汽车车身的空气动力学应用

合集下载

汽车车身的空气动力学设计

汽车车身的空气动力学设计

汽车车身的空气动力学设计一、引言随着现代汽车技术的不断发展,空气动力学设计已成为汽车设计领域中不可忽视的重要因素。

汽车车身的空气动力学设计能够显著影响车辆的性能和油耗,并调整车辆的稳定性和行驶舒适度。

本文将探讨汽车车身的空气动力学设计要点以及对整体性能的影响。

二、减少空气阻力的设计减少空气阻力是汽车车身空气动力学设计的主要目标之一。

为了降低阻力,设计师需要考虑以下几个方面。

1.车身外形设计车身外形应该尽可能流线型,减少空气流动中的湍流现象。

流线型车身能够使空气更加顺利地流过车辆,减少空气阻力。

设计师通常会借鉴飞机和鱼的形态进行车身外形设计,以减少阻力。

2.车身下部设计车身的底部设计也是关键。

通过优化车底板的设计,可以减少底部空气的湍流,并提高车辆的稳定性。

此外,添加护板、扰流板等装置也能减少车辆底部的阻力,进一步提高车辆的空气动力学性能。

3.车窗、后视镜、轮毂等细节设计车窗、后视镜、轮毂等汽车细节设计也应考虑减少阻力。

设计师可以采用更小的车窗、更小的后视镜,以及流线型的轮毂设计,来减少空气阻力的产生。

三、增加空气附着力的设计除了减少空气阻力外,增加空气附着力也是汽车车身空气动力学设计的重要目标。

通过增加空气附着力,可以提高汽车的操控性和行驶的稳定性。

1.扰流板设计扰流板的设计可以帮助车辆在高速行驶时增加空气附着力。

扰流板的位置和形状是关键,设计师需要根据车辆的具体情况进行合理设计,以提高车辆在高速行驶时的稳定性。

2.车顶翼设计车顶翼是一种常见的增加空气附着力的装置。

它可以改变车辆后部的气流流向,增加下压力,提高车辆行驶时的稳定性。

3.侧裙设计侧裙是装在车辆两侧下部的附着装置,可以减少空气从侧面流入车辆底部的湍流,增加车辆的空气附着力,提高行驶的稳定性和安全性。

四、提高行驶舒适度的设计除了影响性能和油耗外,汽车车身的空气动力学设计也可以调整车辆的行驶舒适度。

1.减少噪音汽车在行驶时产生的风噪和空气流动噪音会影响驾驶舒适度。

空气动力学及其应用

空气动力学及其应用

空气动力学及其应用概述:空气动力学是研究空气对物体运动的影响的科学。

它在各个领域都有广泛的应用,包括航空航天、汽车工程、风力发电等。

本文将介绍空气动力学的基本原理及其在实际应用中的一些例子。

一、空气动力学的基本原理空气动力学研究的对象是空气流动对物体运动的影响。

其中,流体力学和动力学是空气动力学的两个基本分支。

流体力学主要研究流体的运动规律,动力学则探究力对物体运动的影响。

1. 流体力学流体力学分为两个分支:静力学和动力学。

静力学研究的是静止流体的力学性质,而动力学研究的是流体的运动特性。

在空气动力学中,我们主要关注的是流体的动力学性质,即液体或气体的流动过程。

2. 动力学动力学是研究运动物体的力学原理。

在空气动力学中,我们需要考虑物体在空气中移动时所受到的阻力、升力和推力等因素。

其中,阻力是空气对物体运动的阻碍力,而升力是物体在空气中产生的向上的力,推力是物体在空气中产生的向前的力。

二、空气动力学的应用空气动力学在各个领域都有重要的应用,下面将介绍其中一些常见的应用领域。

1. 航空航天工程航空航天工程是空气动力学的典型应用领域之一。

在飞机的设计和制造过程中,空气动力学原理被广泛应用。

例如,空气动力学可以帮助设计机翼的形状和尺寸,以达到减小阻力、增加升力的目的。

此外,空气动力学还能够帮助优化飞机的外形和气动布局,提高飞行稳定性和操纵性能。

2. 汽车工程空气动力学在汽车工程中也有重要的应用。

通过减小汽车的阻力,可以提高汽车的燃油经济性和行驶稳定性。

例如,在汽车外形设计中,空气动力学原理可以指导优化车身的流线型,减小车身与空气之间的阻力。

同时,空气动力学还可以帮助优化车辆底部的空气动力学布局,减小底部的气流阻力。

3. 风力发电风力发电是一种利用空气动力学原理的可再生能源技术。

风力发电机的叶片利用风的流动产生动力,并通过转子变速器将动力转化为电能。

在风力发电机的设计和优化中,空气动力学的原理被广泛应用。

空气动力汽车的原理

空气动力汽车的原理

空气动力汽车的原理
空气动力汽车是一种利用空气动力学原理来驱动的汽车,它与传统燃油汽车相比具有更环保、更节能的特点。

空气动力汽车的原理主要是通过利用空气动力学原理来驱动汽车,下面我们将详细介绍空气动力汽车的原理。

首先,空气动力汽车的原理是利用空气动力学原理来产生推进力。

空气动力学原理是研究空气在物体表面流动时所产生的力和阻力的科学,通过合理设计车身和发动机,可以使空气在流动过程中产生推进力,从而驱动汽车前进。

其次,空气动力汽车的原理是利用压缩空气来产生动力。

空气动力汽车通常配备有压缩空气储存装置,通过压缩空气储存装置将空气压缩到高压状态,然后释放压缩空气来驱动发动机,产生动力推动汽车前进。

另外,空气动力汽车的原理是利用空气动力学原理来减少空气阻力。

空气动力学原理可以帮助设计车身外形,使得汽车在运动时减少空气阻力,从而提高汽车的行驶效率和节能性能。

最后,空气动力汽车的原理是利用空气动力学原理来提高汽车
的动力性能。

通过合理设计发动机和传动系统,利用空气动力学原
理来提高汽车的动力性能,使得汽车在行驶过程中更加稳定、灵活
和高效。

综上所述,空气动力汽车的原理是基于空气动力学原理来驱动
汽车,通过合理设计车身和发动机,利用压缩空气来产生动力,减
少空气阻力,提高汽车的动力性能,从而实现更环保、更节能的汽
车行驶方式。

