第一章 统计案例 复习题
(必考题)高中数学选修1-2第一章《统计案例》测试卷(答案解析)(3)
一、选择题1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是( ) A .120B .320C .15D .7202.某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中( )表1表2表3 语文 性别不及格 及格 总计 数学 性别不及格 及格 总计 英语 性别不及格 及格 总男 14 36 50 男 10 40 50 男 25 25 女 16 34 50 女 20 30 50 女 5 45 总计3070100总计3070100总计30701A .语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小B .数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小C .英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小D .英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小 3.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C4.在一次抗洪抢险中,准备用射击的方法引爆漂流的汽油桶.现有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击相互独立,且命中概率都是34.则打光子弹的概率是( ) A .9256B .13256C .45512D .910245.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有( )参考公式:0.10 0.05 0.025 0.010 0.005 0.001 2.7063.8415.0246.6357.87910.828A .12人B .18人C .24人D .30人6.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:20()P K k ≥ 0.050 0.0100.0010k3.841 6.635 10.8282()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .187.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有( )的把握认为喜爱打篮球与性别有关.喜爱打篮球 不喜爱打篮球 合计男生 25530 女生 151530合计40 20 60附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.20()P K k ≥ 0.100.050.025 0.010 0.005 0.001 0k 2.706 3.8415.0246.6357.78910.828A .99.9%B .99.5%C .99%D .97.5%8.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为12和45,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( ) A .12B .23C .34D .139.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1125B .12125 C .61125 D .6412510.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样11.为了解学生对街舞的喜欢是否与性别有关,在全校学生中进行抽样调查,根据数据,求得2K 的观测值0 4.804k ≈,则至少有( )的把握认为对街舞的喜欢与性别有关.参考数据:A .90%B .95%C .97.5%D .99%12.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.42二、填空题13.有7个评委各自独立对A 、B 两位选手投票表决,两位选手旗鼓相当,每位评委公平投票且不得弃权.若7位评委依次揭晓票选结果,则A 选手在每位评委投票揭晓后票数始终保持领先的概率是______.14.有9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种,假定每个坑至多补种一次,需要补种的坑数为2的概率等于_______.15.已知如下四个命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于0,表示回归效果越好;②在回归直线方程ˆ0.812yx =-中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.8个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于1;④对分类变量X 与Y ,对它们的随机变量2K 的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________. 16.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.17.从包括甲乙两人的6名学生中选出3人作为代表,记事件A :甲被选为代表,事件B :乙没有被选为代表,则()P B A │等于_________.18.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________19.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23. (1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X 表示结束比赛还需打的局数,求X 的分布列及期望.22.某航空公司规定:国内航班(不构成国际运输的国内航段)托运行李每件重量上限为50kg ,每件尺寸限制为40cm 60cm 100cm ⨯⨯,其中头等舱乘客免费行李额为40kg ,经济舱乘客免费行李额为20kg .某调研小组随机抽取了100位国内航班旅客进行调查,得到如表所示的数据:(1)请完成22⨯列联表,并判断是否在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关?(2)调研小组为感谢参与调查的旅客,决定从托运行李超出免费行李额且不超出的旅客中(其中女性旅客4人)随机抽取4人,对其中的女性旅客赠送“100元超额行李补贴券”,记赠送的补贴券总金额为X 元,求X 的分布列与数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:23.某工厂A ,B 两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,A ,B 生产线生产的产品为合格品的概率分别为p 和21(0.51)p p -.(1)从A ,B 生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求p 的最小值0p ;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的0p 作为p 的值. ①已知A ,B 生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从A ,B 生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为X ,求X 的分布列并估计该厂产量2000件时利润的期望值.24.某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13. (1)若在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多安排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为p ,每人每次接种花费()0m m >元,每个周期至多接种3次,第一个周期连续2次出现抗体则终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期;第二接种周期连续2次出现抗体则终止试验,否则需依次接种至至试验结束;乙团队研发的药物每次接种后产生抗体的概率为q ,每人每次花费()0n n >元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.①若甲团队的试验平均花费大于乙团队的试验平均花费,求p 、q 、m 、n 满足的关系式;②若m n =,2p q =,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发?附:()()()()()22n ad bc K a b c d a c b d -=++++,()20P K k ≥ 0.100.05 0.01 0.005 0.001 0k 2.7063.8416.6357.87910.82825.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动 不喜爱运动 总计 男生 ab30 女生 cd20 总计50(1)求出列联表中a 、b 、c 、d 的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++)20()P K k ≥ 0.5000.100 0.050 0.010 0.001 0k 0.4552.7063.8416.63510.82826.某花圃为提高某品种花苗质量,开展技术创新活动,分别用甲、乙两种方法培育该品种花苗.为比较两种培育方法的效果,选取了40棵花苗,随机分成两组,每组20棵.第一组花苗用甲方法培育,第二组用乙方法培育.培育完成后,对每棵花苗进行综合评分,绘制了如图所示的茎叶图:(1)分别求两种方法培育的花苗综合评分的中位数.你认为哪一种方法培育的花苗综合评分更高?并说明理由.(2)综合评分超过80的花苗称为优质花苗,填写下面的列联表,并判断是否有99.5%的把握认为优质花苗与培育方法有关?优质花苗 非优质花苗 合计甲培育法 乙培育法 合计附:()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥ 0.0100.050 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.2.C解析:C 【分析】根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】因为()()2210014341636100103020403070505030705050⨯⨯-⨯⨯⨯-⨯<⨯⨯⨯⨯⨯⨯()2100254552530705050⨯⨯-⨯<⨯⨯⨯,所以英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小. 故选C 【点睛】本题考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目. 3.B解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B. 【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.4.B解析:B 【分析】打光所有子弹,分中0次、中一次、中2次. 【详解】5次中0次:5 1 4⎛⎫ ⎪⎝⎭5次中一次:4 153144 C⎛⎫⨯⨯ ⎪⎝⎭5次中两次:前4次中一次,最后一次必中314331 444C⎛⎫⨯⨯⨯ ⎪⎝⎭则打光子弹的概率是514⎛⎫⎪⎝⎭+4153144C⎛⎫⨯⨯ ⎪⎝⎭+314331444C⎛⎫⨯⨯⨯ ⎪⎝⎭=13256,选B【点睛】本题需理解打光所有子弹的含义:可能引爆,也可能未引爆.5.B解析:B【解析】【分析】设男生人数为,女生人数为,完善列联表,计算解不等式得到答案.【详解】设男生人数为,女生人数为喜欢抖音不喜欢抖音总计男生女生总计男女人数为整数故答案选B【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.6.A解析:A【分析】设男生人数为x ,依题意可得列联表;根据表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,列不等式即可得出结论. 【详解】设男生人数为x ,依题意可得列联表如下:则2 3.841K >,由222235236183 3.841822x x x K x x x x x ⎛⎫- ⎪⎝⎭==>⋅⋅⋅,解得10.24x >, ,26x x为整数, ∴若在犯错误的概率不超过95%的前提下认为是否喜欢追星和性别有关,则男生至少有12人,故选A. 【点睛】本题主要考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.7.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表, 得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.8.A解析:A 【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140 分以上的概率为甲考140 分以上乙未考到140 分以上事件概率与乙考140 分以上甲未考到140 分以上事件概率的和,而 甲考140 分以上乙未考到140 分以上事件概率为14(1)25⨯-,乙考140 分以上甲未考到140 分以上事件概率为14(1)25-⨯,因此,所求概率为14(1)25⨯-1451(1)25102+-⨯==, 选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.9.C解析:C 【解析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过700辆的概率()()()111700150070010.60.2225P X P X ⎡⎤≥=-<<=⨯-==⎣⎦, ∴这三个收费口每天至少有一个超过700辆的概率 3161115125P ⎛⎫=--=⎪⎝⎭,故选C. 点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.10.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A11.B解析:B 【解析】因为4.804>3.841,所以有95%的把握认为对街舞的喜欢与性别有关.12.C解析:C 【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解. 【详解】解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=.甲队以3:0获胜的概率是: 20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中档题.二、填空题13.【分析】将比分分为四种情况讨论计算概率【详解】由条件可知前两名投票的都投给选手并且投给每位选手的概率是若投票给两位选手的比分为则概率为若比分为则投给选手的方法有种所以概率为若比分为则投给选手的两票不 解析:532【分析】将比分分为7:0,6:1,5:2,4:3四种情况讨论计算概率. 【详解】由条件可知前两名投票的都投给选手A ,并且投给每位选手的概率是12P =. 若投票给A 、B 两位选手的比分为7:0,则概率为712⎛⎫ ⎪⎝⎭, 若比分为6:1,则投给选手B 的方法有155C =种,所以概率为7152⎛⎫⋅ ⎪⎝⎭若比分为5:2,则投给选手B 的两票不能在第三和第四的位置,有2519C -=种,所以概率为7192⎛⎫⋅ ⎪⎝⎭, 若比分为4:3,则投给A 的票不能是最后一位,且不能占5,6位,有2415C -=种,所以概率为7152⎛⎫⋅ ⎪⎝⎭, 所以概率()7151595232P ⎛⎫=+++⋅=⎪⎝⎭. 故答案为:532【点睛】本题考查独立事件同时发生的概率,重点考查分类的思想,属于中档题型.14.【分析】先计算出粒种子都没有发芽的概率即得出每个坑需要补种的概率然后利用独立重复试验的概率得出所求事件的概率【详解】由独立事件的概率乘法公式可知粒种子没有粒发芽的概率为所以一个坑需要补种的概率为由独 解析:21512【分析】先计算出3粒种子都没有发芽的概率,即得出每个坑需要补种的概率,然后利用独立重复试验的概率得出所求事件的概率. 【详解】由独立事件的概率乘法公式可知,3粒种子没有1粒发芽的概率为31128⎛⎫= ⎪⎝⎭, 所以,一个坑需要补种的概率为18, 由独立重复试验的概率公式可得,需要补种的坑数为2的概率为223172188512C ⎛⎫⋅⋅= ⎪⎝⎭, 故答案为21512. 【点睛】本题考查独立事件概率乘法公式的应用,同时也考查了独立重复试验恰有()k k N *∈次发生的概率,要弄清楚事件的基本类型,并结合相应的概率公式进行计算,考查分析问题和理解问题的能力,属于中等题.15.②③【分析】①根据相关指数的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量的观测值k 的关系进行判断【详解】①在线性回归模型中相关指数表示解释变量对于预报变量解析:②③ 【分析】①根据相关指数2R 的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量2K 的观测值k 的关系进行判断. 【详解】①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好,所以①错误;②在回归直线方程ˆy=0.8x−12中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.8个单位,正确;③两个变量相关性越强,则相关系数的绝对值就越接近于1,正确;④对分类变量X 与Y ,对它们的随机变量K2的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越小,所以④错误; 故正确命题的序号是②③. 【点睛】该题考查的是有关统计的问题,涉及到的知识点有线性回归分析,两个变量之间相关关系强弱的判断,独立性检验,属于简单题目.16.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概 解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.17.【解析】因为所以应填答案解析:35【解析】因为()()2254336613,210C C P A P AB C C ====,所以3(|)5P B A =。
重庆巴蜀中学选修1-2第一章《统计案例》测试卷(答案解析)
