的直径,∴∠ADB=∠ADC=90°,∵∠B=∠CAD,∠C=∠C,∴△ADC∽△BAC,∴∠BAC=∠ADC=90°,∴BA⊥AC,∴AC是⊙O的切线(2)解:∵BD=5,CD=4,∴BC=9,∵△ADC∽△BAC(已证),∴,即AC2=BC×CD=36,解得:AC=6,在Rt△ACD中,AD= ,∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,∴CA=CF=6,∴DF=CA-CD=2,在Rt△AFD中,AF=【解析】【分析】(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=900,从而可判断AC是⊙O的切线;(2)根据(1)所得△ADC∽△BAC,可得出CA的长度,从而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长.15.【答案】(1)证明:∵AB为的直径,,,,又,(2)证明:在和中,,,,,∴CE是的切线(3)解:,,,,,,,设,在中,,,,,【解析】【分析】(1)由圆周角定理可得出,根据相似三角形的判定方法可得出结论;(2)证明,由全等三角形的性质得出,则可得出结论;(3)由相似三角形的性质得出,求出,由勾股定理求出OF的长,求出,则可得出答案.16.【答案】(1)证明:∵为的直径,∴,∵,∴,∴,∵,∴,∵平分,∴,∴,∴,∴为的切线(2)解:∵,∴,∵,∴,∵,∴,∴,∴,∵,∴,∵,∴【解析】【分析】(1)根据圆周角定理得到∠C=∠AEB=90°,求得∠D=∠AFD,根据角平分线的定义得到∠ABD=∠CBF,求得∠DAB=90°,根据切线的判定定理即可得到结论;(2)根据圆周角定理得到∠CBF=∠CAE=∠EBA,解直角三角形即可得到结论.17.【答案】(1)证明:连接OC,∵D 是的中点,∴∠AOD=∠COD∵OA=OC,∴OE⊥AC,即∠AFE=90°,∴∠E+∠EAF=90°∵∠AOE=2∠ACD,∠CAE=2∠ACD,∴∠CAE=∠AOE∴∠E+∠AOE=90°,∴∠EAO=90°∴AE是⊙O的切线(2)解:∵∠ACD=∠B∵OD=OB,∴∠B=∠ODB,∴∠ODB=∠ACD,∴,∴由勾股定理得:∵∠ACD=∠FDH,∠DFH=∠CFD∴△DFH~△CFD∴∴∴设OA=OD=x,∴∵AF2+OF2=OA2∴,解得:x=10∴OA=10∴直径AB的长为20.【解析】【分析】(1)连接OC,利用圆周角定理可证得∠AOD=∠COD,利用等腰三角形的性质可证得∠AFE=90°,可推出∠E+∠EAF=90°;再利用圆周角定理可证得∠AOE=2∠ACD,∠CAE=2∠ACD,可推出∠CAE=∠AOE,由此可证得∠E+∠AOE=90°,利用三角形的内角和定理可求出∠EAO=90°;然后利用切线的判定定理可证得结论.(2)利用已知条件易证∠ODB=∠ACD,利用解直角三角形可求出HF的长,利用勾股定理求出DF的长;再证明△DFH~△CFD,利用相似三角形的对应边成比例可求出CF的长,设OA=OD=x,用含x的代数式表示出OF的长;然后利用勾股定理建立关于x的方程,解方程求出x的值,继而可求出直径AB的长.18.【答案】(1)解:直线BC是⊙O的切线,证明:连接OB.∵OA=OB,∴∠A=∠OBA,又∵BC=PC,∴∠P=∠CBP,∵OP⊥AD,∴∠A+∠P=90°,∴∠OBA+∠CBP=90°,∴∠OBC=180°-(∠OBA+∠CBP)=90°,∵点B在⊙O上,∴直线BC是⊙O的切线;(2)解:如图,连接DB.∵AD是⊙O的直径,∴∠ABD=90°,∴Rt△ABD∽Rt△AOP,∴,即,AP=9,∴BP=AP-BA=9-2=7.【解析】【分析】(1)连接OB,由等边对等角可得∠A=∠OBA,∠P=∠CBP,由∠A+∠P=90°,可得∠OBC=180°-(∠OBA+∠CBP)=90°,可得结果;(2)连接DB,由直径所对的圆周角是直角可得∠ABD=90°,可得Rt△ABD∽Rt△AOP,根据相似三角形对应边成比例可得结果.19.【答案】(1)证明:∵AB是⊙O的直径,∴∠AEB=90°.∴∠EAB+∠EBA=90°,∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=90°,即∠ABC=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线.(2)解:在Rt△ABD中,.∵BD平分∠ABE,∴∠ABD=∠DBE,∵∠DAF=∠DBE,∴∠DAF=∠ABD.∵∠ADB=∠ADF,∴△ADF∽△BDA.∴,即∴.