奥数行程问题的基本公式
六年级下小升初典型奥数之行程问题
六年级下小升初典型奥数之行程问题在小学六年级的数学学习中,行程问题一直是一个重点和难点,也是小升初奥数考试中经常出现的题型。
今天,咱们就来好好探讨一下这类问题。
行程问题主要涉及速度、时间和路程这三个量之间的关系。
基本的公式就是:路程=速度×时间。
而常见的行程问题类型有相遇问题、追及问题、流水行船问题等等。
咱们先来说说相遇问题。
比如说,甲从 A 地出发,速度是每小时 5千米;乙从 B 地出发,速度是每小时 3 千米。
A、B 两地相距 16 千米,两人相向而行,问经过多长时间两人相遇。
解决这个问题,我们可以先算出两人的速度和,也就是 5 + 3 = 8千米/小时。
然后用总路程除以速度和,就能得到相遇时间:16÷8 = 2小时。
再来看一个稍微复杂点的相遇问题。
甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲每小时走 4 千米,乙每小时走 6 千米,经过 3 小时两人相遇。
A、B 两地相距多远?这时候我们就可以先算出甲 3 小时走的路程是 4×3 = 12 千米,乙 3 小时走的路程是 6×3 = 18 千米。
然后把两人走的路程相加,12 + 18= 30 千米,就是 A、B 两地的距离。
接下来是追及问题。
比如甲在乙前面 10 千米处,甲的速度是每小时 3 千米,乙的速度是每小时 5 千米,问乙多长时间能追上甲。
因为乙的速度比甲快,所以每小时乙能比甲多走 5 3 = 2 千米。
而两人一开始的距离差是 10 千米,所以追上甲需要的时间就是 10÷2 = 5 小时。
再看一个例子,甲、乙两人同时同向出发,甲在前,乙在后。
甲每小时走 2 千米,乙每小时走 5 千米。
出发 4 小时后,乙追上甲。
一开始两人相距多远?我们先算出乙 4 小时走的路程是 5×4 = 20 千米,甲 4 小时走的路程是 2×4 = 8 千米。
因为乙追上了甲,所以一开始两人的距离差就是乙比甲多走的路程,即 20 8 = 12 千米。
奥数行程问题知识点总结大全
小学奥数行程问题公式奥数行程问题知识点总
结大全
【根本公式】:路程=速度×时间
【根本类型】
相遇问题:速度和×相遇时间=相遇路程;
追及问题:速度差×追及时间=路程差;
流水问题:关键是抓住水速对追及和相遇的时间不产生影响;
顺水速度=船速+水速逆水速度=船速-水速
静水速度=〔顺水速度+逆水速度〕÷2 水速=〔顺水速度-逆水速度〕÷2
〔也就是顺水速度、逆水速度、船速、水速4个量中只要有2个就可求另外2个〕
其他问题:利用相应知识解决,比方和差分倍和盈亏;
【复杂的行程】
1、屡次相遇问题;
2、环形行程问题;
3、运用比例、方程等解复杂的题。
查看:小升初奥数行程问题公式和例题解析汇总。
六年级奥数行程问题
行程问题(一)专题简析:行程问题的三个基本量是距离、速度和时间.其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后.追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
例题1两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米”.这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)甲行完全程的时间:165÷30—错误!=4.7(小时)解法二:48×(165÷24)-48=282(分钟)=4。
7(小时)答:甲车行完全程用了4。
7小时.挑战自我1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回.两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?3、甲、乙两辆汽车早上8点钟分别从A、B两城同时相向而行。
学而思奥数模块之行程问题
学而思奥数模块之行程问题1、基本行程问题:基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置2、简单的相遇、追及问题:相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差简单的相遇与追及问题各自解题时的入手点及需要注意的地方1.相遇问题:与速度和、路程和有关⑴是否同时出发⑵是否有返回条件⑶是否和中点有关:判断相遇点位置⑷是否是多次返回:按倍数关系走。
⑸一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果2.追及问题:与速度差、路程差有关⑴速度差与路程差的本质含义⑵是否同时出发,是否同地出发。