一、选择题1.甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为23,乙队获胜的概率为13.若前两局中乙队以20:领先,则下列说法中错误的是( ) A .甲队获胜的概率为827B .乙队以30:获胜的概率为13 C .乙队以三比一获胜的概率为29D .乙队以32:获胜的概率为492.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 33.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.那么甲得冠军且丙得亚军的概率是( ) A .0.15 B .0.105 C .0.045 D .0.214.变量X 与Y 相对应的一组数据为(10 , 1),(11.3 , 2),(11.8 , 3),(12.5 , 4),(13 , 5);变量U 与V 相对应的一组数据为(10 , 5),(11.3 , 4),(11.8 , 3),(12.5 , 2),(13 , 1).1r 表示变量Y X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则( )A .120r r <<B .210r r <<C .210r r <<D .21r r =5.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:由以上数据,计算得到2K 的观测值9.643k ≈,根据临界值表,以下说法正确的是( )A .在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B .在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C .在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D .在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关 6.在“新零售”模式的背景下,自由职业越来越流行,诸如:淘宝网店主、微商等等,现调研某自由职业者的工资收入情况,记x 表示该自由职业者的平均水平每天工作的小时数,y 表示平均每天工作x 个小时的月收入.假设y 与x 具有线性相关关系,则y 关与x 的线性回归方程ˆˆˆybx a =+必经过点( ) A .()33, B .()34, C .()44, D .()45,7.甲、乙两人抢答竞赛题,甲答对的概率为15,乙答对的概率为14,则两人中恰有一人答对的概率为 A .720B .12 20C .120D .2208.某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++并参照附表,得到的正确结论是()A.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别无关”C.有99.9%的把握认为“爱好游泳运动与性别有关”D.有99.9%的把握认为“爱好游泳运动与性别无关”9.若对于变量x的取值为3,4,5,6,7时,变量y对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u的取值为1,2,3,4时,变量v对应的值依次分别为2,3,4,6,则变量x和y,变量u和v的相关关系是()A.变量x和y是正相关,变量u和v是正相关B.变量x和y是正相关,变量u和v是负相关C.变量x和y是负相关,变量u和v是负相关D.变量x和y是负相关,变量u和v是正相关10.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下22⨯列联表:做不到“光盘”能做到“光盘”男4510女3015附:()2P K k≥0.100.050.025k 2.706 3.841 5.024()()()()()22n ad bc K a b c d a c b d -=++++参照附录,得到的正确结论是( ) A .在犯错误的概率不超过5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” B .在犯错误的概率不超过2.5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”11.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量并参考以下临界数据:若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过 A .B .C .D .12.为了解学生对街舞的喜欢是否与性别有关,在全校学生中进行抽样调查,根据数据,求得2K 的观测值0 4.804k ≈,则至少有( )的把握认为对街舞的喜欢与性别有关.参考数据:20()P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.841 5.024 6.635 7.879 10.828A .90%B .95%C .97.5%D .99%二、填空题13.某商圈为了吸引顾客举办了一次有奖竟猜活动,活动规则如下:两人一组,每轮竞猜中,每人竞猜两次,两人猜对的次数之和不少于3次就可以获得一张奖券.小蓝和她的妈妈同一小组,小蓝和她妈妈猜中的概率分别为p 1,p 2,两人是否猜中相互独立,若p 1+p 2=32,则当小蓝和她妈妈获得1张奖券的概率最大时,p 12+p 22的值为_____. 14.下列命题中:①已知点(3,0),(3,0)A B -,动点P 满足||2||PA PB =,则点P 的轨迹是一个圆;②已知(2,0),(2,0),||||3M N PM PN --=,则动点P 的轨迹是双曲线; ③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1;④在平面直角坐标系内,到点(1,1)和直线23x y +=的距离相等的点的轨迹是抛物线; 正确的命题是_________.15.在一场对抗赛中,,A B 两人争夺冠军,若比赛采用“五局三胜制”,A 每局获胜的概率均为23,且各局比赛相互独立,则A 在第一局失利的情况下,经过五局比赛最终获得冠军的概率是_____.16.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 17.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是_____________. ①若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.18.若10件产品包含2件次品,今在其中任取两件,已知两件中有一件不是废品的条件下,另一件是废品的概率为__________.19.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A 表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是___________.①()25P B =;②()1511P B A =;③事件B 与事件1A 相互独立;④1A ,2A ,3A 是两两互斥的事件20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.三、解答题21.某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表:x的线性相关程度;(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:()()ni ix x y yr--=∑()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.临界值表:22.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23.(1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X表示结束比赛还需打的局数,求X的分布列及期望.23.某花圃为提高某品种花苗质量,开展技术创新活动,在A,B实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.(1)用样本估计总体,以频率作为概率,若在A ,B 两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.优质花苗 非优质花苗 合计甲培育法 20乙培育法 10合计附:下面的临界值表仅供参考.20()P K k ≥0.050 0.010 0.001 0k3.8416.63510.828(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)24.为了落实这次新冠病毒疫情防范措施,确保广大居民的防控安全,某巡视组为了掌握第一手防控资料和新方法,选择了具有代表性的A 、B 两个社区进行满意度调研(共105户),且针对各种情况设制了达标分数线,按照不少于80分的定为满意,低于80分的为不满意,为此相关人员制作了如下图的22⨯列联表.满意 不满意 总计A 社区 45b =? ?已知从全部105户中随机抽取1户为满意的概率是57. (1)请完成上图的22⨯列联表中的?所代表的值;(2)根据列联表的数据判断能否有95%的把握认为“满意度与社区有关系”?(3)为了进一步了解社区居民对情防范措施不满意的具体情况,巡视组在A 社区按下面的方法抽取一户进行详细调查了解,把A 社区不满意的户主按1、2、3、4,…,开始进行编号,再先后两次抛掷一枚均匀的骰子,出现点数之和为被抽取户主的编号,试求抽到6号或10号的概率.附注:()()()()()22n ad bc K a b c d a c b d -=++++25.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表)(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.26.个人所得税是国家对本国公民、居住在本国境内的个人的所得和境外个人来源于本国的所得征收的一种所得税我国在1980年9月10日,第五届全国人民代表大会第三次会议通过并公布了《中华人民共和国个人所得税法》公民依法诚信纳税是义务,更是责任现将自2013年至2017年的个人所得税收入统计如下:根据散点图判断,可用①nxy me =与②2y px q =+作为年个人所得税收入y 关于时间代号x 的回归方程,经过数据运算和处理,得到如下数据:xyz w()521ii xx =-∑()521ii w w =-∑3 8.92 2.161110 374()()51iii x x zz =--∑()()51iii w w yy =--∑1.6083.83表中ln z y =,2w x =,1ln 5i i z y ==∑,215i i w x ==∑,参考数据: 1.48 5.37e =,0.96 2.61e =.以下计算过程中四舍五入保留两位小数.(1)根据所给数据,分别求出①、②中y 关于x 的回归方程;(2)已知2018年个人所得税收人为13.87千亿元,用2018年的数据验证(1)中所得两个回归方程,哪个更适宜作为y 关于时间代号x 的回归方程?(3)你还能从统计学哪些角度来进一步确认哪个回归方程更适宜?(只需叙述,不必计算)附:对于一组数据()11,u v 、()22,u v 、、(),n n u v ,其回归直线v a u β=+的斜率和截距的最小二乘估计分别为:()()()121nii i nii uu v vuuβ==--=-∑∑,v u αβ=-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜;B ,乙队以3:0获胜,即第4局乙获胜;C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜;D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输. 【详解】解:对于A ,在乙队以2:0领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜,所以甲队获胜的概率为3128()327P ==,故正确; 对于B ,乙队以3:0获胜,即第4局乙获胜,概率为13,故正确;对于C ,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜,概率为212339⨯=,故正确;对于D ,若乙队以3:2获胜,则第五局为乙队取胜,第三、四局乙队输,所以乙队以3:2获胜的概率为221433327⨯⨯=,故错.故选:D . 【点睛】本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于中档题.2.D解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.3.C解析:C 【分析】若甲得冠军且丙得亚军,则甲、乙比赛甲获胜,丙、丁比赛丙获胜,决赛甲获胜. 【详解】甲、乙比赛甲获胜的概率是0.3, 丙、丁比赛丙获胜的概率是0.5, 甲、丙决赛甲获胜的概率是0.3, 根据独立事件的概率等于概率之积,所以, 甲得冠军且丙得亚军的概率:0.30.50.30.045⨯⨯=. 故选C. 【点睛】本题考查独立事件的概率,考查分析问题解决问题的能力.4.C解析:C 【分析】求出1r ,2r ,进行比较即可得到结果 【详解】变量X 与Y 相对应的一组数据为()()()()()10111.3211.8312.54135,,,,,,,,,()1011.311.812.513511.72X ∴=++++÷=()1234553Y =++++÷=即17.20.375519.172r ==变量U 与V 相对应的一组数据为()()()()()10511.3411.8312.52131,,,,,,,,,1234535U ++++==∴这一组数据的相关系数20.3755r =-则第一组数据的相关系数大于0,第二组数据的相关系数小于0 则210r r << 故选C 【点睛】本题主要考查的是变量的相关性,属于基础题.5.D解析:D 【解析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关. 选D.点睛:本题考查卡方含义,考查基本求解能力.6.C解析:C 【解析】分析:由题意结合回归方程的性质确定回归方程经过样本中心点即可. 详解:由题意可得:2345645x ++++==, 2.534 4.5645y ++++==,由线性回归方程的性质可知线性回归方程ˆˆˆy bx a =+经过样本中心点:()4,4. 本题选择C 选项.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】第一种:甲答对,乙答错,此时概率为11315420⎛⎫⨯-=⎪⎝⎭;第二种:甲答错,乙答对,此时的概率为11415420⎛⎫-⨯=⎪⎝⎭. 综上,两人中恰有一人答对的概率为347202020+=. 故选A.8.A解析:A 【解析】()()()()()22n ad bc K a b c d a c b d -=++++2110(1200400)7.82 6.63560506050-=≈>⨯⨯⨯所以在犯错误的概率不超过1%的前提下,认为“爱好游泳运动与性别有关”,选A.9.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.10.D解析:D【解析】经计算()()()()()222100(45153010) 3.030 2.70655457525n ad bc K a b c d a c b d -⨯⨯-⨯==≈>++++⨯⨯⨯,参照附表,得到的正确结论是有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”。
第一章 习题及参考答案
第一章绪论一、单项选择题1、在整个统计工作过程中处于基础地位的是( B )A、统计学B、统计数据搜集C、统计分析D、统计数据的整理2、统计学的核心内容是( D )A、统计数据的搜集B、统计数据的整理C、统计数据的发布D、统计数据的分析3、某班三名学生期末统计学考试成绩分别为78分、84分和95分,这三个数字是( D )A、指标B、标志C、变量D、变量值4、某管理局有20个下属企业,若要调查这20个企业全部职工的工资收入情况,则统计总体为( C )A、20个企业B、20个企业的每个职工C、20个企业的全部职工D、20个企业每个职工的工资5、现代统计学的主要内容是( D )A、描述统计B、理论统计C、应用统计D、推断统计6、( B )是整个统计学的基础。
A、理论统计B、描述统计C、推断统计D、应用统计二、多项选择题1、统计学( ABCE )A、主要特征是研究数据B、研究具体的实际现象的数量规律C、研究方法为演绎与归纳相结合D、研究抽象的数量规律E、研究有具体实物或计量单位的数据2、数学( ACDE )A、为统计理论和统计方法的发展提供数学基础B、研究具体的数量规律C、研究抽象的数量规律D、研究方法为纯粹的演绎E、研究没有量纲或单位的抽象的数三、填空题1、___描述统计______和__推断统计_______是统计方法的两个组成部分。
2、统计过程的起点是__数据搜集_______,终点是探索出客观现象内在的______数量规律性________。
3、统计数据的分析是通过___统计描述________和___统计推断________的方法探索数据内在规律的过程。
四、联系实际举例说明,为什么统计方法能够通过对数据的分析找出其内在的规律性?(要求举三个例子且不与教科书上的例子雷同)第一章参考答案一、单项选择题1、 B2、D3、D4、C5、D6、B二、多项选择题1、ABCE2、ACDE三.填空题1、描述统计、推断统计2、数据搜集、数量规律性3、统计描述、统计推断第二章统计数据的搜集与整理一、单项选择题1、某种产品单位成本计划比基期下降3%,实际比基期下降了3.5%,则单位成本计划完成相对数为( D )A、116.7%B、100.5%C、85.7%D、99.5%2、计算结构相对数时,总体各部分数值与总体数值对比求得的比重之和( C )A、小于100%B、大于100%C、等于100 %:D、小于或大于100%3、将全班学生划分为“男生”和“女生”,这里采用的数据计量尺度位( C )A、定比尺度B、定距尺度C、定类尺度D、定序尺度4、将全班学生期末统计学考试成绩划分为优、良、中、及格、不及格,这里采用的数据计量尺度为( C )A、定类尺度B、定距尺度C、定序尺度D、定比尺度5、昆明市的温度为260C与景洪市的温度310C相差50C,这里采用的数据计量尺度位( A )A、定距尺度B、定类尺度C、定比尺度D、定序尺度6、张三的月收入为1500元,李四的月收入为3000元,可以得出李四的月收入是张三的两倍,这里采用的数据计量尺度位( B )A、定序尺度B、定比尺度C、定距尺度D、定类尺度7、一次性调查是指( C )A、只作过一次的调查B、调查一次,以后不再调查C、间隔一定时间进行一次调查D、只隔一年就进行一次的调查8、在统计调查中,调查单位和填报单位之间( D )A、无区别B、是毫无关系的两个概念C、不可能是一致的D、有时一致,有时不一致9、下列中,属于品质标志的是( B )A、工人年龄B、工人性别C、工人体重D、工人工资10、商业企业的职工人数、商品销售额是( C )A、连续变量B、前者是连续变量,后者是离散变量C、前者是离散变量,后者是连续变量D、离散变量11、对昆明市所有百货商店的工作人员进行普查,调查对象是( B )A、昆明市所有百货商店B、昆明市所有百货商店的全体工作人员C、昆明市的一个百货商店D、昆明市所有百货商店的每一位工作人员12、在全国人口普查中,调查单位是( B )A、全国人口B、每一个人C、每个人的性别D、每个人的年龄13、对某城市工业企业的设备进行普查,填报单位为( C )A、全部设备B、每台设备C、每个工业企业D、全部工业企业14、某城市拟对占全市储蓄额4/5的几个大储蓄所进行调查,以了解全市储蓄的一般情况,则这种调查方式是( D )A.普查 B、典型调查 C、抽样调查 D、重点调查15、人口普查规定统一的标准时间是为了( A )A、避免登记的重复和遗漏B、确定调查的范围C、确定调查的单位D、登记的方便16、( C )是对事物最基本的测度。
统计学第一章习题及答案
第一章第一章緖论一、单项选择题1、研究某市全部工业企业的产品生产情况,总体单位是( )。
A、每一个工业企业B、全部工业企业C、每一个产品D、全部工业产品2、统计有三种涵义,其中( )是基础、是源。
A、统计学B、统计资料C、统计工作D、统计方法3、一个统计总体( )。
A、只能有一个指标B、只能有一个指标志C、可以有多个指标D、可以有多个指标志4、构成统计总体的总体单位( )。
A、只能有一个标志B、只能有一个指标C、可以有多个指标D、可以有多个标志5、要了解100个学生的学习情况,则总体单位( )。
A、100个学生B、100个学生的学习情况C、每一个学生D、每一个学生的学习情况6、研究某市工业企业的生产设备使用情况,则统计总体是( )。
A、该市全部工业企业B、该市每一个工业企业C、该市工业企业的每一台生产设备D、该市工业企业的全部生产设备7、以全国的石油工业企业为总体,则大庆石油工业总产值是( )。
A、品质标志B、数量标志C、数量指标D、质量指标8、某工人月工资90元,则工资是( )。
A、质量指标B、数量指标C、数量标志D、变量值9、要了解某市职工情况,统计指标是( )。
A、该市每个职工B、该市每个职工的工资C、该市全部职工D、该市职工的工资总额10、刘老师的月工资为480元,则480元是( )。
A、数量指标B、数量标志C、变量值D、质量指标11、“统计”一词的三种涵义是( ) 。
A、统计调查、统计资料、统计分析B、统计工作、统计资料、统计学C、统计设计、统计调查、统计整理D、大量观察法、分组法、综合指标法12、下列变量中属于连续变量的是()。
A、职工人数B、设备台数C、学生的年龄D、工业企业数13、下列标志中属于数量标志的是( )。
A、人的性别B、地形条件C、人的年龄D、工人的工种14、下列标志属于品质标志的是( )。
A、教师的教龄B、学生的成绩C、商品的价格D、民族15、在全国人口普查中( )。
2022高中数学第1章统计案例2