空气动力汽车的原理虽然目前还处于研究和发展阶段,但相信随着技术的不断进步,空气动力汽车一定会成为未来汽车发
展的重要方向。

车身设计如何提高汽车空气动力学性能

车身设计如何提高汽车空气动力学性能

车身设计如何提高汽车空气动力学性能汽车空气动力学性能是指汽车在行驶时所受到的空气阻力与空气动力学性能的关系。

良好的空气动力学性能可以有效降低空气阻力,提高汽车的行驶稳定性、燃油经济性和操控性能。

因此,在汽车设计中,车身设计起着至关重要的作用。

本文将从改善车身流线型、减少空气阻力、优化空气动力学外观等方面探讨如何提高汽车空气动力学性能。

1. 改善车身流线型车身流线型设计是提高汽车空气动力学性能的关键。

一辆具有良好流线型的汽车可以减少空气阻力,降低燃油消耗。

为了改善车身流线型,设计师可以采取以下措施:(1)降低车身高度:降低车身高度可以减少车辆与空气的接触面积,减小空气阻力。

(2)减小车辆的前部和后部截面积:通过减小车辆前后部位的截面积,可以有效降低空气阻力,提高空气动力学性能。

(3)优化车身曲线:合理的曲线设计能够使气流在车身表面流动更加顺畅,减少湍流和阻力。

2. 减少空气阻力空气阻力是影响汽车空气动力学性能的主要因素之一。

降低空气阻力,能够减小车辆在高速行驶时的能量损失,提高燃油经济性。

以下是减少空气阻力的一些方法:(1)减小车身外部突出部件的尺寸:减小车辆外部的突出部件如侧视镜、天线等的尺寸,可以减小空气阻力。

(2)安装空气动力学装置:例如,在车辆后部安装一定长度的扰流板,能够减小车辆后部的湍流,降低空气阻力。

(3)使用车身平滑材料:采用平滑的车身材料能够降低空气阻力,提高空气动力学性能。

3. 优化空气动力学外观车身外观的设计对汽车的空气动力学性能有着直接的影响。

通过优化车身外观设计,可以改善车辆的空气动力学性能。

以下是一些优化车身外观的方法:(1)减小前风阻:设计前部进气口时,要注意减小入口截面积,以减小前风阻。

(2)设计合理的车顶流线型:合理的车顶设计能够减小空气阻力,提高空气动力学性能。

(3)采用合适的车身细节设计:例如,在车身侧部和后部设置气流导流槽,可以改善气流分离和减小湍流,提高空气动力学性能。

车辆空气动力学

车辆空气动力学

车辆空气动力学车辆空气动力学是指车辆行驶时空气对车辆的影响和作用的学科。

空气动力学在汽车设计中起着至关重要的作用,它涉及到车辆的气动外形设计、空气阻力、升力、气流优化等方面,直接影响到车辆的性能、稳定性和燃油经济性。

车辆在行驶过程中,空气对车辆的影响主要表现为空气阻力和升力。

空气阻力是车辆行驶时空气对车辆前进方向施加的阻力,直接影响到车辆的速度和燃油消耗。

为了降低空气阻力,汽车设计师需要通过合理设计车身外形、减小车身侧面积、降低车身下压力等方式来优化车辆的空气动力学性能。

除了空气阻力,车辆在高速行驶时还会受到空气的升力影响。

升力会使车辆在高速行驶时产生不稳定的飘移现象,降低车辆的操控性和行驶稳定性。

为了减小升力,汽车设计师需要通过设计合理的车身下压力装置、增加车身稳定性等措施来改善车辆的空气动力学性能。

在汽车设计中,空气动力学设计是一个复杂而重要的领域。

设计师需要考虑车辆的外形、车身结构、进气口、排气口等因素,以确保车辆在高速行驶时具有良好的空气动力学性能。

通过使用计算流体力学(CFD)等工具,设计师可以模拟车辆在不同速度下的空气流动情况,优化车辆的空气动力学性能。

除了影响车辆性能和燃油经济性外,空气动力学还可以影响到车辆的外观设计。

许多现代汽车设计都采用了流线型的外形设计,以降低空气阻力和减小升力,提高车辆的性能和稳定性。

流线型的外形设计不仅具有美观的外观,也是对空气动力学原理的有效运用。

总的来说,车辆空气动力学是汽车设计中不可忽视的重要领域。

通过优化车辆的空气动力学性能,可以提高车辆的性能、稳定性和燃油经济性,为驾驶员提供更加安全和舒适的驾驶体验。

未来随着科技的不断发展,空气动力学在汽车设计中的作用将变得更加重要,为汽车工业的发展带来新的机遇和挑战。

汽车空气动力学原理解析

汽车空气动力学原理解析

汽车空气动力学原理解析当我们驾驶汽车在道路上疾驰时,可能很少会去思考空气对车辆行驶的影响。

但实际上,汽车空气动力学在车辆的性能、燃油效率、稳定性和舒适性等方面都起着至关重要的作用。

首先,让我们来了解一下什么是汽车空气动力学。

简单来说,它研究的是汽车在行驶过程中与空气相互作用的规律,以及如何通过优化车辆的外形和结构,来减少空气阻力,提高车辆的性能和效率。

空气阻力是汽车行驶中需要克服的主要阻力之一。

当汽车行驶时,空气会在车身表面形成一层边界层。

这层边界层的摩擦力会产生阻力,而且汽车前方的空气被压缩,形成压力波,后方则形成低压区,前后的压力差也会产生阻力。

这些阻力的总和就是我们常说的空气阻力。

空气阻力的大小与车速的平方成正比,这意味着车速越高,空气阻力对车辆性能和燃油消耗的影响就越大。

那么,汽车设计师们是如何运用空气动力学原理来降低空气阻力的呢?车辆的外形设计是关键。

流线型的车身能够有效地减少空气阻力。

比如,车头部分通常设计成较为圆润的形状,这样可以减少空气的冲击和分离,使气流更顺畅地流过车身。

前挡风玻璃的倾斜角度也经过精心设计,既能提供良好的视野,又能减少气流的阻力。

车身侧面的线条要尽量平滑,避免出现突兀的凸起或凹陷。

车尾部分的设计同样重要,一个良好的车尾设计可以减少车尾的乱流,降低阻力。

除了外形,车辆的一些细节设计也对空气动力学有着重要影响。

例如,后视镜的形状和位置,如果设计不合理,会在行驶中产生较大的阻力。

现在很多车型都采用了更符合空气动力学的后视镜形状,或者使用摄像头代替传统后视镜,以降低阻力。

车辆底部的平整度也很重要,不平整的底部会使气流紊乱,增加阻力。

因此,一些高性能汽车会在底部安装护板,使气流能够更顺畅地通过。

汽车的进气和散热系统也与空气动力学密切相关。

进气口的位置和形状要既能保证足够的进气量,又能减少阻力。

散热格栅的设计也要考虑到气流的流动,以提高散热效率的同时降低阻力。

此外,汽车的风阻系数是衡量其空气动力学性能的一个重要指标。

CFD技术在汽车车身设计中的应用

CFD技术在汽车车身设计中的应用

CFD技术在汽车车身设计中的应用随着汽车科技不断的发展完善,车身设计的功能已经不仅仅是满足美感的要求,还包括空气动力学性能、安全性能等多个方面的考虑。

为了使车辆在行驶过程中获得更好的运行、性能和燃油经济性,汽车车身设计需要通过CFD技术来实现。

CFD技术是一种利用计算机模拟物理过程的方法,它可以模拟气体或液体经过物体表面时的流动情况,并且可以对流场内参数进行详细的数值计算。

在汽车设计中,CFD技术可以帮助设计师实现对流场进行可视化和计算分析做出了很大的贡献。

CFD技术在汽车车身设计中的应用主要有以下几个方面:1. 车身周围气流的分析利用CFD技术分析车身周围的气流情况,可以帮助设计师了解车身外形对流场的影响,从而进行调整,改善车辆的空气动力学性能。

