第一章 概率论的基本概念练习题及答案
概率论与数理统计练习册答案
概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。
《概率论与数理统计》习题一参考答案 概率论的基本概念(熊万民、杨波版)
概率论与数理统计(熊万民、杨波版)第一章答案1、 写出下列随机试验的样本空间(1) 连续抛掷一枚硬币,直至出现正面为止,观察抛掷的次数。
(2) 连续抛掷一枚硬币,直至出现正面为止,观察正反面出现的情况。
(3) 连续抛掷一个骰子直至6个结果中一个结果出现2次,记录抛掷次数。
(4) 抛一枚硬币,若垂涎正面H 则再抛一次,若出现反面T,则再抛一颗骰子,观察出现的各种结果解:(1){1,2,3},(2){,,,}(3){2,3,4,5,6,7},(4){,,1,2,3,4,5,6}H TH TTH HH HT T T T T T T Ω=Ω=Ω=Ω=2、一位工人生产4个零件,以事件i A 表示他生产的第(1,2,3,4)i i =个零件是不合格品,请用i A 表示如下事件:(1)全是合格品;(2)全是不合格品;(3)至少有一个零件是不合格品;(4)恰好有一个零件是不合格品。
解:123412341234(1),(2),(3)A A A A A A A A A A A A(4)1234123412412343A A A A A A A A A A A A A A A A3、请叙述下列事件的对立事件,(1)A=”掷2枚硬币,皆为正面”;(2)B=“射击3次,皆命中目标“;(3)C=”加工4个产品,至少有一个正品“。
解:(1)A 的对立事件A 表示“掷2枚硬币,至少出现一次反面” (2)B 的对立事件B 表示“射击3次,至少有1次没有命中目标” (3)C 的对立事件C 表示“加工4个零件,皆为次品”。
4、设,A B 是互不相容事件,已知()0.4,()0.5,P A P B ==求(),(),(),()P A B P AB P AB P A B 。
解:因为,A B 互不相容,所以()()()0.40.50.9()()()()0.4()()1()10.90.1()()1P A B P A P B P AB P A AB P A P AB P AB P A B P A B P A B P A B =+=+==-=-===-=-===5、设,,A B C 是三事件,且11()()(),()()0,(),48P A P B P C P AB P BC P AC ======求,,A B C 至少有一个发生的概率。
《概率论与数理统计》第一章作业解答
=
C52 · 63 75
=
0.1285
P (B)
=
C75 · 5! 75
=
0.1499
6、有一个随机数发生器,每一次等可能地产生 0,1,2,3,... ,9 十个数字,由这些数字随
机编成的 n 位数码(各数字允许重复),从全部 n 位数码中任意选取一个,其最大数字不超过 k
(k ≤ 9)的概率.
解:基本事件的总数 10n,全部 n 位数码中任意选取一个,其最大数字不超过 k 的方法有:kn,
P (A ∩ B) = P (A) + P (B) − P (A ∪ B) = 0.92 + 0.93 − 0.988 = 0.862 (2)两个系统中仅有一个有效的概率:
P (AB ∪ AB) = (P (A) − P (AB)) + (P (B) − P (AB)) = 0.92 − 0.862 + 0.93 − 0.862 = 0.126
because therefore
0 ≤ P (A2) − P (A1 ∪ A2) ≤ 1
P (A) ≥ P (A1A2) = P (A1) + P (A2) − P (A1 ∪ A2) ≥ P (A1) + P (A2) − 1
17、掷一枚均匀硬币直到出现三次正面才停止,问正好在第六次停止的情况下,第五次也是正 面的概率是多少? 解:设 A={第五次出现正面},B={第六次停止},则
P (A) = (10 − 4 + 1)P44P66 = 1
10!
30
P (B) = (10 − 4 + 1)P66 = 1
10!
720
5、一辆公共汽车出发前载有 5 名乘客,每一位乘客独立地在七个站中的任一个站离开,试求
概率统计习题带答案
概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。
3.试验E 为掷2颗骰子观察出现的点数。
每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。
设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。
试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。
试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。
求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。
概率第1章题库答案
第一章 概率论的基本概念一、选择题1、(易)设A 、B 为随机事件,且A B ⊂,则AB 等于( C ).A AB .B B.C A .D A2、(易)设甲乙两人进行象棋比赛,考虑事件A ={甲胜乙负},则A 为( C ).A {甲负乙胜} .B {甲负}.C {甲负或平局} .D {甲乙平局}3、(易)对于事件A 、B ,下列命题正确的是 ( D ).A 若A B ⊂,则A B ⊂ .B 若A B ⊃,则A B ⊃.C 若A 、B 互不相容,则A 、B 也互不相容 .D 若A 、B 对立,则A 、B 也对立4、(易)设随机事件A 、B 互斥..,则以下等式中错误..的是( C ) .A ()0P AB =.B ()()()P A B P A P B =+ .C ()()()P AB P A P B = .D ()()P B A P B -=5、(中等)设随机事件A 、B 互斥..,已知5.0)(,4.0)(==B P A P ,则=)(B A P ( A ) .A 0.1 .B 0.3.C 0.8 .D 0.96、(中等)设随机事件A 、B 对立..,则以下等式中错误..的是( C ) .A 0)(=B A P .B 0)(=B A P.C φ=)(B A P .D 1)(=B A P7、(易)袋中有5只红球,3只白球、2只黑球,现从中任取3只,其恰为一红一黑一白的概率为 ( A ).A14 .B 13.C 12 .D 34 8、(易)一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为 ( D ).A160 .B 745.C 15 .D 7159、(中等)设A 、B 是两个随机事件,已知()0P B >,()1P A B =,则必有( A ).A ()()P A B P A =.B A B ⊂ .C ()()P A P B = .D ()()P AB P A =10、(中等) 设事件A 与B 满足()0.5P A =,()0.6P B =,()0.8P B A =,则()P BA = ( B ).A 0.1 .B 0.2.C 0.3 .D 0.411、(较难)设事件A 与B 满足1()3P A =,2()3P A B =,3()5P B A =,则()P B = ( A ) .A15 .B 25.C 35 .D 4512、(易)设事件A 与B 相互独立..,且()0P A >,()0P B >,则下列等式成立的是( B ) .A AB φ= .B ()()()P AB P A P B =.C ()1()P B P A =- .D ()0P B A =13、(中等)设随机事件A 、B 相互独立..,已知5.0)(,4.0)(==B P A P ,则=)(B A P ( A ) .A 0.8 .B 0.5.C 0.3 .D 0.214、(易)若某产品的合格率为0.6,某人检查5只产品,则恰有两只次品的概率是( D ).A 324.06.0 .B 234.06.0.C 32254.06.0C .D 23354.06.0C 15、(易)某人每次射击命中目标的概率为p (01)p <<,他向目标连续射击3次,则他至少击中1次目标的概率为( B ).A 3p .B 1-3(1)p -.C 223(1)(1)p p p p p -+-+ .D 3p二、填空题16、(易)对某一目标进行射击,直到击中目标为止,观察其射击次数。
概率统计练习册答案
概率统计练习册答案第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)} B.{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A.P(AB)=P(A)P(B)B.P(A-B)=P(A)-P(B)C.)()(B A P B A P -=D.P(A+B)=P(A)+P(B)4.设A,B 为随机事件,则下列各式中不能恒成立的是( ). A.P(A -B)=P(A)-P(AB) B.P(AB)=P(B)P(A|B),其中P(B)>0C.P(A+B)=P(A)+P(B)D.P(A)+P(A )=15.若φ≠AB ,则下列各式中错误的是( ). A .0)(≥AB P B.1)(≤AB P C.P(A+B)=P(A)+P(B)D.P(A-B)≤P(A)6.若φ≠AB ,则( ).A. A,B 为对立事件B.B A =C.φ=B AD.P(A-B)≤P(A)7.若,B A ⊂则下面答案错误的是( ).A. ()B P A P ≤)(B. ()0A -B P ≥C.B 未发生A 可能发生D.B 发生A 可能不发生 8.下列关于概率的不等式,不正确的是( ). A.)}(),(min{)(B P A P AB P ≤B..1)(,<Ω≠A P A 则若C.1212(){}n n P A A A P A A A ≤+++L LD.∑==≤ni i ni i A P A P 11)(}{Y9.(1,2,,)i A i n =L 为一列随机事件,且12()0n P A A A >L ,则下列叙述中错误的是( ).A.若诸i A 两两互斥,则∑∑===ni i n i i A P A P 11)()(B.若诸i A 相互独立,则11()1(1())nni i i i P A P A ===--∑∏C.若诸i A 相互独立,则11()()nni i i i P A P A ===∏UD.)|()|()|()()(1231211-=Λ=n n ni i A A P A A P A A P A P A P X10.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( ).A.21B.ba +1C.ba a+ D.ba b + 11.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则( )A.先抽者有更大可能抽到第一排座票B.后抽者更可能获得第一排座票C.各人抽签结果与抽签顺序无关D.抽签结果受以抽签顺序的严重制约12.将n 个小球随机放到)(N n N ≤个盒子中去,不限定盒子的容量,则每个盒子中至多有1个球的概率是( ).A.!!N n B. n Nn !C. nn N Nn C !⋅ D.Nn 13.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r 个人中至少有某两个人生日相同的概率为( ).A.r r P 3651365-B. rr r C 365!365⋅C. 365!1r -D. rr 365!1-14.设100件产品中有5件是不合格品,今从中随机抽取2件,设=1A {第一次抽的是不合格品},=2A {第二次抽的是不合格品},则下列叙述中错误的是( ). A.05.0)(1=A PB.)(2A P 的值不依赖于抽取方式(有放回及不放回)C.)()(21A P A P =D.)(21A A P 不依赖于抽取方式15.设A,B,C 是三个相互独立的事件,且,1)(0<<C P 则下列给定的四对 事件中,不独立的是( ). A.C AUB 与B. B A -与CC. C AC 与D. C AB 与16.10张奖券中含有3张中奖的奖券,现有三人每人购买1张,则恰有一个中奖的概率为( ).A.4021 B.407 C. 3.0 D. 3.07.02310⋅⋅C 17.当事件A 与B 同时发生时,事件C 也随之发生,则( ).A.1)()()(-+≤B P A P C PB.1)()()(-+≥B P A P C PC.P(C)=P(AB)D.()()P C P A B =U18.设,1)()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 且则( ). A. A 与B 不相容B. A 与B 相容C. A 与B 不独立D. A 与B 独立19.设事件A,B 是互不相容的,且()0,()0P A P B >>,则下列结论正确的 是( ). A.P(A|B)=0B.(|)()P A B P A =C.()()()P AB P A P B =D.P(B|A)>020.已知P(A)=P ,P(B)=q 且φ=AB ,则A 与B 恰有一个发生的概率为( ).A.q p +B. q p +-1C. q p -+1D. pq q p 2-+21.设在一次试验中事件A 发生的概率为P ,现重复进行n 次独立试验 则事件A 至多发生一次的概率为( ). A.n p -1 B.n pC. n p )1(1--D. 1(1)(1)n n p np p --+-22.