【解析】【分析】(1)由直径所对的圆周角是直角可得∠AEB=90°,根据角的和差以及圆周角定理、等量代换可得∠ABC=90°可得结果;(2)由勾股定理可得AB,根据角平分线定义和圆周角定理可得△ADF∽△BDA,根据相似三角形对应边成比例可得结果.20.【答案】(1)证明:连接,∵,∴,,∵,∴,∴,在与中,,∴.∴,∵切于点,∴,∴,∴,∴直线是的切线.(2)解:∵,∴,设,,由(1)证得,∴,∵,∴即∴,Rt△ADO中根据勾股定理可得:即,解得:r=1,∴.【解析】【分析】(1)连接OD,由平行线的性质以及等腰三角形的性质可推出∠1=∠2,从而可以利用SAS证明△DOB≌△COB,得到∠OCB=∠ODB,然后由切线的性质可得∠ODB=90°,据此证明即可;(2)由平行线的性质可得∠DEO=∠2,进而求得tan∠DEO=,设OC=r,则BC=r,由全等三角形的性质可得BD=BC=r,然后利用平行线分线段成比例求出AD的值,接下来由勾股定理可求得r的值,进而得到AO的值.21.【答案】(1)证明:根据圆周角的性质得:∠BED=∠BAD,∵∠BED=∠C,∴∠BAD=∠C,∵OC⊥AD,∴∠C+∠CAF=90°,∴∠BAD+∠CAF=90°,即:∠OAC=90°,且OA为半径,∴AC为⊙O的切线;(2)解:在Rt△OAC中,∵OA=6,AC=8,∴OC=10,∵,∴,根据垂径定理可知,∴,∴,根据圆周角的性质得:∠B=∠ADE,∴,∴.【解析】【分析】(1)根据圆周角的性质得:∠BED=∠BAD,进而推出∠BAD=∠C,得到∠OAC=90°,据此证明即可;(2)首先由勾股定理可得OC=10,然后根据三角形的面积公式求出AF的值,根据垂径定理可得DF=AF=,由勾股定理求出OF的值,进而得到EF的值,根据圆周角的性质得:∠B=∠ADE,据此求解即可.22.【答案】(1)证明:,,.又为直径,为⊙O的切线;(2)解:为直径,,.∵弧BC=弧CD.,..∴⊙O的直径.【解析】【分析】(1)先求出AB⊥BE,再根据AB为直径,进行求解即可;(2)先求出CM=3,再求出BM的值,最后利用锐角三角函数计算求解即可。

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)

中考数学复习《圆的证明与计算》经典题型及测试题(含答案)阅读与理解圆的相关知识的考查是中考数学中的一个重要内容,圆作为一个载体,常与三角形、四边形结合,考查切线的性质及判定、相似三角形的性质与判定、解直角三角形、求阴影面积等.解题时要先分析题干中的条件,然后从图象中挖掘隐含条件,最后再解题.类型一切线的判定判定一条直线是圆的切线,首先看圆的半径是否过直线与圆的交点,有半径则证垂直;没有半径,则连接圆心与切点,构造半径证垂直.例1 (2016·黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.【分析】(1)首先根据直径所对的圆周角为直角得到直角三角形,然后利用勾股定理求得AC的长即可;(2)连接OC,证OC⊥CD即可;利用角平分线的性质和等边对等角,可证得⊥OCA=⊥CAD,即可得到OC⊥AD,由于AD⊥CD,那么OC⊥CD,由此得证.【自主解答】(1)解:⊥AB是⊥O直径,C在⊥O上,⊥⊥ACB=90°,又⊥BC=3,AB=5,⊥由勾股定理得AC=4;(2)证明:⊥AC是⊥DAB的角平分线,⊥⊥DAC=⊥BAC,又⊥AD⊥DC,⊥⊥ADC=⊥ACB=90°,⊥⊥ADC⊥⊥ACB,⊥⊥DCA=⊥CBA,又⊥OA=OC,⊥⊥OAC=⊥OCA,⊥⊥OAC+⊥OBC=90°,⊥⊥OCA+⊥ACD=⊥OCD=90°,⊥DC是⊥O的切线.变式训练1.(2017·白银) 如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.类型二切线的性质已知某条直线是圆的切线,当圆心与切点有线段连接时,直接利用切线的性质:圆的切线垂直于过切点的半径;当圆心与切点没有线段相连时,则作辅助线连接圆心与切点,再利用切线的性质解题.例2 (2016·资阳) 如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连接BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD,BD于点M,N,当DM=1时,求MN的长.【分析】(1)连接OD,由切线的性质可得∠CDB+∠ODB=90°,由AB是直径,可得∠ADB=90°,进而可得∠A+∠ABD=90°,进而求得∠A=∠BDC;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,再根据勾股定理求得MN的长.