在不同的风场状态下,通过CFD技术的帮助下,改变不同部位的车身外形,以达到优化空气阻力的效果。

2. 可视化设计汽车设计师可以利用CFD技术制作出汽车外形的三维模拟图,这些图可以让设计师直观的看到气流在车身表面的运行情况。

针对流场的可视化分析,可以帮助设计师通过直观的方式确定车身的外形,同时也可以将设计师现有的想法和概念以三维模拟的方式表现出来。

3. 优化车辆行驶性能CFD技术不仅可以分析气流情况,也可以模拟车辆在不同路面、不同条件下的行驶情况,验证车辆的操控性能和行驶性能。

通过模拟分析,设计师可以根据CFD模拟结果,针对车身部件做出设计调整,以改善车辆的行驶性能和燃油经济性。

4. 减少碰撞风险汽车在发生碰撞时对车辆及乘员的损害最小化是一个重要的目标,设计师可以借助CFD技术来评估车身的碰撞风险,并根据评估结果进行防护结构和保护措施的设计方案。

同时根据数学计算的结果,可以让设计师在车身防护措施的设计上更加的合理有效。

结论CFD技术在汽车车身的设计中能够帮助设计师实现多方面的要求,专注于汽车车身的气流分析,优化车身的外形设计,提高车辆的行驶性能,以及保证车辆在碰撞时的安全性能。