第一章DIYIZHANG统计案例§2独立性检验2.1条件概率与独立事件课后篇巩固提升A组1.从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)=()A. B. C. D.(A)=,P(AB)=,由条件概率计算公式,得P(B|A)=.2.某单位组织开展党史知识竞赛活动,以支部为单位参加比赛,某支部在5道党史题中(有3道选择题和2道填空题),不放回地依次随机抽取2道题作答,设事件A为“第1次抽到选择题”,事件B为“第2次抽到选择题”,则下列结论中不正确的是()A.P(A)=B.P(AB)=C.P(B|A)=D.P(B|)=(A)=,故A正确;P(AB)=,故B正确;P(B|A)=,故C正确;P()=1-P(A)=1-,P(B)=,P(B|)=,故D错误.故选D.3.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45,则随后一天空气质量也优良的概率为p,则得0.6=0.75·p,解得p=0.8,故选A.4.某中学开展主题为“学习宪法知识,弘扬宪法精神”的知识竞赛活动,甲同学答对第一道题的概率为,连续答对两道题的概率为.用事件A表示“甲同学答对第一道题”,事件B表示“甲同学答对第二道题”,则P(B|A)=()A. B. C. D.P(AB)=,P(A)=,∴P(B|A)=.故选D.5.如图,用K,A1,A2三类不同的元件连接成一个系统.当K正常工作且A1,A2至少有一个正常工作时,系统正常工作.已知K,A1,A2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为()A.0.960B.0.864C.0.720D.0.576:由题意知K,A1,A2正常工作的概率分别为P(K)=0.9,P(A1)=0.8,P(A2)=0.8, ∵K,A1,A2相互独立,∴A1,A2至少有一个正常工作的概率为P(A2)+P(A1)+P(A1A2)=(1-0.8)×0.8+0.8×(1-0.8)+0.8×0.8=0.96.∴系统正常工作的概率为P(K)[P(A2)+P(A1)+P(A1A2)]=0.9×0.96=0.864.方法二:A1,A2至少有一个正常工作的概率为1-P()=1-(1-0.8)(1-0.8)=0.96,∴系统正常工作的概率为P(K)[1-P()]=0.9×0.96=0.864.6.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为..128,该选手的第二个问题必答错,第三、四个问题必答对,故该选手恰好回答了4个问题就晋级下一轮的概率P=1×0.2×0.8×0.8=0.128.7.已知随机事件A和B相互独立,若P(AB)=0.36,P()=0.6(表示事件A的对立事件),则P(B)=..9P(A)=1-P()=0.4,由独立事件的概率乘法公式可得P(AB)=P(A)P(B),因此,P(B)==0.9.8.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为.,则袋中还有9个球,其中5个新球,所以第二次取出新球的概率为.9.集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取,乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.1:将甲抽到数字a,乙抽到数字b,记作(a,b),则所有可能的抽取结果为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,5),( 4,6),(5,1),(5,2),(5,3),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),共30个.其中甲抽到奇数的情形有15个,在这15个中,乙抽到的数比甲抽到的数大的有9个,所求概率P=.解法2:设甲抽到奇数的事件为A,甲抽到奇数,且乙抽到的数比甲大为事件B,则P(A)=.P(AB)=,故P(B|A)=.10.某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张.(1)两人都抽到足球票的概率是多少?(2)两人中至少有1人抽到足球票的概率是多少?“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B,则“甲从第一小组的10张票中任抽1张,抽到排球票”为事件,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件,于是P(A)=,P()=;P(B)=,P()=.由于甲(或乙)是否抽到排球票,对乙(或甲)是否抽到足球票没有影响,因此A与B是相互独立事件.(1)两人都抽到足球票的概率为P=P(A)·P(B)=.(2)两人都抽到排球票的概率为P=P()·P()=.故两人至少有1人抽到足球票的概率为P=1-.B组1.已知某产品的次品率为4%,其合格品中75%为一级品,则任选一件为一级品的概率为()A.75%B.96%C.72%D.78.125%“任选一件产品是合格品”为事件A,则P(A)=1-P()=1-4%=96%.记“任选一件产品是一级品”为事件B.由于一级品必是合格品,所以事件A包含事件B,故P(AB)=P(B).由合格品中75%为一级品知P(B|A)=75%;故P(B)=P(AB)=P(A)·P(B|A)=96%×75%=72%.2.从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,下列结论不正确的是()A.2个球都是红球的概率为B.2个球不都是红球的概率为C.至少有1个红球的概率为D.2个球中恰有1个红球的概率为A选项,2个球都是红球的概率为,A选项正确;对于B选项,2个球不都是红球的概率为1-,B 选项错误;对于C选项,至少有1个红球的概率为1-,C选项正确;对于D选项,2个球中恰有1个红球的概率为,D选项正确.故选B.3.已知P(AB)=P(A)P(B),且P()=,P(A)=P(B),则事件A发生的概率是()A. B. C. D.P(AB)=P(A)P(B),知A与B相互独立,故A与与B,都是相互独立的,由P(A)=P(B),得P(A)P()=P(B)P(),即P(A)[1-P(B)]=P(B)[1-P(A)],得P(A)=P(B).∵P()=,∴P()=P()=,∴P(A)=.4.某农业科技站对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9.在这批水稻种子中,随机地取出一粒,则这粒水稻种子发芽并能成长为幼苗的概率为() A.0.02 B.0.08 C.0.18 D.0.72“这粒水稻种子发芽”为事件A,“这粒水稻种子发芽并成长为幼苗”为事件AB,“这粒水稻种子在发芽的前提下能成长为幼苗”为事件B|A,则P(A)=0.8,P(B|A)=0.9,由条件概率公式,得P(AB)=P(B|A)·P(A)=0.9×0.8=0.72.5.市场上供应的灯泡中,甲厂占70%,乙厂占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则市场上灯泡的合格率是..5%A={甲厂产品},B={乙厂产品},C={合格产品},则C=AC+BC,所以P(C)=P(AC)+P(BC)=P(A)·P(C|A)+P(B)·P(C|B)=70%×95%+30%×80%=0.905=90.5%.6.设甲乘汽车、火车前往目的地的概率分别为0.6,0.4,汽车和火车正点到达目的地的概率分别为0.9,0.8,则甲正点到达目的地的概率为..86P=0.6×0.9=0.54,当甲乘火车时正点到达目的地的概率为P=0.4×0.8=0.32,所以甲正点到达目的地的概率为P=0.54+0.32=0.86.7.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽1张,已知第1次抽到A,则第2次也抽到A的概率为多少?1次抽到A为事件M,第2次也抽到A为事件N,则MN表示两次都抽到A, P(M)=,P(MN)=,P(N|M)=.8.制造一机器零件,甲机床生产的废品率是0.04,乙机床生产的废品率是0.05,从它们生产的产品中各任取1件,求:(1)两件都是废品的概率;(2)其中没有废品的概率;(3)其中恰有1件废品的概率;(4)其中至少有1件废品的概率;(5)其中至多有1件废品的概率.“从甲机床生产的产品中抽得1件是废品”为事件A,“从乙机床生产的产品中抽得1件是废品”为事件B.则P(A)=0.04,P(B)=0.05.(1)P(AB)=P(A)P(B)=0.04×0.05=0.002.(2)P()=P()P()=0.96×0.95=0.912.(3)P(B+A)=P()P(B)+P(A)P()=0.96×0.05+0.04×0.95=0.086.(4)至少有一件是废品的对应事件为B+A+AB,易知B,A,AB是彼此互斥的三件事件.故所求概率为P=P(B+A+AB)=P(B+A)+P(AB)=0.086+0.002=0.088.(利用(1),(3)小题的结果)或考虑其对应事件“没有废品”,故P=1-P()=1-0.912=0.088.(5)“至多有一件是废品”即为事件B+A;其对立事件为“两件都是废品”:AB.故所求概率P=P(B+A)=1-P(AB)=1-0.002=0.998.。
统计基础知识第1章试题和答案
统计基础第一章概述一、名词解释⒈大量观察法⒉统计指标⒊标志表现⒋离散变量⒌统计机构二.填空题(0.5×40=20分)⒈统计具有、和等职能。
其中是其基本职能。
⒉统计一词包括、和三种涵义;其中是统计工作的成果,是统计工作的经验总结和理论概括。
⒊统计学研究对象的特征可概括为、、等。
其中基本特征.⒋统计的工作过程包括、、、和等阶段.⒌统计研究的基本方法有、和。
其中后者又可分为、和.⒍统计总体是由的许多个体单位所构成的整体,它具有、、等特征。
⒎统计标志值按其性质不同可分为和;按其变异情况不同可分为和 .⒏变量按期取其是否连续可分为和。
⒐统计机构是从事、、、、等活动的组织。
我国《统计法》规定设立的统计机构分为、、三种。
⒑.《中华人民共和国》于年制定,于年修改;《中华人民共和国统计法实施细则》于年制定,于年修改。
三。
单项选择题(1×8=8分)⒈数理学派的代表人是()①康令②阿亨华尔③配第④凯特勒⒉在统计学发展过程中,被称为统计学创始人的是()①康令②阿亨华尔③配第④凯特勒⒊构成统计总体的基础和前提是在要求总体个单位在某方面具有( )①综合性②同质性③变异性④大量性⒋在调查某城市农民工的生活状况时,总体是()①该市全部农民工②该市每个农民工家庭③该市全部农民工家庭④该市农民工家庭户数⒌在调查某校0605班48名学生的学习的学习情况时,总体单位是( )①该班48名学生②该班每一名学生③该班48名学生的学习成绩④该班每一名学生的学习成绩⒍某公司员工王海燕的月工资额为2580元,则“工资"是( )①标志②品质标志③数量标志④数量指标⒎在进行工业普查时,若以一个工业企业为调查单位,那么所有工业企业的“劳动生产率”( )①品质标志②数量标志③指标④数量指标⑤质量标志⒏随机抽样某公司六名员工进行调查,获取其月工资额的数据分别为1730、2750、2280、2186、1190、1550元。
这些数字是()①标志②指标③变量④变量值或标志值⒐下列说法正确的是( )①质量指标不一定可量②标志必须可量③指标必须可量,标志不一定可量④指标不一定可量,标志必须可量⒑一个统计总体( )①只能有一个标志②只能有一个指标③可以有多个指标④可以有多个标志⒒我国的企事业组织( )①必须设立统计机构②根据统计任务的需要设立统计机构或在有关机构中设立统计人员③是否设立统计机构由同级人民政府统计机构④是否设立统计机构由同级人民政府统计机构规定⒓( )所搜集的统计信息是我国统计信息的重要源头①政府综合统计机构②部门统计机构③企事业统计组织④个人四.多项选择题(2×5=10分)⒈以全国所有高校为研究对象,其中某所高校的“学生人数”是( )①数量标志②数量指标③变量④变量值⒉指标的主要特点是()①可量性②综合性③客观性④具体性⒊统计总体的特征表现为( )①大量性②数量性③同质性④差异性⑤客观性⒋以某校全体学生为研究对象,下列统计数据中()等是统计指标①男生所占比重为54﹪②女生人数为1250人③某学生的身高为1。
高中数学选修1-2第一章课后习题解答
新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。
上海曹杨二中附属江桥实验中学选修1-2第一章《统计案例》测试卷(有答案解析)
一、选择题1.如图是九江市2019年4月至2020年3月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r =0.83,则下列结论错误的是( )A .每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关B .月温差(月最高气温﹣月最低气温)的最大值出现在10月C .9﹣12月的月温差相对于5﹣8月,波动性更大D .每月最高气温与最低气温的平均值在前6个月逐月增加2.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.变量X 与Y 相对应的一组数据为(10 , 1),(11.3 , 2),(11.8 , 3),(12.5 , 4),(13 , 5);变量U 与V 相对应的一组数据为(10 , 5),(11.3 , 4),(11.8 , 3),(12.5 , 2),(13 , 1).1r 表示变量Y X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则( )A .120r r <<B .210r r <<C .210r r <<D .21r r =4.某射手射击一次命中的概率为0.8,连续两次射击均命中的概率是0.6,已知该射击手某次射中,则随后一次射中的概率是( ) A .34B .45C .35D .7105.从混有4张假钞的10张一百元纸币中任意抽取3张,若其中一张是假币的条件下,另外两张都是真币的概率为( ) A .512B .58C .35 D .126.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样 7.根据如下样本数据:得到回归方程 1.412.ˆ4yx =-+,则 A .5a =B .变量x 与y 线性正相关C .当x =11时,可以确定y =3D .变量x 与y 之间是函数关系 8.下面是22⨯列联表:则表中a b ,的值分别为( ) A .84,60B .42,64C .42, 74D .74, 429.下列结论中正确的是( )A .若两个变量的线性关系性越强,则相关系数的绝对值越接近于0B .回归直线至少经过样本数据中的一个点C .独立性检验得到的结论一定正确D .利用随机变量2x 来判断“两个独立事件,X Y 的关系”时,算出的2x 值越大,判断“,X Y 有关”的把握越大 10.已知()112P A =,()136P AB =,()512P B =,则()P B A 为( ) A .12 B .13C .115D .1511.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P (B/A )=( ) A .14B .13C .12D .2312.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A.0.12 B.0.42 C.0.46 D.0.88二、填空题13.国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是5 6,35,34,13,且各轮考核能否通过互不影响.则该软件至多进入第三轮考核的概率为______.14.某人抛掷一枚均匀骰子,构造数列{}n a,使1,()1,()nnan⎧=⎨-⎩当第次掷出偶数当第次掷出奇数,记12n nS a a a=+++,则2S≠且82S=的概率为_____.15.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6道,乙能答对其中的8道,规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才算合格,则甲、乙两人至少有一人考试合格的概率为________.16.有如下四个命题:①甲乙两组数据分别为甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67.则甲乙的中位数分别为45和44.②相关系数0.83r=-,表明两个变量的相关性较弱.③若由一个2⨯2列联表中的数据计算得2K的观测值 4.103k≈,那么有95%的把握认为两个变量有关.④用最小二乘法求出一组数据(,),(1,,)i ix y i n=的回归直线方程ˆˆˆy bx a=+后要进行残差分析,相应于数据(,),(1,,)i ix y i n=的残差是指()ˆˆˆi i ie y bx a=-+.以上命题“错误”的序号是_________________17.从某高校在校大学生中随机选取5名女大学生,由她们身高和体重的数据得到的回归直线方程为ˆ0.7973.56y x=-,数据列表是:则其中的数据a=__________.18.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p,若该同学本次测试合格的概率为0.784,则p=_____.19.以下说法正确的是_____________ .①类比推理属于演绎推理.②设有一个回归方程ˆ23y x=-,当变量每增加1个单位,y平均增加3个单位.③样本相关系数r 满足以下性质:1r ≤,并且r 越接近1,线性相关程度越强;r 越接近0,线性相关程度越弱.④对复数12,z z 和自然数n 有()1212nn n z z z z ⋅=⋅.20.如图所示,在边长为1的正方形OABC 内任取一点P ,用A 表示事件“点P 恰好取自由曲线y x =与直线1x =及x 轴所围成的曲边梯形内”, B 表示事件“点P 恰好取自阴影部分内”,则(|)P B A =_________.三、解答题21.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查结果如下面22⨯列联表.关注 没关注 合计男 30女 3040合计22⨯与性别有关”?(2)现在从这100名学生中按性别采取分层抽样的方法抽取5名学生,如果再从中随机选取2人进行有关“嫦娥五号”情况的宣讲,求选取的2名学生中恰有1名女生的概率.若将频率视为概率. 附:()20P K k ≥0.150 0.100 0.050 0.010 0.0050k 2.0722.7063.841 6.635 7.879()()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++22.2020年10月份黄山市某开发区一企业顺利开工复产,该企业生产不同规格的一种产品,根据检测标准,其合格产品的质量y (单位:g )与尺寸x (单位:mm )之间近似满足关系式b y c x =⋅(b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间,97e e ⎛⎫⎪⎝⎭内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数试求随机变量的分布列和期望;(2)根据测得数据作了初步处理,得相关统计量的值如下表:②已知优等品的收益z (单位:千元)与x ,y 的关系为20.32z y x =-,则当优等品的尺寸x 为何值时,收益z 的预报值最大?(精确到0.1) 附:对于样本(),(1,2,,)i i v u i n =,其回归直线u b v a =⋅+的斜率和截距的最小二乘估计公式分别为:()()()1122211ˆnniii i i i nni ii i v v u u v u nvubv v vnv====---==--∑∑∑∑,ˆˆa u bv=-, 2.7182e ≈. 23.2020年11月某市进行了高中各年级学生的“国家体质健康测试”.现有1500名(男生1200名,女生300名)学生的测试成绩,根据性别按分层抽样的方法抽取100名学生进行分析,得到如下统计图表: 男生测试情况:(1)现从抽取的100名且测试成绩为优秀的学生中随机挑选两名学生,求选出的这两名学生恰好是一男一女的概率;(2)若测试成绩为良好或优秀的学生为“体育达人”,其他成绩的学生(含病残等免试学生)为“非体育达人”.根据以上统计数据填写下面的列联表,并回答能否在犯错误的概率不超过0.01的前提下认为“是否为体育达人与性别有关?”男性 女性 总计体育达人 非体育达人 总计()20P K k ≥0.10 0.05 0.025 0.010 0.0050k2.7063.841 5.024 6.635 7.879附:22(),()()()()n ad bc K n a b c d a b c d a c b d ⎛⎫-==+++ ⎪++++⎝⎭24.在一次抽样调查中测得5个样本点,得到下表及散点图.x0.250.51 2 4 y1612521(1)根据散点图判断y a bx =+与1y c k x -=+⋅哪一个适宜作为y 关于x 的回归方程;(给出判断即可,不必说明理由)(2)根据(1)的判断结果试建立y 与x 的回归方程;(计算结果保留整数) (3)在(2)的条件下,设=+z y x 且[)4,x ∈+∞,试求z 的最小值.参考公式:回归方程ˆˆˆy bx a =+中,()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑,a y bx =-.25.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 26.自然资源部门对某市饮用水厂中的地下水质量进行监测,随机抽查了100眼水井进行监测,得到溶解性总固体浓度(单位:mg L )和硫酸盐浓度(单位:mg L )的分布如下表:(1)估计事件“该市某一水井中溶解性总固体浓度不超过500,且硫酸盐浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市水井中溶解性总固体浓度与硫酸盐浓度有关?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据相关系数的性质判断A;根据所给折线图,对B,C,D逐项进行判断.