大学物理习题课1
大学物理稳恒磁场习题课
S
当 S 很小时,可得
B2S B1S 0
B1
B2
B
有 B2 B1 ,即同一条磁感应线上的
B
相等
如再在该磁场中做一有向矩形安培环路 abcda , ☆ bc 、 让 ab 、cd 与磁感应线平行, da 与磁感应线垂直。 / 设沿 ab 段磁感应强度为 B ,沿 cd 段磁感应强度为 B , 由磁感应线疏密不均匀可知 , 磁感应强度沿该回路的线积分为 / B d l B ab B cd 0
也就不能推出 H d S 0
S
r 都相等,
。
因此,一般说来,不能得出 通过以闭合曲线 L 为边界的各曲面的通量均相等的结论
例如,一永磁棒,设棒内 M 为一常值,
对以 L 为边界的二曲面 S1 和S2 ,有
☆
S1
B dS B dS
S2
M 的方向与外磁场方向相反
Pm 为无矩分子在外磁场中出则的附加磁矩,
磁场强度 引入磁场强度辅助矢量 H
H
B
☆
在各向同性均匀介质中 M m H
m 称为磁化率,是一个纯数。
0
M
顺磁质中
m 1,抗磁质中 m 1 。 H 和 B 的关系为
T
)
2.毕奥一萨伐尔定律
电流元
电流元
☆
Idl
是矢量, 与
大小等于电流 I
导线元长度 dl 的乘积,
方向沿电流正方向。
毕奥一萨伐尔定律 电流元 Idl 在
P 点产生的磁感应强度为
0 4 107 N A2
0 Idl r 0 Idl r ˆ dB 3 2 4 r 4 r
大学物理课后习题1第一章答案
习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。
(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。
答案:(D)。
(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。
(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。
(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。
1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。
答案:10m;5πm。
(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。
答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。
大学物理课后习题全解及辅导
列平衡方程:
(2)研究AB(二力杆),受力如图:
可知:
(3)研究O1B杆,受力分析,画受力图:
列平衡方程:
第三章
习题3-1.求图示平面力系的合成结果,长度单位为m。
解:(1)取O点为简化中心,求平面力系的主矢:
求平面力系对O点的主矩:
(2)合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。
由图知:
(2)研究铰C,受力分析,画力三角形:
由图知:
习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
解:(1)研究滑块A,受力分析,画力三角形:
由图知:
研究AB杆(二力杆)和滑块B,受力分析,画力三角形:
(2)由力三角形得:
(3)列平衡方程:
由(2)、(3)得:
(4)求摩擦系数:
习题5-3.尖劈顶重装置如图所示,尖劈A的顶角为α,在B块上受重物Q的作用,A、B块间的摩擦系数为f(其他有滚珠处表示光滑);求:(1)顶起重物所需力P之值;(2)取支力P后能保证自锁的顶角α之值。
解:属平面汇交力系;
合力大小和方向:
习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
(2)研究AB,受力分析:
画力三角形:
相似关系:
几何关系:
约束反力:
习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。求撑杆BC所受的力。
第一章质点运动学习题课
质点运动学
30
物理学
第五版
第一章习题课
9 一质点在半径为0.10m的圆周上运动,设t=0时 质点位于x轴上,其角速度为ω=12t2。试求
质点运动学
23
物理学
第五版
第一章习题课 5 一小轿车作直线运动,刹车时速度为v0,刹车 后其加速度与速度成正比而反向,即a=-kv,k 为正常量。
试求
(1)刹车后轿车的速度与时间的函数关系
(2)刹车后轿车最多能行多远?