一袋中有两个黑球和若干个白球,现有放回地摸球4次,若至少摸 到一个白球的概率为8180,则袋中白球数是( ). A.2B.4C.6D.823.同时掷3枚均匀硬币,则恰有2枚正面朝上的概率为( ). A.0.5B.0.25C.0.125D.0.37524.四人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51则密码最终能被译出的概率为( ).A.1B.21C.52 D. 32 25.已知11()()(),()0,()(),416P A P B P C P AB P AC P BC ======则事件A,B,C 全不发生的概率为( ).A. 81B. 83C. 85D.87 26.甲,乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( ).A. 0.5B. 0.8C. 0.55D. 0.627.接上题,若现已知目标被击中,则它是甲射中的概率为( ). A.43 B.65C.32D.116 28.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( ).A.12053 B.199 C.12067 D.1910 29.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( ). A.135 B.4519 C.157 D.3019 30.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( ).A.21 B. 31C.75 D.71 31.今有100枚贰分硬币,其中有一枚为“残币”中华人民共和国其两面都印成了国徽.现从这100枚硬币中随机取出一枚后,将它连续抛掷10次,结果全是“国徽”面朝上,则这枚硬币恰为那枚“残币”的概率为( ).A.1001 B. 10099C.1010212+D.10102992+ 32.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残品的概率分别是0.8,0.1,0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机察看1只,若无残次品,则买下该箱玻璃杯,否则退回,如果顾客确实买下该箱,则此箱中确实没有残次品的概率为( ).A.0.94B.0.14C.160/197D.420418419C C C + 二、填空题1. E :将一枚均匀的硬币抛三次,观察结果:其样本空间=Ω . 2.某商场出售电器设备,以事件A 表示“出售74 Cm 长虹电视机”,以事件B 表示“出售74 Cm 康佳电视机”,则只出售一种品牌的电视机可以表示为 ;至少出售一种品牌的电视机可以表示为 ;两种品牌的电视机都出售可以表示为 .3.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示随机事件A 发生而B ,C 都不发生为 ;随机事件A ,B ,C 不多于一个发生 .4.设P (A )=0.4,P (A+B )=0.7,若事件A 与B 互斥,则P (B )= ;若事件A 与B 独立,则P (B )= .5.已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B|A )=0.8,则P (AUB )=6.设随机事件A 、B 及和事件AUB 的概率分别是0.4,0.3和0.6,则P (AB )= .7.设A 、B 为随机事件,P (A )=0.7,P (A-B )=0.3,则P (AB )= .8.已知81)()(,0)(,41)()()(======BC p AC p AB p C p B p A p ,则C B A ,,全不发生的概率为 .9.已知A 、B 两事件满足条件P (AB )=P (AB ),且P (A )=p,则P (B )= .10.设A 、B是任意两个随机事件,则{()()()()}P A B A B A B A B ++++= .11.设两两相互独立的三事件A 、B和C 满足条件:φ=ABC ,21)()()(<==C p B p A p ,且已知Y Y 169)(=C B A p ,则______)(=A p . 12.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 .13.袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .14.将C 、C 、E 、E 、I 、N 、S 这7个字母随机地排成一行,恰好排成SCIENCE 的概率为 .15.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A 生产的概率是 .16.设10件产品有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是 .17.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率是 .18.假设一批产品中一、二、三等品各占60%,30%,10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率是 .19.一种零件的加工由三道工序组成,第一道工序的废品率为1p ,第二道工序的废品率为2p ,第三道工序的废品率为3p ,则该零件的成品率为 .20.做一系列独立试验,每次试验成功的概率为p ,则在第n 次成功之前恰有m 次失败的概率是 .第二章 随机变量及其分布一、选择题1.设A,B 为随机事件,,0)(=AB P 则( ).A..φ=ABB.AB 未必是不可能事件C.A 与B 对立D.P(A)=0或P(B)=02.设随机变量X 服从参数为λ的泊松分布,且},2{}1{===X P X P 则}2{>X P 的值为( ).A.2-eB.251e-C.241e-D.221e-. 3.设X 服从]5,1[上的均匀分布,则( ). A.4}{ab b X a P -=≤≤ B.43}63{=<<X P C.1}40{=<<X PD.21}31{=≤<-X P4.设),4,(~μN X 则( ). A.)1,0(~4N X μ- B.21}0{=≤X P C.)1(1}2{Φ-=>-μX PD.0≥μ5.设随机变量X 的密度函数为⎩⎨⎧<<=其他,010,2)(x x x f ,以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,则( ).A .由于X 是连续型随机变量,则其函数Y 也必是连续型的B .Y 是随机变量,但既不是连续型的,也不是离散型的C .649}2{==y P D.)21,3(~B Y6.设=≥=≥}1{,95}1{),,3(~),,2(~Y P X P p B Y p B X 则若( ). A.2719 B.91C.31D.278 7.设随机变量X 的概率密度函数为(),23X f x Y X =-+则的密度函数为( ).A.13()22X y f ---B.13()22X y f --C.13()22X y f +--D.13()22X y f +- 8.连续型随机变量X 的密度函数)(x f 必满足条件( ). A.1)(0≤≤x fB.)(x f 为偶函数C.)(x f 单调不减D.()1f x dx +∞-∞=⎰9.若)1,1(~N X ,记其密度函数为)(x f ,分布函数为)(x F ,则( ). A.{0}{0}P X P X ≤=≥ B.)(1)(x F x F --= C.{1}{1}P X P X ≤=≥D.)()(x f x f -=10.设)5,(~),4,(~22μμN Y N X ,记},5{},4{21+≥=-≤=μμY P P X P P 则( ).A.21P P =B.21P P <C.21P P >D.1P ,2P 大小无法确定11.设),,(~2σμN X 则随着σ的增大,}|{|σμ<-X P 将( ). A.单调增大B.单调减少C.保持不变.D.增减不定12.设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( ).A.⎰-=-adx x f a F 0)(1)( B.⎰-=-adx x f a F 0)(21)(C.)()(a F a F =-D.1)(2)(-=-a F a F13.设X 的密度函数为3,01()20,x x f x ⎧≤≤⎪=⎨⎪⎩其他,则1{}4P X >为( ). A.78B.1432xdx ⎰ C.14312xdx -∞-⎰D.3214.设~(1,4),(0.5)0.6915,(1.5)0.9332,{||2}X N P X Φ=Φ=>则为( ). A.0.2417B.0.3753C.0.3830D.0.866415.设X 服从参数为91的指数分布,则=<<}93{X P ( ). A.)93()99(F F -B.)11(913ee -C.ee 113-D.⎰-939dx e x16.设X 服从参数λ的指数分布,则下列叙述中错误的是( ).A.⎩⎨⎧≤>-=-0,00,1)(x x e x F x λB.对任意的x e x X P x λ-=>>}{,0有C.对任意的}{}|{,0,0t X P s X t s X P t s >=>+>>>有D.λ为任意实数17.设),,(~2σμN X 则下列叙述中错误的是( ). A.)1,0(~2N X σμ- B.)()(σμ-Φ=x x FC.{(,)}()()a b P X a b μμσσ--∈=Φ-Φ D.)0(,1)(2}|{|>-Φ=≤-k k k X P σμ18.设随机变量X 服从(1,6)上的均匀分布,则方程012=++Xx x 有实根的概率是( ).A.0.7B.0.8C.0.6D.0.519.设=<=<<}0{,3.0}42{),,2(~2X P X P N X 则σ( ). A .0.2B.0.3C.0.6D.0.820.设随机变量X服从正态分布2(,)N μσ,则随σ的增大,概率{||}P X μσ-<( ).A.单调增大 B.单调减少 C.保持不变 D.增减不定二、填空题1.随机变量X 的分布函数)(x F 是事件 的概率. 2.已知随机变量X 只能取-1,0,1,2四个数值,其相应的概率依次是cc c c 161,81,41,21,则=c3.当a 的值为 时,Λ,2,1,)32()(===k a k X p k 才能成为随机变量X的分布列.4.一实习生用一台机器接连独立地制造3个相同的零件,第i 个零件不合格的概率)3,2,1(11=+=i i p i ,以X 表示3个零件中合格品的个数,则________)2(==X p .5.已知X 的概率分布为⎪⎪⎭⎫ ⎝⎛-4.06.011,则X的分布函数=)(x F .6.随机变量X 服从参数为λ的泊松分布,则X 的分布列为 .7.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈=其它,0]6,3[,92]1,0[,31)(x x x f ,若k 使得{}32=≥k X p则k 的取值范围是 . 8.设离散型随机变量X 的分布函数为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+<≤-<≤--<=2,21,3211,1,0)(x b a x a x a x x F且21)2(==X p ,则_______,________a b ==.9.设]5,1[~U X ,当5121<<<x x 时,)(21x X x p <<= . 10.设随机变量),(~2σμN X,则X的分布密度=)(x f .若σμ-=X Y ,则Y 的分布密度=)(y f .11.设)4,3(~N X ,则}{=<<-72X p .12.若随机变量),2(~2σN X ,且30.0)42(=≤<X p ,则_________)0(=≤X p . 13.设)2,3(~2N X,若)()(c X p c X p ≥=<,则=c .14.设某批电子元件的寿命),(~2σμN X ,若160=μ,欲使80.0)200120(=≤<X p ,允许最大的σ= .15.若随机变量X的分布列为⎪⎪⎭⎫ ⎝⎛-5.05.011,则12+=X Y 的分布列为 .16.设随机变量X服从参数为(2,p)的二项分布,随机变量Y服从参数为(3,p)的二项分布,若P{X≥1}=5/9,则P{Y≥1}= .17.设随机变量X服从(0,2)上的均匀分布,则随机变量Y=2X 在(0,4)内的概率密度为()Y f y = .18.设随机变量X服从正态分布2(,)(0)N μσσ>,且二次方程240y y X ++=无实根的概率为1/2,则μ= .第三章 多维随机变量及其分布一、选择题1.X,Y 相互独立,且都服从]1,0[上的均匀分布,则服从均匀分布的是( ).A.(X,Y)B.XYC.X+YD.X -Y2.设X,Y 独立同分布,11{1}{1},{1}{1},22P X P Y P X P Y =-==-=====则( ).A.X =YB.0}{==Y X PC.21}{==Y X P D.1}{==Y X P3.设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数,则b a ,的值可取为( ).A.52,53-==b aB.32,32==b aC.23,21=-=b aD.23,21-==b a4.