【自主解答】(1)如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠BDC+∠ODB=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∴∠A=∠BDC.(2)∵CM平分∠ACD,∴∠DCM=∠ACM.∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM.即∠DMN=∠DNM.∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN=变式训练2.(2017·长沙)如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,=(1)求证:OA=OB;(2)已知AB=4,OA=4,求阴影部分的面积.解:(1)连接OC,∵AB与⊙O相切于点C∴∠ACO=90°,由于=,∴∠AOC=∠BOC,∴∠A=∠B∴OA=OB,(2)由(1)可知:△OAB是等腰三角形,∴BC=AB=2,∴sin∠COB==,∴∠COB=60°,∴∠B=30°,∴OC=OB=2,∴扇形OCE的面积为:=,△OCB的面积为:×2×2=2=2﹣π∴S阴影类型三圆与相似的综合圆与相似的综合主要体现在圆与相似三角形的综合,一般结合切线的判定与性质综合考查,求线段长或半径.一般的解题思路是利用切线的性质构造角相等,进而构造相似三角形,利用相似三角形对应边成比例求出所求线段或半径.例3 (2017·兰州) 如图,△ABC内接于⊙O,BC是⊙O的直径,弦AF交BC于点E,延长BC到点D,连接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为5,CE=2,求EF的长.【分析】(1)由BC是⊙O的直径,得到∠BAF+∠FAC=90°,等量代换得到∠D+∠AOD=90°,于是得到结论;(2)连接BF,根据相似三角形的判定和性质即可得到结论.【自主解答】解:(1)∵BC是⊙O的直径,∴∠BAF+∠FAC=90°,∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切线;(2)连接BF,∴∠FAC=∠AOD,∴△ACE∽△OCA,∴,∴,∴AC=AE=,∵∠CAE=∠CBF,∴△ACE∽△BFE,∴,∴=,∴EF=.变式训练3.(2016·丹东)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.(1)证明:如图,连接OD,∵CD是⊙O的切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°. ∴∠BDC=∠ADO.∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A.(2)解:∵CE⊥AE,∴∠E=90°,∴DB∥EC,∴∠DCE=∠BDC.∵∠BDC=∠A,∴∠A=∠DCE.∵∠E=∠E,∴△AEC∽△CED,∴∴CE2=DE·AE,即16=2(2+AD),∴AD=6.。

中考数学总复习《圆的有关计算》专项测试卷含答案

中考数学总复习《圆的有关计算》专项测试卷含答案

中考数学总复习《圆的有关计算》专项测试卷含答案学校:___________班级:___________姓名:___________考号:___________【A层·基础过关】⏜的长为( )1.(2024·安徽中考)若扇形AOB的半径为6,∠AOB=120°,则ABA.2πB.3πC.4πD.6π2.如图,☉O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°3.如图,AB,AC分别为☉O的内接正方形、内接正三角形的一边,BC是圆内接n边形的一边,则n等于( )A.8B.10C.12D.164.如图,在☉O中,OA=2,∠C=45°,则图中阴影部分的面积为( )A.π-√2 B.π-√22C.π2-2 D.π-25.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A.√2B.1C.√22D.126.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24 cm,若∠ACB=60°,则劣弧AB的长是( )A.8π cmB.16π cmC.32π cmD.192π cm7.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,DO⊥BE于点O,连接AD交BC于点F,若AC=FC.(1)求证:AC是☉O的切线;(2)若BF=8,DF=2√10,求☉O的半径;(3)若∠ADB =60°,BD =1,求阴影部分的面积.(结果保留根号)【B 层·能力提升】8.