解:
dv 1 kt 由 a kv kv dv kdt v Ce (1) dt v
(3) v R 25 1 25m s
1
a R m s 2
质点运动学
29
物理学
第五版
第一章习题课 8 一质点沿半径为R的圆周运动,质点所经过的弧 长与时间的关系为s=bt+ct2/2,其中b,c为常量, 且Rc>b2。 求切向加速度与法向加速度大小相等之前所经历的 时间 解:
答案:B
质点运动学
4
物理学
第五版
第一章习题课
4 如图所示,湖中有一小船,有人用绳绕过岸上一 定高度处的定滑轮拉湖中的船向岸边运动.设该人 以匀速率v0 收绳,绳不伸长且湖水静止,小船的速率 为v,则小船作( )
质点运动学
5
物理学
第五版
第一章习题课
v0 (A) 匀加速运动, v cos
(B) 匀减速运动,
第一章习题课
大学物理课后习题答案
一质点在xOy 平面上运动,运动方程为2135,342x t y t t t s x y m =+=+-式中以计,,以计。
以时间t 为变量,写出质点位置矢量的表示式;计算第1秒内质点的位移;计算0t = s 时刻到4t = s 时刻内的平均速度;求出质点速度矢量表示式,计算4t = s 时质点的速度;计算0t = s 到4t = s 内质点的平均加速度;求出质点加速度矢量的表示式,计算4t = s 是质点的加速度。
置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) 质点t 时刻位矢为:j t t i t r⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移 j y y i x x r)()(01011-+-=∆(3) 前4秒内平均速度 )s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度(6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a2 质点沿直线运动,速度32132()v t t m s -=++,如果当时t=2 s 时,x=4 m,求:t=3 s 时质点的位置、速度和解:23d d 23++==t t txv 当t =2时x =4代入求证 c =-12 即1224134-++=t t t x 将t =3s 代入证1—9 一个半径R= m 的圆盘,可依绕一个水平轴自由转动,一根轻绳子饶在盘子的边缘,其自由端拴一力作用下,物体A 从静止开始均匀加速的下滑,在∆t= s 内下降的距离h= m 。
求物体开始下降后3s 末,轮一点的切向加速度与法向加速度。
解:物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s3='t 切向加速度,即在s 3='t 时的法向加速度为1—10 一电梯以21.2m s -的加速度下其中以乘客在电梯开始下降后0.5s 时用手在离电梯底板1.5m 高处释放以小球,求此小球落到底板上所需的时地面下降的距离。
大学物理习题课1
v 0 与水平方向夹角
19.如图所示,小球沿固定的光滑的 1/4圆弧从A点由静止开始下滑,圆弧半 径为R,则小球在A点处的切向加速度 at =______________________,小球 在B点处的法向加速度 an =_______________________.
θ
A R
B
三.计算题
t 0 .96 0 mg , t 0 .20 1 9 .8 0 .96 1s
此后合力为 第2秒内冲量
I
t 0 .96 mg
t 0 .96 0 .14 1 9 .8 dt
2 1
1 t 0 .412 dt
2
1 2
t
2 2 1
(B)
(C)
a g sin
a g
a 4 g (1 cos ) g sin
2 2 2 2
(D) . [ ] 4. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现 在在绳端挂一质量为m的重物,飞轮的角加速度 为 .如果以拉力2mg代替重物拉绳时,飞轮的角加 速度将 (A) 小于 . (B) 大于 ,小于2 . (C) 大于2 . (D) 等于2 .[ ]
二.填空题 13.如图所示,质量为m的小球系在劲度系数为k 的轻弹簧一端,弹簧的另一端固定在O点.开始时弹 簧在水平位置A,处于自然状态,原长为l0.小球由 位置A释放,下落到O点正下方位置B时,弹簧的长度 为l,则小球到达B点时的速度大小为v=____
O l0 A k l m
O′
P
B m
Q R
R