【详解】每月最低气温与最高气温的线性相关系数r=0.83,比较接近于1,则每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关,则A正确;由所给的折线图可以看出月温差(月最高气温﹣月最低气温)的最大值出现在10月,则B 正确;5﹣8月的月温差分别为18,17,16,16,9﹣12月的月温差分别为20,31,24,21,则9﹣12月的月温差相对于5﹣8月,波动性更大,C正确;每月的最高气温与最低气温的平均值在前5个月逐月增加,第六个月开始减少,所以A正确,则D错误;故选:D【点睛】本题主要考查了根据折线图解决实际问题以及相关系数的性质的应用,对于相关系数r ,r 越接近于1,两个变量的线性相关程度越强,属于中档题. 2.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.3.C解析:C 【分析】求出1r ,2r ,进行比较即可得到结果 【详解】变量X 与Y 相对应的一组数据为()()()()()10111.3211.8312.54135,,,,,,,,,()1011.311.812.513511.72X ∴=++++÷=()1234553Y =++++÷=即17.20.375519.172r ==变量U 与V 相对应的一组数据为()()()()()10511.3411.8312.52131,,,,,,,,,1234535U ++++==∴这一组数据的相关系数20.3755r =-则第一组数据的相关系数大于0,第二组数据的相关系数小于0 则210r r << 故选C 【点睛】本题主要考查的是变量的相关性,属于基础题.4.A解析:A 【解析】分析:某次射中,设随后一次射中的概率为p ,利用相互独立事件概率乘法公式能求出p 的值.详解:某次射中,设随后一次射中的概率为p ,∵某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,0.80.6p ,∴= 解得34p =.故选:A .点睛:本题考查概率的求法,涉及到相互独立事件概率乘法公式的合理运用,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.5.A解析:A 【解析】分析:直接利用条件概率公式求解.详解:由条件概率公式得26291553612C P C ===.故答案为A 点睛:(1)本题主要考查条件概率,意在考查学生对条件概率的掌握水平.(2) 条件概率一般有“在A 已发生的条件下”这样的关键词,表明这个条件已经发生, 发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别.6.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A7.A解析:A 【解析】 由题意可得:357964x +++==,6321144a ay ++++==,回归方程过样本中心点,则:11 1.4612.44a+=-⨯+, 求解关于实数a 的方程可得:5a =,由 1.40ˆb=-<可知变量x 与y 线性负相关; 当x =11时,无法确定y 的值;变量x 与y 之间是相关关系,不是函数关系. 本题选择A 选项.点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.8.B解析:B 【解析】因2163a +=,故42a =,又22a b +=,则64b = ,应选答案B 。
统计学第一章习题及答案
第一章第一章緖论一、单项选择题1、研究某市全部工业企业的产品生产情况,总体单位是()。
A、每一个工业企业B、全部工业企业C、每一个产品D、全部工业产品2、统计有三种涵义,其中()是基础、是源.A、统计学B、统计资料C、统计工作D、统计方法3、一个统计总体( )。
A、只能有一个指标B、只能有一个指标志C、可以有多个指标D、可以有多个指标志4、构成统计总体的总体单位()。
A、只能有一个标志B、只能有一个指标C、可以有多个指标D、可以有多个标志5、要了解100个学生的学习情况,则总体单位()。
A、100个学生B、100个学生的学习情况C、每一个学生D、每一个学生的学习情况6、研究某市工业企业的生产设备使用情况,则统计总体是( )。
A、该市全部工业企业B、该市每一个工业企业C、该市工业企业的每一台生产设备D、该市工业企业的全部生产设备7、以全国的石油工业企业为总体,则大庆石油工业总产值是( )。
A、品质标志B、数量标志C、数量指标D、质量指标8、某工人月工资90元,则工资是( )。
A、质量指标B、数量指标C、数量标志D、变量值9、要了解某市职工情况,统计指标是( )。
A、该市每个职工B、该市每个职工的工资C、该市全部职工D、该市职工的工资总额10、刘老师的月工资为480元,则480元是( )。
A、数量指标B、数量标志C、变量值D、质量指标11、“统计”一词的三种涵义是()。
A、统计调查、统计资料、统计分析B、统计工作、统计资料、统计学C、统计设计、统计调查、统计整理D、大量观察法、分组法、综合指标法12、下列变量中属于连续变量的是()。
A、职工人数B、设备台数C、学生的年龄D、工业企业数13、下列标志中属于数量标志的是( )。
A、人的性别B、地形条件C、人的年龄D、工人的工种14、下列标志属于品质标志的是( )。
A、教师的教龄B、学生的成绩C、商品的价格D、民族15、在全国人口普查中( )。
A、全国的人口是统计指标B、人的年龄是变量C、人口的平均寿命是数量标志D、男性是品质标志16、某自行车大厂要统计该企业的自行车产量和产值,上述两个变量( ) 。
统计学第1.2章--习题PPT课件
.
7
13. 一项民意调查的目的是想确定年轻人愿意与其 父母讨论的话题。调查结果表明:45%的年轻人 愿意与父母讨论家庭财务状况,38%的年轻人愿 意与父母讨论有关教育的话题,15%的年轻人愿 意与其父母讨论爱情问题。该调查所收集的数据 室( A)
A. 分类数据
B. 顺序数据
C. 数值型数据 D. 实验数据
些小学生每周看电视的平均时间是15小时,标准 差是5小时。该机构数据搜集的方式是( A )
A.概率抽样调查
B. 观察调查
C.实验调查
D.公开发表的资料
.
13
9. 如果一个样本因人故意操纵而出现误差,这种误 差属于( B)
A. 抽样误差
B. 非抽样误差
C. 设计误差
D. 实验误差
10. 下面陈述哪一个是错误的( B) A. 抽样误差只存在于概率抽样中 B. 非抽样误差只存在于非概率抽样中 C. 无论概率抽样还是非概率抽样都存在非抽样误 差 D.在全面调查中也存在非抽样误差
第一章 复习题
.
1
选择题
1.指出下面数据哪一个是分类数据( A )
A. 年龄
B. 工资 C.汽车产量
D.购买商品的支付方式(现金、信用卡、支票)
2.指出下面的数据哪一个是顺序数据( D )
A. 年龄
B. 工资 C.汽车产量
D.员工对企业某项改革措施的态度(赞成、中立、
反对)
.
2
3.指出下面数据哪一个是数值型数据( A )
.
14
11. 指出下列陈述哪一个是错误的( A) A. 抽样误差是可以避免的 B. 非抽样误差是可以避免的 C. 抽样误差是不可以避免的 D. 抽样误差是可以控制的
1.2第一章复习
疱疹面积小于70 mm2
疱疹面积不小于70 mm2
总计
注射药物A
a=
b=
注射药物B
c=
d=
总计
n=
解:
表1:注射药物A后皮肤疱疹面积的频数分布表
疱疹面积
[60,65)
[65,70)
[70,75)
[75,80)
频数
30
40
20
10
表2:注射药物B后皮肤疱疹面积的频数分布表
疱疹面积
[60,65)
[65,70)
[70,75)
[75,80)
[80,85)
频数
10
25
20
30
15
完成下面2×2列联表,并回答能否有99%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.
:
4.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果.
冷漠情况
看电视情况
冷漠
不冷漠
合计
多看电视
68
42
110
少看电视
20
38
58
合计
88
80
168
则由表可知大约有________的把握认为多看电视与人变冷漠有关系.
二、解答题
1.为观察药物A,B治疗某病的疗效,某医生将100例该病的病人随机地分成两组,一组40人,服用A药;另一组60人,服用B药.结果发现:服用A药物的40人中有30人治愈;服用B药的60人中有11人治愈.问:A,B两药对该病的治愈之间是否有显著差别?
解:
4.在由12道选择题和4道填空题组成的考题中,如果不放回地依次抽取2道题,求:
(1)第一次抽到填空题的概率;
(必考题)高中数学选修1-2第一章《统计案例》检测(答案解析)(1)
一、选择题1.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9162.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%4.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .595.某射手射击一次命中的概率为0.8,连续两次射击均命中的概率是0.6,已知该射击手某次射中,则随后一次射中的概率是( ) A .34B .45C .35D .7106.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1157.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =8.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样9.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 10.在一次独立性检验中,得出列表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720B .360C .180D .9011.下列有关结论正确的个数为( )①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()2|9P A B =; ②设,a b ∈R ,则“22log log a b >”是“21a b ->的充分不必要条件;③设随机变量ξ服从正态分布(),7N μ,若()()24P P ξξ<=>,则μ与D ξ的值分别为3,7D μξ==. A .0B .1C .2D .312.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;二、填空题13.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p 值为______. 14.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.15.如图, A, B, C 表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________16.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.17.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.18.甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为12,乙投篮命中的概率为23,求甲至多命中2个且乙至少命中2个概率____.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)的值是_____.20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.2020年1月24日,中国疾控中心成功分离中国首株新型冠状病毒毒种.6月19日,中国首个新冠mRNA疫苗获批启动临床试验,截至2020年10月20日,中国共计接种了约6万名受试者,为了研究年龄与疫苗的不良反应的统计关系,现从受试者中采取分层抽样抽取100名,其中大龄受试者有30人,舒张压偏高或偏低的有10人,年轻受试者有70人,舒张压正常的有60人.(1)根据已知条件完成下面的22⨯列联表,并据此资料你是否能够以99%的把握认为受试者的年龄与舒张压偏高或偏低有关?大龄受试者年轻受试者合计舒张压偏高或偏低舒张压正常合计6人,从抽出的6人中任取3人,设取出的大龄受试者人数为X,求X的分布列和数学期望.运算公式:()()()()()22n ad bcKa b c d a c b d-=++++,对照表:22.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面22⨯列联表,并问是否有0099的把握认为“两个分厂生产的零件的质量有差异”.附:22()()()()()n ad bcKa b c d a c b d-=++++23.为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示. (1)求a 的值及通过电子阅读的居民的平均年龄;(2)把年龄在第123,,组的居民称为青少年组,年龄在第45,组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成上面22⨯列联表,则是否有97.5%的把握认为阅读方式与年龄有关? ()()()()()22n ad bc K a b a d b c c d -=++++()2P K k >0.15 0.100.050.025 0.010 0.005 0.001k2.0722.7063.8415.0246.6357.879 10.82824.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为子调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到如图所示的频率分布直方图.(1)根据女性频率分布直方图估计女性使用微信的平均时间;(2)若每天再微信超过4个小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“微信控”与“性别有关”? 25.2019年,中国的国内生产总值(GDP )已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x1 2 3 4 5 6 7 8 y1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型by a x=+和指数函数模型dx y ce =分别对两个变量的关系进行拟合.为此变换如下:令1xμ=,则y a b μ=+,即y 与μ满足线性关系;令ln νμ=,则ln c dx ν=+,即ν与x 也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54dx y e =,ν与x 的相关系数10.94r =-,其他参考数据如表(其中1ln i i i iy x μν==).(1)求指数函数模型和反比例函数模型中y 关于x 的回归方程;(2)试计算y 与μ的相关系数2r ,并用相关系数判断:选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?(3)根据(2)小题的选择结果,该企业采取订单生产模式(即根据订单数量进行生产,产品全部售出).根据市场调研数据,该产品单价定为100元时得到签订订单的情况如表:已知每件产品的原料成本为10元,试估算企业的利润是多少?(精确到1千元) 参考公式:对于一组数据()11,μν,()22,μν,⋅⋅⋅,(),n n μν,其回归直线ναβμ=+的斜率和截距的最小二乘估计分别为:1221ni i i nii n n μνμνβμμ==-=-∑∑,ανβμ=-,相关系数ni in r μνμν-=∑26.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n 的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名. ①完成如下所示22⨯列联表技术工 非技术工 总计 月工资不高于平均数 50 月工资高于平均数50 总计5050100②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.050.01 0.005 0.001 0k 3.8416.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.2.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.3.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.C解析:C 【解析】分析:利用概率的计算公式,求解事件A 和事件A B 的概率,即可利用条件概率的计算公式,求解答案.详解:由题意,事件A =“第一次摸出的是红球”时,则63()105P A ==, 事件A =“第一次摸出的是红球”且事件B =“第二次摸出白球”时,则6412()10945P AB =⨯=, 所以()4(|)()9P AB P B A P A ==,故选C . 点睛:本题主要考查了条件概率的计算,其中熟记条件概率的计算公式和事件的概率是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力.5.A解析:A 【解析】分析:某次射中,设随后一次射中的概率为p ,利用相互独立事件概率乘法公式能求出p 的值.详解:某次射中,设随后一次射中的概率为p ,∵某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,0.80.6p ,∴= 解得34p =.故选:A .点睛:本题考查概率的求法,涉及到相互独立事件概率乘法公式的合理运用,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.6.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.7.D解析:D 【解析】分析:由题意1A ,2A ,3A是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A是两两互斥事件, ()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.8.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A9.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.10.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.11.D解析:D 【解析】对于①,4344443273()()464432A PB P AB ⨯====,,所以()2()()9P AB P A B P B ==,故①正确;对于②,当22log log a b >,有0a b >>,而由21a b ->有a b >,因为0,0a b a b a b a b >>⇒>>≠>>> ,所以22log log a b >是21a b ->的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线3ξ=对称,且27σ= 所以3,7D μξ==,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.12.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.二、填空题13.【分析】根据甲乙两人各射击一次得分之和为2的概率为列方程解方程求得的值【详解】甲乙两人各射击一次得分之和为2可能是甲击中乙未击中或者乙击中甲未击中故解得故答案为:【点睛】本小题主要考查相互独立事件概解析:34【分析】根据甲、乙两人各射击一次得分之和为2的概率为920列方程,解方程求得p 的值. 【详解】甲、乙两人各射击一次得分之和为2,可能是甲击中乙未击中,或者乙击中甲未击中,故()339115520p p ⎛⎫⋅-+⋅-= ⎪⎝⎭,解得34p =. 故答案为:34【点睛】本小题主要考查相互独立事件概率计算,属于基础题.14.【解析】设第一次摸出正品为事件第二次摸出正品为事件则事件和事件相互独立在第一次摸出正品的条件下第二次也摸到正品的概率为:故答案为 解析:【解析】设“第一次摸出正品”为事件A ,“第二次摸出正品”为事件B , 则事件A 和事件B 相互独立,在第一次摸出正品的条件下,第二次也摸到正品的概率为:()()655109|6910P AB P B A P A ⨯===().故答案为5915.994【解析】由题意知本题是一个相互独立事件同时发生的概率种开关中至少有个开关能正常工作的对立事件是种开关都不能工作分别记开关能正常工作分别为事件故答案为解析:994 【解析】由题意知本题是一个相互独立事件同时发生的概率,,,A B C ,3种开关中至少有1 个开关能正常工作的对立事件是3种开关都不能工作,分别记,,A B C 开关能正常工作分别为事件123,,A A A ,()()1231,,10.10.20.30.994P E P A A A =-=-⨯⨯=, 故答案为0.994. 