如图,已知点C 为圆锥母线SB 的中点,AB 为底面圆的直径,SB =6,AB =4,一只蚂蚁沿着圆锥的侧面从A 点爬到C 点,则蚂蚁爬行的最短路程为( )A .5B .3√3C .3√2D .6√39.如图,在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 逆时针旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A.143π-6B.259πC.338π-3D.√33+π10.(2024·乐山中考)如图,☉O 是△ABC 的外接圆,AB 为直径,过点C 作☉O 的切线CD 交BA 延长线于点D ,点E 为CB⏜上一点,且AC ⏜=CE ⏜.(1)求证:DC ∥AE ;(2)若EF 垂直平分OB ,DA =3,求阴影部分的面积.【C 层·素养挑战】11.(2024·唐山二模)一个工件槽的两个底角∠A =∠B =90°,点A ,B 的初始高度相同,尺寸如图1所示(单位:cm),将一个形状规则的铁球放入槽内,测得球落在槽内的最大深度为2 cm(E 为球的最低点).(1)求该铁球的半径;(2)如图2,将这个工件槽的右边升高2 cm(BC =2 cm)后,求该平面图中铁球落在槽内的弧AB 的长度.(参考数据:sin 56°≈√175,cos 34°≈√175,tan 40°≈√175) 参考答案【A 层·基础过关】1.(2024·安徽中考)若扇形AOB 的半径为6,∠AOB =120°,则AB ⏜的长为(C) A .2π B .3π C .4π D .6π2.如图,☉O 与正五边形ABCDE 的两边AE ,CD 相切于A ,C 两点,则∠AOC 的度数是(A)A.144°B.130°C.129°D.108°3.如图,AB,AC分别为☉O的内接正方形、内接正三角形的一边,BC是圆内接n边形的一边,则n等于(C)A.8B.10C.12D.164.如图,在☉O中,OA=2,∠C=45°,则图中阴影部分的面积为(D)A.π-√2 B.π-√22C.π-2 D.π-225.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是(D)A.√2B.1C.√22D.126.一根钢管放在V形架内,其横截面如图所示,钢管的半径是24 cm,若∠ACB=60°,则劣弧AB的长是(B)A.8π cmB.16π cmC.32π cmD.192π cm7.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,DO⊥BE于点O,连接AD交BC于点F,若AC=FC.(1)求证:AC是☉O的切线;【解析】(1)连接OA∵OA=OD,∴∠OAD=∠ODA∵AC=CF,∴∠CAF=∠CFA∵OD⊥BE,∴∠DOB=∠DOF=90°∴∠OFD+∠ODA=90°.∵∠OFD=∠CFA∴∠CAF+∠OAD=90°,∴OA⊥AC∵OA是☉O的半径,∴AC是☉O的切线.(2)若BF=8,DF=2√10,求☉O的半径;【解析】(2)设☉O的半径为r,∴BO=DO=r∵BF=8,∴OF=8-r.∵∠DOF=90°∴在Rt△ODF中,由勾股定理得OF2+OD2=DF2,∵DF=2√10∴(8-r)2+r2=(2√10)2解得r=6或r=2(不符合题意,舍去)故☉O的半径为6.(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)【解析】(3)∵BO=DO,BD=1,∠DOB=90°∴在Rt△BOD中,由勾股定理得BO2+OD2=BD2∴BO=DO=√22即☉O的半径为√2.2∵∠ADB=60°∴∠AOB=2∠ADB=120°∴∠AOC=180°-∠AOB=60°.∵OA⊥AC∴∠OAC=90°.∴在Rt △OAC 中,tan ∠AOC =tan 60°=ACOA=√3.∵OA =√22,∴AC =√3OA =√62∴S △OAC =12OA ·AC =12×√22×√62=√34,S 扇形OAE =60π×(√22) 2360=π12∴S 阴影=S △OAC -S 扇形OAE =√34-π12.【B 层·能力提升】8.如图,已知点C 为圆锥母线SB 的中点,AB 为底面圆的直径,SB =6,AB =4,一只蚂蚁沿着圆锥的侧面从A 点爬到C 点,则蚂蚁爬行的最短路程为(B)A .5B .3√3C .3√2D .6√39.如图,在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 逆时针旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积为(B)A.143π-6B.259πC.338π-3D.