⑶方向是否有改变⑷环形时:慢者落快者整一圈(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
小学奥数行程问题大汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定()2;路程一定2(),牢记平均速度公式,就不会错。
(完整版)小学奥数行程问题汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。
小学奥数行程问题
小学奥数行程问题行程问题知识要点1、行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算。
由于方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
2、行程问题的主要数量关系是:距离=速度某时间。
它大致分为以下三种情况:(1)相向而行:相遇距离=速度和某时间(2)相背而行:相背距离=速度和某时间(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差3、在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差某时间在行程问题中,与环形有关的行程问题的解决方法与一般行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动,甲追上乙时,甲比乙多行一个全程。
4、解行程问题时,要注意充分利用图示把图中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
5、船在江河航行时,除了本身的前进速度外,还受到流水的扒送和顶倪,在这种情况下计算船只的航行速度,时间和所行的路程,叫做流水行程问题。
流水行程问题,是行程问题中的一种,因此行程问题中的三个量(速度、时间、路程)的关系在这里将要反复地用到,此外流水行程问题还有以下两个基本公式:顺水速度=船速+水度(船速:船本身的速度)逆水速度=船速—水度(水速:流水的速度)根据加减法互逆关系可得:顺水航行中:水速=顺水速度—船速船速=顺水速度—水速逆水航行中:水速=船速—逆水速度船速=逆水速度+水速知道顺水速度和逆水速度还可以得出:水流速度=(顺水速度—逆水速度)÷2静水速度=(顺水速度+逆水速度)÷26、列出过桥是生活中常见的现象,要正确理解这类问题,首先要懂得从车头上桥到车尾离开桥行驶的路程是多少,即列车过桥总路程=桥长+车长。
经典例题1甲乙两人同时从A、B两地出发,相向而行,甲每小时行5千米,乙每小时行4.5千米,3.6小时后相遇。
奥数行程问题的基本公式完整版
奥数行程问题的基本公式HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】行程问题的基本公式基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
仅供参考:【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
小学奥数行程问题
小学奥数行程问题1. 引言在小学奥数中,行程问题是一个常见且重要的题型。
行程问题涉及到人或物体从一个地点到另一个地点的移动,通常要求计算所需的时间、距离、速度等相关信息。
本文将介绍小学奥数中常见的行程问题类型以及解题方法。
2. 行程问题类型2.1 单程问题单程问题是指从一个地点到另一个地点的单向行程,通常要求计算所需的时间、距离或速度。
在解决单程问题时,可以使用以下公式: - 时间 = 距离 / 速度 - 距离 = 时间 * 速度 - 速度 = 距离 / 时间2.2 往返问题往返问题是指从一个地点到另一个地点后再返回原地的行程。
解决往返问题时,需要考虑总行程的时间、距离或速度,并且要注意来回的路程一般是相同的。
在求解总行程的时间、距离或速度时,可以使用以下公式: - 总时间 = 单程时间 * 2 - 总距离 = 单程距离 * 2 - 总速度 = 总距离 / 总时间2.3 相遇问题相遇问题是指两个或多个人或物体从不同的地点出发,最终在某一地点相遇的行程问题。
解决相遇问题时,需要考虑各个人或物体的行程时间、距离或速度,并且要注意相遇的时间是相同的。
在求解相遇时间、距离或速度时,可以使用以下公式: - 相遇时间 = 相遇距离 / 相遇速度 - 相遇距离 = 相遇时间 * 相遇速度 - 相遇速度 = 相遇距离 / 相遇时间3. 解题方法3.1 问题分析在解决行程问题时,首先要对问题进行分析,理解题目所给的条件和要求。
分析题目可以帮助我们明确问题的关键信息,有助于后续的解题过程。
3.2 建立方程根据题目要求和所给的条件,可以建立相应的方程来求解行程问题。
根据具体情况,可以使用时间、距离和速度之间的关系来建立方程。
3.3 代入求解将已知的数值代入到建立的方程中,可以求解未知数的值。