设随机变量i X 的分布为12101~(1,2){0}1,111424i X i X X -⎛⎫ ⎪===⎪⎝⎭且P 则12{}P X X ==( ).A.0B.41C.21D.15.下列叙述中错误的是( ). A.联合分布决定边缘分布B.边缘分布不能决定决定联合分布C.两个随机变量各自的联合分布不同,但边缘分布可能相同D.边缘分布之积即为联合分布6.设随机变量(X,Y) 的联合分布为:则b a ,应满足( ).A .1=+b a 33D.23,21-==b a7.接上题,若X ,Y 相互独立,则( ). A.91,92==b aB.92,91==b aC.31,31==b aD.31,32=-=b a8.同时掷两颗质体均匀的骰子,分别以X,Y 表示第1颗和第2颗骰子出现的点数,则( ).A.1{,},,1,2,636P X i Y j i j ====L B.361}{==Y X P C.21}{=≠Y X P D.21}{=≤Y X P9.设(X,Y)的联合概率密度函数为⎩⎨⎧≤≤≤≤=其他,y x y x y x f 010,10,6),(2,则下1 23 1 1/6 1/9 1/18X Y面错误的是( ).A.1}0{=≥X PB.{0}0P X ≤=C.X,Y 不独立D.随机点(X,Y)落在{(,)|01,01}D x y x y =≤≤≤≤内的概率为1 10.接上题,设G 为一平面区域,则下列结论中错误的是( ). A.{(,)}(,)GP X Y G f x y dxdy ∈=⎰⎰B.2{(,)}6GP X Y G x ydxdy ∈=⎰⎰C.1200{}6x P X Y dx x ydy ≥=⎰⎰D.⎰⎰≥=≥yx dxdy y x f Y X P ),()}{(11.设(X,Y)的联合概率密度为(,)0,(,)(,)0,h x y x y Df x y ≠∈⎧=⎨⎩其他,若{(,)|2}G x y y x =≥为一平面区域,则下列叙述错误的是( ).A.{,)(,)GP X Y G f x y dxdy ∈=⎰⎰B.⎰⎰-=≤-Gdxdy y x f X Y P ),(1}02{C.⎰⎰=≥-Gdxdy y x h X Y P ),(}02{D.⎰⎰=≥DG dxdy y x h X Y P I ),(}2{12.设(X,Y)服从平面区域G 上的均匀分布,若D 也是平面上某个区域,并以G S 与D S 分别表示区域G 和D 的面积,则下列叙述中错误的是( ).A.{(,)}DGS P X Y D S ∈=B.0}),{(=∉G Y X PC.GDG S S D Y X P I -=∉1}),{(D.{(,)}1P X Y G ∈=13.设系统π是由两个相互独立的子系统1π与2π连接而成的;连接方式分别为:(1)串联;(2)并联;(3)备用(当系统1π损坏时,系统2π开始工作,令21,X X 分别表示21ππ和的寿命,令321,,X X X 分别表示三种连接方式下总系统的寿命,则错误的是( ). A.211X X Y += B.},m ax {212X X Y = C.213X X Y +=D.},m in{211X X Y =14.设二维随机变量(X,Y)在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布.记.2,12,0;,1,0⎩⎨⎧>≤=⎩⎨⎧>≤=YX YX V Y X Y X U 则==}{V U P ( ).A.0B.41C.21D.4315.设(X,Y)服从二维正态分布),,,,(222121ρσσμμN ,则以下错误的是( ).A.),(~211σμN X B ),(~221σμN X C.若0=ρ,则X,Y 独立 D.若随机变量),(~),,(~222211σμσμN T N S 则(,)S T 不一定服从二维正态分布16.若),(~),,(~222211σμσμN Y N X ,且X,Y 相互独立,则( ). A.))(,(~22121σσμμ+++N Y XB.),(~222121σσμμ---N Y XC.)4,2(~2222121σσμμ+--N Y XD.)2,2(~2222121σσμμ+--N Y X 17.设X ,Y 相互独立,且都服从标准正态分布(0,1) N ,令,22Y X Z +=则Z 服从的分布是( ).A .N (0,2)分布 B.单位圆上的均匀分布 C.参数为1的瑞利分布 D.N (0,1)分布18.设随机变量4321,,,X X X X 独立同分布,{0}0.6,i P X =={1}0.4i P X ==(1,2,3,4)i =,记1234X X D X X =,则==}0{D P ( ).A.0.1344B.0.7312C.0.8656D.0.383019.已知~(3,1)X N -,~(2,1)Y N ,且,X Y 相互独立,记27,Z X Y =-+~Z 则( ).A.)5,0(NB.)12,0(NC.)54,0(ND.)2,1(-N20.已知sin(),0,,(,)~(,)40,C x y x y X Y f x y π⎧+≤≤⎪=⎨⎪⎩其他则C 的值为( ). A.21B.22C.12-D.12+ 21.设⎪⎩⎪⎨⎧≤≤≤≤+=其他,020,10,31),(~),(2y x xy x y x f Y X ,则}1{≥+Y X P =( ) A.7265 B.727 C.721 D.727122.为使⎩⎨⎧≥=+-其他,00,,),()32(y x Ae y x f y x 为二维随机向量(X,Y)的联合密度,则A 必为( ).A.0B.6C.10D.1623.若两个随机变量X,Y 相互独立,则它们的连续函数)(X g 和)(Y h 所确定的随机变量( ).A.不一定相互独立B.一定不独立C.也是相互独立D.绝大多数情况下相独立 24.在长为a 的线段上随机地选取两点,则被分成的三条短线能够组成三角形的概率为( ).A.21B.31C.41D.5125.设X 服从0—1分布,6.0=p ,Y 服从2=λ的泊松分布,且X,Y 独立,则Y X +( ).A.服从泊松分布B.仍是离散型随机变量C.为二维随机向量D.取值为0的概率为0 26.设相互独立的随机变量X,Y 均服从]1,0[上的均匀分布,令,Y X Z +=则( ).A.Z 也服从]1,0[上的均匀分布B.0}{==Y X PC.Z 服从]2,0[上的均匀分布D.)1,0(~N Z27.设X,Y 独立,且X 服从]2,0[上的均匀分布,Y 服从2=λ的指数分布,则=≤}{Y X P ( ).A.)1(414--e B.414e - C.43414+-e D.21 28.设⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(~),(2y x xy y x f Y X ,则(X,Y)在以(0,0),(0,2),(2,1)为顶点的三角形内取值的概率为( ).A. 0.4B.0.5C.0.6D.0.8 29.随机变量X,Y 独立,且分别服从参数为1λ和2λ的指数分布,则=≥≥--},{1211λλY X P ( ).A.1-eB.2-eC.11--eD.21--e 30.设22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y Ae-+++-+-=,则A 为( ).A.3π B.π3 C.π2 D.2π 31.设某经理到达办公室的时间均匀分布在8点12点,他的秘书到达办公室的时间均匀分布在7点到9点.设二人到达的时间相互独立,则他们到达办公室的时间相差不超过5分钟的概率为( ).A.481 B.21C.121D.24132.设12,,,n X X X L 相独立且都服从),(2σμN ,则( ).A.12n X X X ===LB.2121()~(,)n X X X N n nσμ+++LC.)34,32(~3221+++σμN XD.),0(~222121σσ--N X X33.设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积为,,D G S S ,则{(,)}P x y D ∈=( ).A.G DS S B.GG D S S I C.⎰⎰D dxdy y x f ),( D.⎰⎰Ddxdy y x g ),( 二、填空题1.),(Y X 是二维连续型随机变量,用),(Y X 的联合分布函数),(y x F 表示下列概率:(1);____________________),(=<≤≤c Y b X a p (2);____________________),(=<<b Y a X p (3);____________________)0(=≤<a Y p (4).____________________),(=<≥b Y a X p2.随机变量),(Y X 的分布率如下表,则βα,应满足的条件是 .XY1 2311/6 1/9 1/182 1/2αβ3.设平面区域D 由曲线xy 1=及直线2,1,0e x x y ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 的联合分布密度函数为 .4.设),,,,(~),(222121ρσσμμN Y X ,则YX ,相互独立当且仅当=ρ .5.设相互独立的随机变量X 、Y 具有同一分布律,且X 的分布律为 P (X=0)=1/2,P (X=1)=1/2,则随机变量Z=max{X,Y}的分布律为 .6.设随机变量321,,X X X 相互独立且服从两点分布⎪⎪⎭⎫ ⎝⎛2.08.010,则∑==31i i X X 服从 分布 .7.设X 和Y 是两个随机变量,且P{X ≥0,Y ≥0}=3/7,P{X ≥0}=P{Y ≥0}=4/7,则P{max (X ,Y )≥0}= .8.设某班车起点站上车人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立.以Y 表示在中途下车的人数,则在发车时有n 个乘客的条件下,中途有m 人下车的概率为 ;二为随机变量(X ,Y )的概率分布为 .9.假设一设备开机后无故障工作的时间X 服从参数为1/5的指数分布,设备定时开机,出现故障时自动关机,而在无故障时工作2小时便关机,则该设备每次开机无故障工作的时间Y的分布函数 .10.设两个随机变量X与Y独立同分布,且P(X=-1)=P(Y=-1)=1/2,P(X=1)=P(Y=1)=1/2,则P(X=Y)= ;P(X+Y=0)= ;P(XY=1)= .第四章 随机变量的数字特征一、选择题1.X 为随机变量,()1,()3E X D X =-=,则2[3()20]E X +=( ). A. 18 B.9 C.30 D. 32 2. 设二维随机向量(X,Y)的概率密度函数为(),0,0(,)0,x y e x y f x y -+⎧<<+∞<<+∞=⎨⎩其它,则()E XY =( ).A. 0B.1/2C.2D. 13. (X,Y)是二维随机向量,与0Cov不等价的是( ).YX(=,)A. EYD+=(X+)YXYEX=)E⋅( B. DYDXC. DY-)( D. X与Y独立=YDXD+X4. X,Y独立,且方差均存在,则=X2(YD( ).-)3A.DYDX94+ D.4- C. DY2- B. DYDX9DX32+DX3DY5. 若X,Y独立,则( ).A. DYXYDX- B. DY=)(=D⋅D9YDXX)3(-C. 0{=}+=bE D. 1aXPY{[=][]}--EYEXYX6.若0)Cov,则下列结论中正确的是( ).YX,(=A. X,Y独立B. ()=⋅D XY DX DYC. DYDXYD-=(-)DXXX( D. DYD+Y+)=7.X,Y为两个随机变量,且,0YEXE则X,Y( ).-EYX)]-)([(=A. 独立B. 不独立C. 相关D. 不相关8.设,XD+=+则以下结论正确的是( ).YDX)(DYA. X,Y不相关B. X,Y独立C. 1ρ= D.xyρ=-1xy9.下式中恒成立的是( ).A. EYD+X-)(Y=XYDXE⋅EX=)( B. DYC. (,)+DXXD=Cov X aX b aDX+= D. 1)1(+10.下式中错误的是( ).A. ),(2)(Y X Cov DY DX Y X D ++=+B. (,)()Cov X Y E XY EX EY =-⋅C. ])([21),(DY DX Y X D Y X Cov --+=D. ),(694)32(Y X Cov DY DX Y X D -+=- 11.下式中错误的是( ).A. 22)(EX DX EX +=B.DX X D 2)32(=+C. b EY b Y E +=+3)3(D. 0)(=EX D 12.设X 服从二项分布, 2.4, 1.44EX DX ==,则二项分布的参数为( ).A. 4.0,6==p nB. 1.0,6==p nC. 3.0,8==p nD. 1.0,24==p n 13. 设X 是一随机变量,0,,2>==σσμDX EX ,则对任何常数c,必有( ). A.222)(C EX c X E -=- B.22)()(μ-=-X E c X EC. DX c X E <-2)(D. 22)(σ≥-c X E 14.()~(,),()D X X B n pE X =则( ). A. n B. p -1 C. p D. p-1115.随机变量X的概率分布律为1{},1,2,,,P X k k n n===L ()D X 则=( ). A.)1(1212+n B. )1(1212-n C. 2)1(12+n D. 2)1(121-n 16. 随机变量⎪⎩⎪⎨⎧≤>=-0,00,101)(~10x x e x f X x,则)12(+X E =( ).A.1104+ B. 41014⨯+ C. 21 D. 20 17.