F
F Ft
2 n
2
s 2 as 1 R
大学物理课后习题及答案(1-4章)含步骤解
,根据流量守恒
,
(2)当
(3)当
时,
时,
−
,整理可得:
可得
,即
,
图1-34所示为输液的装置。设吊瓶的截面积为1 ,针孔的截面积为2 ,且1 ≫ 2 ,开始时( = 0),吊瓶内上下
液面距针孔的高度分别为ℎ1 和ℎ2 ,求吊瓶内药液全部输完时需要的时间。
,则针孔的流量为
液体总体积为
Ԧ =
= 2Ԧ − 2 Ԧ = −2Ԧ
1s末和2s末质点的速度为: 1 = 2Ԧ − 2Ԧ(m ∙ s−1 ),2 = 2Ԧ − 4Ԧ(m ∙ s −1 );
1s末和2s末质点的加速度相等:Ԧ = −2Ԧ (m ∙ s−2 )
已知一质点做直线运动,其加速度Ԧ = 4 + 3 m ∙ s−2 , 开始运动时,0 = 5 m,
= 0.06(m)
(2)设弹簧最大压缩量为∆′ , 与碰撞粘在一起的速度为 ′,0 = ( +
) ′,代入已知条件可得 ′ = 4Τ11, + 压缩弹簧的过程中,机械能守恒,则
1
(
2
1
+ ) 2 = 2 ∆′2 ,得∆′ =
+
≈ 0.04(m)
(1)角加速度 =
由 =
∆
∆
=
0−2×1500÷60
50
由 =
=
2×1500
60
= 50 (rad ∙ s −1 )
= − (rad ∙ s−2 )
= −,得 = −,两边进行积分
得到 − 50 = − − 0,
大学物理热学习题课
dN m 32 4 ( ) e Ndv 2kT
v2
对于刚性分子自由度 单原子 双原子 多原子
i tr
(1)最概然速率
2kT 2 RT RT vp 1.41 m
(2)平均速率
i=t=3 i = t+r = 3+2 = 5 i = t+r = 3+3 =6
6、能均分定理
8kT 8 RT RT v 1.60 m
M V RT ln 2 M mol V1
QA
绝热过程
PV 常量
M E CV T M mol
(2)由两条等温线和两条绝热线 组成的循环叫做 卡诺循环。 •卡诺热机的效率
Q0
Q2 T2 卡诺 1 1 Q1 T1
M P1V1 P2V2 A CV T M mol 1
E 0
•热机效率
A Q1 Q2
M E CV T M mol M Q C P T M mol
A Q1 Q2 Q2 1 Q1 Q1 Q1
A=P(V2-V1) 等温过程
A
E 0
Q1 Q2 •致冷系数 e W Q1 Q2
热机效率总是小于1的, 而致冷系数e可以大于1。
定压摩尔热容
比热容比
CP ( dQ )P dT i2 i
8、平均碰撞次数 平均自由程
z
2d v n
2
CV •对于理想气体:
Cp
v z
1.热力学第一定律
1 2 2d n
二、热 力 学 基 础
Q ( E2 E1 ) A dQ dE dA
准静态过程的情况下
4. 摩尔数相同的两种理想气体 一种是氦气,一种是氢气,都从 相同的初态开始经等压膨胀为原 来体积的2倍,则两种气体( A ) (A) 对外做功相同,吸收的热量 不同. (B) 对外做功不同,吸收的热量 相同. (C) 对外做功和吸收的热量都不 同. (D) 对外做功和吸收的热量都相 同. A=P(V2-V1)
大学物理光学习题课
(1)子波,(2)子波干涉. 所缺级次为 k=k'(a+b)/a. 2.单缝衍射由半波带法得出 4.园孔衍射爱里斑的角半径: 中央明纹: =0.61/a=1.22/d 坐标 =0, x=0; 光学仪器的最小分辩角 宽度 02/(na), =0.61/a=1.22/d x2f/(na) 分辩率 R=1/=d/(1.22) 其他条纹: 5.x射线的衍射: 暗纹 asin=k/n 布喇格公式 2dsin=k 明纹 asin(2k+1)/(2n) (d为晶格常数,为掠射角) 条纹宽度/(na), 三光的偏振 xf/(na) 1.自然光,偏光,部分偏光; 3.光栅:单缝衍射与多光束干 偏振片,偏化方向,起偏, 涉乘积效果,明纹明亮,细锐. 检偏. 光栅方程式 2.马吕期定律 I=I0cos2. (a+b)sin=k 3.反射光与折射光的偏振 缺级 衍射角同时满足 一般:反射折射光为部分偏光 (a+b)sin=k 反射光垂直振动占优势; asin=k ' 折射光平行振动占优势.
n3
4. 在如图28.4所示的单缝夫琅和 费衍射实验装置中,s为单缝,L 为透镜,C为放在L的焦面处的屏 幕,当把单缝s沿垂直于透镜光轴 的方向稍微向上平移时,屏幕上 的衍射图样( C ) (A) 向上平移. (B) 向下平移. (C) 不动. (D) 条纹间距变大.