根据题目要求,可能需要计算时间、距离或速度的值。
4. 示例4.1 单程问题示例问题:小明骑自行车以每小时10公里的速度,行驶了3小时,请计算他行程的距离。
小学奥数行程问题习题及详解系列之六
小学奥数行程问题习题及详解系列之六小学行程问题是我们在小学应用题中经常会遇到的,我们在解决行程问题前,要牢记以下公式:基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间路程一定,时间和速度成反比速度一定,路程和时间成正比时间一定,路程和速度成正比关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题:(直线):甲的路程+乙的路程=总路程相遇问题:(环形):甲的路程 +乙的路程=环形周长追及问题:追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题:(直线):距离差=追者路程-被追者路程=速度差X追击时间追及问题:(环形):快的路程-慢的路程=曲线的周长流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2 流水速度+流水速度÷2 水速:流水速度-流水速度÷2161、 .甲乙二人从相距37.5千米的两地相向而行。
若甲先出发2小时,则在乙动身后2.5小时后两人相遇,若乙先出发2时,则甲动身3时后两人相遇。
求甲、乙两人的速度?解:我们根据题意可以知道第一次甲行了2+2.5=4.5小时第二次甲行了3小时第一次乙行了2.5小时,第二次乙行了2+3=5小时也就是说甲4.5-3=1.5小时行的距离和乙5-2.5=2.5小时行的距离相等那么甲4.5小时行的距离和乙2.5×4.5/1.5=7.5小时行的距离相等那么乙行全程需要2.5+7.5=10小时乙的速度=37.5/10=3.75千米/小时那么甲的速度=(37.5-3.75×2.5)/4.5=6.25千米/小时162.甲从东村去西村需10分钟,乙从西村去东村需行15分钟,两人同时动身相向而行,相遇时离中点150米,求两村间的距离。
小学奥数行程问题及公式
小学奥数《行程问题及公式》1、行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4、行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
3)静水速度=(顺水速度+逆水速度)/2 4)水流速度=(顺水速度–逆水速度)/25、基本数量关系是火车速度×时间=车长+桥长1)超车问题(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差2)错车问题(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例1:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?例2:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?例3:汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。
例4:一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?例5:骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?例6:一架飞机所带的燃料最多可以用6小时,飞机去时顺风,时速1500千米,回来时逆风,时速为1200千米,这架飞机最多飞出多远就需往回飞?例7:有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡,平路及下坡的路程相等,某人骑车过桥时,上坡平路,下坡的速度分别为每秒4米、6米、8米,求他过桥的平均速度。
小学奥数行程问题之相遇
A、B两地相距400千米,甲乙两车同时从两地相对而出,甲车每小时行38千米, 乙车每小时行42千米,一只燕子以每小时50千米的速度和甲车同时出发,向乙 车飞去,遇到乙车又折回向甲车飞去。这样一直飞下去,燕子飞了多少千米,两 车才能相遇?
解:两车速度和:38+42=80(千米/小时) 燕子飞行时间:400÷80=5(小时) 燕子飞行路程:5×50=250(千米) 答:燕子飞了250千米。
添加 标题
一.
相遇问题
基本公式 路程=速 度×时间
例题分析
公式:共行路程÷相遇时间=速度和 速度和:20÷2=10(千米/小时) 小牛速度:10-4=6(千米/小时)
1、小明和小牛两家相距20千 米,某日,二人同时从家出发, 打算到对方家抄作业,2小时 后在途中相遇,小明的速度是 4千米每小时,问:小牛的速 度是多少?