汽车车身外形设计中的空气动力学性能优化

汽车车身外形设计中的空气动力学性能优化

汽车车身外形设计中的空气动力学性能优化近年来,汽车行业逐渐意识到汽车车身外形对空气动力学性能的重要性。

优化汽车车身外形可以降低车辆的空气阻力,提高燃油经济性、加速性能以及稳定性。

本文将探讨汽车车身外形设计中的空气动力学性能优化。

一、空气动力学基础空气动力学是研究空气在物体表面产生的压力和阻力的科学。

在汽车车身设计中,空气动力学性能优化主要涉及两个基本要素:空气阻力和升力。

空气阻力是汽车行驶时与空气作用的阻碍力,而升力则是垂直于行驶方向的力。

二、减小空气阻力减小空气阻力是提高汽车燃油经济性的关键。

以下是一些常见的空气动力学设计方法,用以降低汽车的空气阻力。

1.流线型外形设计流线型外形能够减少车身表面的湍流,从而减小空气阻力。

主要设计原则包括:合理的前脸设计、降低车头高度、光滑的车身曲线和尾部造型等。

2.减少气流分离气流分离是指气体从车身表面脱离或分离的现象。

当气流分离发生时,会形成大量的湍流,增加空气阻力。

通过在车身上增加导流板、风挡和尾翼等设计元素,可以将气流控制在车身表面,减少气流分离。

3.光滑下部车辆的底部也是空气阻力的重要源头。

通过在车底进行空气动力学优化设计,如增加护板和平滑底盘,能够减少下部的湍流和阻力。

三、提高稳定性与升力控制在汽车车身外形设计中,除了降低空气阻力外,还需要关注车辆的稳定性和升力控制。

1.增加下压力通过改变车身设计和增加扰流器等装置,可以增加车辆的下压力,使车辆更加稳定。

下压力可以加强轮胎与地面的附着力,提高操控性和行驶稳定性。

2.控制升力升力是指车辆在行驶过程中产生的垂直于行驶方向的力。

过大的升力会降低车辆的稳定性和行驶安全性。

通过设计车身的空气动力学特性,如增加扰流器和尾翼等,可以有效地控制和减小升力。

四、综合考虑其他因素除了空气动力学性能优化外,汽车车身外形设计还需要综合考虑其他因素,如乘客空间、安全性和美观性等。

1.乘客空间和安全性车辆的设计应该确保乘客空间足够,并满足相关的安全标准。

空气动力学在汽车工程中的应用

空气动力学在汽车工程中的应用

空气动力学在汽车工程中的应用随着现代工业的发展,汽车工程也越来越成为人们关注的焦点。

在汽车生产中,通过运用各种科技手段来改善汽车的性能和外观是一个重要的方向。

其中,空气动力学技术被广泛应用于汽车工程中,对汽车进行流线型设计,减少空气阻力,提升随车空气流动的稳定性和汽车的耐用性,为汽车运行带来诸多优点。

一、空气动力学与汽车设计空气动力学是研究固体物体在流体中的运动规律和流动规律的学科。

在汽车工程中,追求低空气阻力是设计师的一项主要考虑因素。

通过运用空气动力学原理,对汽车进行改良和优化,可以减少汽车在高速行驶时车身与空气之间的摩擦力,提升汽车的行驶速度和节油效果。

汽车的尺寸和形状、风阻系数、倾覆和侧风稳定性,都与空气动力学密不可分。

二、汽车设计中的空气动力学原理在汽车设计中,空气动力学原理可以被应用于各个方面。

例如,理解汽车车身流通的方向和轮廓可以通过流体动力学的原理来实现。

流体动力学是一种研究物体在液体或气体内部运动规律的学科,可以协助汽车设计者预测随着汽车在空气中行驶的变化,车身周围的气流如何变化,以及如何设计新型随车空气系。

通过在汽车制造时对车身进行流水线设计,可以减低空气阻力并提高汽车的机动性。

三、空气动力学和汽车性能的影响空气动力学和汽车性能之间的关系被广泛研究。

空气动力学所致的空气阻力大大影响了汽车的性能和燃油效率。

当汽车运行速度比较高时,阻力会变得非常严重,并且会给汽车的排气量带来一定的负面影响。

通过在汽车设计过程中领会空气流动的特性,可以减少转向时的侧风,提升在高速公路上的行驶稳定性,并减少在高速行驶时车身的震荡。

四、未来的发展趋势随着汽车设计技术不断更新,对车辆性能提高的渴望也不断扩大。

未来,汽车工程将继续投入更多的资源和技术进入空气动力学研究,提高汽车的性能和燃油效率。

例如,新一代电动汽车所应对的气流交互性、碳化物排放和排泄物危害,都需要领了解空气动力学的特性和运动规律来实现。

随着汽车工程发展的不断深入,空气动力学的发展将成为这一领域中的重要一环。

流体力学在汽车车身设计中的应用研究

流体力学在汽车车身设计中的应用研究

流体力学在汽车车身设计中的应用研究引言:流体力学是研究液体和气体运动规律的科学,它在汽车工程领域具有重要的应用价值。

在汽车车身设计中,流体力学可以帮助优化空气动力学性能,提高车辆的稳定性和燃油经济性。

本文将从空气阻力降低、气流分离控制和风噪优化三个方面介绍流体力学在汽车车身设计中的应用研究。

一、空气阻力降低空气阻力是影响汽车行驶性能和燃油经济性的重要因素。

通过流体力学的研究和分析,可以对车身外形进行优化,以降低空气阻力。

1.空气动力学仿真模拟:利用计算流体力学(CFD)软件对汽车车身进行数值仿真,模拟车辆在不同速度下的气流状态。

通过调整车身外形的曲线和倾斜角度等参数,优化空气流动路径,减小空气的湍流和分离现象,从而降低空气阻力。

2.气动附件优化:在汽车车身上加装气动附件,如风扰器、侧裙板、尾翼等,可以改变空气流动的方向和速度分布,减小气流分离和湍流现象,降低阻力。

此外,还可以利用可调节的气动附件,根据行驶速度和路况来调整气流的流向和强度,进一步优化空气动力学性能。

3.底部护板设计:底部护板是位于车辆底部的平整面板,通过调整其形状和倾斜角度,可以减小车辆下方的负压区域,降低阻力。

此外,合理设置底部护板的通风口,可以有效减小胎噪和风噪的产生。

二、气流分离控制气流分离是指气流在汽车车身表面分离成湍流或脱离车身造成气动阻力的现象。

通过流体力学的研究,可以控制和减少气流分离,提高汽车车身的气动稳定性和操控性能。

1.设计凸起和凹陷:在车身表面增加凸起和凹陷的设计,可以改变气流分离的位置和程度。

通过合理设置凸起和凹陷的位置、形状和数量,可以引导气流沿着车身表面流动,减少湍流和分离现象。

2.利用风洞实验:通过在风洞中对汽车车身进行实际测试,观察和测量气流的流线和压力分布情况。

根据实验结果,对车身进行优化调整,以改善气流分离问题。

3.控制尾部气流:尾部气流是影响汽车后部空气动力学性能的重要因素。