3. 如下图所示,平行单色光垂 直照射到薄膜上,经上下两表面 反射的两束光发生干涉,若薄膜 的厚度为e,并且n1<n2>n3,1 为入射光在折射率为n1 的媒质中 的波长,则两束反射光在相遇点 的位相差为( C ) (A) 2 n2 e / (n1 1 ). (B) 4 n1 e / (n2 1 ) +. (C) 4 n2 e / (n1 1 ) +. (D) 4 n2 e / (n1 1 ). n1 n2 λ e
大学物理 习题课(刚体)
J1r1r2 10 2 2 2 J1r2 J 2 r1
11、质量为m,长为 l的均匀棒,如图, 若用水平力打击在离轴下 y 处,作用时 Ry 间为t 求:轴反力
解:轴反力设为 Rx Ry d 由转动定律: yF J y dt yF t t 为作用时间 F 得到: J 由质心运动定理: l d l 2 切向: F Rx m 法向: R y mg m 2 dt 2 2 2 2 3y 9 F y (t ) R 于是得到: x (1 ) F R y m g 2l 2l 3 m
10
r1
r2
解: 受力分析: 无竖直方向上的运动
10
o1
N1
f
r1
N2
r2
N1 f m1 g N 2 f m2 g
以O1点为参考点, 计算系统的外力矩:
o2
f
m1 g
m2 g
M ( N2 m2 g )(r1 r2 )
f (r1 r2 ) 0
作用在系统上的外力矩不为0,故系统的角动量不守恒。 只能用转动定律做此题。
r
at r
在R处:
R
at R
(2)用一根绳连接两个或多个刚体
B
C
M 2 o2 R 2
o1R1 M1
D
A
m2
m1
• 同一根绳上各点的切向加速度相同;线速度也相同;
a t A a t B a t C a t D
A B C D
• 跨过有质量的圆盘两边的绳子中的张力不相等;
TA TB TD
但 TB TC
B
C
M 2 o2 R 2
o1R1 M1
大学物理 力学习题课1 哈尔滨工程大学
2
at = an
c b ct / R
哈尔滨工程大学理学院 孙秋华
t
R b c c
质点力学习题课 3.已知某些条件给出速度和运动方程 作业2.以初速度 v0 向上抛出一小球,小球在运动过程中
受到阻力,其大小为
f kv ,k为常数,求:小球任
意时刻的速度及达到的最大高度。
哈尔滨工程大学理学院
孙秋华
质点力学习题课 作业14. 质量为M=1.5kg的物体,用一根长为l=1.25m的 细绳悬挂在天花板上,今有一质量为m=10g的子弹以 v0=500m/s的速度射穿物体,刚穿出物体时子弹的速度 大小为v=30m/s, 设穿透时间极短,求(1)子弹刚穿出 时绳中张力的大小;(2)子弹在穿透过程中所受的冲 量。
哈尔滨工程大学理学院
孙秋华
质点力学习题课 1、力学中重要物理量的计算
作业4. 由楼窗口以水平初速度v 0射出一发子弹,求:(1) 子弹在任意时刻的位置及轨迹方程;(2)子弹在任意时 刻的速度、切向加速度和法向加速度;(3)任意时刻质 点所在轨迹的曲率半径。
作业11. 一物体按规律x=ct2作直线运动(c为常数)。设媒 质对物体的阻力正比于速度的平方,阻力系数为k,求: 物体由 x=0到 x=l过程中,阻力所作的功。
I p2 p1
(3)质点系的动量守恒定律
条件: F 0
f 内 F
m i v ix c 1 i m i v iy c 2 i m i v iz c 3 i
p2 p1 mi v i
哈尔滨工程大学理学院 孙秋华
哈尔滨工程大学理学院
孙秋华
质点力学习题课
大学物理课后习题答案第一章
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 的路程; (3)1s 末的瞬时加速度和第2s 的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t ,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k=+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v 3v 1v 12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
大学物理学-稳恒磁场习题课
⑶电子进入均匀磁场B中,如图所示,当电子位于 A点的时刻,具有与磁场方向成 角的速度v,它绕螺旋 线一周后到达B点,求AB的长度,并画出电子的螺旋轨 道,顺着磁场方向看去,它是顺时针旋进还是逆时针旋 进?如果是正离子(如质子),结果有何不同?