设X 与Y 相互独立,均服从同一正态分布,数学期望为0,方差为1,则(X ,Y )的概率密度为( ).A.22()21(,)2xy f x y eπ+-= B.22()2(,)2xy f x y π+-=C. 2()2(,)2x y f x y π+-=D. 2241(,)2x y f x y eπ+-=18.X 服从]2,0[上的均匀分布,则DX=( ).A. 21B. 31C.61D. 12119.,),1,0(~3X Y N X =则EY=( ).A. 2B.n 43 C. 0 D. n 3220. 若12,~(0,1),1,2,i Y X X X N i =+=则( ).A. EY=0B. DY=2C.~(0,1)Y ND.~(0,2)Y N21. 设2(,),(,)X b n p Y N μσ::,则( ). A.2()(1)D X Y np p σ+=-+ B.()E X Y np μ+=+ C.22222()E X Y n p μ+=+ D.2()(1)D XY np p σ=-22.将n 只球放入到M 只盒子中去,设每只球落在各个盒中是等可能的,设X 表示有球的盒子数,则EX 值为( ). A. ])11(1[nMM -- B.M n B. ])1(1[n MM - D. nM n ! 23. 已知X 服从参数为`λ的泊松分布,且[(1)(2)]1E X X --=,则λ为( ).A. 1B.-2C.21D.41 24. 设1X ,2X ,3X 相互独立,其中1X 服从]6,0[上的均匀分布,2X 服从正态分布)2,0(2N ,3X 服从参数为3的泊松分布,记12323Y X X X =-+,则DY=( ).A. 14B.46C.20D. 9 25. 设X 服从参数为1的指数分布,则2()X E X e -+=( ).A. 1B.0C. 13D.4326. 设X 为随机变量,}3|{|,,2σμσμ≥-==X P DX EX 则满足( ). A. 91≤ B. 31≤ C. 91≥ D. 31≥ 27. 设X,Y 独立同分布,记,,Y X V Y X U +=-=则U 与V 满足( ). A. 不独立 B. 独立 C.相关系数不为0 D. 相关系数为028. 设随机变量1210,,X X X L 相互独立,且1,2(1,2,,10)i i EX DX i ===L ,则下列不等式正确的是( ).A. 21011}1{-=-≥<-∑εεi i X P B. 21011}1{-=-≥<-∑εεi i X PC. 2101201}10{-=-≥<-∑εεi i X P D. 2101201}10{-=-≤<-∑εεi i X P29. 利用正态分布有关结论,⎰∞+∞---+-dx e x x x 2)2(22)44(21π=( ).A. 1B.0C.2D. -1 30.设(X,Y )服从区域},0:),{(a y x y x D ≤≤=上的均匀分布,则||Y X E - 的值为( ).A. 0B.a 21C. a 31D. a 41 31. 下列叙述中正确的是( ). A. 1)(=-DX EXX D B.~(0,1)N DXC. 22)(EX EX =D. 22)(EX DX EX +=32.某班有n 名同学,班长将领来的学生证随机地发给每个人,设X 表示恰好领到自己学生证的人数,则EX 为( ). A. 1 B.2n C.2)1(+n n D. nn 1- 33.设X 服从区间]2,1[-上的均匀分布,1,00,()0,1,0X X DY Y X -<⎧⎪===⎨⎪>⎩则.A.32 B. 31 C. 98D. 1 34.某种产品表面上的疵点数服从泊松分布,平均每件上有1个疵点,若规定疵点数不超过1的为一等品,价值10元;疵点数大于1不多于3的为二等品,价值8元;3个以上者为废品,则产品的废品率为( ). A.e 38 B. e 381- C. e 251- D. e25 35. 接上题,任取一件产品,设其价值为X, 则EX 为( ). A.e 376 B. e316C. 9D. 6 36. 设⎩⎨⎧<<=其他,010,2)(~x x x f X ,以Y 表示对X 的三次独立重复观察中“21≤X ”出现的次数,则DY=( ).A . 169 B. 916 C. 43 D. 3437. 设(X,Y)为连续型随机向量,其联合密度为),(y x f ,两个边缘概 率密度分别为()X f x 与()Y f y ,则下式中错误的是( ). A. ()X EX xf x dx +∞-∞=⎰ B. ⎰⎰+∞∞-+∞∞-=dxdy y x xf EX ),( C. ⎰⎰+∞∞-+∞∞-=dxdy y x f y EY ),(22D. ()()()X Y E XY xyf x f y dxdy +∞+∞-∞-∞=⎰⎰二、填空题1.随机变量X 服从参数为λ的泊松分布,且2)(=X D ,则{}==1X p .2.已知离散型随机变量X 可能取到的值为:-1,0,1,且2()0.1,()0.9E X E X ==,则X的概率密度是 .3.设随机变量2~(,)X N μσ,则X 的概率密度()f x =EX = ;DX = .若σμ-=X Y ,则Y 的概率密度()f y =EY = ;DY = .4.随机变量~(,4)X N μ,且5)(2=X E ,则X 的概率密度函数(24)0.3,p X <<=为 .5.若随机变量X服从均值为3,方差为2σ的正态分布,且(24)0.3,P X <<=则(2)P X <= .6.已知随机变量X 的分布律为:X0 1 2 3 4p 1/31/61/61/12 1/4则()E X = ,()D X = ,(21)E X -+= . 7.设4,9,0.5,(23)_____________XY DX DY D X Y ρ===-=则.8.抛掷n 颗骰子,骰子的每一面出现是等可能的,则出现的点数之和的方差为 .9.设随机变量X 和Y 独立,并分别服从正态分布(2,25)N 和(3,49)N ,求随机变量435Z X Y =-+的概率密度函数为 . 10.设X 表示10次独立重复射击命中目标的次数,每次击中目标的概率为0.4,则2X 的数学期望E (2X )= .11.已知离散型随机变量X 服从参数为2的泊松分布,则随机变量Z=3X-2的数学期望E (Z )= .第五章 大数定理及中心极限定理一、选择题1. 已知的iX 密度为()(1,2,,100)if x i =L ,且它们相互独立,则对任何实数x , 概率∑=≤1001}{i ix XP 的值为( ).A. 无法计算B. 100110011001[()]i i i i x xf x dx dx ==≤∑⎰⎰L L CC. 可以用中心极限定理计算出近似值D. 不可以用中心极限定理计算出近似值 2. 设X 为随机变量,}3|{|,,2σμσμ≥-==X P DX EX 则满足( ).A.91≤B.31≤ C. 91≥ D.31≥3. 设随机变量1X ,210,,X X L 相互独立,且1,2(1,2,,10)i i EX DX i ===L ,则( )A.21011}1{-=-≥<-∑εεi i X P B.21011}1{-=-≥<-∑εεi i X PC.2101201}10{-=-≥<-∑εεi i X PD.2101201}10{-=-≤<-∑εεi i X P4. 设对目标独立地发射400发炮弹,已知每发炮弹的命中率为0.2由中心极限定理,则命中 60发~100发的概率可近似为( ). A. (2.5)Φ B.2(1.5)1Φ- C.2(2.5)1Φ- D. 1(2.5)-Φ5. 设1X ,2,,nX X L 独立同分布,2,,1,2,,,ii EXDX i n μσ===L 当30≥n 时,下列结 论中错误的是( ).A. ∑=ni iX 1近似服从2(,)N n n μσ分布B.1nii Xn n μσ=-∑(0,1)N 分布C.21X X +服从)2,2(2σμN 分布D. ∑=ni iX 1不近似服从(0,1)N 分布6. 设12,,X X L 为相互独立具有相同分布的随机变量序列,且()1,2,iX i =L 服从参数为2的指数分布,则下面的哪一正确? ( ) A.()1lim ;n i i n X n P x x n =→∞⎧⎫-⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑B.()12lim ;n i i n X n P x x n =→∞⎧⎫-⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑C. ()12lim ;2n i i n X P x x n =→∞⎧⎫-⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑D. ()12lim ;2n i i n X P x x n =→∞⎧⎫-⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑其中()x Φ是标准正态分布的分布函数.二、填空题1、设nμ是n 次独立重复试验中事件A 出现的次数,pq p A P -==1,)(,则对任意区间],[b a 有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-<∞→b npqnp a P nn μlim = . 2、设nμ是n 次独立重复试验中事件A 出现的次数,p是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有⎭⎬⎫⎩⎨⎧>-∞→εμ||lim p nP nn = .3、一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X p = .4、已知生男孩的概率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率= .第六章 样本及抽样分布一、选择题1. 设12,,,nX X X L 是来自总体X 的简单随机样本,则12,,,nX X X L 必然满足( )A.独立但分布不同;B.分布相同但不相互独立; C 独立同分布; D.不能确定2.下列关于“统计量”的描述中,不正确的是( ).A .统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3. 设总体均值为μ,方差为2σ,n 为样本容量,下式中错误的是( ). A.)(=-μX E B.2()D X nσμ-=C.1)(22=σS E D.~(0,1)/X N nσ4. 下列叙述中,仅在正态总体之下才成立的是( ). A. 22211()()nnii i i XX X n X ==-=-∑∑ B.2S X 与相互独立 C.22])ˆ([)ˆ()ˆ(θθθθθ-+=-E D E D.221[()]n i i E X n μσ=-=∑5. 下列关于统计学“四大分布”的判断中,错误的是( ). A. 若12~(,),F F n n 则211~(,)F n n FB .若2~(),~(1,)T t n TF n 则 C .若)1(~),1,0(~22x XN X 则D .在正态总体下2212()~(1)ni i Xx n μσ=--∑6. 设2,iiX S 表示来自总体2(,)iiN μσ的容量为in 的样本均值和样本方差)2,1(=i ,且两总体相互独立,则下列不正确的是( ).A.2221122212~(1,1)S F n n S σσ-- B.12221212(~(0,1)X X N n n σσ+C.)(~/11111n t n S X μ- D.2222222(1)~(1)n S x n σ--7. 设总体服从参数为θ1的指数分布,若X 为样本均值,n 为样本容量,则下式中错误的是( ).A.θ=X EB. 2DX nθ=C. ()22(1)n E X nθ+=D. ()221θ=X E8. 设12,,,nX X X L 是来自总体的样本,则211()1ni i X X n =--∑是( ).A.样本矩B. 二阶原点矩C. 二阶中心矩D.统计量9.12,,,nX X X L 是来自正态总体)1,0(N 的样本,2,SX 分别为样本均值与样本方差,则( ).A. )1,0(~N X B. ~(0,1)nX N C. 221~()nii Xx n =∑D.~(1)Xt n S-10. 在总体)4,12(~N X 中抽取一容量为5的简单随机样本,,,,,54321X X X X X 则}15),,,,{m ax (54321>X X X X X P 为( ).A. )5.1(1Φ-B. 5)]5.1(1[Φ- C. 5)]5.1([1Φ-D. 5)]5.1([Φ11.上题样本均值与总体均值差的绝对值小于1的概率为( ).A.1)5.0(2-Φ B.1)25(2-Φ C.1)45(2-ΦD. 1)5.2(2-Φ12. 给定一组样本观测值129,,,X X X L 且得∑∑====91291,285,45i ii iX X 则样本方差2S 的观测值为( ).A. 7.5B.60C.320 D.26513. 设X 服从)(n t 分布,aX P =>}|{|λ,则}{λ-<X P 为( ).A.a 21 B.a2 C. a+21D. a 211-14. 设12,,nX X X L ,是来自总体)1,0(N 的简单随机样本,则∑=-ni iX X12)(服从分布为( ).A .)(2n x B.)1(2-n xC.),0(2n N D.)1,0(nN15. 