√33+π10.(2024·乐山中考)如图,☉O 是△ABC 的外接圆,AB 为直径,过点C 作☉O 的切线CD 交BA 延长线于点D ,点E 为CB⏜上一点,且AC ⏜=CE ⏜.(1)求证:DC∥AE;【解析】(1)连接OC(图略)∵CD为☉O的切线,点C在☉O上∴∠OCD=90°,∴∠DCA+∠OCA=90°∵AB为☉O的直径∴∠ACB=90°,∴∠B+∠OAC=90°.∵OC=OA,∴∠OAC=∠OCA⏜=CE⏜∴∠B=∠DCA,∵AC∴∠B=∠CAE,∴∠CAE=∠DCA∴CD∥AE.(2)若EF垂直平分OB,DA=3,求阴影部分的面积.【解析】(2)连接OE,BE(图略)∵EF垂直平分OB,∴OE=BE∵OE=OB,∴△OEB为等边三角形.∴∠BOE=60°,∴∠AOE=180°-60°=120°∵OA=OE,∴∠OAE=∠OEA=30°.∵DC∥AE,∴∠D=∠OAE=30°.∵∠OCD=90°,∴OD=2OC=OA+AD∵OA=OC,∴OC=AD=3∴AO=OE=OC=3,∴EF=√32OE=3√32∴S△OAE=12AO·FE=9√34∵S扇形OAE=120π×32360=3π∴S阴影=S扇形OAE-S△OAE=3π-9√34.【C层·素养挑战】11.(2024·唐山二模)一个工件槽的两个底角∠A=∠B=90°,点A,B的初始高度相同,尺寸如图1所示(单位:cm),将一个形状规则的铁球放入槽内,测得球落在槽内的最大深度为2 cm(E为球的最低点).(1)求该铁球的半径;【解析】(1)连接AB,OA,OE,且OE,AB交于点D由题意,得AB=8,DE=2,OE⊥AB∴AD=12AB=4设铁球的半径为r,则OA=OE=r,OD=OE-DE=r-2第 11 页 共 11 页 由勾股定理,得OA 2=OD 2+AD 2即r 2=(r -2)2+42解得r =5∴铁球的半径为5 cm .(2)如图2,将这个工件槽的右边升高2 cm(BC =2 cm)后,求该平面图中铁球落在槽内的弧AB 的长度.(参考数据:sin 56°≈√175,cos 34°≈√175,tan 40°≈√175) 【解析】(2)连接OA ,OB ,AB ,过点O 作OF ⊥AB 于点F则AF =BF =12AB ,OA =OB在Rt △ACB 中,由勾股定理,得AB =√AC 2+BC 2=√82+22=2√17∴AF =BF =12AB =√17 由(1)知OA =OB =5∴cos ∠OBF =BF OB =√175 ∴∠OBF =34°∴∠OAB =∠OBA =34°∴∠AOB =180°-2∠OBA =112°∴弧AB 的长度为112π180×5=28π9.。

中考数学高频考点《圆的有关计算与证明》专项测试卷-带答案

中考数学高频考点《圆的有关计算与证明》专项测试卷-带答案

中考数学高频考点《圆的有关计算与证明》专项测试卷-带答案(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O中直径AB与弦CD交于点,2E AC BD=.连接AD过点B的切线与AD的延长线交于点F.若68AFB∠=︒,则DEB∠=°.2.(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作其中收录了计算圆弧长度的“会圆术” 如图.AB是以O为圆心OA为半径的圆弧C是弦AB的中点D在AB上CD AB⊥.“会圆术”给出AB长l的近似值s计算公式:2CDs ABOA=+当2OA=90AOB∠=︒时l s-=.(结果保留一位小数)二 解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O AB 为O 的直径 延长AC 到点G 使得CG CB = 连接GB 过点C 作CD GB ∥ 交AB 于点F 交点O 于点D 过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC = 2BC = 求BE 的长.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒O 和底边AB 相切于点C并与两腰OA OB 分别相交于D E 两点 连接CD CE .(1)求证:四边形ODCE 是菱形(2)若O 的半径为2 求图中阴影部分的面积.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O AB 为O 的直径 过点D 作DF BC ⊥ 交BC 的延长线于点F 交BA 的延长线于点E 连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.(2)若10BE = 2sin 3BDC ∠= 求O 的半径.