通过设计后扰流板、尾灯造型和尾部下压力装置等,可以控制尾部气流的流向和速度,减小尾部阻力,提高车辆稳定性。

空气动力学基础原理与应用

空气动力学基础原理与应用

空气动力学基础原理与应用空气动力学是研究空气流动对物体运动和空间结构影响的学科,它是现代工程学和航空航天工程的重要组成部分。

在工程和技术应用中,空气动力学被用于设计和优化飞行器、汽车、摩托车、建筑物、桥梁等结构。

本文将介绍空气动力学的基础原理和应用。

一、气体动力学基础气体动力学是空气动力学的基础,研究气体的流动和力学特性。

气体的动力学性质包括压力、密度、速度和温度等参数,这些参数随着空气流动而发生变化。

气体的流动可以分为层流和湍流两种状态。

在层流状态下,气体流动沿着一条直线或曲线运动,并具有稳定和预测性。

在湍流状态下,气体流动呈现为混沌状态,具有不可预测性和不规则性。

二、空气动力学的基本原理空气动力学的基本原理包括如下几个方面:1、伯努利定理伯努利定理是空气动力学的核心原理之一,它描述了气体在不同速度下的压力变化规律。

伯努利定理认为,在气体流动过程中,流速越大,压力越低,反之亦然。

在翼型表面上,气流在表面上方流动的速度比表面下方流动的速度快,因此表面上方的压力低于表面下方的压力。

这种压力差产生的升力是翼型飞行的基础。

2、牛顿定律牛顿定律是描述力学系统的基本原理之一。

在空气动力学中,牛顿定律用于分析物体在气流中运动的动力学行为。

牛顿第一定律认为,除非受到外力的作用,物体将保持匀速直线运动或静止状态。

牛顿第二定律则描述了物体在受到外力作用下的加速度。

在空气动力学中,牛顿定律用于分析物体在气流中所受的阻力和升力。

3、概率论及分布函数在空气动力学中,概率论和分布函数应用十分广泛。

概率论和统计学方法被用于研究气体流动的随机过程和不确定性。

分布函数则用于描述气体动力学参数的变化情况,如速度、压力、密度等参数的空间和时间分布情况。

三、空气动力学的应用空气动力学的应用范围十分广泛,包括下列几个方面:1、航空航天工业航空航天工业是空气动力学的主要应用领域之一。

在飞行器设计和优化中,空气动力学可以帮助设计师选择和优化翼型和飞行速度等参数,以达到最佳的升阻比和燃料效率。

汽车动力系统的空气动力学特性研究

汽车动力系统的空气动力学特性研究

汽车动力系统的空气动力学特性研究近年来,随着汽车产业的迅猛发展,汽车动力系统的研究也变得越来越重要。

汽车的动力系统可以说是驱动整车行驶的核心,而其中的空气动力学特性更是至关重要的一环。

通过研究汽车动力系统的空气动力学特性,可以提高汽车性能,并为汽车设计和制造提供重要的依据。

一、空气动力学原理在进行汽车动力系统的空气动力学研究之前,我们首先需要了解空气动力学的基本原理。

空气动力学是研究气体在运动过程中所产生的各种力学力的学科,其中涉及了气体的流动、气动力的产生以及与流体的相互作用等内容。

在汽车动力系统中,主要是通过车身与空气之间的相互作用来产生动力,因此研究汽车在行驶中的空气动力学特性对于汽车的性能提升具有重要意义。

二、空气动力学特性对汽车性能的影响汽车动力系统的空气动力学特性对于汽车性能有着重要的影响。

首先,研究汽车在高速行驶时的空气动力学特性,可以帮助我们更好地理解汽车的空气阻力、升力和侧向力等问题。

通过减小汽车与空气之间的阻力,可以提高汽车行驶的速度和燃油效率,从而降低汽车的油耗。

另外,研究汽车的空气动力学特性还可以提高汽车的稳定性和操控性能。

当汽车行驶速度较高时,空气的流动对于汽车的稳定性有着重要的影响。

通过对汽车车身形状和气流分布的优化,可以减小汽车在高速行驶时产生的升力和侧向力,从而提高汽车的操控性和稳定性。

此外,研究汽车动力系统的空气动力学特性还可以改善汽车的冷却效果。

在汽车行驶过程中,引擎和制动系统等部件会产生大量的热量,如果不能及时散热,就容易导致汽车发动机过热等问题。

通过研究汽车的空气动力学特性,可以优化汽车的散热器布置和气流导向,提高汽车的冷却效果,从而保证汽车的正常工作和寿命。

三、汽车动力系统的空气动力学特性研究方法在研究汽车动力系统的空气动力学特性时,我们可以运用多种方法进行实验与模拟。

其中,风洞实验是一种常用的研究方法。

通过在风洞中模拟汽车在不同速度下的行驶情况,可以观察汽车与空气之间相互作用的过程,并测量空气动力学特性的相关参数。

汽车的车身造型和空气动力学性能

汽车的车身造型和空气动力学性能

汽车的车身造型和空气动力学性能汽车作为现代社会中最主要的交通工具之一,车身造型和空气动力学性能在其设计和制造中起着至关重要的作用。

本文将从汽车的车身造型和空气动力学性能两个方面论述其对汽车性能和品质的影响。

一、车身造型1.1 外观设计汽车的外观设计是一种艺术和科学的结合。

通过创新的车身造型设计,汽车制造商可以塑造出独特而吸引人的外观,使消费者在购买时产生情感认同。

同时,优秀的外观设计还能增强汽车的品牌形象和市场竞争力。

1.2 内在空间布局除了外观设计,车身造型还直接影响汽车的内在空间布局。

科学合理的车身造型能够提供更宽敞舒适的乘坐空间,并最大程度地提升乘客的舒适感。

同时,合理的车身布局还可以提供更多的储物空间和便利的操作性,从而增加汽车的实用性和便捷性。

1.3 安全性能车身造型对汽车的安全性能也有直接影响。

优秀的车身设计可以最大程度地吸收和分散碰撞能量,保护车内乘客免受损伤。

此外,合理的车身造型还能减少气动力学产生的风阻,提高车辆行驶的稳定性和操控性。

二、空气动力学性能2.1 空气阻力汽车在行驶时,与空气之间的相互作用会产生空气阻力。

合理的空气动力学设计可以减小车辆与空气的摩擦力,从而提高汽车的燃油效率。

减小空气阻力还能降低汽车的噪音和振动,提升行驶的平顺性和舒适度。

2.2 车辆稳定性空气动力学性能还与汽车的稳定性密切相关。

合理的空气动力学设计可以减小车辆在高速行驶时产生的升力,降低翻滚和侧倾的风险,从而提高汽车的稳定性和安全性。

2.3 空气动力学改进为了提高空气动力学性能,汽车制造商可以采用一系列的改进措施。

例如,优化车身曲线和倾角,减小车身的前后过渡曲线,以及增加底部护板和后扰流板等空气动力学设计元素。