设12,,,nx x x L 是来自正态总体2(0,2)N 的简单随机样本,若298762543221)()()2(X X X X c X X X b X X a Y ++++++++=服从2x 分布,则c b a ,,的值分别为( ). A. 161,121,81 B. 161,121,201 C. 31,31,31 D.41,31,2116. 在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从2(,0.2)N a 分布,以nX 表示n 次称量结果的算术平均,则为了使n a X P n,95.0}1.0{≥<-值最小应取作( ).A. 20B. 17C. 15D. 1617. 设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,设921,,,X X X Λ和921,,,Y Y Y Λ分别是来自两总体的简单随机样本,则统计量91921ii ii XU Y===∑∑服从分布是( ).A. )9(t B. )8(t C.)81,0(ND.)9,0(N二、填空题1.在数理统计中,称为样本.2.我们通常所说的样本称为简单随机样本,它具有的两个特点是 . 3.设随机变量nX XX ,,,21Λ相互独立且服从相同的分布,2,σμ==DX EX ,令∑==ni iX n X 11,则EX =;.DX =4.设nX XX ,,,21Λ是来自总体的一个样本,样本均值_______________=X ,则样本标准差___________=S ;样本方差_________________2=S;样本的k 阶原点矩为 ;样本的k 阶中心矩为 . 5.),,,(1021X XX Λ是来自总体)3.0,0(~2N X 的一个样本,则=⎭⎬⎫⎩⎨⎧≥∑=101244.1i i X P .6.设nX XX ,,,21Λ是来自(0—1)分布)}1{,1}0{(p X P p X P ==-==的简单随机样本,X 是样本均值,则=)(X E.=)(X D. 7.设),,,(21n X X X Λ是来自总体的一个样本,),,,()()2()1(n X X X Λ是顺序统计量,则经验分布函数为=)(x F n ⎪⎩⎪⎨⎧_______________________8.设),,,(21nX X X Λ是来自总体的一个样本,称 为统计量; 9.已知样本1621,,,X X X Λ取自正态分布总体)1,2(N ,X 为样本均值,已知5.0}{=≥λX P ,则=λ .10.设总体),(~2σμN X ,X 是样本均值,2nS 是样本方差,n 为样本容量,则常用的随机变量22)1(σnSn -服从 分布. 11.设nX XX ,,,21Λ为来自正态总体),(~2σμN X 的一个简单随机样本,则样本均值∑==ni iX n X 11服从 ,又若ia 为常数),2,1,0(n i a i Λ=≠,则∑=ni iiX a 1服从 .12.设10=n 时,样本的一组观测值为)7,4,8,5,4,5,3,4,6,4(,则样本均值为 ,样本方差为 .第七章 参数估计一、选择题1. 设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为( ). (A )X 1 (B )∑=-ni iX n 111 (C )∑=-ni i X n 1211 (D )X2. 设总体),(~2σμN X ,nX X ,,1Λ为抽取样本,则∑=-n i iX X n 12)(1是( ).)(A μ的无偏估计)(B 2σ的无偏估计)(C μ的矩估计)(D 2σ的矩估计3. 设X 在[0,a]上服从均匀分布,0>a 是未知参数,对于容量为n 的样本nX X ,,1Λ,a 的最大似然估计为( ) (A )},,,m ax {21n X X X Λ(B )∑=ni i X n 11(C )},,,m in{},,,m ax {2121n n X X X X XX ΛΛ- (D )∑=+ni iX n 111;4. 设总体X 在[a,b]上服从均匀分布,nX XX ,,,21Λ是来自X 的一个样本,则a 的最大似然估计为( ) (A )},,,m ax {21n X X X Λ (B )X(C )},,,m in{21n X X X Λ(D )1X Xn-5. 设总体分布为),(2σμN ,2,σμ为未知参数,则2σ的最大似然估计量为( ). (A )∑=-ni i X X n 12)(1 (B )∑=--ni i X X n 12)(11 (C )∑=-ni i X n 12)(1μ (D )∑=--ni i X n 12)(11μ6. 设总体分布为),(2σμN ,μ已知,则2σ的最大似然。
《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
2021研究生考试数学概率论习题解析及答案
注意到 (AB)( AB) .故有 P (AB)=P (A)-P (A B )=0.7-0.5=0.2
4 43
3
ห้องสมุดไป่ตู้
9 16
对 A3:必须三球都放入一杯中。放法有 4 种。(只需从 4 个杯中选 1 个杯子,放入此 3 个球,选法有 4 种)
P( A3 )
4 43
1 16
9 一俱乐部有 5 名一年级的学生,2 名二年级的学生,3 名三年级的学生,2 名四年级的 学生 (1)任选 4 人,求一、二、三、四年级各一人的概率; (2)任选 5 人,求一、二、三、四年级均包含在内的概率; 解答:
1
解答:
(1)记“三人纪念章的最小号码为 5”为事件 A
∵10 人中任选 3 人为一组:选法有 C130 种,且每种选法等可能。又事件 A 相当于:有一 人号码为 5,其余 2 人号码大于 5(在 6,7,8,9,10 中选 2 个)。这种组合的种数有1 C52
∴ P(A)
C52 C130
1 12
(1)记“恰有 90 个次品”为事件 A
∵在
1500
个产品中任取
200
个,取法有
1500
200
种,每种取法等可能
200
个产品恰有
90
个次品,取法有
400 90
1100
110
种
4001100
∴
P( A)
概率统计习题带答案
概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。
3.试验E 为掷2颗骰子观察出现的点数。
每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。
设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。
试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。
问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。
今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。
试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。
试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。
试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。
求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。
概率统计第一章答案
概率论与数理统计作业班级 姓名 学号 任课教师第一章 概率论的基本概念教学要求:一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算.二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式.三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.重点:事件的表示与事件的独立性;概率的性质与计算.难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理解与应用;独立性的应用.练习一 随机试验、样本空间、随机事件1.写出下列随机事件的样本空间(1)同时掷两颗骰子,记录两颗骰子点数之和;(2)生产产品直到有5件正品为止,记录生产产品的总件数;(3)在单位圆内任意取一点,记录它的坐标.解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12}; (2){=Ω5;6;7;…};(3)(){}1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件:(1)A 发生,B 与C 不发生,记为 C B A ;(2)C B A ,,至少有一个发生,记为C B A ;(3) C B A ,,中只有一个发生,记为C B A C B A C B A ;(4)C B A ,,中不多于两个发生,记为ABC .3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑球},,2,1=i 叙述下列事件的内涵:(1)21A A ={}次都取得黑球次、第第21.(2)21A A ={}次取得黑球次或地第21.(3)21A A ={}次都取得白球次、第第21 .(4)21A A ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21.4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件.解:321A A A B =练习二 频率与概率、等可能概型(古典概率)1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 163)(=AC P , 求事件A 、B 、C 都不发生的概率.解:由于 ,AB ABC ⊂ 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=169163414141=-++= 所以()().16716911=-=-=C B A P C B A P 2.设,)(,)(,)(r B A P q B P p A P === 求B A P ().解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ⊂则()()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=所以()()()().q r r q p p AB P A P B A P -=-+-=-=3.已知在8只晶体管中有2只次品,在其中任取三次,取后不放回,求下列事件的概率:(1)三只都是正品;(2)两只是正品,一只是次品.解:(1)设=A {任取三次三只都是正品},则基本事件总数5638==C n ,A 包含基本事件数2036==C m ,于是 ()1455620==A P . (2)设=B {任取三次两只是正品,一只是次品},则基本事件总数5638==C n ,B 包含基本事件数,301226==C C m 于是().28155630==B P 4.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,(1)求最小号码为6的概率;(2)求最大号码为6的概率.解:(1)设=A {最小号码为6},则基本事件总数,120310==C n A 包含基本事件数,624==C m 于是().2011206==A P (2)设=B {最大号码为6},则基本事件总数,120310==C n B 包含基本事件数,1025==C m 于是().12112010==B P 5.一盒中有2个黑球1个白球,现从中依次取球,每次取一个,设i A ={第i 次取到白球},3,2,1=i . 求)(i A P , 3,2,1=i .解: ()311=A P ; ()=2A P 312312=⨯⨯, ()311231123=⨯⨯⨯⨯=A P . 6.掷两颗均匀的骰子,问点数之和等于7与等于8的概率哪个大?解:样本空间基本事件总数,3666=⨯=n 设=1A {点数之和等于7},=2A {点数之和等于8},则=1A {()()()()()()3,4;4,3;2,5;5,2;1,6;6,1},1A 包含基本事件数等于6 ;=2A {()()()()()3,5;5,3;4,4;2,6;6,2},2A 包含基本事件数等于5 ;于是 ()613661==A P ; ()3652=A P .所以()()21A P A P > . 7.一批产品共100件,对其抽样检查,整批产品不合格的条件是:在被检查的4件产品中至少有1件是废品.如果在该批产品有5﹪是废品,问该批产品被拒收的概率.解:设=A {被检查的4件产品至少有1件废品},则()812.05100495==C C A P ;所以 ()()188.01=-=A P A P .8.将3个球随机放入4个杯子中,求杯子中球数的最大值为2的概率.解:基本事件总数34444=⨯⨯=n ,设=A {杯子中球数最大值为2},则A 包含的基本事件数36131423==C C C m (3个球任取两个,然后4个杯子任取1个放入,再对1个球在3个杯子中任取一个放入),于是()3436=A P . 练习三 条件概率1.甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名.求在碰到甲班同学时,正好碰到1名女同学的概率.