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径 点C D 是O 上AB 异侧的两点DE CB ⊥ 交CB 的延长线于点E 且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒ 4AB = 求图中阴影部分的面积.7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O AB 为O 的直径 N 为AC 的中点 连接ON 交AC 于点H .(1)如图① 求证2BC OH =(2)如图① 点D 在O 上 连接DB DO DC DC 交OH 于点E 若DB DC = 求证OD AC ∥(3)如图① 在(2)的条件下 点F 在BD 上 过点F 作FG DO ⊥ 交DO 于点G .DG CH = 过点F 作FR DE ⊥ 垂足为R 连接EF EA 32EF DF =:: 点T 在BC 的延长线上 连接AT 过点T 作TM DC ⊥ 交DC 的延长线于点M 若42FR CM AT ==, 求AB 的长.8.(2023·江苏徐州·统考中考真题)两汉文化看徐州 桐桐在徐州博物馆“天工汉玉”展厅参观时了解到 玉壁 玉环为我国的传统玉器 通常为正中带圆孔的扇圆型器物 据《尔雅·释器》记载:“肉倍好 谓之璧 肉好若一、调之环.”如图1 “肉”指边(阴影部分) “好”指孔 其比例关系见图示 以考古发现看 这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为(2)利用圆规与无刻度的直尺 解决下列问题(保留作图痕迹 不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图 试判断该件玉器的比例关系是否符合“肉好若一”?①图3表示一件圆形玉坯 若将其加工成玉璧 且比例关系符合“肉倍好” 请画出内孔.9.(2023·辽宁·统考中考真题)如图,AB 是O 的直径 点C E ,在O 上 2CAB EAB ∠=∠ 点F 在线段AB 的延长线上 且AFE ABC ∠=∠.(1)求证:EF 与O 相切(2)若41sin 5BF AFE =∠=, 求BC 的长.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆 连接CO 并延长交AB 于点D 交O 于点E 连接EA EB .(1)写出图中一个度数为30︒的角:_______ 图中与ACD 全等的三角形是_______(2)求证:AED CEB ∽△△(3)连接OA OB 判断四边形OAEB 的形状 并说明理由.11.(2023·湖北鄂州·统考中考真题)如图,AB为O的直径E为O上一点点C为EB的中点过点C ⊥交AE的延长线于点D延长DC交AB的延长线于点F.作CD AE(1)求证:CD是O的切线(2)若1DE=2DC=求O的半径长.∠12.(2023·吉林长春·统考中考真题)【感知】如图① 点A B P均在O上90∠=︒,则锐角APBAOB的大小为__________度.【探究】小明遇到这样一个问题:如图① O是等边三角形ABC的外接圆点P在AC上(点P不与点A=连结BE C重合)连结PA PB PC.求证:PB PA PC=+.小明发现延长PA至点E使AE PC通过证明PBC EBA△△可推得PBE是等边三角形进而得证.≌下面是小明的部分证明过程:=连结BE证明:延长PA至点E使AE PC四边形ABCP是O的内接四边形180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒BCP BAE ∴∠=∠. ABC 是等边三角形.BA BC ∴=(SAS)PBC EBA ∴≌请你补全余下的证明过程.【应用】如图① O 是ABC 的外接圆 90ABC AB BC ∠=︒=, 点P 在O 上 且点P 与点B 在AC 的两侧 连结PA PB PC .若22PB PA =,则PB PC的值为__________.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O AB 是O 的直径 BC BD = DE AC ⊥于点E DE 交BF 于点F 交AB 于点G 2BOD F ∠=∠ 连接BD .(1)求证:BF 是O 的切线(2)判断DGB 的形状 并说明理由(3)当2BD =时 求FG 的长.14.(2023·山东东营·统考中考真题)如图,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D DE AC ⊥ 垂足为E .(1)求证:DE 是O 的切线(2)若30C ∠=︒ 23CD = 求BD 的长.15.