16.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.17.乙【解析】线性回归模型中越接近1效果越好故乙效果最好解析:乙 【解析】线性回归模型中2R 越接近1,效果越好,故乙效果最好.18.【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件分别做出甲至多命中2个球的概率和乙至少命中两个球的概率根据相互独立事件的概率公式得到结果【详解】甲至多命中2个且乙至少命中2个包含的解析:1118【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件,分别做出甲至多命中2个球的概率和乙至少命中两个球的概率,根据相互独立事件的概率公式得到结果. 【详解】甲至多命中2个且乙至少命中2个包含的两个事件是互相独立事件, 设“甲至多命中2个球”为事件A ,“乙至少命中2个球”为事件B ,由题意()41322124411111112222216P A C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()22342344212128333339P B C C ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴甲至多命中2个球且乙至少命中2个球的概率为()()1181116918P A P B ⋅=⨯=,故答案为1118. 【点睛】本题考查独立重复试验,考查离散型随机变量,是一个综合题,解题时注意进球的个数对应的是乙所得的分数,注意分数与进球个数的对应.19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的车能够充电2500次为事件B 即求条件概率:由条件概率公式即得解【详解】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的解析:717【分析】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:(|)P B A ,由条件概率公式即得解. 【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:()35%7(|)()85%17P A B P B A P A ===故答案为:717【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.三、解答题21.(1)没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)分布列见解析,()32E X = 【分析】(1)根据题意列出列联表,再计算2 4.762 6.635K ≈<,故没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)由分层抽样得抽得样本的大龄受试者有3人,年轻受试者有3人,X 的可能取值为0,1,2,3,再结合超几何分布求概率和期望即可.【详解】解:()122⨯列联表如下:()210010601020 4.762 6.63530702080K ⨯⨯-⨯∴=≈<⨯⨯⨯所以,没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关.(2)由题意得,采用分层抽样抽取的6人中,大龄受试者有3人,年轻受试者有3人, 所以大龄受试者人数为X 的可能取值为0,1,2,3,所以()33361020C P X C ===,()2133369120C C P X C ===, ()1233369220C C P X C ===,()33361320C P X C ===,所以X 的分布列为:所以()0123202020202E X =⨯+⨯+⨯+⨯=. 【点睛】本题第二问解题的关键在于根据题意得抽取的6人中,大龄受试者有3人,年轻受试者有3人,进而根据超几何分布求概率分布列与数学期望,考查运算求解能力,是中档题.22.(1) 72% 64% (2) 有99%的把握认为“两个分厂生产的零件的质量有差异” 【解析】解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%. (2)χ2=()1000360180320140500500680320⨯⨯-⨯⨯⨯⨯≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”. 23.(1)0.035,41.5;(2)有. 【分析】(1)由频率分布直方图求出a 的值,再计算数据的平均值;(2)由题意填写列联表,计算观测值,对照临界值得出结论. 【详解】(1)由频率分布直方图可得:10×(0.01+0.015+a +0.03+0.01)=1, 解得a =0.035,所以通过电子阅读的居民的平均年龄为:20×10×0.01+30×10×0.015+40×10×0.035+50×10×0.03+60×10×0.01=41.5;(2)由题意200人中通过电子阅读与纸质阅读的人数之比为3:1, ∴纸质阅读的人数为20014⨯=50,其中中老年有30人,∴纸质阅读的青少年有20人,电子阅读的总人数为150,青少年人数为1500.10.150.35⨯++()=90,则中老年有60人, 得2×2列联表,计算()2200903060202006.061 5.024501501109033K ⨯-⨯==≈>⨯⨯⨯,所以有97.5%的把握认为认为阅读方式与年龄有关. 【点睛】本题考查了频率分布直方图与独立性检验的应用问题,考查了阅读理解的能力,是基础题.24.(1)4.76;(2)有90%的把握认为“微信控”与“性别”有关 【解析】 试题分析:(1)由频率直方图中各概率乘以各方块中点频率相加后即得;(2)从频率直方图中可计算出“微信控”和“非微信控”的男女生人数,再计算出2K 可得. 试题(1)女性平均使用微信的时间为:0.16×1+0.24×3+0.28×5+0.2×7+0.12×9=4.76. (2)2(0.04+a +0.14+2×0.12)=1,解得a =0.08. 由题设条件得列联表:所以K 2==≈2.941>2.706.所以有90%的把握认为“微信控”与“性别”有关.25.(1)指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+;(2)20.99r ≈;用反比例函数模型拟合效果更好;(3)612(千元). 【分析】(1)由96.54dx y e =,得ln ln96.54 4.6y dx dx ν=+⇔=+,将 3.7ν=, 4.5x =代入可得指数模型回归方程.令1xμ=,则y b a μ=+,代入y ,求得b ,a ,可得反比例函数回归方程.(2)求得y 与u 的相关系数为2r ,由12r r <,可得结论. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,可求得订单的期望,从而求得该企业的利润约. 【详解】解:(1)因为96.54dx y e =,所以ln ln96.54 4.6y dx dx ν=+⇔=+, 将 3.7ν=, 4.5x =代入上式,得0.2d =-,所以0.296.54x y e -=.令1xμ=,则y b a μ=+, 因为360458y ==,所以182218183.480.34451001.5380.1158ni ii i i u y u yb u u==-⋅-⨯⨯===-⨯-∑∑,则451000.3411a y b u =-⋅=-⨯=,所以11100y u =+, 所以y 关于x 的回归方程为10011y x=+. 综上,指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+. (2)y 与u 的相关系数为812882222118610.9961.40.616185.588i ii i i i i u y u yr u u y y ===-⋅===≈⨯⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑,因为12r r <,所以用反比例函数模型拟合效果更好. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 令109811111123102222T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭①, 则111092111111*********T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②, ②-①,得11109211111522222T ⎛⎫⎛⎫⎛⎫⎛⎫-=+++⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简得10192T ⎛⎫=+ ⎪⎝⎭,所以101391292256S ⎛⎫=+⨯=+ ⎪⎝⎭,所以该企业的利润约为:3310091009101161232562569256⎡⎤⎢⎥⎛⎫⎛⎫+⨯-+⨯++≈ ⎪ ⎪⎢⎥⎝⎭⎝⎭+⎢⎥⎣⎦(千元). 【点睛】本题考查线性回归方程的求得,相关系数的比较,以及运用数学期望求利润,属于中档题. 26.(1)0.05n =;(2)①列联表见解析;②不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关 【分析】(1)根据频率分布直方图列方程组求得n 的值;(2)根据题意得到22⨯列联表,计算观测值,对照临界值表得出结论. 【详解】 (1)月工资收入在[45,50)(百元)内的人数为15月工资收入在[45,50)(百元)内的频率为:150.15100=; 由频率分布直方图得:(0.020.0420.01)50.151n +++⨯+=0.05n ∴=(2)①根据题意得到列联表:技术工 非技术工总计月工资不高于平均数193150月工资高于平均数3119 50总计 50 50 1002 5.7610.82850505050K ==<⨯⨯⨯ 不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关.【点睛】本题主要考查了独立性检验和频率分布直方图的应用问题,也考查了计算能力及频率应用问题,是基础题.。
高中数学 第一章 统计案例 1.2 回归分析学业分层测评 新人教B版选修1-2-新人教B版高二选修1
1.2 回归分析(建议用时:45分钟)[学业达标]一、选择题1.在画两个变量的散点图时,下面叙述正确的是( ) A.预报变量在x 轴上,解释变量在y 轴上 B.解释变量在x 轴上,预报变量在y 轴上 C.可以选择两个变量中任意一个变量在x 轴上 D.可以选择两个变量中任意一个变量在y 轴上【解析】 结合线性回归模型y =bx +a +ε可知,解释变量在x 轴上,预报变量在y 轴上,故选B.【答案】B2.在回归分析中,相关指数r 的绝对值越接近1,说明线性相关程度( ) A.越强 B.越弱 C.可能强也可能弱D.以上均错【解析】 ∵r =∴|r |越接近于1时,线性相关程度越强,故选A. 【答案】A3.已知x 和y 之间的一组数据x 0 1 2 3 y1357则y 与x 的线性回归方程y =b x +a 必过点( ) A.(2,2) B.⎝ ⎛⎭⎪⎫32,0 C.(1,2)D.⎝ ⎛⎭⎪⎫32,4 【解析】 ∵x -=14(0+1+2+3)=32,y -=14(1+3+5+7)=4,∴回归方程y ^=b ^x +a ^必过点⎝ ⎛⎭⎪⎫32,4.【答案】D4.已知人的年龄x 与人体脂肪含量的百分数y 的回归方程为y ^=0.577x -0.448,如果某人36岁,那么这个人的脂肪含量( )【导学号:37820004】A.一定是20.3%B.在20.3%附近的可能性比较大C.无任何参考数据D.以上解释都无道理【解析】 将x =36代入回归方程得y ^=0.577×36-0.448≈20.3.由回归分析的意义知,这个人的脂肪含量在20.3%附近的可能性较大,故选B.【答案】B5.某产品的广告费用x (万元)与销售额y (万元)的统计数据如下表所示,根据表中数据可得回归方程y ^=b ^x +a ^中的b ^=10.6.据此模型预测广告费用为10万元时的销售额为( )万元 万元D.113.9万元【解析】 由题表中数据得x -=3.5,y -=43.由于回归直线y ^=b ^x +a ^过点(x -,y -),且b ^=10.6,解得a ^=5.9,所以线性回归方程为y ^=10.6x +5.9,于是x =10时,y ^=111.9. 【答案】C 二、填空题6.已知x ,y 的取值如下表所示,由散点图分析可知y 与x 线性相关,且线性回归方程为y =0.95x +2.6,那么表格中的数据m 的值为________.【解析】x -=04=2,y -=4=4,把(x -,y -)代入回归方程得11.3+m4=0.95×2+2.6,解得m =6.7.【答案】 6.77.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为________.【解析】 根据样本相关系数的定义可知,当所有样本点都在直线上时,相关系数为1.【答案】 18.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】 以x +1代x ,得y ^=0.254(x +1)+0.321,与y ^=0.254x +0.321相减可得,年饮食支出平均增加0.254万元.【答案】 0.254 三、解答题9.关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:x 2 3 4 5 6 y2.23.85.56.57.0如由资料可知y 对x 呈线性相关关系.试求:(1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少? 【解】 (1)x -=2+3+4+5+65=4,y -=2.2+3.8+5.5+6.5+7.05=5,于是a ^=y --b ^x =5-1.23×4=0.08.所以线性回归方程为:y ^=b ^x +a ^=1.23x +0.08. (2)当x =10时,y ^=1.23×10+0.08=12.38(万元), 即估计使用10年时维修费用是12.38万元.10.在一次抽样调查中测得样本的5个样本点,数值如下表:x 0.25 0.5 1 2 4 y1612521试建立y 与x 之间的回归方程.【解】 作出变量y 与x 之间的散点图如图所示.由图可知变量y 与x 近似地呈反比例函数关系.设y =k x,令t =1x ,则y =kt .由y 与x 的数据表可得y 与t 的数据表:t 4 2 1 0.5 0.25 y1612521作出y 与t 的散点图如图所示.由图可知y 与t 呈近似的线性相关关系.又t -=1.55,y -=7.2,∑5i =1t i y i =94.25,∑5i =1t 2i =21.312 5,b ^=∑5i =1t i y i -5t -y -∑5i =1t 2i -5t -2=94.25-5×1.55×7.221.312 5-5×1.552≈4.134 4,a ^=y --b ^t -=7.2-4.134 4×1.55≈0.8,∴y ^=4.134 4t +0.8.即y 与x 之间的回归方程为y ^=4.134 4x+0.8.[能力提升]1.对于下列表格所示的五个散点,已知求得的线性回归直线方程为y ^=0.8x -155.则实数m 的值为( )C.8.4D.8.5【解析】 依题意得x -=15×(196+197+200+203+204)=200,y -=15×(1+3+6+7+m )=17+m 5,因为回归直线必经过样本点的中心,所以17+m5=0.8×200-155,解得m =8,选A.【答案】A2.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:A.y =x -1B.y =x +1C.y =88+12xD.y =176【解析】 因为x -=174+176+176+176+1785=176,y -=175+175+176+177+1775=176,而回归方程经过样本中心点,所以排除A ,B ,又身高的整体变化趋势随x 的增大而增大,排除D ,所以选C.【答案】C3.以模型y =c e kx去拟合一组数据时,为了求出回归方程,设z =ln y ,其变换后得到线性回归方程z =0.3x +4,则c =________.【导学号:37820005】【解析】 由题意得:ln(c e kx)=0.3x +4, ∴ln c +kx =0.3x +4, ∴ln c =4,∴c =e 4. 【答案】e 44.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.图122(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为【解】 (1)由散点图可以判断,y =c +d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程. 由于d ^==108.81.6=68,,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68x . (3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6, 年利润z 的预报值z ^=576.6×0.2-49=66.32. ②根据(2)的结果知,年利润z 的预报值 z ^=0.2(100.6+68x )-x =-x +13.6x +20.12.所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.。
《统计学概论》第一章课后练习题答案
《统计学概论》第一章课后练习题答案一、思考题1.什么是总体和总体单位?举例说明二者的关系?P15-162.品质标志和数量标志有什么区别?P163.什么是数量指标?什么是质量指标?二者有何关系?P174.什么是指标?指标和标志有何区别和联系?(2008.10)P175.什么是指标体系?建立指标体系有何意义?P206.统计数据可以分为哪几种类型?不同类型的数据各有什么特点?P18-197.什么是变量?它可以分为哪几种类型?P19-208.什么是离散变量和连续变量?举例说明。
P209.什么是流量、存量?它们之间有何关系?P2110.从计量的层次简要说明统计数据的分类及内容。
(2009.01)P1811.简述流量与存量的概念及其联系。
(2009.10)P21二、单项选择题1.在统计学的形成和发展过程中,首先使用“统计学”这一科学命名的是()。
P5 A.政治算术学派B.国势学派C.数理统计学派D.社会经济统计学派2.统计的总体性特点表现在()。
P9A.它是从个体入手,达到对总体的认识B.它是从总体入手,达到对个体的认识C.它排除了认识个体现象的必要性D.它只对总体现象的量进行认识,抛开了对总体现象质的认识3.统计总体的同质性是指()。
P16A.总体各单位具有某一共同的品质标志或数量标志B.总体各单位具有某一共同的品质标志属性或数量标志值C.总体各单位具有若干不同的品质标志或数量标志D.总体各单位具有若干不同的品质标志属性或数量标志值4.一个总体单位()。
A.只能有一个标志B.只能有一个指标C.可以有多个标志D.可以有多个指标5.要了解50个学生的学习情况,则总体单位是()。
A.50个学生B.每一个学生C.50个学生的学习成绩D.每一个学生的学习成绩6.某班5个学生试问统计学考试成绩分别为68分、75分、80分、86分和90分,这5个数字是()。
A.指标B.标志C.指标值D.标志值7.产品合格率、废品量、工人劳动生产率、单位产品成本和利税额等5个指标,属于质量指标的有()。
高中数学选修1-2第一章统计案例测试题带详细解答(可编辑修改word版)
1
A、增加3个单位B、增加个单位C、减少3个单位D、减少个单位
3
【答案】C
【解析】
解释变量即回归方程里的自变量xˆ,由回归方程知预报变量yˆ减少 3 个单位
4.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U
与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r1表示变量Y与X之
选修 1-2 第一章、统计案例测试
一、选择题
1.已知x与y之间的一组数据:
x
0
1
2
3
y
1
3
5
7
则y与x的线性回归方程为ybxa必过点() A.(2,2)B. (1.5 ,4)C.(1.5 ,0)D.(1,2)
【答案】B
【解析】
试题分析:由数据可知x1.5,y4,∴线性回归方程
4
为yb xa必过点(1.5,4)
5 =11.72
. Y =(1+2+3+4+5)
5 =3
∴这组数据的相关系数是r=7.2
19.172 =0.3755,
变量U与V相对应的一组数据为(10,5),(11.3,4),
(11.8,3),(12.5,2),(13,1)
. U =(5+4+3+2+1)
5 =3,
∴这组数据的相关系数是-0.3755,
【解析】
试题分析:由题意,年劳动生产率x(千元)和工人工资y(元)之间回归方程为
y1070x,
故当x增加 1 时,y要增加 70 元,
∴劳动生产率每提高1千元时,工资平均提高70元,故A正确.