8小时
表示原来速度和
7小时
表示现在速度和
解:现在速度和比原来速度和快3-1=2(千米) 原来速度和:2 × 7=14(千米/小时) 东西两地相距:14 × 8=112(千米)
答:东西两地相距112千米。
小明和小军分别从甲、乙两地同时出发,相向而行。如果按原 定速度前进,则4小时相遇,如两人各自比原定速度每小时多 走1千米,则3小时相遇。甲、乙两地相距多少千米?
客车从甲地开往乙地,货车从 乙地开往甲地,同时开出,到 达对方出发地后立即返回。第 一次相遇距乙地80千米,第二 次相遇距甲地50千米。甲、乙
两地相距多少千米?
解析:货车在共行1个全程中走 了80千米,3个全程中走了80
×3=240(千米),
到了第二次相遇点去掉50千米 就是全程240-50=190(千 米)。
五年级奥数之行程问题
植树问题行程问题行程问题是研究运动物体的路程、速度和时间三个量之间关系的问题。
行程问题的基本数量关系是:速度×时间=路程路程÷时间=速度路程÷速度=时间相遇问题在行程问题中,还包括相遇(相离)问题(相离指的是两个人背对背行走)和追及问题。
这两个问题主要的变化在于人的数量和运动方向上。
现在我们可以简单地理解成:相遇(相离)问题和追及问题当中参与者必须是两个人以上;如果他们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
1、相遇(相离)问题的基本数量关系:速度和×相遇时间= 相遇(相离)路程相遇(相离)路程÷相遇时间 = 速度和相遇(相离)路程÷速度和 = 相遇时间2、追及问题的基本数量关系速度差×追及时间= 相差路程相差路程÷追及时间 = 速度差相差路程÷速度差 = 追及时间在相遇(相离)问题和追击问题中,必须很好地理解各个数量的含义及其在应用体重是如何给出的,这样才能提高解题速度和能力。
例1:小丽和小红两家相距910米,两人电话相约同时从家中出发向对方相向行驶,小丽每分钟走60米,小红每分钟走70米,几分钟后两人在途中相遇?例2:甲、乙两人同时从学校向相反的方向行驶,甲每分钟行52米,乙每分钟行50米,经过7分钟后他们相距多少米?他们各自离学校有多少米?例3:甲、乙两辆汽车从相距600千米的两地相对开出,甲每小时行45千米,乙车每小时行40千米,甲车先开出2小时后,乙车才开出,问乙车行几小时后与甲车相遇?相遇时各行多少千米?练习:1、甲、乙两地相距54千米,A、B两人同时从两地相向而行,A每小时行4千米,B每小时行5千米,两人经过几小时后相遇?2、甲、乙两地相距480千米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,求货车的速度是每小时行多少千米?3、王乐和张强两人从相距2280米的两地相向而行,王乐每分钟行60米,张强每分钟行80米,王乐出发3分钟后张强才出发,张强出发几分钟与王乐相遇?4、一列火车于下午4时30分从甲站开出,每小时行120千米,经过1小时后,另一列火车以同样的速度从乙站开出,晚上9时30分两车相遇,问甲、乙两站铁路长是多少千米?5、AB两地相距360千米,客车与货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点距B地多远?例4:快车和慢车同时从甲、乙两地相对开出,已知快车每小时行60千米,慢车每小时行52千米,经过几小时后快车在经过中点32千米处与慢车相遇,求甲、乙两地的路程是多少?1、甲、乙两车从A、B两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇,求AB两地相距是多少?2、甲、乙两人同时从两地骑车相向而行,甲每小时行18千米,乙每小时行15千米,两人相遇时距中点3千米,求两地距离多少千米?3、甲、乙两人同时从正方形花坛A点出发,沿着花坛的边上走,甲顺时针每分钟走40米,乙逆时针每分钟行45米,两人在距C点15米处相遇,求这个花坛周长是多少?例5:甲、乙相距640千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行46千米,第二辆汽车每小时行34千米,第一辆汽车到达乙地后立即返回,两辆汽车从开出到相遇共用了几小时?1、AB两地相距900米,甲、乙两人同时从A到B,甲每分钟行70米,乙每分钟行50米,当甲到达B后立即返回与乙在途中相遇,两人从出发到相遇共经过多少分钟?2、AB两地相距250千米,一辆客车和一辆货车同时从A到B,客车每小时行65千米,货车每小时行60千米,客车到达B后立即返回与货车在途中相遇,求相遇点距B地有多少?3、甲乙两队学生从相距2700米的两地同时出发,相向而行,一个同学骑自行车以每分150米的速度在两队间不停地往返联络,甲队每分行25米,乙队每分行20米,两队相遇时,骑自行车的同学共行了多少米?与环形有关的行程问题一对老年夫妇沿着周长为200米的圆形花坛散步,他们从同一地点出发,相背而行,老太太每分钟走45米,老先生每分钟走55米,多长时间后他们第一次相遇(合走一圈)?多长时间后他们第二次相遇?火车过桥(过隧道或山洞)、火车经过人、两车对开问题火车过桥(过隧道或山洞)问题,主要发生变化的量是路程。