1、均匀磁场的磁感应强度B垂直于半径为r的圆面,今以该圆面
其中 直电流 ab和cd的延长线
o dc
fI
R1 R2
eI
过o
b
电流bc是以o为圆心、以 R2为半径的1/4圆弧
I
电流de也是以o为圆心、
但,是以R1为半径的1/4 圆弧
a
直电流ef与圆弧电流de在
e点相切
求:场点o处的磁感强度 B
解:
场点o处的磁感强度是由五段
特殊形状电流产生的场的叠加,f I
o dc
磁场力的大小相等方向相反; (3)质量为m,电量为q的带电粒子,受洛仑兹力作用,
其动能和动量都不变; (4)洛仑兹力总与速度方向垂直,所以带电粒子运动的
轨迹必定是圆。
习题课 1 一电子束以速度v沿X轴方向射出,在Y轴上 有电场强度为E的电场,为了使电子束不发生偏 转,假设只能提供磁感应强度大小为B=2E/v的
df
2ds
n
2 0
2 0
i dl 单位面积受力
da
df Idl B其余
da dl 0i
B总 0i
2 其余 0i
2
df
0i 2
n
dadl 2
表三 作用力
4.应用
静电场
稳恒磁场
类比总结
电偶极子 pe
fi 0
i M pE
三
磁偶极子 pm
fi 0
大学物理刚体力学习题课
l 1 1 2 mg sin mgl sin ( ml ml 2 ) 2 2 2 3 9g 3 2 sin g sin / l 4l 2
m m
9 g cos 16l
角加速度对应于该位置的力矩
l 1 2 mg cos mgl cos ( ml ml 2 ) 2 3
12. 一长为l ,质量为 M的均匀木棒,可绕水平轴O在 竖直平面内转动,开始时棒自然地竖直下垂,今有 一质量m、速率为v的子弹从A点射入棒中,假定A点 与O点的距离为3l/4,求:(1)棒开始运动时的角速度; (2)棒的最大偏转角。
解:对题中非弹性碰撞,角动量守恒,
3 3 2 1 mv l J J m( l ) Ml2 4 4 3 36ml (27m 16 M )l
mg T ma
O
Tr J
J m( g a)r 2 / 2
2 gt J mr 2 ( 1) 2s
a r
由已知条件v0 = 0, 得
1 2 s at a 2 s / t 2 2
m
9. 如图所示,滑轮为质量均匀分布的圆柱体,其质 量为m轮,半径为r,在绳与轮缘的摩擦力作用下旋转。 忽略桌面与物体间的摩擦。设m1=50 kg, m2=200 kg, m轮=15 kg, r=0.1 m,计算该系统中物体m1和m1的加 速度。
解:细杆由初始位置竖直位置,机械能守恒
1 1 L 2 2 J 0 J1 mg (1 cos ) 2 2 2
0
60
v0
碰撞前后角动量守恒, 取为角 动量正向 mv0 L J1 (J mL2 )2 系统竖直位置由初始位置
1 L 1 2 ( J mL2 )2 Mg (1 cos ) mgL(1 cos ) ( J mL2 ) 2 2 2 2
(完整版)大学物理课后习题答案详解
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
新编大学物理课后习题答案
第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别 题1.2: 答案:[A] 题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R rj r i==-,21v v v ∆=-,12,v v vi v j=-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返 题1.6: 答案:[D] 提示:a=2t=d dtv ,2224tv tdt t==-⎰,02tx xvdt -=⎰,即可得D 项题1.7: 答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+vv v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率 题1.9:答案:2915t t -,0.6提示: 2915dx v t tdt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dy dtdt=+v i j(2) t=1s 时,24t =-v i j ,4d dt==-v a j(3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i jt=1s 到t=2s ,同样代入()t =r r 可求得26r ∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s提示:2(2)2412(/)dv d x a v x m s dtdt=====题1.12: 答案:1/m s 22π提示:200tdvv v dt tdt=+=⎰,11/t vm s==,201332tvdt t R θπ===⎰,222r R π∆==题1.13: 答案:215()2t v t gt-+-i j提示: 先对2(/2)vt g t =-r j求导得,0()yv gt =-vj与5=v i 合成得05()v g t =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQv R R t dt τ==,88a R τ==,2264n dQ a R tdt ⎛⎫== ⎪⎝⎭三、计算题 题1.15: 解:(1)3tdv atdt == 003v tdv tdt =∴⎰⎰ 232v t∴=又232ds v tdt==232stds tdt=∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434nva tR==4334tt=∴ 34t S=∴题1.16: 解:(1)dv a kvdt ==- 0vtdv kdt v=-∴⎰⎰, 0lnv ktv =-(*)当012v v =时,1ln 2kt=-,ln 2t k=∴(2)由(*)式:0kt v v e -=0kt dx v e dt -=∴,000x tkt dx v e dt -=⎰⎰(1)kt v x e k-=-∴ 