解:设=A {碰到甲班同学},=B {碰到乙班同学},则();7030=A P (),7015=AB P 于是 ()()()5.0301570307015====A P AB P A B P . 2.箱子里有10个白球,5个黄球,10个黑球.从中随机地抽取1个.已知它不是黑球,求它是黄球的概率.解:设=A {任取一个不是黑球},=B {任取一个是黄球},则(),532515==A P ();51255==B P 又A B ⊂ ,则()()B P AB P = ,于是()()()315351===A P AB P A B P3.某人有5把钥匙,其中2把能打开房门.从中随机地取1把试开房门,求第3次才打开房门的概率.解:设=i A {第i 次能打开门} ,;3,2,1=i 则 =321A A A {第3次才打开门},于是由乘法公式有53454.假设某地区位于甲、乙二河流的汇合处,当任一河流泛滥时,该地区就遭受水灾.设某时期内甲河流泛滥的概率为0.1,乙河流泛滥的概率为0.2.当甲河流泛滥时,乙河流泛滥的概率为0.3.求(1)该时期内这个地区遭受水灾的概率;(2)当乙河泛滥时甲河流泛滥的概率.解:设=A {某时期甲河泛滥},=B =A {某时期乙河泛滥},则(),1.0=A P ()2.0=B P , ()3.0=A B P于是()()()()()()15.02.03.01.0=⨯===B P A B P A P B P AB P B A P ()()()03.015.02.0=⨯==B A P B P AB P()()()()27.003.02.01.0=-+=-+=AB P B P A P B A P5. 甲、乙两车间加工同一种产品,已知甲、乙两车间出现废品的概率分别为3﹪、2﹪,加工的产品放在一起,且已知甲车间加工的产品是乙车间加工的产品的两倍.求任取一个产品是合格品的概率.解:设=A {任取一个为甲生产的产品},=B {任取一个产品为废品},则()()()()%2%,3,31,32====A B P A B P A P A P 由全概率公式有 ()()()()()752100231100332=⨯+⨯=+=A B P A P A B P A P B P 6.设甲袋中有3个红球及1个白球.乙袋中有4个红球及2个白球.从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,求最后取得红球的概率.解:设=A {从甲袋中任取一个球为红球},=B {最后从乙袋中任取一个球为红球},则 ()()()();74,75,41,43====A B P A B P A P A P 由全概率公式287474 7.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机的一次性抽取4只察看,若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买下该箱的概率;(2)在顾客买下的一箱中,确实没有残次品的概率.解:设=i A {售货员任取一箱玻璃杯有i 个残品},2,1,0=i ,=B {顾客买下该箱玻璃杯},则()()();1.0,1.0,8.0210===A P A P A P()()();632.0,8.0,1420418242041910≈====C C A B P C C A B P A B P (1)由全概率公式得()()()()()()()943.0632.01.08.01.018.0221100=⨯+⨯+⨯≈++=A B P A P A B P A P A B P A P B P(2)由贝叶斯公式得 ()()()().848.0943.018.0000≈⨯==B P A B P A P B A P 8.已知一批产品中有95﹪是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率.解:设=A {任取一个产品为合格品},=B {任取一个产品被判为合格品},则()()()();03.0,98.002.01,05.0,95.0==-===A B P A B P A P A P于是(1) 任意抽查一个产品,它被判为合格品的概率是 ()()()()()9325.003.005.098.095.0=⨯+⨯=+=A B P A P A B P A P B P(2)一个经检查被判为合格的产品确实是合格品的概率是 ()()()().9984.09325.098.095.0≈⨯==B P A B P A P B A P练习四 事件的独立性1.设甲、乙两人独立射击同一目标,他们击中目标的概率分别为0.9和0.8,求在一次射击中目标被击中的概率.解:设 =A {甲击中目标},=B {乙击中目标}, 则=B A {目标被击中},()()8.0,9.0==B P A P ,于是()()()()()()()().98.08.0098.09.0=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P2.三人独立地去破译一个密码,他们能译出的概率分别是41,31,51,问能将此密码译出的概率是多少?解:设=i A {第i 人破译密码} ,;3,2,1=i =B {破译密码}, 则 ()()(),41,31,51321===A P A P A P 321A A A B =, 于是()()()()()()().5343325411111321321321=⨯⨯-=-=-=-=-=A P A P A P A A A P A A A P B P B P3.电路由元件A 与两个并联的元件B 及C 串联而成,且它们工作是相互独立的.设元件A 、B 、C 损坏的概率分别是0.3,0.2,0.2,求电路发生间断的概率.解:设=D {电路正常},则()C A B A C B AD ==, 则 ()()()()()()()()()()().672.08.08.07.08.07.08.07.0=⨯⨯-⨯+⨯=-+=-+=C P B P A P C P A P B P A P C B A P C A P B A P D P 所以 ()()328.0672.011=-=-=D P D P4. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:设至少要进行n 次独立射击,则至少击中一次的概率不小于0.9可表为: ()(),9.0011≥=-=≥k P k P n n由于,2.0=p 则,8.0=q 于是()n n k P 8.0101-==-,所以有,1.08.0≥n 即32.103.0ln 2.0ln =≥n所以至少进行11次独立射击才能使至少击中一次的概率不小于0.9.综合练习题一、选择题1.设事件B A ,,有A B ⊂,则下列式子正确的是( A ).(A ));()(A P B A P = (B) );()(A P AB P =(C) );()|(B P A B P = (D) ).()()(A P B P A B P -=-2.设A 与B 为两个相互独立的事件,0)(>A P ,0)(>B P ,则一定有=)(B A P ( B).(A ))()(B P A P + (B ))()(1B P A P -(C ))()(1B P A P + (D ))(1AB P -.3.设B A ,为两事件,且B A ⊃,则下列结论成立的是( C ).(A )A 与B 互斥;(B ) A 与B 互斥;(C)A 与B 互斥;(D) A 与 B 互斥.4.设B A ,为任意两事件,且,0)(,>⊂B P B A 则下列选择必然成立的是( C ).(A))|()(B A P A P <; (B) )|()(B A P A P >;(C) )|()(B A P A P ≤; (D) )|()(B A P A P ≥.5.假设事件A 和B 满足1)(=A B P ,则下列正确的是( D ).(A )A 是必然事件; (B )();0=A B P ; (C )A B ⊂ ; (D )B A ⊂.6.对于任意二事件B A ,( B ).(A) 若AB ≠∅,则B A ,一定独立; (B) ,AB ≠∅则B A ,有可能独立;(C) AB =∅,则B A ,一定独立; (D) AB ≠∅,则B A ,一定不独立;7.若事件A 和B 满足)}(1)}{(1{)(B P A P B A P --= ,则正确的是( D ).(A )互不相容与B A ; (B ) 互不相容与B A ;(C ) B A ⊃; (D ) 互为独立与B A .8.设当事件A 与B 同时发生时,事件C 必发生,则( B ).(A )1)()()(-+≤B P A P C P ; (B )1)()()(-+≥B P A P C P ;(C ))()(AB P C P =; (D ))()(B A P C P =.9.设B A 、是两个事件,则=-)(B A P ( C ).(A ))()(B P A P -; (B ))()()(AB P B P A P +-;(C) )()(AB P A P -; (D) )()()(AB P B P A P ++.10.设C B A ,,是三个随机事件,41)()()(===C P B P A P ,81)(=AB P ,0)()(==AC P BC P ,则C B A ,,三个随机事件中至少有一个发生的概率是( B ).(A )43; (B ) 85; (C ) 83; (D ) 81. 11.某学生做电路实验,成功的概率是0(p ﹤p ﹤1),则在3次重复实验中至少失败1次的概率是( B ).(A )3p ; (B )31p -; (C )3)1(p -; (D )3)1(p -)1()1(22p P p p -+-+.12.设A P B P A P (,7.0)(,8.0)(==|8.0)=B ,则下面结论正确的是( A ).(A )事件A 与B 互相独立; (B )事件A 与B 互不相容;(C );B A ⊂ (D )).()()(B P A P B A P +=13.下列事件中与A 互不相容的事件是( D )(A )ABC ; (B) C B C B A ; (C) )(C B A ; (D) ))()((B A B A B A .14.若事件A 、B 相互独立且互不相容,则{}=)(),(min B P A P ( C ).(A) )(A P ; (B ) )(B P ; (C ) 0; (D ) )()(B P A P -.15.,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 设则( A ).(A) )()|(A P B A P = ; (B) A B =; (C) Φ≠AB ; (D) )()()(B P A P AB P ≠.二、填空题1.已知B A ⊂,3.0)(,2.0)(==B P A P ,则)(B A P - 0 .2.设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P 0.2 .3.三次独立的试验中,成功的概率相同,已知至少成功一次的概率为2719,则每次试验成功的概率为 1/3 .4.已知()0.5,()0.8P A P B ==,且(|)0.8 P B A =,则=)(B A P 0.9 .5. 设5.0)(=A P ,4.0)(=B P ,6.0)|(=B A P ,则)|(B A A P = 20/29 .6.假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是B A ⊂.7.已知7.0)(=A P ,3.0)(=-B A P ,则=)(AB P 0.4 . 8.已知41)(=A P ,31)(=AB P ,21)(=B A P ,则=)(B A P 1/3 . 9.设两个相互独立的事件A 和B 都不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则=)(A P 2/3 .10.设C B A ,,构成一个完备事件组,且()0.5,()0.7P A P B ==,则=)(C P 0.2 .11.设A 与B 为互不相容的事件,0)(>B P ,则=)(B A P 0 .12.设事件C B A ,,两两互斥,且,4.0)(,3.0)(,2.0)(===C P B P A P则=-])[(C B A P 0.5 .13.设事件A 与B 相互独立,已知1)()(-==a B P A P ,97)(=B A P ,则=a 5/3或4/3 .14.甲、乙两人独立的对同一目标射击一次,其命中率分别为6.0和5.0,现已知目标被命中,则它是甲射中的概率为 3/4 .15.假设随机事件A 与B 满足),()(B A P AB P =且p A P =)(,则=)(B P p -1.三、应用题1.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7.如果只有一人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落.求飞机被击落的概率.解:设=i A {第i 人击中飞机},=i 甲,乙,丙;=i B {i 人击中飞机};3,2,1,0=i ,=C {飞机被击落};则()()();7.0;5.0;4.0321===A P A P A P()()()()36.03213213211=++=A A A P A A A P A A A P B P ,()()()()41.03213213212=++=A A A P A A A P A A A P B P ,()()14.03213==A A A P B P ;(),2.01=B C P (),6.02=B C P ();13=B C P所以()()()()()()()458.0332211=++=B C P B P B C P B P B C P B P C P2.