上海国和中学选修1-2第一章《统计案例》测试(含答案解析)
一、选择题1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是()A.120B.320C.15D.7202.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有()参考公式:0.100.050.0250.0100.0050.0012.7063.841 5.024 6.6357.87910.828A.12人B.18人C.24人D.30人3.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到2K的观测值9.643k ,根据临界值表,以下说法正确的是() P(K2≥k0)0.500.400.250.150.100.050.050.0100.005 k00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.879A.在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B.在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C .在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D .在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关 4.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有( )的把握认为喜爱打篮球与性别有关.附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.A .99.9%B .99.5%C .99%D .97.5%5.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系6.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立B .1A 、2A 、3A是两两互斥的事件C .17(|)11P B A =D .3()5P B =7.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378 B .0.3C .0.58D .0.9588.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A .35 B .14 C .12D .13 9.若y 关于x 的线性回归方程0.70.35y x =+是由表中提供的数据求出,那么表中m 的值为( )x3 4 5 6 y3m4.54A .3.5B .3C .2.5D .210.两个变量y 与x 的回归模型中,分别选择了4个不同模型,对于样本点()11,x y ,()22,x y ,…,(),n n x y ,可以用()()22121ˆ1niii n ii y yR y y ==-=--∑∑来刻画回归的效果,已知模型1中20.96R =,模型2中23{5x yy x -==-,模型3中20.55R =,模型4中20.41R =,其中拟合效果最好的模型是( ) A .模型1B .模型2C .模型3D .模型411.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:其中()()()()()22,.n ad bc K n a b c d a b c d a c b d -==+++++++则下列结论正确的是A .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别无关”C .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别有关”D .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别无关”12.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ) A .0.12B .0.42C .0.46D .0.88二、填空题13.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者.则乙连胜四局的概率为____.14.某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________. 15.已知x 、y 之间的一组数据如下:则线性回归方程ˆya bx =+所表示的直线必经过点________. 16.某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为__________.17.已知一组数据的回归直线方程为 1.51y x =-+,且4y =,发现有两组数据( 1.7,2.9)-,( 2.3,5.1)-的误差较大,去掉这两组数据后,重新求得回归直线方程为y x a '''=-+,则当3x '=-时,y '=_____. 18.2019年7月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是3.240y x =-+,且20m n +=,则其中的n =______.19.现有A ,B 两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢1分,答错得0分;A 队中每人答对的概率均为23,B 队中3人答对的概率分别为23,23,13,且各答题人答题正确与否之间互不影响,若事件M表示“A队得2分”,事件N表示“B队得1分”,则()P MN=______.20.一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23.(1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X表示结束比赛还需打的局数,求X的分布列及期望.22.随着生活质量的提升,家庭轿车保有量逐年递增.方便之余却加剧了交通拥堵和环保问题.绿色出行引领时尚,共享单车进驻城市黄泽市有统计数据显示.2020年该市共享单车用户年龄等级分布如图1所示,一周内市民使用单车的频率分布扇形图如图2所示.若将共享单车用户按照年齡分为“年轻人”(20岁~391岁)和“非年轻人”( 19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的经常使用共享单车的称为“单车族”.使用次数为5次或不足5次的称为“非单车族”.已知在“单车族”中有56是“年轻人”.(1)现对该市市民进行“经常使用共享单车与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为400的样本,请你根据图表中的数据,补全下列22⨯列联表,并判断是否有95%的把握认为经常使用共享单车与年龄有关?使用共享单车情况与年龄列联表年轻人 非年轻人 合计单车族 非单车族 合计是“非年轻人”的人数为随机变量,X 求X 的分布列与期望. 参考数据:独立性检验界值表20()P K k ≥0.15 0.100.050.025 0.010k2.0722.7063.8415.0246.635其中,()()()()()2,n ad bc n a b c d K a b c d a c b d -=+++=++++(注:保留三位小数). 23.奶茶是年轻人非常喜欢的饮品.某机构对于奶茶的消费情况在一商圈附近做了一些调查,发现女性喜欢奶茶的人数明显高于男性,每月喝奶茶的次数也比男性高,但单次奶茶消费金额男性似乎明显高于女性.针对每月奶茶消费是否超过百元进行调查,已知在调查的200人中女性人数是男性人数的4倍,统计如下:超过百元 未超过百元 合计男8关?(2)在月消费超百元的调查者中,同时进行对于品牌喜好的调查.发现喜欢A 品牌的男女均为3人,现从喜欢A 品牌的这6人中抽取2人送纪念品,求这两人恰好都是女性的概率. 附:()()()()()2n ad bc K a b c d a c b d -=++++. 24.小张举办了一次抽奖活动.顾客花费3元钱可获得一次抽奖机会.每次抽奖时,顾客从装有1个黑球,3个红球和6个白球(除颜色外其他都相同)的不透明的袋子中依次不放回地摸出3个球,根据摸出的球的颜色情况进行兑奖.顾客中一等奖,二等奖,三等奖,四等奖时分别可领取的奖金为a 元,10元,5元,1元.若经营者小张将顾客摸出的3个球的颜色分成以下五种情况::1A 个黑球2个红球;:3B 个红球;:c 恰有1个白球;:D 恰有2个白球;:3E 个白球,且小张计划将五种情况按发生的机会从小到大的顺序分别对应中一等奖,中二等奖,中三等奖,中四等奖,不中奖.(1)通过计算写出中一至四等奖分别对应的情况(写出字母即可); (2)已知顾客摸出的第一个球是红球,求他获得二等奖的概率;(3)设顾客抽一次奖小张获利X 元,求变量X 的分布列;若小张不打算在活动中亏本,求a 的最大值.25.某花圃为提高某品种花苗质量,开展技术创新活动,在A ,B 实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.(1)用样本估计总体,以频率作为概率,若在A ,B 两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.优质花苗 非优质花苗 合计甲培育法 20乙培育法 10合计附:下面的临界值表仅供参考.20()P K k ≥0.050 0.010 0.001 0k 3.8416.63510.828(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)26.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作不太主动参加班级工作合计 学习积极性高 18 7 25 学习积极性一般6 19 25 合计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.参考公式与临界值表:()()()()()22n ac bd K a b c d a c b d -=++++. P(K 2≥k) 0.100 0.050 0.025 0.010 0.001 k2.7063.8415.0246.63510.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.2.B解析:B 【解析】 【分析】设男生人数为,女生人数为,完善列联表,计算解不等式得到答案.【详解】设男生人数为,女生人数为喜欢抖音 不喜欢抖音 总计 男生女生总计男女人数为整数 故答案选B 【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.3.D解析:D 【解析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关. 选D.点睛:本题考查卡方含义,考查基本求解能力.4.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表, 得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.5.A解析:A 【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论. 详解:∵观测值 4.328 3.841k ≈>, 而在观测值表中对应于3.841的是0.05,∴在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系. 故选:A .点睛:本题考查了独立性检验的应用问题,是基础题.6.D解析:D 【解析】分析:由题意1A ,2A ,3A是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A是两两互斥事件, ()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.7.D解析:D 【详解】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P=,恰在第二次落地打破的概率为20.70.40.28P=⨯=,恰在第三次落地打破的概率为30.70.60.90.378P=⨯⨯=,∴落地3次以内被打破的概率1230.958P P P P=++=.故选D.点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.8.D解析:D【解析】抛掷红、黄两枚骰子,第一个数字代表红色骰子,第二个数字代表黄色骰子,当红色骰子的点数为4或6时有(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共12种,两颗骰子的点数之积大于20的种数有(4,6),6,4),(6,5),(6,6)4种,根据概率公式得,两颗骰子的点数之积大于20的概率41123P==.本题选择D选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.9.C解析:C【解析】由表可得样本中心点的坐标为11.54.5,4m+⎛⎫⎪⎝⎭,根据线性回归方程的性质可得11.5 0.7 4.50.354m+⨯+=,解出 2.5m=,故选C. 10.A解析:A【解析】2R值越大效果越好,所以选A.11.A解析:A【解析】由题意得,22100(10302040)4.762 3.84150503070K⨯-⨯=≈>⨯⨯⨯,又因为2 3.841)0.05(P K>=,所以犯错误的概率不超过5%的前提下,认为“是否爱吃零食与性别有关”,故选A. 12.D解析:D【解析】由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12.∴至少有一人被录取的概率为1-0.12=0.88.故选D.考点:相互独立事件的概率.二、填空题13.09【分析】当乙连胜四局时对阵情况是第一局:甲对乙乙胜;第二局:乙对丙乙胜;第三局:乙对甲乙胜;第四局:乙对丙乙胜然后利用概率公式进行求解即可【详解】当乙连胜四局时对阵情况如下:第一局:甲对乙乙胜;解析:09.【分析】当乙连胜四局时,对阵情况是第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第三局:乙对甲,乙胜;第四局:乙对丙,乙胜,然后利用概率公式进行求解即可【详解】当乙连胜四局时,对阵情况如下:第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第三局:乙对甲,乙胜;第四局:乙对丙,乙胜.所求概率为P1=(1﹣0.4)2×0.52=0.32=0.09∴乙连胜四局的概率为0.09【点睛】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件.14.【分析】由条件概率计算方式分别计算事件A:学生甲和乙都不是第一个出场且甲不是最后一个出场的基本事件个数其中分两类乙在最后与乙不在最后计数与事件AB的基本事件个数最后由公式求解即可【详解】设事件A:学解析:1 4【分析】由条件概率计算方式,分别计算事件A:“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的基本事件个数,其中分两类乙在最后与乙不在最后计数,与事件AB的基本事件个数,最后由公式求解即可.【详解】设事件A :“学生甲和乙都不是第一个出场,且甲不是最后一个出场”;事件B :“学生丙第一个出场”,对事件A ,甲和乙都不是第一个出场,第一类:乙在最后,则优先从中间4个位置中选一 个给甲,再将余下的4个人全排列有1444C A ⋅种;第二类:乙没有在最后,则优先从中间4 个位置中选两个给甲乙,再将余下的4个人全排列有2444A A ⋅种,故总的有()14244444n A C A A A =⋅+⋅.对事件AB ,此时丙第一个出场,优先从除了甲以外的4人中选一人安排在最后,再将余下的4人全排列有1444C A ⋅种故()()()14441424444414n AB C A P B A n A C A A A ⋅===⋅+⋅. 故答案为:14【点睛】本题考查条件概率实际应用,属于中档题.15.(155)【解析】由题意可得:线性回归方程过样本中心点即线性回归方程所表示的直线必经过点(155)点睛:(1)正确理解计算的公式和准确的计算是求线性回归方程的关键(2)回归直线方程必过样本点中心解析:(1.5,5) 【解析】由题意可得:0123 1.54x +++==,826454y +++==, 线性回归方程过样本中心点,即线性回归方程ˆya bx =+所表示的直线必经过点(1.5,5) 点睛:(1)正确理解计算,b a 的公式和准确的计算是求线性回归方程的关键. (2)回归直线方程y bx a =+必过样本点中心(),x y .16.【解析】前两个不是红灯第三个是红灯所以概率为 解析:427【解析】前两个不是红灯,第三个是红灯,所以概率为2114(1)3327-= 17.5【分析】分别求出原数据和新数据的样本中心点即可【详解】由回归直线方程过样本中心点可将代入得所以原数据的样本中心点为则去掉两组数据后的新数据的新数据的样本中心点为设新数据的回归直线方程为将代入得当时解析:5 【分析】分别求出原数据和新数据的样本中心点即可【详解】由回归直线方程过样本中心点(,)x y ,可将4y =代入 1.51y x =-+,得2x =-, 所以原数据的样本中心点为(2,4)-,则去掉两组数据( 1.7,2.9)-,( 2.3,5.1)-后的新数据的2( 1.7 2.3)22n x n '----==--,4(2.9 5.1)42n y n '-+==-,新数据的样本中心点为(2,4)-,设新数据的回归直线方程为y x a '''=-+,将(2,4)-代入得2a '=,∴当3x '=-时,5y '=.故答案为:5 【点睛】回归直线一定经过样本中心点(,)x y18.10【分析】计算代入回归直线方程与结合求解出的值【详解】依题意代入回归直线方程得①根据题意②解①②组成的方程组得故填【点睛】本小题主要考查回归直线方程过样本中心点考查方程的思想属于基础题解析:10 【分析】计算,x y ,代入回归直线方程,与20m n +=结合,求解出n 的值. 【详解】 依题意4030,55m n x y ++==,代入回归直线方程得30403.24055n m++=-⨯+①,根据题意20m n +=②,解①②组成的方程组得10m n ==,故填10. 【点睛】本小题主要考查回归直线方程过样本中心点(),x y ,考查方程的思想,属于基础题.19.【分析】事件为队三人有一人答错其余两人答对计算其概率事件为队三人人答错其余一人答对计算其概率再根据独立事件同时发生的概率公式求出【详解】队总得分为分即事件为队三人有一人答错其余两人答对其概率队得分即 解析:427【分析】事件M 为A 队三人有一人答错,其余两人答对,计算其概率()P M ,事件N 为B 队三人2人答错,其余一人答对,计算其概率()P N ,再根据独立事件同时发生的概率公式求出()P MN .【详解】A 队总得分为2分,即事件M 为A 队三人有一人答错,其余两人答对,其概率()2232241339P M C ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭, “B 队得1分,即事件N 即为B 队三人2人答错,其余一人答对,则()22122221111111133333331333P N ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯+-⨯⨯-+⨯-⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, A 队得2分B 队得一分,即事件,M N 同时发生,则()()()7491432P MN P M P N ==⨯=. 故答案为:427. 【点睛】本题考查了独立事件同时发生的概率计算,还考查了学生的分析理解能力,运算能力,属于中档题.20.88【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护"所以至少有一个公司不需要维护的概率为故答案为088【点解析:88 【分析】根据相互独立事件概率计算公式和对立事件的概率计算公式直接求解即可. 【详解】"至少有一个公司不需要维护"的对立事件是"两公司都需要维护", 所以至少有一个公司不需要维护的概率为10.30.40.88p =-⨯=, 故答案为0.88. 【点睛】本题主要考查概率的求法以及相互独立事件概率计算公式和对立事件的概率计算公式的应用.三、解答题21.(1)2081;(2)分布列见解析,()23681E X =. 【分析】(1)利用事件的独立性,分两种情况,恰 好打了7局小明获胜和恰好打了7局小亮获胜,再概率相加即可.(2)X 的可能取值为2,3,4,5,利用二项分布,分别求出其相应的概率,列出分布列即可. 【详解】(1)恰 好打了7局小明获胜的概率是525416721152C 333P ⨯⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,恰好打了7局小亮获胜的概率为252426721152333P C ⨯⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, ∴比赛结束时恰好打了7局的概率为5212715215220381P P P ⨯+⨯=+==. (2)X 的可能取值为2,3,4,5,()224239P X ⎛⎫=== ⎪⎝⎭,()2312321283C 33327P X ⎛⎫==⨯⨯==⎪⎝⎭, ()2241434421113134C C 333381P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2341344521212485C C 3333381P X ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯⨯== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 或()334421885C 33381P X ⎛⎫==⨯⨯== ⎪⎝⎭. ∴X 的分布列如下:()2345927818181E X =⨯+⨯+⨯+⨯=.