这些改进措施可以降低气流阻碍和分离,减小气流湍流,提高汽车的空气动力学性能。

综上所述,汽车的车身造型和空气动力学性能是决定汽车性能和品质的重要因素。

良好的车身设计可以提升汽车的外观吸引力、内在空间布局和安全性能。

汽车空气动力学原理及其在设计中的应用

汽车空气动力学原理及其在设计中的应用

汽车空气动力学原理及其在设计中的应用汽车空气动力学是研究汽车在运动过程中与空气之间相互作用的科学。

它涉及到车辆的流体力学、气动设计、空气阻力等方面的知识。

本文将介绍汽车空气动力学的基本原理,并探讨其在汽车设计中的应用。

一、汽车空气动力学的基本原理1. 空气阻力在汽车行驶的过程中,车辆与周围空气之间会产生阻力。

这种阻力随着车速的增加而增大,称为空气阻力。

空气阻力是影响汽车速度和燃油经济性的重要因素。

2. 升力和下压力除了空气阻力,汽车在行驶中还会产生升力和下压力。

升力使得车辆产生抬升的趋势,会影响行车的稳定性。

而下压力则会将车辆压低,增加接触地面的力量,提高操控性和行驶稳定性。

3. 尾流和气流分离车辆在行驶中,空气会沿着车辆表面形成尾流。

尾流的合理设计能够减小空气阻力,并且对后续车辆的性能也有影响。

此外,当车辆速度较高时,空气可能会在车身某些区域分离,导致气动失稳的现象。

二、汽车空气动力学在设计中的应用1. 外形设计汽车的外形设计直接影响空气动力学性能。

合理的外形设计可以降低空气阻力,提高燃油经济性,同时保持较低的风噪和振动。

通过采用流线型车身设计、减小车辆的投影面积和边缘曲率,可以降低空气阻力系数。

2. 风洞试验风洞试验是研究汽车空气动力学性能的重要手段。

通过在风洞中模拟车辆行驶的环境,可以测量空气动力学参数(如空气阻力、升力、下压力等)以及流场分布情况。

这些数据可以用于优化车辆设计,提高行驶稳定性和能效。

3. 尾流管理尾流对后续车辆的影响不容忽视。

通过设计后部扩散器、尾翼等装置,可以减小尾流对后车的阻力影响,提高行车安全性和经济性。

4. 空气动力学仿真借助计算流体力学(CFD)技术,可以进行空气动力学仿真,预测车辆在各种工况下的气动性能。

这种方法可以快速获取车辆的空气动力学特性,辅助设计优化,减少试验成本和时间。

5. 轮胎气动学车辆行驶时,轮胎与路面之间的气流也会对车辆性能产生影响。

通过优化轮胎的花纹和刚度,可以减小轮胎气动噪声,提高车辆的操控性和舒适性。

车辆设计中的空气动力学优化与应用研究

车辆设计中的空气动力学优化与应用研究

车辆设计中的空气动力学优化与应用研究在现代车辆工程领域,空气动力学优化与应用已成为一项至关重要的研究课题。

随着汽车工业的迅速发展以及人们对车辆性能和燃油效率要求的不断提高,深入探究车辆设计中的空气动力学原理,并将其有效应用于实际设计中,具有十分重要的意义。

空气动力学对于车辆性能的影响是多方面的。

首先,它直接关系到车辆的行驶阻力。

当车辆在道路上行驶时,空气会对车身产生阻力,这被称为空气阻力。

空气阻力的大小与车辆的外形、速度等因素密切相关。

一辆外形设计不合理的车辆,在高速行驶时会面临较大的空气阻力,从而导致燃油消耗增加,动力性能下降。

其次,空气动力学还影响着车辆的稳定性和操控性。

良好的空气动力学设计可以产生下压力,使车辆在高速行驶时更加稳定地贴地行驶,提高操控的精准性和安全性。

此外,空气动力学对于车辆的散热也有着重要作用。

发动机、制动系统等部件在工作时会产生大量热量,合理的空气流动设计能够有效地带走这些热量,保证车辆的正常运行。

在车辆设计中,实现空气动力学优化需要综合考虑多个因素。

车身外形是其中的关键之一。

流线型的车身能够减少空气的分离和涡流的产生,从而降低阻力。

例如,车头的形状应该尽量平滑,以减少气流的冲击;车身侧面应该避免突然的凸起和凹陷,保持流畅的线条;车尾的设计要有利于气流的顺畅排出,避免形成乱流。

车辆的底盘设计也不容忽视。

平整的底盘可以减少空气在底部的紊流,降低升力和阻力。

一些高性能车辆甚至会采用底部护板和导流装置来进一步优化空气流动。

此外,车轮和轮拱的设计也会对空气动力学性能产生影响。

合适的轮拱形状和车轮罩可以引导气流,减少风阻和噪音。

在实际的车辆设计过程中,工程师们通常会采用多种方法来研究和优化空气动力学性能。

计算流体力学(CFD)是一种常用的工具。

通过建立数学模型和数值模拟,CFD 可以预测车辆周围的气流流动情况,帮助工程师评估不同设计方案的效果,并进行针对性的改进。

风洞实验也是不可或缺的环节。

汽车空气动力学的论述与研究

汽车空气动力学的论述与研究
研究目的与意义
汽车空气动力学的研究旨在提高汽车的燃油经济性、减少空气阻力、增强汽车的安全性能 等方面,具有重要的实际应用价值。
研究方法与成果
本书通过对汽车空气动力学的基本理论、数值模拟和实验研究等方法,对汽车空气动力学 的基本概念、原理和计算方法进行了系统性的论述,同时给出了大量的研究实例和成果。
未来研究方向与展望
研究方向
技术发展
未来汽车空气动力学的研究将更加注 重数值模拟和实验研究的结合,深入 研究汽车空气动力学的细节,进一步 提高汽车的燃油经济性、减少空气阻 力、增强汽车的安全性能等方面。
随着计算机技术和数值计算方法的发 展,未来的汽车空气动力学研究将更 加注重数值模拟方法的研究和应用, 以更加准确地模拟和预测汽车在空气 中的运动性能。
3
提高燃油效率
通过优化车身形状和结构,减少空气阻力,可 以提高汽车的燃油效率。
汽车空气动力学的发展历程
早期发展
早期的汽车空气动力学研究主要集中在形状设计上,例如流线型车身的设计。然而,由于 缺乏精确的计算和实验设备,这些设计往往不够科学和实用。
科学方法的引入
随着计算机技术和实验设备的发展,人们开始采用科学方法对汽车空气动力学进行研究。 数值模拟和风洞实验成为研究汽车空气动力学的重要手段。
在汽车造型设计中,汽车前部、后部、侧面和 底部的设计都与汽车空气动力学密切相关。
性能提升与优化
汽车空气动力学的研究可以帮助提升汽车的性能, 包括加速性能、制动性能和行驶稳定性等。
通过优化车身周围的气流特性,可以降低汽车行驶 过程中的阻力、升力和侧向力,提高汽车的燃油经
济性和行驶稳定性。
在性能提升与优化方面,汽车空气动力学的研究 可以帮助汽车制造商提高产品的竞争力。