甲、乙2人投篮命中率分别为0.7,0.8,每人投篮三次,求(1)两人进球数相等的概率;(2)甲比乙进球数多的概率. 解:设=i A {甲人三次投篮进i 个球},=i B {乙人三次投篮进i 个球},则()(),027.07.0130=-=A P ()(),189.07.017.02131=-⨯⨯=C A P()()(),411.07.017.02232=-⨯⨯=C A P ()();343.07.03333=⨯=C A P()(),008.08.0130=-=B P ()(),096.08.018.02131=-⨯⨯=C B P()()(),384.08.018.02232=-⨯⨯=C B P ()();512.08.033==B P(1)=C {两人进球相等}33221100B A B A B A B A =,()()()()()()()()()()()()();36332.03322110033221100=+++=+++=B P A P B P A P B P A P B P A P B A P B A P B A P B A P C P (2)=D { 甲比乙进球数多}331303120201B A B A B A B A B A B A =()()()()()()()()()()()()().21476.0231303120201=+++++=B P A P B P A P B P A P B P A P B P A P B P A P D P3.一射手命中10环的概率为0.7,命中9环的概率为0.3.该射手3发子弹得到不小于29环的概率.解:设=1A {命中10环},=2A {命中9环},则;,2121Ω=Φ=A A A A 于是=B {3发子弹得到不小于29环}={3发子弹均为10环} {有2发击中10环},所以()()()()()()784.03.07.03.07.023223033333=⨯⨯+⨯⨯=+=C C P P B P4.有2500人参加人寿保险,每年初每人向保险公司交付保险费12元.若在这一年内投保人死亡,则其家属可以向保险公司领取2000元.假设每人在这一年内死亡的概率都是0.002,求保险公司获利不少于10000元的概率.解:设参加保险的人中有x 人死亡,当,100002000122500≥-⨯x 即10≤x 时,保险公司获利不少于10000元。
概率论与数理统计第一章习题及答案
概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生, (2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。
故表示为ABC C B A 或++(8)A ,B ,C 中至少有二个发生。
相当于AB ,BC ,AC 中至少有一个发生。
故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。
概率统计第一章概率论的基础知识习题与答案
概率统计第一章概率论的基础知识习题与答案概率论与数理统计概率论的基础知识习题一、选择题1、下列关系正确的是( )。
A、0∈∅B、{0}∅=∅⊂D、{0}∅∈C、{0}答案:C2、设{}{}2222=+==+=,则( )。
P x y x y Q x y x y(,)1,(,)4A、P Q⊂B、P Q<C、P Q⊂与P Q⊃都不对D、4P Q=答案:C二、填空1、6个学生和一个老师并排照相,让老师在正中间共有________种排法。
答案:6!720=2、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。
答案:723、编号为1,2,3,4,5的5个小球任意地放到编号为A、B、C、D、E、F的六个小盒子中,概率论的基础知识第 1 页(共 19 页)每一个盒至多可放一球,则不同的放法有_________种。
答案:()65432720⨯⨯⨯⨯=4、设由十个数字0,1,2,3, ,9的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是_______________。
答案:710个5、九名战士排成一队,正班长必须排在前头,副班长必须排在后头,共有_______________种不同的排法。
答案:77!5040P==6、平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。
答案:1207、5个篮球队员,分工打右前锋,左前锋,中锋,左后卫右后卫5个位置共有_____________种分工方法?答案:5!120=8、6个毕业生,两个留校,另4人分配到4个概率论的基础知识第 2 页(共 19 页)不同单位,每单位1人。
则分配方法有______种。
答案:(6543)360⨯⨯⨯=9、平面上有12个点,其中任意三点都不在一条直线上,这些点可以确定_____________条不同的直线。
答案:6610、编号为1,2,3,4,5的5个小球,任意地放到编号为A,B,C,D,E,F,的六个小箱子中,每个箱子中可放0至5个球,则不同的放法有___________种。
第一章 概率论的基本概念
第一章概率论的基本概念 1、A ,B ,C 三事件,则三事件中至少发生两个事件为( )(A )BC A C B A C AB _________++ (B )ABC BC A C B A C AB +++_________(C ) C B A ⋃⋃ (D )__________________C B C A B A ++ 2、在某年级的学生中任选一名学生,事件A 表示“被选学生是男生”,B 表示事件“被选学生是丙班的学生”,C 表示“被选学生是运动员”,下面结论中错误的是( ) A.AB表“被选学生是丙班的男生,不是运动员”B.该年级运动员都是丙班男生时,ABC=C 成立C.该年级运动员全是丙班学生时,C B 成立D.该年级丙班全是女生时 =B 成立3、某射手向目标独立射击5枪,设每次中靶的概率为0.6,则恰好中了两枪的概率为( )(A )0.63 0.42 (B )0.62 0.43 (C )C 520.63 0.42 (D )C 520.62 0.43 4、 已知P (A )=0.4,P (B )=0.3,P (A+B )=0.6,则P (AB )=_________。
5、一盒零件有5个正品,2个次品,不放回任取3个,其中至少有2个正品的概率为 .(A ) 7/2; (B ) 7/4; (C )7/5; (D ) 7/6. 6、设事件A 表示“甲种产品畅销,乙种产品滞销”,其对立事件为( ) (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”7、 设A B ⊂,则下面正确的等式是( )(A ))(1)(A P AB P -=; (B ))()()(A P B P A B P -=-; (C ))()|(B P A B P =; (D ))()|(A P B A P = 8、 掷一颗骰子,则点数小于5的概率是_________9、在1,2,…,10这十个数中随机抽取一数,令A={取到的数大于4},B={取到的数小于8},P(A|B)=________10、 在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码。
(完整版)概率论与数理统计习题集及答案
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论的基本概念练习题及答案
第一章概率论的基本概念练习题1. 将一枚均匀的硬币抛两次,事件分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件中的样本点。
2. 在掷两颗骰子的试验中,事件分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件中的样本点。
3. 以分别表示某城市居民订阅日报、晚报和体育报。
试用表示以下事件:(1)只订阅日报;(2)只订日报和晚报;(3)只订一种报;(4)正好订两种报;(5)至少订阅一种报;(6)不订阅任何报;(7)至多订阅一种报;(8)三种报纸都订阅;(9)三种报纸不全订阅。
4. 甲、乙、丙三人各射击一次,事件分别表示甲、乙、丙射中。
试说明下列事件所表示的结果:, , , , , .5. 设事件满足,试把下列事件表示为一些互不相容的事件的和:,,.6. 若事件满足,试问是否成立?举例说明。
7. 对于事件,试问是否成立?举例说明。
8. 设,,试就以下三种情况分别求:(1),(2),(3).9. 已知,,求事件全不发生的概率。
10. 每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。
一个人骑车经过三个路口,试求下列事件的概率:“三个都是红灯”=“全红”;“全绿”;“全黄”;“无红”;“无绿”;“三次颜色相同”;“颜色全不相同”;“颜色不全相同”。
11. 设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求:(1)(1)取出的3件中恰有1件是次品的概率;(2)(2)取出的3件中至少有1件是次品的概率。
12. 从中任意选出3个不同的数字,试求下列事件的概率:,。
13. 从中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。
14. 一个宿舍中住有6位同学,计算下列事件的概率:(1)6人中至少有1人生日在10月份;(2)6人中恰有4人生日在10月份;(3)6人中恰有4人生日在同一月份;15. 从一副扑克牌(52张)任取3张(不重复),计算取出的3张牌中至少有2张花色相同的概率。
概率统计与随机过程习题册解答
解:以A表示事件“白漆10桶,黑漆3桶,红漆2桶”
P( A)
C1100C43C32 C1175
1 4 3 17 8
3 34
a
9பைடு நூலகம்
8
4.已知在10只晶体管中有2只是次品,在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率。
(1)两只都是正品 解:以A表示事件“两只都是正品
P( A) 8 7 ”28
1
S {v | v 0}
Aa {v | 60 v 80}
1
2.设A、B、C 为三个事件试用A、B、C 表示下列事件
(1)A与B 不发生,而C 发生
ABC
(2)A,B,C 都不发生
ABC
(3)A、B、C 至少有一个发生
A B C
(4)A、B、C中恰有一个发生 ABC ABC ABC
(5)A、B、C 中恰有两个发生 ABC ABC ABC
解:以A表示事件“系统的可靠性 ”
P( A) [1 (1 p)2]2 p2(2 p)2
(2,1)和(4,4)
P( A) 2 1 36 18
a
11
10
练习三
1. (1)已知 P( A) 0.3, P(B) 0.4, P( AB) 0.5,求 P(B | A B)
。解 :
P(B | A B)
P(B ( A B)) P(A B)
P( AB) P( A) P(B) P( AB)
0.002
0.3223
a
13
12
3.已知男子有5%是色盲患者,女子有0.25 %是色盲患 者。今从男女人数相等的人群中随机地挑选一人,则
(1)此人是色盲患者的概率
解:以A表示事件“色盲患者”,以B表示事件“所
第一章 概率论的基本概念
第一章概率论的基本概念一、填空题1.设A,B,C,D是4个随机事件,利用这4个事件的运算式表达下列各事件。
(1)A发生为 A ,只有A发生为 Abcd ;(2)A,B,C,D恰有一个发生,为 abcD abCd aBcd Abcd ;(3)A,B,C,D至少有一个发生,为 A B C D ;(4)A,B,C,D都不发生,为 abcd 。
2.设A,B为两个随机事件,则AB∪(A-B)∪A= 全集b 。
3.若事件A,B互不相容,则BA+=Ω。
A+与Ω的关系为B4.设事件A,B互不相容,且P(A)=0.3,P(B)=0.7,求=AP 0 。
(B) 5.设A,B为任意两个随机事件,则))}AA= 0 。
PB)(A(({B6.若BA⊂,则A > B,P(A) >= P B。
7.如果BA⊂,则P(A-B)= 0 ,P(B-A)= P(B)-P(A)。
8.已知P(A)+P(B)=0.7,P(AB)=0.3,则)BP+= 0.1 。
PAA(B()9.设事件A,B互不相容,且P(A)=0.4,P(B)=0.3,则=P 0.3 。
A(B)10.设P(A)>0,P(B)>0,把P(A),P(AB),P(A∪B),P(A)+P(B)按大小排列应为P(AB)≤P(A)≤P(A∪B)≤P(A)+P(B)。
11.设BA⊂,P(A)=0.1,P(B)=0.5,则P(AB)= 0.1 ;P(A∪B)= 0.5 ;AP⋃= 0.9 ;)(B)P= 0.5 。
A(B12.掷两枚骰子,其点数之和为8的概率为 5/36 。
13.从52张扑克牌中任取5张牌,恰好为“同花顺”的概率为 3/216580 。
14.从52张扑克牌中任取5张牌,其中至多有两种花色的概率为 。
15.从0,1,…,9这10个数字中,随机抽取3个(不重复抽取),这3个数字组成一个三位奇数的概率为 。
16.设12件产品,其中3件次品。
现任取2件,已知所取2件中有一件为次品,则另一件也是次品的概率为 。
概率论与数理统计第四版_部分习题答案_第四版_盛骤__浙江大学