【点睛】方法点睛:求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.求离散型随机变量的分布列的关键是求随机变量所取值对应的概率.22.(1)表格见解析,有;(2)分布列见解析,0.3. 【分析】(1)补全的列联表,利用公式求得2 4.167 3.841K ≈>,即可得到结论;(2)由(1)的列联表可知,经常使用单车的“非年轻人”的概率,即可利用独立重复试验求解随机变量X 取每个数值的概率,列出分布列,求解数学期望. 【详解】(1)补全的列联表如下:()24002004012040 4.167 3.84124016032080K ⨯⨯-⨯=≈>⨯∴⨯⨯,(2K 要求保留三位小数,否则扣一分)即有95%的把握可以认为经常使用共享单车与年龄有关. (2)由(1)的列联表可知,既是“单车族”又是“非年轻人”占样本总数的频率为40100%10%400⨯=, 即在抽取的用户中既是“单车族”又是“非年轻人”的概率为0.1, 随机变量X 可取0,1,2,3()()330010. 10.729,P X C ==-=()()211310.110.10.243P X C ==-=()()12320.1210.10.027,P X C ==-=()33330.130.001,P X C ===则()~3,0.1,X BX ∴的分布列为X ∴的数学期望30.10.3E X =⨯=.【点睛】方法点睛:本题主要考查了22⨯列联表,独立性检验,二项分布,二项分布的期望,解题方法如下:(1)根据题意,找出对应数据,补全列联表,求得K2K2的值,对比数据,得出结论; (2)根据题意,得到经常使用单车的“非年轻人”的概率,之后利用独立重复试验,结合二项分布的相关公式求得结果. 23.(1)表格见解析,有;(2)15. 【分析】(1)设男性每月奶茶消费未超过百元的人数为x ,根据题中条件得出关于x 的方程,解出x 的值,进而可完善22⨯列联表,计算出2K 的观测值,结合临界值表可得出结论;(2)设喜欢A 品牌的女性为1A 、2A 、3A ,男性为1B 、2B 、3B ,利用列举法列举出所有的基本事件,并确定事件“这两人恰好都是女性”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)设男性每月奶茶消费未超过百元的人数为x ,则()848200x x +++=,32x ∴=,2K 的观测值()200814432161003.030 2.706401602417633k ⨯-⨯==≈>⨯⨯⨯,因此,有90%的把握认为月消费奶茶超过百元与性别有关.(2)设喜欢A 品牌的女性为1A 、2A 、3A ,男性为1B 、2B 、3B ,从喜欢A 品牌的这6人中抽取2人送纪念品,所有的基本事件有:()12,A A 、()13,A A 、()11,A B 、()12,A B 、()13,A B 、()23,A A 、()21,A B 、()22,A B 、()23,A B 、()31,A B 、()32,A B 、()33,A B 、()12,B B 、()13,B B 、()23,B B ,共15种,设“这两人恰好都是女性”为事件M ,则事件M 包含的基本事件有:()12,A A 、()13,A A 、()23,A A ,共3种,()31155P M ∴==, 因此,抽取的这两人恰好都是女性的概率为15. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)数状图法; (4)排列组合数的应用.24.(1)中一至四等奖分别对应的情况是,,,B A E C .(2)118;(3)194. 【分析】(1)求出一至四等奖的概率,即可写出分别对应的类别;(2)顾客摸出的第一个球是红球的条件下,利用条件概率计算公式即可得出他获得二等奖的概率.(3)若经营者不打算在这个游戏的经营中亏本,求出分布列得到期望,即可求a 的最大值. 【详解】。
苏州高新区实验初级中学(新实初中)选修1-2第一章《统计案例》测试题(答案解析)
一、选择题1.如图是九江市2019年4月至2020年3月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r=0.83,则下列结论错误的是()A.每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关B.月温差(月最高气温﹣月最低气温)的最大值出现在10月C.9﹣12月的月温差相对于5﹣8月,波动性更大D.每月最高气温与最低气温的平均值在前6个月逐月增加2.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是()A.120B.320C.15D.7203.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是()A.分层抽样B.回归分析C.独立性检验D.频率分布直方图4.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是()A.0.216 B.0.36 C.0.352 D.0.6485.甲、乙、丙、丁4个人进行网球比赛,首先甲、乙一组,丙、丁一组进行比赛,两组的胜者进入决赛,决赛的胜者为冠军、败者为亚军.4个人相互比赛的胜率如右表所示,表中的数字表示所在行选手击败其所在列选手的概率.甲乙丙丁甲0.30.30.8那么甲得冠军且丙得亚军的概率是( ) A .0.15 B .0.105 C .0.045 D .0.216.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”7.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是()参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.参考数据:A.有99.9%的把握认为使用智能手机对学习有影响.B.有99.9%的把握认为使用智能手机对学习无影响.C.在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D.在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响.8.若y关于x的线性回归方程0.70.35y x=+是由表中提供的数据求出,那么表中m的值为( )A.3.5B.3C.2.5D.29.在一次独立性检验中,得出列表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720B .360C .180D .9010.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:其中()()()()()22,.n ad bc K n a b c d a b c d a c b d -==+++++++则下列结论正确的是A .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别有关”B .在犯错误的概率不超过0.05的前提下,认为“是否爱吃零食与性别无关”C .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别有关”D .在犯错误的概率不超过0.025的前提下,认为“是否爱吃零食与性别无关”11.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;12.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++A .97.5%B .99%C .99.5%D .99.9%二、填空题13.某地区气象台统计,该地区下雨的概率是415,刮风的概率是25,既刮风又下雨的概率为110,设A 为下雨,B 为刮风,那么(|)P B A 等于__________. 14.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为13,乙每次投中的概率为12,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______. 15.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 16.给出下列结论:(1)在回归分析中,可用相关指数R 2的值判断模型的拟合效果,R 2越大,模型的拟合效果越好;(2)某工产加工的某种钢管,内径与规定的内径尺寸之差是离散型随机变量; (3)随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度,它们越小,则随机变量偏离于均值的平均程度越小;(4)若关于x 的不等式2x x a a -+-≥在R 上恒成立,则a 的最大值是1;(5)甲、乙两人向同一目标同时射击一次,事件A :“甲、乙中至少一人击中目标”与事件B :“甲,乙都没有击中目标”是相互独立事件.其中结论正确的是 .(把所有正确结论的序号填上) 17.给出下列四个结论:(1)相关系数r 的取值范围是1r <;(2)用相关系数r 来刻画回归效果,r 的值越大,说明模型的拟合效果越差;(3)一个袋子里装有大小相同的5个白球和5个黑球,从中任取4个,则其中所含白球个数的期望是2;(4) 一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,且(),,0,1a b c ∈,已知他投篮一次得分的数学期望为2,则213a b+的最小值为163.其中正确结论的序号为______________.18.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R 的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.19.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.20.某校为了解家长对学校食堂的满意情况,分别从高一、高二年级随机抽取了20位家长的满意度评分,其频数分布表如下:假设两个年级家长的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率.现从高一、高二年级各随机抽取1名家长,记事件A :“高一家长的满意度等级高于高二家长的满意度等级”,则事件A 发生的概率为__________.三、解答题21.某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表:x的线性相关程度;(2)是否有99.9%的把握认为村民的性别与参与管理的意愿具有相关性?参考公式:()()ni ix x y yr--=∑()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.临界值表:22.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23.(1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X表示结束比赛还需打的局数,求X的分布列及期望.23.在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.同学在A处的命中率1q为0.250,在B处的命中率为2q,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1)求2q的值;(2)求随机变量ξ的数学期望Eξ;(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.24.自然资源部门对某市饮用水厂中的地下水质量进行监测,随机抽查了100眼水井进行监测,得到溶解性总固体浓度(单位:mg L)和硫酸盐浓度(单位:mg L)的分布如下表:(1)估计事件“该市某一水井中溶解性总固体浓度不超过500,且硫酸盐浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市水井中溶解性总固体浓度与硫酸盐浓度有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.()2P K k ≥0.050 0.010 0.001 k 3.8416.63510.82825.个人所得税是国家对本国公民、居住在本国境内的个人的所得和境外个人来源于本国的所得征收的一种所得税我国在1980年9月10日,第五届全国人民代表大会第三次会议通过并公布了《中华人民共和国个人所得税法》公民依法诚信纳税是义务,更是责任现将自2013年至2017年的个人所得税收入统计如下:年份 2013 2014 2015 2016 2017 时间代号x 12 345 个税收入y (千亿元)6.537.388.62 10.0911.97x根据散点图判断,可用①nx y me =与②2y px q =+作为年个人所得税收入y 关于时间代号x 的回归方程,经过数据运算和处理,得到如下数据:xyz w()521ii xx=-∑()521ii w w =-∑38.922.16 1110 374()()51iii x x z z =--∑()()51iii wwy y =--∑1.60 83.83表中ln z y =,2w x =,511ln 5i i z y ==∑,52115i i w x ==∑,参考数据: 1.48 5.37e =,0.96 2.61e =.以下计算过程中四舍五入保留两位小数.(1)根据所给数据,分别求出①、②中y 关于x 的回归方程;(2)已知2018年个人所得税收人为13.87千亿元,用2018年的数据验证(1)中所得两个回归方程,哪个更适宜作为y 关于时间代号x 的回归方程?(3)你还能从统计学哪些角度来进一步确认哪个回归方程更适宜?(只需叙述,不必计算)附:对于一组数据()11,u v 、()22,u v 、、(),n n u v ,其回归直线v a u β=+的斜率和截距的最小二乘估计分别为:()()()121niii nii u u v v u u β==--=-∑∑,v u αβ=-.26.某项比赛中甲、乙两名选手将要进行决赛,比赛实行五局三胜制.已知每局比赛中必决出胜负,若甲先发球,其获胜的概率为12,否则其获胜的概率为13. (1)若在第一局比赛中采用掷硬币的方式决定谁先发球,试求甲在此局获胜的概率; (2)若第一局由乙先发球,以后每局由负方发球规定胜一局得3分,负一局得0分,记X 为比赛结束时甲的总得分,求随机变量X 的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据相关系数的性质判断A ;根据所给折线图,对B ,C ,D 逐项进行判断. 【详解】每月最低气温与最高气温的线性相关系数r =0.83,比较接近于1,则每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关,则A 正确;由所给的折线图可以看出月温差(月最高气温﹣月最低气温)的最大值出现在10月,则B 正确;5﹣8月的月温差分别为18,17,16,16,9﹣12月的月温差分别为20,31,24,21,则9﹣12月的月温差相对于5﹣8月,波动性更大,C 正确;每月的最高气温与最低气温的平均值在前5个月逐月增加,第六个月开始减少,所以A 正确,则D 错误;【点睛】本题主要考查了根据折线图解决实际问题以及相关系数的性质的应用,对于相关系数r ,r 越接近于1,两个变量的线性相关程度越强,属于中档题. 2.D解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.3.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。
(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)
一、选择题1.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .42.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1154.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .125.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .406.在一次独立性检验中,得出列表如下:合计 190 400a + 590a +且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720 B .360C .180D .907.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .48.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .149.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131510.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .1911.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828A .97.5%B .99%C .99.5%D .99.9%12.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.15.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)16.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 17.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.18.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.三、解答题21.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员 乡土直播达人 合计 男 10 40 50 女 20 30 50 合计3070100(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.00122.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.23.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++25.支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有12,13,16的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X 为这一天他获得的奖励金数,求X 的概率分布和数学期望.26.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表) 月份2020.012020.022020.032020.042020.05(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.4.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 5.D解析:D 【解析】由表中数据知,199.51010.511105x =⨯++++=(),1111086585y =⨯++++=(),代入回归直线方程 3.ˆ2yx a =-+中,求得实数 3.28 3.21040a y x =+=+⨯=,故选D. 6.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.7.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.8.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.9.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.10.B解析:B 【分析】先计算“这个问题至少被一个人正确解答”和“甲、乙两位同学都能正确解答该问题”概率,再利用条件概率公式计算即可. 【详解】由已知,不妨设A =“这个问题至少被一个人正确解答”,B =“甲、乙两位同学都能正确解答该问题”,因为甲、乙两位同学各自独立正确解答该问题的概率分别是23和12, 故215()111326P A ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭,121()233P B =⨯=,易知1()()3P AB P B ==.故()1()235()56P AB P BA P A ===∣. 故选:B. 【点睛】本题考查了条件概率的应用,属于中档题.11.C解析:C 【分析】根据2×2列联表,求出k 的观测值2K ,结合题中表格数据即可得出结论. 