奥数第六讲 行程问题
奥数第六讲行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。
每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度× 时间2. 相遇问题:路程和 = 速度和× 时间3. 追击问题:路程差 = 速度差× 时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
①追击及相遇问题一、例题与方法指导例1. 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲和乙相遇后3分钟和丙相遇。
问:这个花圃的周长是多少米?思路导航:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷ (38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
例2. 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。
乙车每小时行多少千米?思路导航:从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间。
四年级奥数行程问题
行程问题专题分析:行程问题是专门讲物体运动的速度、时间和路程的应用题.行程问题的主要数量关系是:路程=速度X时间、路程和+速度和=相遇时间、路程差・速度差=相遇时间.练习一:1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米.两车在距中点32千米处相遇.东西两地相距多少千米?思路:两车在距中点32千米处相遇,意思是:两车行的路程相差64千米.有了路程差和速度差就可以求出相遇时间了为8小时.其他计算就容易了.2、小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3、一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米.当摩托车行到两地中点处,与汽车相距75千米. 甲乙两地相距多少千米?4、小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程.练习二:1、快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车己驶过中点25千米,.慢车每小时行多少千米?思路:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,那么慢车行了 63千米.因此慢车的速度为21千米/ 小时.2、兄弟二人同时从学校和家中出发,相向而行.哥哥每分钟行120米,5 分钟后哥哥己超过中点50米,这时兄弟二人还相距30米.弟弟每分钟行多少米?3、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4、学校运来一批树苗,五〔1〕班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵.如果这批树苗平均分给五〔1〕班的同学去植,平均每人植多少棵?1、甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米. 中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙.求东西两村相距多少千米?思路:先找到路程差,就可以求出相遇时间为5小时,那么甲的速度就是15 ・〔5 — 4〕 =15 〔千米/小时〕.两村相距是15义4 = 60 〔千米〕2、甲乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米.甲到达B地后立即返回A地,在离B地3. 2千米处相遇.A、B两地之间相距多少千米?3、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20 米.30分钟后小平到家,到家后立即沿原路返回,在离家350米处遇到小红. 小红每分钟走多少米?4、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米.上午11 时到达B地后立即返回,在距离B地24千米处相遇.求A、B两地相距多少千米?1、甲乙两队学生从相距18千米的两地同时出发,相向而行.一个同学骑自行车以每小时14千米的速度,在两队之间不停地往返联络.甲队每小时行5 千米,乙队每小时行4千米.两队相遇时,骑自行车的同学共行多少千米?思路:要求两队相遇时,骑自行车的同学共行多少千米?就要求他的速度和时间.速度是己知的,时间就是两队的相遇时间.只要先求出相遇时间就可以了.2、两支队伍从相距55千米的两地相向而行.