第一章 概率论的基本概念2、设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
故 表示为:AB +BC +AC 3、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P , 81)(=AC P . 求A ,B ,C 至少有一个发生的概率。
解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )=8508143=+- 16、据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P (A )=P {孩子得病}=,P (B |A )=P {母亲得病|孩子得病}=,P (C |AB )=P {父亲得病|母亲及孩子得病}=。
求母亲及孩子得病但父亲未得病的概率。
解:所求概率为P (AB C )(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C |AB )P (AB )= P (A )=P (B |A )=0.6×0.5=0.3, P (C |AB )=1-P (C |AB )=1-0.4=0.6. 从而P (AB C )= P (AB ) · P (C |AB )=0.3×0.6=0.18.17、已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。
概率论与数理统计浙大第四版习题答案全
概率论与数理统计习题答案 完全版 浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
概率论与数理统计习题
第一章 概率论的基本概念一、填空题:1.设,()0.1,()0.5,A B P A P B ⊂==则()P AB = ,()P A B = ,()P AB = 。
2.设在全部产品中有2%是废品,而合格品中有85%是一级品,则任抽出一个产品是一级品的概率为 。
3.设A ,B ,C 为三事件且P(A)=P(B)=P(C)=41,81)(,0)()(===AC P BC P AB P ,则A,B,C 中至少有一个发生的概率为 .4.一批产品共有10个正品和2个次品,不放回的抽取两次,则第二次取到次品的概率 为 .5. 设A ,B 为两事件, ()0.4,()0.7,P A P A B ==当A ,B 不相容时, ()P B =当A ,B 相互独立时, ()P B = 。
二.、选择题1. 1.设A ,B 为两随机事件,且,B A ⊂则下列式子正确的是( )。
(A )()()P AB P A = (B )()()P AB P A =(C )()()P B A P B = (D )()()()P B A P B P A -=-2.每次试验成功的概率为p (0< p <1),进行重复试验,直到第10次试验才取得4次成功的概率为( )。
(A )44610(1)C p p - (B )3469(1)C p p - (C )3459(1)C p p -(D )3369(1)C p p -3.设A,B 为两事件,则P (A-B)等于( )。
(A) ()()P A P B - (B) ()()()P A P B P AB -+ (C )()()P A P AB - (D) ()()()P A P B P AB +-4.关于独立性,下列说法错误的是( )。
(A)若12,,,n A A A 相互独立,则其中任意多个事件12,,,)k i i i A A A k n ≤(仍然相互独立;(B )若12,,,n A A A 相互独立,则它们之中的任意多个事件换成其对立事件后仍然相互独立(C ) 若A 与B 相互独立, B 与C 相互独立, A 与C 相互独立, 则A,B,C 相互独立; (D ) 若A,B,C 相互独立,则A B 与C 相互独立5. n 张奖券中含有m 张有奖的, k 个人购买,每人一张,其中至少有一人中奖的概率是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 概率论的基本概念练习题1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
《4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++.5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -.6. 若事件C B A ,,满足C B C A +=+,试问B A =是否成立举例说明。
7. 对于事件C B A ,,,试问C B A C B A +-=--)()(是否成立举例说明。
8. 设31)(=A P ,21)(=B P ,试就以下三种情况分别求)(A B P : (1)Φ=AB , (2)B A ⊂, (3)81)(=AB P . 9. 已知41)()()(===C P B P A P ,161)()(==BC P AC P ,0)(=AB P 求事件C B A ,,全不发生的概率。
10. 每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。
一个人骑车经过三个路口,试求下列事件的概率:=A “三个都是红灯”=“全红”; =B “全绿”; =C “全黄”; =D “无红”; =E “无绿”; =F “三次颜色相同”; =G “颜色全不相同”;=H “颜色不全相同”。
11. 设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求:(1) (1)取出的3件中恰有1件是次品的概率; (2)…(3)(2)取出的3件中至少有1件是次品的概率。
12. 从9,,2,1,0 中任意选出3个不同的数字,试求下列事件的概率:{}501与三个数字中不含=A ,{}502或三个数字中不含=A 。
13. 从9,,2,1,0 中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。
14. 一个宿舍中住有6位同学,计算下列事件的概率:(1)6人中至少有1人生日在10月份; (2)6人中恰有4人生日在10月份; (3)6人中恰有4人生日在同一月份;15. 从一副扑克牌(52张)任取3张(不重复),计算取出的3张牌中至少有2张花色相同的概率。
16. 假设一批产品中一、二、三等品各占60%,30%、10%,从中任取一件,结果不是三等品,求取到的是一等品的概率。
:17. 设10件产品中有4件不合格品,从中任取2件,已知所取2件产品中有1件不合格品,求另一件也是不合格品的概率。
18. 为了防止意外,在矿内同时装有两种报警系统I 和II 。
两种报警系统单独使用时,系统I 和II 有效的概率分别和,在系统I 失灵的条件下,系统II 仍有效的概率为,求(1) (1)两种报警系统I 和II 都有效的概率; (2) (2)系统II 失灵而系统I 有效的概率;(3) (3)在系统II 失灵的条件下,系统I 仍有效的概率。
19. 设1)(0<<A P ,证明事件A 与B 独立的充要条件是)|()|(A B P A B P =20. 设事件A 与B 相互独立,两个事件只有A 发生的概率与只有B 发生的概率都是41,求)(A P 和)(B P .21. 证明 若)(A P >0,)(B P >0,则有(1) (1)当A 与B 独立时,A 与B 相容; (2) :(3)(2)当A 与B 不相容时,A 与B 不独立。
22. 已知事件C B A ,,相互独立,求证B A 与C 也独立。
23. 甲、乙、丙三机床独立工作,在同一段时间内它们不需要工人照顾的概率分别为,和,求在这段时间内,最多只有一台机床需要工人照顾的概率。
24. 如果构成系统的每个元件能正常工作的概率为)10(<<p p ,(称为元件的可靠性),假设各元件能否正常工作是相互独立的,计算下面各系统的可靠性。
25. 10张奖券中含有4张中奖的奖券,每人购买1张,求 (1) (1)前三人中恰有一人中奖的概率; (2) (2)第二人中奖的概率。
】26. 在肝癌诊断中,有一种甲胎蛋白法,用这种方法能够检查出95%的真实患者,但也有可能将10%的人误诊。
根据以往的记录,每10 000人中有4人患有肝癌,试求:(1)某人经此检验法诊断患有肝癌的概率;系统I系统II(2)已知某人经此检验法检验患有肝癌,而他确实是肝癌患者的概率。
27. 一大批产品的优质品率为30%,每次任取1件,连续抽取5次,计算下列事件的概率:(1)取到的5件产品中恰有2件是优质品;(2) 在取到的5件产品中已发现有1件是优质品,这5件中恰有2件是优质品。
28. 每箱产品有10件,其次品数从0到2是等可能的。
开箱检验时,从中任取1件,如果检验是次品,则认为该箱产品不合格而拒收。
假设由于检验有误,1件正品被误检是次品的概率是2%,1件次品被误判是正品的概率是5%,试计算: (1)抽取的1件产品为正品的概率; (2)该箱产品通过验收的概率。
29. 假设一厂家生产的仪器,以概率可以直接出厂,以概率需进一步调试,经调试后以概率可以出厂,并以概率定为不合格品不能出厂。
现该厂新生产了)2(≥n n 台仪器(假设各台仪器的生产过程相互独立),求: (1)全部能出厂的概率;'(2)其中恰有2件不能出厂的概率; (3)其中至少有2件不能出厂的概率。
30. 进行一系列独立试验,每次试验成功的概率均为p ,试求以下事件 的概率:(1)直到第r 次才成功; (2)第r 次成功之前恰失败k 次; (3)在n 次中取得)1(n r r ≤≤次成功; (4)直到第n 次才取得)1(n r r ≤≤次成功。
31. 对飞机进行3次独立射击,第一次射击命中率为,第二次为,第三次为. 击中飞机一次而飞机被击落的概率为,击中飞机二次而飞机被击落的概率为,若被击中三次,则飞机必被击落。
求射击三次飞机未被击落的概率。
|答案:第一章 概率论的基本概念习题答案. 1. 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)}{=C (正,正),(正,反),(反,正)}2. 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++;(4)BC A C B A C AB ++;(5)C B A ++;(6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++4.解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。
5. <解:如图:】BCA CBC AB A B BCA CB AC AB AC B C C AB C AB C B A C B A BC A ABC C AB C B A C B A C B A +=+=++=-+=+++++++=++;;6. 解:不一定成立。
例如:{}5,4,3=A ,{}3=B ,{}5,4=C , 那么,C B C A +=+,但B A ≠。
7. 解:不一定成立。
例如:{}5,4,3=A ,{}6,5,4=B ,{}7,6=C , 那么{}3)(=--C B A ,但是{}7,6,3)(=+-C B A 。
8. 解:(1)21)()()()(=-=-=AB P B P AB B P A B P ;(2)61)()()()(=-=-=A P B P A B P A B P ; (3)838121)()()()(=-=-=-=AB P B P AB B P A B P 。
9. 解:CB A CB AC B A ABCBCA CAB CB A ΩAB CCB A())(1)(C B A P C B A P C B A P ++-=++==[])()()()()()()(1ABC P BC P AC P AB P C P B P A P +---++-83016116104141411=⎥⎦⎤⎢⎣⎡+---++-=10.,解:271333111)()()(=⨯⨯⨯⨯===C P B P A P ;278333222)()(=⨯⨯⨯⨯==E P D P ;91271271271)(=++=F P ;92333!3)(=⨯⨯=G P ;98911)(1)(=-=-=F P H P .11. 解:一次拿3件:(1)0588.0310012298==C C C P ;(2)0594.031001982229812=+=C C C C C P ;每次拿一件,取后放回,拿3次:(1)0576.0310098232=⨯⨯=P ;(2)0588.010098133=-=P ;每次拿一件,取后不放回,拿3次:(1)0588.0398*******982=⨯⨯⨯⨯⨯=P ;(2)0594.098991009697981=⨯⨯⨯⨯-=P12.解:157)(310381==C C A P ;15142)(31038392=-=C C C A P 或15141)(310182=-=C C A P 13.解:9041454102839=-=P P P P 14.解:(1)41.01211166=-= P ; (2)00061.012116246=⨯= C P ;(3)0073.012116246112== C C P】15.解:602.03521392131431314=+= C C C C C C P 或602.0135211311311334=-= C C C C C P16.解:令=i A “取到的是i 等品”,3,2,1=i329.06.0)()()()()(3133131====A P A P A P A A P A A P 。