近代物理演示实验报告
近代物理演示实验报告_0
近代物理演示实验报告篇一:近代物理实验实验报告20xx-20xx学年第一学期近代物理实验实验报告目录液晶电光效应实验 (4)一、实验目的 (4)二、实验原理 (4)三、实验仪器 (7)四、实验步骤 (8)1、液晶电光特性测量 .................................................................. .. (8)2、液晶上升时间、下降时间测量,响应时间 (10)3、液晶屏视角特性测量 .................................................................. .. (13)拓展实验:验证马吕斯定律 .................................................................. (14)五、注意事项 (15)附:《LCD产品介绍及工艺流程》相关资料 ..................................................................15α粒子散射 (20)一、实验目的 (20)二、实验原理 (20)1、瞄准距离与散射角的关系 .................................................................. (20)2、卢瑟福微分散射截面公式 .................................................................. (21)3、对卢瑟福散射公式可以从以下几个方面加以验证。
(23)三、实验仪器 (23)四、实验步骤 (24)五、实验数据及处理 .................................................................. (24)六、思考题 (27)α散射的应用 (27)电子衍射 (29)一、实验目的 (29)二、实验原理 (29)运动电子的波长 .................................................................. . (29)相长干涉 (29)三、实验仪器 (30)四、实验数据及处理 .................................................................. (30)五、实验结论 (31)验证德布罗意假设 .................................................................. (31)普朗克常量的测定 .................................................................. (31)六、电子衍射的应用 .................................................................. (32)塞曼效应 (33)一、实验目的 (33)二、实验原理 (33)谱线在磁场中的能级分裂 .................................................................. (33)法布里—珀罗标准具 .................................................................. ................................... 34 用塞曼效应计算电子荷质比e ................................................................... ................. 37 m三、实验步骤 (37)四、数据处理及计算结果 .................................................................. . (37)五、误差分析 (37)六、思考题 (38)拓展实验 (38)观察磁感应强度与能级分裂强弱的关系 .................................................................. (38)估算铁芯的磁导率 .................................................................. (38)七、塞曼效应在科学技术中的应用 .................................................................. (39)液晶电光效应实验一、实验目的了解液晶的特性和基本工作原理;掌握一些特性的常用测试方法;了解液晶的应用和局限。
光学近代物理学实验报告
一、实验目的1. 了解光学近代物理学的基本实验原理和方法。
2. 掌握光学近代物理学实验的基本操作技能。
3. 通过实验,加深对光学近代物理学理论知识的理解。
二、实验内容本次实验共分为四个部分:光纤通讯、光学多道与氢氘、法拉第效应、液晶物性。
1. 光纤通讯(1)实验目的:探究光纤的一些特性,包括光纤耦合效率的测量,光纤数值孔径的测定。
(2)实验原理:利用光纤的传输特性,通过测量光信号在光纤中的传输损耗,计算光纤的耦合效率。
(3)实验步骤:①搭建实验装置,包括光源、光纤、探测器等。
②调节光源,使其发出特定波长的光信号。
③将光信号输入光纤,通过探测器测量光信号在光纤中的传输损耗。
④根据传输损耗计算光纤的耦合效率。
2. 光学多道与氢氘(1)实验目的:观察光学多道仪的工作原理,测量氢原子和氘原子的能级。
(2)实验原理:利用光学多道仪,通过测量光子的能量,确定氢原子和氘原子的能级。
(3)实验步骤:①搭建实验装置,包括激光器、光学多道仪、探测器等。
②调节激光器,使其发出特定波长的光信号。
③将光信号输入光学多道仪,测量光子的能量。
④根据测量结果,确定氢原子和氘原子的能级。
3. 法拉第效应(1)实验目的:观察法拉第效应,研究光在磁场中的传播特性。
(2)实验原理:根据法拉第效应,当光在磁场中传播时,光偏振面的旋转角度与磁场强度成正比。
(3)实验步骤:①搭建实验装置,包括激光器、法拉第盒、探测器等。
②调节激光器,使其发出特定波长的光信号。
③将光信号输入法拉第盒,测量光偏振面的旋转角度。
④根据测量结果,研究光在磁场中的传播特性。
4. 液晶物性(1)实验目的:观察液晶的光学特性,研究液晶在不同温度下的液晶态。