通信员骑马以每小时16千米的速度在两支队伍之间不断往返联络.一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通信员共行了多少千米?3、甲乙两人同时从两地出发,相向而行,距离是100千米.甲每小时行6 千米,乙每小时行4千米,甲带着一条狗,狗每小时行10千米.这只狗同甲一道出发,碰到乙的时候,它就掉头朝着甲这边跑,碰到甲的时候,它又掉头朝着乙这边跑.直到两人相遇时,这只狗一共跑了多少千米?4、两队同学同时从相距30千米的甲乙两地相向出发,一只鸽子以每小时20千米的速度在两队同学之间不断往返送信.如果鸽子从同学们出发到相遇共飞行了 30千米,而甲队同学比乙队同学每小时多走0.4千米,求两队同学的行走速度.1、甲乙两车早上8时分别从A、B两地同时出发,到10时两车相距112. 5 千米.两车继续行使到下午1时,两车相距还是112. 5千米.A、B两地之间相距多少千米?思路:从10时两车相距112. 5千米.两车继续行使到下午1时,两车相距还是112. 5千米,说明在3小时内两车行驶225千米,那么两车的速度和是75千米.甲乙两车早上8时分别从A、B两地同时出发,到10时两车相距112. 5千米.2小时内两车就行驶150千米,因此两地相距262. 5千米.2、甲乙两车同时从A、B两地相向而行,3小时后,两车还相距120千米, 又行了 3小时,两车又相距120千米.A、B两地相距多少千米?3、快慢两车早上6时同时从甲乙两地相向而行,中午12时两车还相距50 千米,继续行驶到14时,两车又相距170千米.甲乙两地相距多少千米?4、甲乙两车分别从A、B两地同时相向而行,8小时后相遇,相遇后两车继续行驶,3小时后两车又相距360千米.求A、B两地之间的距离.1、小明爬山,山坡长300米,上山用10分钟,下山用5分钟,他的平均速度是多少?2、从家到学校,如果步行每分钟走80米,15分钟可到学校,假设想10分钟到学校,每分钟走多少米?3、AB两地相距24其阿米,甲、乙两人从两地分别出发,相向而行,甲每分钟走100米,乙每分钟走150米,问:两人相遇时,乙比甲多走了多少千米?4、甲乙两人相距100米,甲在前每秒跑3米,乙在后每秒跑5米.两人同时出发,同向而行,儿秒后乙能追上甲?5、甲乙两人相距40千米,甲先出发L 5小时乙再出发,甲在后乙在前,二人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,甲出发几小时后追上乙?6、甲乙两人在一条长400米的环形跑道上跑步,甲的速度是每分钟跑360米,乙的速度是每分钟跑240 米.两人同时同地同向跑,几秒后两人第一次相遇?1、中巴车每小时行60千米,小轿车每小时行84千米,两车同时从相距60 千米的两地同方向开出,且中巴车在前,求几小时后小轿车追上中巴车?思路:直接使用追击问题的计算公式即可:路程+速度差=追击时间2、兄弟二人从100米的跑道的起点同时出发,沿同一方向跑步,弟弟在前, 每分钟跑120米,哥哥在后,每分钟跑140米.几分钟后哥哥追上弟弟?3、甲骑自行车从A地至IJB地,每小时行16千米,1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地.A、B两地相距多少千米?4、甲乙两人以每分钟60米的速度同时、同地、同向步行出发.走15分钟后甲返回原地取东西,而乙继续前进,甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙.甲骑车多少分钟才能追上乙?练习七:1、一辆汽车从甲地开往乙地,要行360千米,开始按方案以每小时45千米的速度行驶,途中因汽车出故障修车2小时.由于要按时到达乙地,修好车后必须每小时多行30千米.问:汽车是在离甲地多远处修车的?思路:途中修车用了 2小时,汽车就少行了 90千米,修车后为了按时到达, 每小时多行了 30千米,说明修车后汽车行了 3小时,即修车后汽车行了 225千米.因此汽车是在离甲地135千米处修车的.2、小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到达,有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米,求小王是在离工厂多远处遇到熟人的?3、一辆汽车从甲地开往乙地,假设每小时行36千米,8小时能到达.这辆车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟.为了能在8小4、汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地,汽车出发后1小时原路返回甲地取东西,然后立即从甲地出发,为了能在原来的时间内到达乙地,汽车必须以每小时多少千米的速度从甲地驶向乙地?练习八:1、甲骑车、乙跑步,二人同时从一点出发沿着长4千米的环形公路同方向进行晨练,出发后10分钟,甲便从乙身后追上了乙,己知两人的速度和是每分钟行700米,求甲乙二人的速度各是多少?