第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2yy Sv t t==x 方向上做匀加速运动(初速度为0),F a m=22tx v a d t t ==⎰,223txxt S vdt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg ='F F = 杆受力1()F M g F M m g=+=+1()F M m ga MM+==题2.4 : 答案:[D] 提示:Ba BTTa A Tmg22AB A B m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aag=(2A Ba a=,通过分析滑轮,由于A 向下走过S ,B 走过2S )2A Ba a=∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故0(cos 60)()1010m m v m v =+共0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h R Rθ-=分析条件得,只有在h 高度时,向心力与重力分量相等 所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)2200112()22m v m v m gh v gh g h R =+⇒=+-题2.7: 答案:[B]提示: 运用动量守恒与能量转化 题2.8: 答案:[D] 提示:θv 0v x vy由机械能守恒得20122m gh m vv gh=⇒=0sin y v v θ=sin 2Gy Pmgv mg ghθ==∴题2.9: 答案: [C] 题2.10: 答案: [B] 提示: 受力如图fT Fx由功能关系可知,设位移为x (以原长时为原点)2()xF m g Fx m gx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题 题2.11: 答案:2mb 提示: '2v x bt =='2a v b== 2Fm a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/xam s= 4x F N=8y F N=2F m k ga==24/y y F a m sm==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+27/5v adt m s⇒==⎰当t=2时,1110a =题2.14: 答案:180kg 提示:由动量守恒,=m S -S m人人人船相对S ()=180kgm ⇒船题2.15: 答案:11544+i j提示:各方向动量守恒题2.16: 答案:()mv +i j ,0,-mgR提示:由冲量定义得 ==()(m v m v m v --=+I P P i j ij末初-由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合=W m gR-外题2.17: 答案:-12 提示:3112w F dx J -==⎰题2.18:答案: mgh ,212kx ,M m G r- h=0,x=0,r =∞ 相对值题2.19: 答案: 02m g k ,2mg ,0m gk题2.20: 答案: +=0A ∑∑外力非保守力三、计算题 题2.21: 解:(1)=m Fxg L 重()m f L x gLμ=-(2)1()(1)g a F f x gmLμμ=-=+-重(3)dv a v dx=,03(1)vLL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,2(2)3v L g μ=-题2.22:解:(1)以摆车为系统,水平方向不受力,动量守恒。
大学物理静电场习题课
的电场 Ex
4 0a
(sin 2
sin 1 )
Ey
4 0a
(cos1
cos2 )
特例:无限长均匀带电(dài diàn)直线的
场强
E 20a
(2)一均匀带电圆环轴线上任一点 x处的电场
xq
E
4 0 (
x2
a2
3
)2
i
(3)无限大均匀带电平面的场强
精品文档
E 2 0
五、高斯定理可能应用(yìngyòng)的
搞清各种(ɡè zhǒnɡ) 方法的基本解题步 骤
4、q dV Ar 4r 2dr
精品文档
6.有一带电球壳,内、外半径分别为a和b,电荷体 密度r = A / r,在球心处有一点电荷Q,证明当A = Q / ( 2pa2 )时,球壳区域内的场强的大小(dàxiǎo) 与r无关.
证:用高斯定理求球壳内场强:
一、一个实验(shíyàn)定律:库仑定F律12
二、两个物理(wùlǐ)概念:场强、电势;
q1q2
4 0r122
e12
三、两个基本定理:高斯定理、环流定理
有源场
E
dS
1
0
qi
LE dl 0
( qi 所有电荷代数和)
(与
VA VB
B
E
dl等价)
A
(保守场)
精品文档
四、电场(diàn c1h.ǎ点n电g)荷强的度电的场计(d算iàn
b
Wab qE dl q(Ua Ub ) qUab (Wb Wa )
a
3. 电势叠加原理
(1)点电荷的电势分布:
q
U P 4 0r
(2)点电荷系的电势分布:
大学物理热力学基础习题课
答案:B 9、下列说法中,哪些是正确的
1、可逆过程一定是准静态过程;2、准静态过程一定是可逆的 4、不可逆过程一定是非准静态过程;4、非准静态过程一定是 不可逆的。
A、(1,4);B、(2,3);C、(1,3);D、(1,2,3,4)
答案:A
10、根据热力学第二定律,下列那种说法正确
A.功可一全部转换成热,但热不可以全部转换成功 B.热可以从高温物体传递到低温物体,反之则不行
Q QBC QAB 14.9 105 J 由图得, TA TC 全过程:
E 0
W Q E 14.9 105 J
3. 图所示,有一定量的理想气体,从初状态 a (P1,V1)开始,经过一个等容过程达到压强为 P1/4 的 b 态,再经过一个等压过程达到状态 c , 最后经过等温过程而完成一个循环。求该循环 过程中系统对外做的功 A 和吸收的热量 Q .