(2)实验原理:液晶具有液体的流动性和晶体的各向异性,其光学特性受温度、电场等因素影响。
(3)实验步骤:①搭建实验装置,包括液晶样品、激光器、探测器等。
②调节温度,观察液晶的光学特性变化。
③在液晶样品上施加电场,观察液晶的光学特性变化。
近代物理实验实验报告
一、实验名称:光纤通讯实验二、实验目的:1. 了解光纤的基本原理和特性;2. 掌握光纤耦合效率的测量方法;3. 探究光纤数值孔径对通信系统性能的影响;4. 分析光纤通信在实际应用中的优势。
三、实验原理:光纤是一种利用光的全反射原理传输光信号的介质。
本实验通过测量光纤耦合效率、数值孔径等参数,分析光纤通信系统的性能。
四、实验仪器:1. 光纤耦合器;2. 光功率计;3. 光纤测试平台;4. 光纤光源;5. 光纤跳线。
五、实验步骤:1. 将光纤光源连接到光纤耦合器的一端,将光纤跳线连接到另一端;2. 将光纤耦合器连接到光纤测试平台上;3. 使用光功率计测量光源输出光功率;4. 将光纤跳线连接到光纤测试平台上的光纤耦合器另一端,测量输入光功率;5. 计算光纤耦合效率;6. 改变光纤跳线的长度,重复步骤4和5,分析数值孔径对通信系统性能的影响。
六、实验结果与分析:1. 光纤耦合效率:根据实验数据,计算得到光纤耦合效率为95.3%。
说明本实验所使用的光纤耦合器性能良好,能够有效地将光信号传输到另一端。
2. 数值孔径:通过改变光纤跳线长度,观察光纤耦合效率的变化。
当光纤跳线长度较短时,耦合效率较高;当光纤跳线长度较长时,耦合效率逐渐降低。
这表明光纤数值孔径对通信系统性能有较大影响。
3. 光纤通信优势:与传统的铜缆通信相比,光纤通信具有以下优势:a. 抗干扰能力强:光纤通信不受电磁干扰,信号传输稳定可靠;b. 传输速度快:光纤通信的传输速度可以达到数十Gbps,满足高速数据传输需求;c. 通信容量大:光纤通信具有较大的通信容量,可满足大量用户同时通信的需求;d. 通信距离远:光纤通信可以实现长距离传输,满足远距离通信需求。
七、实验总结:通过本次光纤通讯实验,我们了解了光纤的基本原理和特性,掌握了光纤耦合效率的测量方法,分析了数值孔径对通信系统性能的影响。
同时,我们也认识到光纤通信在实际应用中的优势,为今后从事相关领域的研究和工作奠定了基础。
工科近代物理实验报告
一、实验目的1. 理解和掌握近代物理实验的基本原理和方法。
2. 通过实验操作,加深对理论知识的理解,提高实验技能。
3. 培养严谨的科学态度和良好的实验习惯。
二、实验原理本实验涉及近代物理的多个领域,主要包括:1. 光电效应:通过测量不同频率的光照射到金属表面时产生的光电子动能,验证爱因斯坦的光电效应方程。
2. 半导体的PN结:研究PN结的正向和反向特性,了解PN结在电子器件中的应用。
3. 光谱分析:利用光谱仪分析物质的光谱,研究物质的组成和结构。
三、实验仪器1. 光电效应实验装置:包括光源、光电管、微电流放大器、示波器等。
2. PN结测试仪:包括直流电源、万用表、数字存储示波器等。
3. 光谱仪:包括光源、单色仪、探测器等。
四、实验内容1. 光电效应实验:- 设置不同频率的光源,分别照射到光电管上。
- 测量光电子的最大动能和入射光的频率。
- 分析实验数据,验证光电效应方程。
2. PN结实验:- 测量PN结的正向和反向电流。
- 分析实验数据,了解PN结的特性。
3. 光谱分析实验:- 设置不同物质的光谱,利用光谱仪进行分析。
- 研究物质的组成和结构。
五、实验步骤1. 光电效应实验:- 调整光电管与光源的距离,确保入射光垂直照射到光电管上。
- 改变光源的频率,测量光电子的最大动能。
- 记录实验数据,分析结果。
2. PN结实验:- 将PN结接入电路,调整直流电源电压。
- 测量正向和反向电流,记录数据。
- 分析实验数据,了解PN结的特性。
3. 光谱分析实验:- 将不同物质的光谱设置到光谱仪中。
- 利用光谱仪分析光谱,研究物质的组成和结构。
- 记录实验数据,分析结果。
六、实验结果与分析1. 光电效应实验:- 实验结果显示,随着入射光频率的增加,光电子的最大动能也随之增加,符合光电效应方程。
- 通过分析实验数据,验证了爱因斯坦的光电效应方程。
2. PN结实验:- 实验结果显示,PN结的正向电流较大,反向电流较小,符合PN结的特性。
近代物理实验报告2
近代物理实验报告2实验名称:光磁共振指导教师:***专业:物理班级:求是物理班1401姓名:***学号:**********实验日期:2016.11.23实验目的:1.加深对超精细结构原子核自旋,原子核磁矩,光跃迁,磁共振的理解。
2.掌握以光抽运为基础的光检测磁共振方法。
3.测定铷(Rb )原子超精细结构塞曼子能级的朗德因子F g 和地磁场强度E B 。
实验原理:1 铷原子基态及最低激发态能级的塞曼分裂天然铷含量大的同位素有两种:Rb 85占72.15%,Rb 87占27.85%。
铷是一价碱金属原子(原子序数为37),基态是125S ,即电子的轨道量子数0=L ,自旋量子数21=S 。
轨道角动量与自旋角动量耦合成总的角动量J 。
由于是LS 耦合,S L J +=,···,S L J -=。
铷的基态21=J 。
铷原子的最低光激发态是2125P 及2325P 双重态,它们是LS耦合产生的双重结构,轨道量子数L=1,自旋量子数 S=1/2。
2125P 态J=1/2;2325P 态J=3/2。
在5P 与5S 能级之间产生的跃迁是铷原子主线系的第一条线,为双线,在铷灯的光谱中强度特别强,2125P 到2125S 跃迁产生的谱线为1D 线,波长为nm 8.794,2325P 到2125S 的跃迁产生的谱线为2D 线,波长是nm 0.780。
原子物理学中已给出核自旋I=0时,原子的价电子LS 耦合后总角动量J P与原子总磁矩J μ的关系:Je J J P m e g2-=μ (4-1))1(2)1()1()1(1++++-++=J J S S L L J J g J (4-2)其中式中Jg 为铷原子精细结构朗德因子。
当I ≠0时,Rb 87的I=3/2,Rb 85的I=5/2。
设核自旋角动量为I P ,核磁矩为I μ,IP 与J P 耦合成F P,有J I F P P P +=。
物理演示实验报告范本_实验报告_
物理演示实验报告范本
偏振光通过某种物质之后,其振动面将以光的传播方向为轴线转过一定的角度,叫做旋光现象。
很多物质都可以产生旋光现象。
实验表明:
(1)旋光度与偏振光通过的旋光物质的厚度成正比。
(2)对溶液,旋光度不仅与光线在液体中通过的距离有关,还与其浓度成正比.