思路:根据甲骑车、乙跑步,二人同时从一点出发沿着长4千米的环形公路同方向进行晨练,出发后10分钟,甲便从乙身后追上了乙,可以计算两人的速度差是400米.以后的计算就简单了.2、爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步,爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问至少经过几分钟爸爸从小明身后追上小明?3、在300米长的环形跑道上,甲乙二人同时同地同向跑步,甲每秒跑5米, 乙每秒跑4. 4米.两人起跑后的第一次相遇点在起点前多少米?思路:先计算相遇时间,再计算某一人跑的路程,用路程除以300米,看有多少圈,除取整圈数,小数局部乘以300米即可.4、环湖一周共400米,甲乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙,假设二人同时从同一地点反方向而行,只要2分钟就相遇.求甲乙的速度.练习九:1、甲乙丙三人都从A地到B地,早晨6时,甲乙二人一起从A地出发,甲每小时走5千米,乙每小时走4千米.丙上午8时才从A地出发,黄昏6时,甲和丙同时到达B 地.问闪什么时候追上乙?思路:甲比丙先行2小时,就先行了10千米,10小时后同时到达,说明丙每小时比甲多行1千米,那么丙的速度是每小时行6千米,乙也比并先行2小时,那么先行82、客车、货车和小轿车都从A地出发到B地,货车每小时行50千米,客车每小时行60千米,2小时后,小轿车才从A地出发,12小时后,小轿车追上了客车,问小轿车在出发后几小时追上了货车?3、甲乙丙三人都从A地到B地,甲乙两人一起从A地出发,甲每小时走6千米, 乙每小时走4千米.4小时后丙骑自行车从A地出发,用了2小时就追上了乙,再用几小时就能追上甲?4、甲乙丙三人行走的速度分别是60米、80米和100米,甲乙两人在B地同时同地同向出发,丙从A地同时同地同向出发去追赶甲乙,丙追上甲后又过了 10分钟才追上乙.求A、B两地之间的距离.。
小学奥数行程问题汇总
小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。
一、求平均速度。
公式:平均速度=总路程÷总时间(例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。
问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。
求这辆汽车从甲地到乙地的平均速度。
总结:求平均速度:时间一定()2;路程一定2(),牢记平均速度公式,就不会错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题的基本公式基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
仅供参考:【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。
【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。
解决基本行程问题注意两点我们每天都在行走,行走就离不开速度、时间、路程这三个量,这类问题就称为行程问题.相遇问题和追及问题就是行程问题中的两种类型.在解答行程问题时,要注意所走的方向、是否同时行驶、是否相遇等问题,一般要采用直观画图法帮助理解题意、分析题目中的数量关系,最终找到解题思路.解答行程问题时必须注意:⑴要弄清题意:对具体问题要做仔细分析,必要时作一条线段图帮助理解⑵要弄清距离、速度和、时间之间的关系,紧扣数量关系式在小学阶段关于行程的应用题是作为一种专项应用题出现的,简称“行程问题”。
有一种“行程问题”中出现了第二次相遇(即两次相遇)的情况,较难理解。
其实此类应题只要掌握正确的方法,解答起来也十分方便。
例1.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出下面的线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地80千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程,说明两车第二次相遇时甲共行了8×3=240(千米),从图中可以看出来甲车实际行了一个全程多60千米,所以A、B两地间的路程就是:240-60=180(千米)例2.甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。
求A、B两地间的路程。
[分析与解]根据题意可画出线段图:由图中可知,甲、乙两车从同时出发到第二次相遇,共行驶了3个全程,第一次相遇距A地8O千米,说明行完一个全程时,甲行了8O千米。
两车同时出发同时停止,共行了3个全程。