汽车车身外形优化设计与空气动力学分析

汽车车身外形优化设计与空气动力学分析

汽车车身外形优化设计与空气动力学分析随着汽车工业的发展,对汽车车身外形的设计也越发重视。

一个合理的外形设计可以显著影响汽车的性能,尤其是在空气动力学方面。

本文将介绍汽车车身外形优化设计与空气动力学分析的相关内容。

一、汽车车身外形设计的要求汽车车身外形设计是将美学与功能性相结合的过程。

外形设计应具备以下要求:1.降低空气阻力:汽车在行驶过程中会受到空气阻力的影响,使得汽车需要更多的能量来推动其前进。

通过优化车身外形,可以减少空气阻力,提升汽车的能效。

2.优化空气流动:一个有效的车身设计可以使空气流经汽车的表面时更加顺畅,减少气流的涡旋和湍流,从而降低噪音和震动,并提高行驶的稳定性。

3.提升汽车的外观美感和品牌价值:好的外形设计可以使汽车看起来更加时尚、动感和独特,提升消费者的购买欲望并增加品牌价值。

二、汽车车身外形优化的方法为了实现以上的要求,汽车车身外形的优化需要考虑多个因素。

以下是一些常见的优化方法:1.流线型外形设计:通过设计流线型车身,可以减少气流的阻力,提高汽车的能效。

流线型设计要求车身的前端尽量收窄,后端逐渐变宽,以及减少车身的棱角和突起。

2.减小空气阻力的设计:通过减小车身面积、降低车身高度、缩小前后轮的间隙等方式,可以减小汽车受到的空气阻力,提高风阻系数。

3.借鉴仿生学原理:仿生学是生物学、物理学和工程学的交叉领域,通过学习和模仿自然界的形态和结构,来优化工程设计。

在汽车设计中,可以借鉴仿生学原理,如鱼类的流线型身形、鸟类的翼状结构等,来改善汽车车身设计。

4.使用先进的材料:采用轻量化材料,如碳纤维复合材料,可以减轻车身重量,提高燃油效率,并减少碳排放。

三、空气动力学分析与验证为了验证汽车车身外形优化设计的有效性,可以进行空气动力学分析和仿真。

通过计算流体力学(CFD)仿真软件,可以模拟汽车不同速度下的风阻、升力、气动力和湍流等参数,评估设计方案的优劣。

空气动力学分析可以帮助设计师理解空气流动的特征和趋势,并基于分析结果进行优化。

空气动力学的研究与应用

空气动力学的研究与应用

空气动力学的研究与应用空气动力学是研究空气对物体的运动和力学性质的学科领域。

它在航空航天、汽车工程、建筑设计等众多领域发挥着重要作用。

本文将从空气动力学的基本原理、流体力学模型、应用领域等方面探讨空气动力学的研究与应用。

空气动力学的研究基于牛顿力学和流体力学的基础上,研究空气对物体运动的影响。

在航空航天领域,空气动力学能够准确计算飞行器的升力、阻力、操纵稳定性等性能指标,从而优化设计,提高飞行性能。

在汽车工程领域,空气动力学帮助设计车身外形,减小空气阻力,提高燃油效率。

在建筑设计领域,空气动力学可以评估建筑物的风荷载和稳定性,确保建筑物在风力环境中的安全性。

在空气动力学的研究中,流体力学模型起着重要的作用。

其中最常用的是层流模型和湍流模型。

层流模型假设流体在运动过程中保持平缓顺畅,适用于低速、细小精细结构领域的研究。

而湍流模型则考虑了流场的不规则性和不稳定性,适用于高速、大尺度物体的研究。

同时,随着计算机技术的发展,数值模拟方法在空气动力学的研究中得到广泛应用,通过对流场的数值求解,可以更精确地分析气体流动的各种特性。

在航空航天领域,空气动力学的研究与应用涉及飞行器的气动性能分析、设计改进和飞行控制等方面。

例如,我们通常能看到的拟人化机器人,就是运用了空气动力学研究的成果。

拟人化机器人的设计充分考虑了人体学对空气流动的影响,使机器人在操作过程中更加灵活和机动。

在汽车工程领域,空气动力学的研究与应用则主要集中在汽车外形设计、气动附加设备和空气阻力的降低。

通过运用空气动力学原理,汽车设计师可以调整车身的外形,使其能够更好地穿越空气,降低空气阻力,提高燃油经济性。

在此基础上,还可以设计安装气动附加设备,如扰流板、雾灯等,来改善汽车的稳定性和操纵性能。

在建筑设计领域,空气动力学的研究与应用主要涉及建筑物的气体流动特性和风荷载的评估。

通过数值模拟和实验研究,可以分析建筑物在不同风速下的风压分布和风荷载,为建筑物的结构设计和防护措施提供科学依据。

现代空气动力学的应用

现代空气动力学的应用

现代空气动力学的应用空气动力学是一门研究空气在物体上的作用和运动规律的学科。

它的应用广泛,包括飞行器、汽车、建筑等领域。

随着科技不断发展,现代空气动力学的应用也越来越广泛。

本文将介绍一些现代空气动力学的应用。

一、航空航天领域航空航天领域是空气动力学应用最广泛的领域之一。

现代航空器通过不断改进设计和优化空气动力学性能来提高安全性和经济效益。

例如,通过在飞机机身表面设置各种小翼等附件,可以改善飞机飞行时的稳定性和操纵性。

另外,在飞机机翼和机身的设计中,采用一些流线型设计和降阻技术,可以减小空气阻力,提高空气动力学性能。

二、汽车工业空气动力学在汽车工业领域也有广泛的应用。

汽车的外形设计可以通过调整车身线条和降低车身高度等措施来减少空气阻力,提高汽车的速度和燃油效率。

同时,空气动力学在汽车制动和制动换挡时,也可以起到一定的作用。

通过对汽车在运动中空气流动的研究和分析,可以优化刹车和换挡的操作方式,提高车辆的性能和安全性。

三、建筑工程空气动力学在建筑工程领域应用的主要是风力设计。

建筑物在建造过程中需要考虑风压、风力和风荷载等因素。

而且建筑物的设计要符合一些标准和规范,以确保其安全性和耐久性。

通过空气动力学的研究和应用,可以对建筑物进行模拟和分析,预测其在不同风速下的稳定性和抗风能力。

同时,通过调整建筑物的形状和结构,可以减小风荷载,提高建筑物的安全性和耐久性。

四、城市规划空气动力学在城市规划中也有广泛的应用。

城市规划需要考虑许多因素,如交通、环境、人口密度、建筑物高度等。

而空气动力学则可以帮助规划师预测城市中的风流场,进而优化城市规划设计。

例如,通过研究建筑物的高度和距离,可以预测城市中的气流模式和微气候变化。

这样就可以调整城市规划方案,以创造更舒适、更安全的城市环境。

总之,现代空气动力学的应用非常广泛,从航空航天、汽车工业到建筑工程和城市规划,都有不同程度的应用。

空气动力学的研究和应用将会随着科学技术的不断进步和更新,不断为人类带来更多的发展和进步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究性学习论文小组成员:班级:机电1011指导教师:卢梅汽车车身的空气动力学应用摘要:汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响。

因此轿车的车身设计既要服从空气动力学,要有尽量低的空阻系数,降低发动机的输出负担,又要采取措施,降低诱导阻力,以保证轿车的行驶安全。

关键词:空气动力学,车身外形设计,导流板,扰流板背景:迄今为止,汽车的发展已经过了112 年,无论是汽车的速度,还是汽车的配置,或者是汽车的造型多有了长足的发展。

随着汽车速度的提高,空气阻力成为汽车前进的最大障碍。

在此因素下,汽车造型经历了马车型汽车,箱型汽车,甲壳虫型汽车,船型汽车,鱼型汽车以及楔型汽车等六个阶段的演变,从而越来越符合空气动力学的要求,越来越符合人们的审美观。

在这一发展历程,也可看做是人们对空气动力学的认识及应用过程。

1934 年,流体力学研究中心的雷依教授,采用模型汽车在风洞中试验的方法测量了各种车身的空气阻力,这是具有历史意义的试验。

它标志着人们开始运用流体力学原理研究汽车车身的造型。

1937年,德国设计天才费尔南德保时捷开始设计类似甲壳虫外形的汽车。

它是第一代大量销售的空气动力学产物的汽车。

1949年福特公司推出了福特V8汽车,这种车型改变了以往汽车造型模式、使前翼子板和发动机罩,后翼子板和行李舱溶于一体,大灯和散热器罩也形成整体,车身两侧是一个平滑的面,驾驶室位于中部,整个造型很象一只小船,因此,我们把这类车称为“船型汽车”。

船形汽车不论从外形上还是从性能上来看都优于甲壳虫形汽车,并且还较好地解决了甲壳虫形汽车对横风不稳定的问题。

船型汽车尾部过分向后伸出,形成阶梯状,在高速行驶时会产生较强的涡流,为了克服这一缺点,人们把船型车的后窗玻璃逐渐倾斜,倾斜的极限即成为斜背式。

由于这个背部很象鱼的背脊,所以这类车称为“鱼型汽车”。

“鱼”型虽然解决了涡流的困难,但也引起了一些空气动力学缺陷。

是当汽车高速行驶时汽车的升力会比较大。

鉴于鱼形汽车的缺点,设计师在鱼形汽车的尾部安上了一个上翘的“鸭尾巴”以此来克服一部分空气的升力,这便是“鱼形鸭尾式”车型。

这是最早为克服气动升力而做的空气动力学设计。

为了从根本上解决鱼型车的升力问题,科学家们设想了种种方案,最后终于找到了一种楔型造型。

就是将车身整体向前下方倾斜,车身后部像刀切一样平直,这种造型有效地克服了升力。

目前,各种身价过百万元的超级跑车设计都基本上采用楔型。

各大车厂也都开发带有楔型效果的小客车,如两厢式旅行车, 子弹头面包车等形式的轿车。

在此基础上,增加扰流板等装置,进一步解决了空气升力的问题。

正文:汽车气动阻力分析:从种类上分,汽车气动阻力由形状阻力、干扰阻力、摩擦阻力、诱导阻力和内部阻力五部分迭加构成。

形状阻力:由于气流分离现象。

在汽车后面形成尾流区,前后气流压力不相等,从而形成压差阻力。

压差阻力的大小是由车身外部形状决定的,所以一般称为形状阻力。

它约占空气阻力的58%,是气动阻力的主要部分。

干扰阻力:车身表面凸起物、凹槽和车轮等局部影响气流流动,从而引起空气阻力,约占14%。

摩擦阻力:空气的粘滞性使气流在经过车身表面时产生一个切向力. 其综合合力在汽车行驶方向的分力就是摩擦阻力。

约占气动阻力的10%。

诱导阻力:汽车两侧的涡流使得汽车后背的气流方向向下偏转, 产生一个指 向后上方的力,这个力表现在垂直方向是升力,在水平方向就是诱导阻力,约占 气动阻力的6%。

内部阻力:这是由于气流流经车身内部气流通道,如发动机的冷却气流和车 厢内部通风气流以及流动中的能量损耗产生的,约占 12%。

在这里,所讨论的主要为汽车外形和空气动力学的关系, 因此内部阻力不做 讨论。

一•车型的研究在汽车设计中,风阻系数C 值是衡量现代轿车性能的第一参数, 这个值越小 说明汽车的加速性越优越。

普通城市轿车的 C 值一般维持在0. 28—O. 4之间。

根据气动阻力的计算公式尸巳沁“ (1/2)^2SC d 可知,在给定车速的前提下,减小正投影面积 S 、选择低阻形状(降低C 值) 来实现。

可由于受装载能力、乘坐空间、抗倾翻能力等限制,减小迎风面积没有 多少余地。

因此减少气风阻系数才是现实和有意义的,这可以直接降低纵向气动 阻力。

风阻系数c 值与汽车形状有关。

当长度直径比1/d =2. 4时,C 值最小为 0. 04,也就是说,空气动力学意义上具有“较好”形状的物体是纺锤形流线体。

例如,宝马H R 氢燃料汽车的风阻系数仅为0. 21,最高车速可达302. 4 km /h , 从静止加速到100 km / h ,仅需6 S 。

理论上,楔形是最好的形态。

主流车型发展 经历了马车型,箱型车(T 型),甲壳虫性,船型,鱼型最后到当今的楔形。

这 一历史变迁也证明了以上理论。

二.确定总体车型的基础上车身外形的研究:通过对大量车型的空气动力学模拟分析. 并进行分析总结,可以发现汽车造 型中的以下特征对空气阻力的大小影响很大。

车身外形:英国的White 1967年根据试验结果对气动阻力影响最关键的车身 外形参数进行分级,对实际有重大指导作用;轿车侧壁略有外鼓,将增加气动阻 力,但有利于降低气动阻力系数;但外鼓系数 (外鼓尺寸与跨度之比)应避免在 0. 02— 0. 04范围内。