(2023·内蒙古赤峰·统考中考真题)如图,AB 是O 的直径 C 是O 上一点过点C 作CD AB ⊥于点E 交O 于点D 点F 是AB 延长线上一点 连接CF AD 2FCD DAF ∠=∠.(1)求证:CF 是O 切线(2)若10AF2sin 3F = 求CD 的长.16.(2023·内蒙古·统考中考真题)如图,AB 是O 的直径 AC 是弦 D 是AC 上一点 P 是AB 延长线上一点 连接,,AD DC CP .(1)求证:90ADC BAC ∠-∠=︒ (请用两种证法解答)(2)若ACP ADC ∠=∠ O 的半径为3 4CP = 求AP 的长.17.(2023·湖南·统考中考真题)问题情境:筒车是我国古代发明的一种水利灌溉工具 既经济又环保 明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下 筒车上的每一个盛水筒都按逆时针做匀速圆周运动 每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r 的O .如图① OM 始终垂直于水平面 设筒车半径为2米.当0=t 时 某盛水筒恰好位于水面A 处 此时30AOM ∠=︒ 经过95秒后该盛水筒运动到点B 处.(参考数据 2 1.4143 1.732,≈)问题解决:(1)求该盛水筒从A 处逆时针旋转到B 处时 BOM ∠的度数(2)求该盛水筒旋转至B 处时 它到水面的距离.(结果精确到0.1米)18.(2023·湖南常德·统考中考真题)如图,四边形ABCD 是O 的内接四边形 AB 是直径 C 是BD 的中点 过点C 作CE AD ⊥交AD 的延长线于点E .(1)求证:CE 是O 的切线(2)若6BC = 8AC = 求,CE DE 的长.19.(2023·内蒙古通辽·统考中考真题)如图,AB 为O 的直径 D E 是O 上的两点 延长AB 至点C 连接CD BDC A ∠=∠.(1)求证:ACD DCB ∽(2)求证:CD 是O 的切线(3)若3tan ,105E AC == 求O 的半径.20.(2023·广东深圳·统考中考真题)如图,在单位长度为1的网格中 点O A B 均在格点上 3OA =2AB = 以O 为圆心 OA 为半径画圆 请按下列步骤完成作图 并回答问题:①过点A 作切线AC 且4AC =(点C 在A 的上方)①连接OC 交O 于点D①连接BD 与AC 交于点E .(1)求证:BD 为O 的切线(2)求AE 的长度.参考答案一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中 直径AB 与弦CD 交于点,2E AC BD =.连接AD 过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠= °.【答案】66【分析】连接BD ,则有90ADB ∠=︒ 然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠ 进而问题可求解.【详解】解:连接BD 如图所示:①AB 是O 的直径 且BF 是O 的切线①90ADB ABF ∠=∠=︒①68AFB ∠=︒①22A ∠=︒①68ABD ∠=︒①2AC BD =①244ADC A ∠=∠=︒①9046CDB ADC ∠=︒-∠=︒①18066DEB CDB ABD ∠=︒-∠-∠=︒故答案为:66.【点睛】本题主要考查切线的性质 圆周角 弧之间的关系 熟练掌握切线的性质 圆周角 弧之间的关系是解题的关键.2.(2023·湖南常德·统考中考真题)沈括的《梦溪笔谈》是中国古代科技史上的杰作 其中收录了计算圆弧长度的“会圆术” 如图.AB 是以O 为圆心 OA 为半径的圆弧 C 是弦AB 的中点 D 在AB 上CD AB ⊥.“会圆术”给出AB 长l 的近似值s 计算公式:2CD s AB OA=+ 当2OA = 90AOB ∠=︒时 l s -= .(结果保留一位小数)【答案】0.1【分析】由已知求得AB 与CD 的值 代入2CD s AB OA=+得弧长的近似值 利用弧长公式可求弧长的值 进而即可得解.【详解】①290OA OB AOB ︒==∠=,①22AB =①C 是弦AB 的中点 D 在AB 上 CD AB ⊥①延长DC 可得O 在DC 上 122OC AB ==①22CD OD OC =-=①(22222322CD s AB OA=+==9022360l ππ⨯⨯== ①30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长 掌握垂径定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档