【详解】 由题意,可得:222()50(2015105)258.3337.879()()()()302025253n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响. 故选C. 【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.【分析】设甲乙两台机床生产正品的概率分别为则根据题意列方程组解得甲乙同时生产这种零件至少一台获得正品为甲获得正品乙不是正品乙获得正品甲不是正品以及甲乙均获得正品根据概率加法公式求解即可【详解】设甲乙 解析:1112【分析】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤,根据题意列方程组()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩,“甲乙同时生产这种零件,至少一台获得正品”为甲获得正品乙不是正品,乙获得正品甲不是正品,以及甲乙均获得正品,根据概率加法公式求解即可. 【详解】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤. 甲获得正品乙不是正品的概率为14()114p q ∴-=① 又乙获得正品甲不是正品的概率为16()116q p ∴-=② ①②联立得()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩则甲乙均获得正品的概率为321432p q ⋅=⨯= 即甲乙同时生产这种零件,至少一台获得正品的概率是1111146212++= 故答案为:1112【点睛】本题考查概率的加法与乘法公式,属于中档题.14.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.15.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2. 因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+,∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.16.51【解析】由于两套方案互不影响故至少有一套方案通过的概率是解析:51 【解析】由于两套方案互不影响,故至少有一套方案通过的概率是2120.3C 0.3(10.3)0.51+⋅⋅-=.17.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.18.【解析】表示在已经发生事件的情况下事件发生的概率又事件恰有一次出现正面包含于事件至少一次出现反面所以所以解析:37【解析】(/)P B A 表示在已经发生事件A 的情况下,事件B 发生的概率,又事件B = “恰有一次出现正面”包含于事件A =“至少一次出现反面”,所以()()(/)()()P AB P B P B A P A P A ==,37(),()88P B P A ==,所以()3()7P B P A =. 19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】由题意求得一个周期内就停止训练的概率再结合相互独立事件的概率计算公式即可求解【详解】由题意小白每天不能参加训练的概率为若一个训练周期内出现2次不能参加训练可得一个周期内就停止训练的概率为这个 解析:811024【分析】由题意,求得一个周期内就停止训练的概率,再结合相互独立事件的概率计算公式,即可求解.【详解】由题意,小白每天不能参加训练的概率为14,若一个训练周期内出现2次不能参加训练,可得一个周期内就停止训练的概率为221135244432⎛⎫⎛⎫+⨯⨯=⎪ ⎪⎝⎭⎝⎭,这个训练计划持续两个周期的概率为2513811232441024⎛⎫⎛⎫-⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭.故答案为:81 1024.【点睛】本题主要考查了相互独立事件的概率的计算,其中解答中正确理解题意,结合独立事件的概率计算公式求得一个周期内就停止训练的概率是解答的关键,着重考查分析问题和解答问题的能力.三、解答题21.(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)8 15.【分析】(1)由题中22⨯列联表中的数据代入()()()()()22n ad bcKa b c d a c b d-=++++然后与所给表值进行比较可得答案;(2)列出从这6人中随机抽取2人的所有可能情况,选中的2人中恰有一男一女的所有可能情况可得答案.【详解】(1)由题中22⨯列联表,可得()22100103020404.762 3.84150503070K⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系.(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,男性人数为106230⨯=人,记为A,B;女性人数为206430⨯=人,记为a,b,c,d.则从这6人中随机抽取2人的所有可能情况有以下“A,B;A,a;A,b;A,c;A,d;B ,a ; B ,b ; B ,c ; B ,d ;a ,b ; a ,c ; a ,d ; b ,c ; b ,d ; c ,d ”共15种.其中,选中的2人中恰有一男一女的所有可能情况有以下“A ,a ; A ,b ; A ,c ; A ,d ; B ,a ; B ,b ; B ,c ; B ,d ”共8种. ∴选中的2人中恰有一男一女的概率815P =. 【点睛】古典概型的概率的计算方法,首先计算所有基本事件数,再计算事件A 包含的基本事件数,应用古典概率公式计算求解.22.(1)0.95r ≈,y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系;(2)35102y x =+,当7x =时, 4.6y =;(3)要介入进行治理. 【分析】(1)由已知数据可得,x y ,利用公式,求得相关系数r ,即可作出判断,得到结论;(2)由(1),求得b 和ˆa,求得回归直线的方程,代入7x =,即可求得回归方程; (3)由(3,3)(1,11)x s x s -+=-,而1311>,即可得到结论. 【详解】(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5()x x y y r --=0.95==≈. 因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()51521()632ˆ010()i i i i i x x y y b x x ==--===-∑∑,354ˆ2ˆ510a y bx =-=-⨯=, 所以y 与x 之间线性回归方程为35102ˆy x =+. 当7x =时,3576102ˆ 4.y=⨯+=. (3)()()3,31,11x s x s -+=-,而1311>,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理. 【点睛】本题主要考查了回归直线方程的求解及应用问题,其中解答中,认真审题,正确理解题意,利用公式准确计算是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.23.(1)各组分别为5人,6人,4人;(2)35;(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 【解析】试题分析:(1)三组一共有30人,抽取15人,故两个人抽一人,由此得到抽取的人数分别为5,6,4人.(2)利用列举法列举出所有可能性有15种,其中符合题意的有9种,故概率为35.(3)根据题意填写好表格后,计算29.979 6.635K ≈>,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 试题解:(1)因为1012815=5,15=615=4303030,⨯⨯⨯,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:,,,,,,,,,,,,,,,AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab 共15个结果,其中至少有1人愿意选择此款“流量包”,,,,,,,,,Aa Ab Ba Bb Ca Cb Da Db ab 共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率93155P ==. (3)2×2列联表∴()()()()25010310279.979 6.63510271031010273K ⨯⨯-⨯=≈>++++∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 24.(1)平均数为6,“长潜伏者”的人数为250人(2)列联表见解析, 有97.5%的把握认为潜伏期长短与年龄有关 (3)分布列见解析,()1750E X = 【分析】(1)由频率分布直方图可计算出潜伏期的均值,再由频率分布直方图可得“长潜伏者”的频率,从而得人数;(2)由所给数据计算出2K 后可得结论;(3)由题意知所需要的试验费用X 所有可能的取值为1000,1500,2000,分别计算出概率得概率分布列,再由期望公式得期望.。
统计习题及案例
统计习题及案例第一部分练习题第一章绪论目的与要求:本章从总体上对统计学进行概述,要求学习之后对统计学有总的理解:(1)了解统计学的发展历史和趋势;(2)理解统计学的研究对象和研究方法;(3)了解统计的职能和任务;(4)重点掌握统计学的基本概念和范畴。
本章内容是为以后各章的学习奠定基础。
一、判断题(在每命题后的括号内,正确的打,错误的打×,并改正。
)1.可变的数量标志是变量,所有的统计指标也都是变量。
()2.总体的同质性是指总体中的各个单位在所有标志上都相同。
()3.总体的差异性是指总体单位必须具有一个或若干个可变的品质标志或数量标志。
()4.数量指标是指由数量标志汇总来的,质量指标是由品质标志汇总来的。
()5.品质标志和质量指标一般不能用数值表示。
()6.所有的统计指标和可变的数量标志都是变量。
()7.社会经济现象都是有限总体。
()8.全国人口普查的总体单位是户。
()9.所有总体单位与总体之间都存在相互转换关系。
()10.统计所研究的对象必须是可度量的现象。
()11.统计指标是客观事实的具体反映,不具有综合性。
()12.品质标志不能转变为统计指标数值。
()13.指标都是用数值表示的,而标志则不能用数值表示。
()14.统计的信息、咨询、监督职能它们之间是相互独立的。
()15.大量性、同质性、变异性是统计总体的三个基本特征,只要具备其中之一使可形成总体。
()16. 指标都是用数值表示的,而标志则不能用数值表示。
()二、单选题(将备选答案中唯一正确的选项序号填在括号内。
)1.统计总体的同质性是指()A.体各单位具有某一共同的品质标志或数量标志B.体各单位具有某一共同的品质标志属性或数量标志值C.体各单位具有若干互不相同的品质标志或数量标志D.体各单位具有若干互不相同的品质标志属性或数量标志值2.设某地区有800家独立核算的工业企业,要研究这些企业的产品生产情况,总体是()A.全部工业企业 B.800家工业企业C.全部工业产品D.800家工业企业的全部工业产品3.要了解全国的人口情况,总体单位是()A.每个省的人口B.每一户C.全国总人口D.每个人4.有200家公司每位职工的工资资料,如果要调查这200家公司的工资水平情况,则统计总体为()A.200家公司的全部职工B.200家公司C.200家公司职工的全部工资D.200家公司每个职工的工资5.要了解某班50个学生的学习情况,则总体单位是()A.全体学生B.50个学生的学习成绩C.每一个学生D.每一个学生的学习成绩6.设某地区有60家生产皮鞋的企业,要研究它们的产品生产情况,总体是()A.每一个企业B.所有60家企业C.每一双鞋子D.所有企业生产的皮鞋7.一个统计总体()A.只能有一个标志B.可以有多个标志C.只能有一个指标D.可以有多个指标8.统计的数量性特征表现在()A它是一种纯数量的研究B它是从事物量的研究开始,来认识事物的质C它是从定性认识开始,以定量认识为最终目的D它是在质与量的联系中,观察并研究现象的数量方面9.以产品等级来反映某种产品的质量,则该产品等级是()A.数量标志B.数量指标C.品质标志D.质量指标10.某工人月工资为550元,工资是()A.品质标志B.数量标志C.变量值D.指标11.在调查设计时,学校作为总体,每个班作为总体单位,各班学生人数是()A.变量B.指标C.变量值D.指标值12.某班四名学生金融考试成绩分别为70分、80分、86分和95分,这四个数字是()A.标志B.指标值C.指标D.变量值13.年龄是()A.变量值B.离散型变量C.连续型变量,但在应用中常按离散型变量处理D.连续型变量14.工业企业的职工人数、职工工资是()A.连续型变量B.离散型变量C.前者是连续型变量,后者是离散型变量D.前者是离散型变量,后者是连续型变量15.质量指标是在数量指标基础上对总体内部数量关系和状况的反映。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 统计案例 复习题
一、选择题
1.下列属于相关现象的是( )
A.利息与利率 B.居民收入与储蓄存款
C.电视机产量与苹果产量 D.某种商品的销售额与销售价格
2.如果有95%的把握说事件A 和B 有关,那么具体算出的数据满足( ) A.2 3.841K >
B.2 3.841K < C.2 6.635K >
D.2 6.635K <
3.下列变量之间:①人的身高与年龄、产品的成本与生产数量;②商品的销售额与广告费; ③家庭的支出与收入.其中不是函数关系的有( ) A.0个
B.1个
C.2个
D.3个
4.当2 3.841K >时,认为事件A 与事件B ( ) A.有95%的把握有关 B.有99%的把握有关 C.没有理由说它们有关 D.不确定
5.已知回归直线方程 y bx a =+,其中3a =且样本点中心为(1
2),,则回归直线方程为( ) A.3y x =+ B.23y x =-+ C.3y x =-+ D.3y x =-
6.为了考察中学生的性别与是否喜欢数学课程之间的关系,在某校中学生中随机抽取了300名学生,得到如下列联表:
你认为性别与是否喜欢数学课程之间有关系的把握有( ) A.0
B.95%
C.99%
D.100%
7.在回归直线方程 y a bx =+中,回归系数b 表示( )
A.当0x =时,y 的平均值 B.x 变动一个单位时,y 的实际变动量 C.y 变动一个单位时,x 的平均变动量 D.x 变动一个单位时,y 的平均变动量
8.对于回归分析,下列说法错误的是( )
A.在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 B.线性相关系数可以是正的,也可以是负的
C.回归分析中,如果21r =,说明x 与y 之间完全相关 D.样本相关系数(11)
r ∈-, 9. 在画两个变量的散点图时,下面哪个叙述是正确的( )
(A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上
(C)可以选择两个变量中任意一个变量在x 轴上(D)选择两个变量中任意一个变量在y 轴上
10、一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是( )
A.身高一定是145.83cm;
B.身高在145.83cm 以上;
C.身高在145.83cm 以下;
D.身高在145.83cm 左右.
11、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )
A.模型1的相关指数2R 为0.98
B.模型2的相关指数2R 为0.80
C.模型3的相关指数2R 为0.50
D.模型4的相关指数2R 为0.25
12、在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A.总偏差平方和 B.残差平方和 C.回归平方和 D.相关指数R 2
13、工人月工资y (元)依劳动生产率x (千元)变化的回归直线方程为ˆ6090y
x =+,下列判断正确的是( )
A.劳动生产率为1000元时,工资为50元
B.劳动生产率提高1000元时,工资提高150元
C.劳动生产率提高1000元时,工资提高90元
D.劳动生产率为1000元时,工资d 的90元
14、对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是( )
A . k 越大," X 与Y 有关系”可信程度越小;
B . k 越小," X 与Y 有关系”可信程度
越小;
C . k 越接近于0," X 与Y 无关”程度越小
D . k 越大," X 与Y 无关”程度越大
15、在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )
A.若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;
C.若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误;
D.以上三种说法都不正确.
16、设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归
直线的斜率是b ,纵截距是a ,那么必有( ) A. b 与r 的符号相同 B. a 与r 的符号相同 C. b 与r 的相反 D. a 与r 的符号相反
A.(2,2)点
B.(1.5,0)点
C.(1,2)点
D.(1.5,4)点 18、已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )
A.y ∧
=1.23x +4 B.
y ∧=1.23x+5 C. y ∧=1.23x+0.08 D. y ∧
=0.08x+1.23
19、为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归直线方程1l 和2l ,两人计算知x 相同,y 也相同,下列正确的是( ) A. 1l 与2l 重合B. 1l 与2l 一定平行 C. 1l 与2l 相交于点),(y x D. 无法判断1l 和2l 是否相交
20、下列说法正确的有( )
①回归方程适用于一切样本和总体。
②回归方程一般都有时间性。
③样本取值的范围会影响回归方程的适用范围。
④回归方程得到的预报值是预报变量的精确值。
A. ①② B. ②③ C. ③④ D. ①③ 21、考察棉花种子经过处理跟生病之间的关系 得到如下表数据:根据以上数据,则( ) A.种子经过处理跟是否生病有关 B. 种子经过处理跟是否生病无关 C.种子是否经过处理决定是否生病 D . 以上都是错误的
22.某化工厂为预测某产品的回收率y ,需要研究它和原料有效成份含量之间的相关关系,现取了
8对观测值,计算得:81
52i i x ==∑,81
228i i y ==∑,821
478i
i x ==∑,8
1
1849i i i x y ==∑,则y 与x 的回归直线方
程是( )
A. 11.47 2.62y x =+ B. 11.47 2.62y x =-+ C. 2.6211.47y x x =+ D. 11.47 2.62y x =- 23.如图所示,图中有5组数据,去掉组数据后(填字母代号),剩下的4组数
据的线性相关性最大( )
A.E
B.C
C.D
D.A
24.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数
据表:
你认为婴儿的性别与出生时间有关系的把握为( ) A.80%
B.90%
C.95%
D.99%
25.已知线性相关关系的两个变量建立的回归直线方程为 y a bx =+,方程中的回归系数b ( ) A.可以小于0
B.只能大于0 C.可以为0
D.只能小于0
26.每一吨铸铁成本c y (元)与铸件废品率x %建立的回归方程568c y x =+,下列说法正确的是( )
A.废品率每增加1%,成本每吨增加64元B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元 27.下列说法中正确的有:①若0r >,则x 增大时,y 也相应增大;②若0r <,则x 增大时,y 也相应增大;③若1r =,或1r =-,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上( ) A.①② B.②③
C.①③
D.①②③
二、填空题
28.对于回归直线方程 4.75257y x =+,当28x =时,y 的估计值为 . 29.直线回归方程 y a bx =+恒过定点 .
30、如右表中给出五组数据),(y x ,从中选出四组使其线性相关最大,且保留第一组)3,5(--,那么,应去掉第 组。
31、若有一组数据的总偏差平方和为100,相关指数为0.5,则期残差平方和为_____
三、解答题
32、(本小题满分12分)
假设关于某设备的使用年限x 和所支出的维修费用y 有如下的统计资料
若由资料知y 对x 呈线性相关关系,试求: (1)线性回归方程
(2)估计使用年限为10年时,维修费用大约是多少?
33、某企业为考察生产同一种产品的甲、乙两条生产线的产品合格率,同时各抽取100件产品,检验后得到如下联表: 生产线与产品合格率列联表
34、若两个分类变量X 与Y 的列联表为:
则“X 与Y 之间有关系”这个结论出错的可能性为多少?。