顶盖有适当的干扰系数有利于减小气动阻力,综合气动阻 力系数、气动阻力、工艺、刚度、强度等方面的因素,顶盖的干扰系数 (上鼓尺 寸与跨度之比)应在0. 06以下。

对阶背式轿车而言。

客舱长度与轴距之比由0. 93 增至1. 17.会较大程度地减小气动升力系数。

但发动机罩的长度与轴距之比对 气动升力系数影响不大。

车头圆角:整体弧面车头比车头边角倒圆气动阻力小。

车头高度:车头头缘位置较低的下凸型车头气动阻力系数最小。

但不是越低 越好,因为低到一定程度后,车头阻力系数不再变化,车头头缘的最大离地间隙 越小,则引起的气动升力越小,甚至可以产生负升力。

发动机罩曲率与夹角:发动机罩的纵向曲率越小(目前大多数采用的纵向曲 率为0. 02/m )气动阻力越小;发动机罩的横向曲率也有利于减小气动阻力。

发 动机罩有适当的斜度(即发动机罩与水平面的夹角)对降低气动阻力有利。

但如果 斜度进一步加大对降阻效果不明显。

前风挡玻璃的曲率与夹角:风窗玻璃纵向曲率越大越好,但不宜过大,否则 导致视觉失真、刮雨器的刮扫效果变差;前风窗玻璃的横向曲率也有利于减小气 动阻力;前风窗与水平面的交角一般在25。

35。

之间比较有利于减小空气助力。

前立柱的影响:前立柱上的凹槽、小台面和细棱角处理不当,将导致较大的气动阻力和较严重的气动噪声和侧窗污染,应设计成圆滑过渡的外形。

后风窗斜度:后风窗斜度(后风窗弦线与水平线的夹角)对气动阻力影响较大, 对斜背式轿车,斜度等于30。

时,阻力系数最大;斜度小于30。

时,阻力系数较小;后挡风玻璃的倾斜角一般控制在25。

之内为宜。

后风窗与车顶夹角:从理论上说,小斜背(角度小于30。

)具有较小的气动阻力系数。

流线型车尾的汽车存在最佳车尾高度,此状态下,气动阻力系数最小,此高度需要根据具体车型以及结构要求而定。

车轮的影响:车身主体与车轮之间存在着很大的相互干涉,车轮的特性参数(被轮腔所覆盖的车轮高度h与车轮直径D的比值)h /D寸气动力的影响.h/ D<0. 75时,h/ D越大•则气动阻力系数和气动升力系数越小,h/D=0. 75时,气动阻力系数和气动升力系数最小,h/D>0. 75后,气动阻力系数又会回升。

适度地加宽轮胎对气动阻力系数有利,但不宜过宽,存在一个最佳宽度。

不同形状的车轮辐板,车轮辐板上开孑L面积的布置方式对气动性能有很大的影响;在总开孔面积相同的情况下,将开孔数适量增大有利于气动性能的改善。

在综合以上分析基础啊上,现代轿车的外形一般用圆滑流畅的曲线去消隐车身上的转折线。

前围与侧围、前围、侧围与发动机罩,后围与侧围等地方均采用圆滑过渡,发动机罩向前下倾,车尾后箱盖短而高翘,后冀子板向后收缩,挡风玻璃采用大曲面玻璃,且与车顶园滑过渡,前风窗与水平面的夹角一般在25度- 33度之间,侧窗与车身相平,前后灯具、门手把嵌入车体内,车身表面尽量光洁平滑,车底用平整的盖板盖住,降低整车高度等等,这些措施有助于减少空气阻力系数。

在8O年代初问世的德国奥迪100—川型轿车就是最突出的例子,它采用了上述种种措施,其空气阻力系数只有o. 3,成为当时商业代轿车外形设计的最佳典范。

三.导流板的作用和扰流板的设计在空气动力学上,有法国物理学家贝尔努依证明的一条理论:空气流速的速度与压力成反比。

也就是说,空气流速越快,压力越小;空气流速越慢,压力越大。

例如飞机的机翼是上面呈正抛物形,气流较快;下面平滑,气流较慢,形成了机翼下压力大于上压力,产生了升力。

如果轿车外型与机翼横截面形状相似,在高速行驶中由于车身上下两面的气流压力不同, 下面大上面小,这种压力差必 然会产生一种上升力,车速越快压力差越大,上升力也就越大。

这种上升力也是 空气阻力的一种,汽车工程界称为诱导阻力,约占整车空气阻力的6%虽然比例 较小,但危害很大。

其它空气阻力只是消耗轿车的动力,这个阻力不但消耗动力, 还会产生承托力危害轿车的行驶安全。

因为当轿车时速达到一定的数值时, 升力 就会克服车重而将车子向上托起, 减少了车轮与地面的附着力,使车子发飘,造 成行驶稳定性变差。

在现代汽车造型上,将车身整体向前下方倾斜而在前轮上产生向下的压力 , 将车尾改为短平,减少从车顶向后部作用的负气压而防止后轮飘浮。

除此之外 , 主要采取在导流板和扰流板来降低诱导阻力的影响现代空气动力学发现,车底的扰流效果更加重要,因此,降低诱导阻力的主 要方法是使轿车拥有平顺的下腹部, 使通过的流体遇到较少的阻碍,但由于成本 因素,这种导流板只应用于价格昂贵的中置,后置发动机的轿车上。

比较普通的做法是,在车的前端的保险杠下方装上向下倾斜的连接板。

连接 板与车身前裙板联成一体,中间开有合适的进风口加大气流度,减低车底气压, 这种连接板称为导流板在轿车行李箱盖上后端做成象鸭尾似的突出物,将从车顶冲下来的气流阻滞 一下形成向下的作用力,这种突出物称为扰流板。

还有一种扰流板是人们受到飞 机机翼的启发而产生的,就是在轿车的尾端上安装一个与水平方向呈一定角度的 平行板,这个平行板的横截面与机翼的横截面相同, 只是反过来安装,平滑面在 上,抛物面在下,这样车子在行驶中会产生与升力同样性质的作用力, 只是方向 相反,利用这个向下的力来抵消车身上的升力。

如下图后扰流板的加入还要考虑到功角的大小。

为了比较全面地反映不同速度范围 内,扰流板起升角度对汽车性能的影响,将对 80kph , 100kph , 120kph , 150kph 四种速度下4度,8度,12度,16度四种扰流板攻角模型以及不加装扰流板模 型进行计算。

相关文档
最新文档