a
T2 300 1 1 25% T1 400
c
d
300 400
T(K)
8. 一卡诺热机在每次循环中都要从温度为 400 K 的高温热源吸热 418 J ,向低温热源放 热 334.4 J ,低温热源的温度为 320 K 。如 果将上述卡诺热机的每次循环都逆向地进行, 从原则上说,它就成了一部致冷机,则该逆向 4 卡诺循环的致冷系数为 。
解:设状态 c 的体积为V2 , 由于a , c 两状态的温度相同
故
p1 p1V1 V2 4 V2 4V1
循环过程 E 0 , Q W
而在 a b 等容过程中功 W1 0 在 b c 等压过程中功
p1 p1 3 W2 V2 V1 4V1 V1 p1V1 4 4 4
大学物理课后习题解答
所以
l—15 一粒子沿抛物线轨道 运动,且知 。试求粒子在 m处的速度和加速度。
[解] 由粒子的轨道方程
对时间t求导数 (1)
再对时间t求导数并考虑到 是恒量 (2)
把 m代入式(1)得
1—7 湖中一小船,岸边的人用跨过高处的定滑轮的绳子拉船靠岸(如图所示)。当收绳速度为v时,试问:(1)船的运动速度u比v大还是小?(2)若v=常量。船能否作匀速运动?如果不能,其加速度为何值?
[解] (1) 由教材上图知
两边对t求导数,并注意到h为常数,得
[解] (1) 质点的加速度 a=dv/dt=4t
又 v=dx/dt 所以 dx=vdt
对上式两边积分,得
由题知 (m)
所以 c= - 457.3m
因而质点的运动方程为:
(2)
(3) 质点沿X轴作变加速直线运动,初速度为8m/s,初位置为-457.3m.
[解] 设登月舱的速率为v,周期为T,则
即 (1)
即 (2)
解式(1)(2)组成的方程组得
1—20 如图所示,一卷机扬自静止开始作匀加速运动,绞索上一点起初在A处经3s到达鼓轮的B处,然后作圆周运动。已知AB=0.45m,鼓轮半径R=0.5m,求该点经过点C时,其速度和加速度的大小和方向。
所以,t=1s时, ,
t=2s时, ,
(4)当质点的位置矢量和速度矢量垂直时,有
即
整理,得
解得 (舍去)
(5)任一时刻t质点离原点的距离
[解] 由
对上式两边积分
即
故速度v与y的函数关系为
1—14 一艘正以速率 匀速行驶的舰艇,在发动机关闭之后匀减速行驶。其加速度的大小与速度的平方成正比,即 , k为正常数。试求舰艇在关闭发动机后行驶了x距离时速度的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 0 Ey sin d(sin ) 0 0 4 0 R
y
dq
d Ex O d E d Ey
R
d
x
0 i 故O点的场强为: E E x i 4 0 R
2
X
Ex dEx
2 0 ( x 2 轴线上 x 处产生场强关于轴 线对称 E 0 在 x 处取一电荷元 dq/=2 dx ,它受的电场力为
dF Ex dq 2 0 ( x 2 R 2 )3 2
12 Rxdx
12 R 1 1 F dF [ 2 ] 2 12 2 0 R (l R )
Pe E 3 4 0 r
E
r0 2 0 r
d
i
叠加原理
E Ei
E 2 0
当b→0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式, 场强公式变为 -------- ③ E 2 0 a 这正是带电直线的场强公式.
(2)②也可以化为
arctan(b / 2d ) Ez 2 0 d b / 2d
当b→0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式, 场强公式变为
dx
2 0 (b / 2 a x)
其方向沿x轴正向.
由于每条无限长直线在P点的产生的场强方向相同,所以 P点产生的场强为
E 2 0
1 dx b/2a x b / 2
b/2
b/2
ln(b / 2 a x) 2 0 b / 2 b -------- ① ln(1 ) 2 0 a 场强方向沿x轴正向.
1 R 0
x
2 dE
X
解:设坐标原点在圆 环中心,X轴沿圆环轴 线方向如图,在圆环 上取一电荷元 :dq = 1 d ,它在轴线上 x 处产生场强
1dl dE 4 0 ( x 2 R 2 )
1 xdl dEx 2 2 32 4 0 ( x R )
R
0
1 dq’ x dx
1 1 r0 E E E i i 20 x r0 x 20 x(r0 x)
E E
o x
p
x
o
E p
E
E
p
E
x
o
x
r0
x
x
r0
r0
1 1 r0 E E E i i 20 x r0 x 20 x( r0 x )
b Ez d arctan( ) 2 0 0 2d arctan( b / 2 d )
arctan( b / 2 d )
--------- ②, 场强方向沿z轴正向.