说明两车第二次相遇时甲车共行了:80×3=24O(千米),从图中可以看出来甲车实际行了两个全程少60千米,所以A、B两地间的路程就是:(24O+6O)÷2=150(千米)可见,解答两次相遇的行程问题的关键就是抓住两次相遇共行三个全程,然后再根据题意抓住第一次相遇点与三个全程的关系即可解答出来。
例1 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?分析当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
例2 一支队伍长350米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队头,然后再返回队尾,一共要用多少分钟?分析要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可。
例3 某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米。
李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用多少秒?分析要求一共要用多少分钟,首先必须求出队伍的长度,然后可以参照例2解题。
例4 甲、乙、丙三人都从A地出发到B地。
乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙;甲出发多少分钟后追上丙?设丙的速度为1米/分钟. (1)当乙追上丙时,丙共行了1×(40+10)=50米,由此可知乙行50米用了40分钟,乙的速度为50÷40=1.25(米/分钟);(2)当甲追乙时,乙已经先出发走了20分钟,这时甲乙的距离差为1.25×20=25(米),甲乙的速度差为25÷100=0.25(米); 甲的速度为1.25+0.25=1.5(米); (3) 当甲追丙时,丙已经先出发走了10+20=30分钟,这时甲丙的距离差为1×(10+20)=30米,速度差为1.5-1=0.5(米/分钟),追及时间为30÷0.5=60(分钟)。
【赛题练习】1、小冬、小青两人同时从甲、乙两地出发相向而行,两人在离甲地40千米处第一次相遇。
相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路返回,途中两人在距乙地15千米处第二次相遇,甲乙两地相距多少千米?2、甲乙两站相距360千米,客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米。
客车到达乙站后停留0.5小时,又以原速返回甲站,两车相遇地点离乙站多少千米?3、小张、小王两位运动员进行竞走训练,小张从甲地、小王从乙地两人同时出发,在两地之间往返行走(到达另一地后就马上返回)。
在离甲地3.5千米处他们第一次相遇,又在小张离开乙地3千米处第二次相遇。
这样继续下去,当他们第四次相遇时,距甲地多少千米?练习题一:1、小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3时50分,那么下山用了多少时间?2、一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。
3、已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.4、小燕上学时骑车,回家时步行,路上共用50分钟.若往返都步行,则全程需要70分钟.求往返都骑车需要多少时间?5、汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地.求该车的平均速度.6、两地相距480千米,一艘轮船在其间航行,顺流需16时,逆流需20时,求水流的速度.7、某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?练习题二:1、在地铁车站中,从站台到地面有一架向上的自动扶梯。
小强想逆行从上到下,如果每秒向下迈两级台阶,那么他走过100级台阶后到达站台;如果每秒向下迈三级台阶,那么走过75级台阶到达站台。
自动扶梯有多少级台阶?2、有两个班的小学生要到少年宫参加活动,但只有一辆车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,载学生时车速每小时40公里,空车时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?(学生上下车时间不计)3、一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟发一辆公共汽车?4、从电车总站每隔一定时间开出一辆电车。
甲与乙两人在一条街上沿着同一方向步行。
甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。
那么电车总站每隔多少分钟开出一辆电车?5、甲步行上楼梯的速度是乙的2倍,一层到二层有一上行滚梯(自动扶梯)正在运行。
二人从滚梯步行上楼,结果甲步行了10级到达楼上,乙步行了6级到达楼上。
这个滚梯共有多少级?。