[讨论] (1)薄板单位长度上电荷为λ = σb, ① 式的场强可化为 E
ln(1 b / a) 2 0 a b/a
Ez
2 0 d
这是带电直线的场强公式.
当b→∞时,可得
Ez 2 0
--------- ④ 这是无限大带电平面所产生的场强公式.
讨论 理想模型 点电荷
r >> d
l
d
Q
r
r
r r
E
Q 4 0 r
2
r0
电偶极子 r >>
Pe
l
无限长 带电线 r << L L 无限大 带电面 r << d
Ex
求出 E的大小,并指明方向。
Q
dE x
Ey
Q
dE y
Ez
dE
Q
z
1. 半径为R的带电细圆环,其电荷线密度为= 0cos,式中0为一常数, 为半径R与x轴所成的夹角,如图所示.试求环心O处的电场强度.
解:在任意角 处取微小电量dq =dl,它在O点 产生的场强为: 0co s d dq dl dE 4 0 R 2 4 0 R 2 4 0 R 它沿x、y轴上的二个分量为: dEx=-dEcos , dEy=-dEsin 对各分量分别求和
2.两条无限长平行直导线相距为r0,均匀带有等量异号电荷,电 荷线密度为。(1)求两导线构成的平面上任一点的电场强度 (设该点到其中一线的垂直距离为x);(2)求每一根导线上 单位长度导线受到另一根导线上电荷作用的电场力。 分析:( 1)在两导线构成的平面上 任一点的电场强度为两导线单独在 此所激发的电场的叠加。 (2)由F = qE,单位长度导线所受 o 的电场力等于另一根导线在该导线 处的电场强度来乘以单位长度导线 所带电的量,即:F = E应该注意: 式中的电场强度 E 是除去自身电荷 外其它电荷的合电场强度。
p
x
x
r0
解:(1)设点P在两导线构成的平面上,E+、E-分别表示正、负 带电导线在P点的电场强度,则有 E E E
E
o x
p
x
o
E p
E
p
x
r0
x
x
o
x
r0
r0
1 1 r0 E E E i i 20 x r0 x 20 x( r0 x) 1 1 r0 E E E i i 20 x x r0 20 x( x r0 )
体电荷密度 电荷密度
r
dE
P
面电荷密度
线电荷密度
dq dV dq dS
dS
dq dl
dl
解题步骤:
1.把带电体看作是由许多个电荷元dq组成,dq
dV
dS dl
dq视为点电荷,从库仑定律求出 dE ;
2. 因各电荷元产生的 dE 方向不一定相同,
建立适当的坐标系,求分量dEx ,dEy ,dEz , 3.积分:
习题讨论课1 真空中的静电场
矢量场
E Ei
i
场强叠加原理
点电荷系场强
i n E
i 1
4 0 ri
qi
3
ri
若带电体可看作是电荷连续分布的,如图示
把带电体看作是由许多个电荷元组成,
dq
Q
dV
然后利用场强叠加原理。 dq E dE r 2 0 Q Q 4 0 r
沿X轴正向
12.7 一宽为b的无限长均匀带电平面薄板,其电荷密度为σ.试 求:(1)平板所在平面内,距薄板边缘为a处的场强.
解:(1)建立坐标系.在平面薄板上取一 宽度为dx的带电直线,电荷的线密度为 dλ = σd x,根据无限长直线带电线的场强公式
dE d 2 0 r
y b O dx a P x
(2 )设 F+ 、F- 分别表示正、负带电 导线单位长度所受的电场力,则有
E
o
E
F E
2 i 2 0 r0
2 F E i 20r0
x
r0
相互作用力大小相等,方向相反,两导线相互吸引。
3 半径为 R 、电荷线密度为 1 的一个均匀带电圆 环,在其轴线上放一长为 、电荷线密度 为 2 的 均匀带电直线段,该线段的一端处于圆环中心处, 如图所示,求该直线段受到的电场力。
(2)通过薄板几何中心的垂直线上与薄板距离为d处的场强. x dx 为了便于观察,将薄板旋转建立 坐标系.仍然在平面薄板上取一 r 宽度为dx的带电直线,电荷的线 z 密度仍然为dλ = σd x,带电直线 O d Qθ dE 在Q点产生的场强为 b y d dx dE 2 0 r 2 0 (d 2 x 2 )1 2 x = d tanθ,则dx = ddθ/cos2θ dd d dE 因此 2 2 0 d sec cos 2 0 cos 沿z轴方向的分量为 dEz dE cos d 2 0 积分得