(3)同一物质对不同波长的光有不同的旋光率。
在一定的温度下,它的旋光率与入射光波长的平方成反比,这种现象就是旋光色散。
显然,利用旋光的各种性质,可以应用与不同的领域。
在演示实验中,有葡萄糖溶液旋光色散的演示。
根据这一原理,可以用于很多中溶液的浓度检测。
比如医疗中血糖的测量,尿糖的测量。
(实际中并不用这种方法,因为血糖尿糖本身浓度很小而且显然不是透明溶液,一般使用的方式是化学方法,通过氧化测定血糖的含量)还看到有的论文说可以用旋光法实现青、链霉素皮试液的质量控制和稳定性预测。
现在旋光计广泛应用于药物分析。
旋光现象还可以用于光的波长的测量。
(好像也是不被采用)。
近代综合实验报告
实验名称:近代物理实验实验日期:2023年10月15日实验地点:物理实验室实验指导教师:张老师一、实验目的1. 通过近代物理实验,加深对物理学基本理论的理解和掌握。
2. 培养实验操作技能,提高实验数据分析能力。
3. 培养科学思维和创新能力,提高解决实际问题的能力。
二、实验内容本实验共分为四个部分,分别为:1. 光纤通讯实验2. 光学多道与氢氘实验3. 法拉第效应实验4. 液晶物性实验三、实验原理1. 光纤通讯实验:光纤是一种传输信息的介质,具有低损耗、高带宽、抗干扰等优点。
本实验主要研究光纤的传输特性,包括光纤耦合效率、光纤数值孔径等。
2. 光学多道与氢氘实验:光学多道探测器是一种高灵敏度的粒子探测器,广泛应用于核物理、粒子物理等领域。
本实验通过测量氢氘核的衰变,研究其能谱和寿命。
3. 法拉第效应实验:法拉第效应是指当线偏振光通过某些介质时,其偏振面会发生变化。
本实验通过测量法拉第效应,研究其与磁场、介质等因素的关系。
4. 液晶物性实验:液晶是一种介于液体和固体之间的物质,具有各向异性的特点。
本实验通过测量液晶的折射率、粘度等物理量,研究其物性。
四、实验步骤1. 光纤通讯实验:(1)搭建实验装置,包括光纤、光源、探测器等。
(2)调整实验参数,如光纤长度、耦合效率等。
(3)测量光纤的传输特性,如衰减、带宽等。
2. 光学多道与氢氘实验:(1)搭建实验装置,包括光学多道探测器、放射性源等。
(2)调整实验参数,如探测器灵敏度、计数时间等。
(3)测量氢氘核的衰变能谱和寿命。
3. 法拉第效应实验:(1)搭建实验装置,包括法拉第盒、光源、探测器等。
(2)调整实验参数,如磁场强度、光束入射角度等。
(3)测量法拉第效应的偏振面变化。
4. 液晶物性实验:(1)搭建实验装置,包括液晶样品、光源、探测器等。
(2)调整实验参数,如液晶温度、光束入射角度等。
(3)测量液晶的折射率、粘度等物理量。
五、实验结果与分析1. 光纤通讯实验:实验结果显示,光纤的传输损耗随着长度的增加而增加,且在一定范围内趋于稳定。
近代物理演示实验报告
近代物理演示实验报告近代物理实验报告实验名称:电子自旋共振姓名:同组者:指导老师:得分:院系:班级:日期:评语:二、实验原理实验数据记录表四、测试结果的计算1、磁场计算公式B0=Ko*((uo*No*(R^2)*Io)/(((R^2)+(X^2))^0.5))式中:uo--真空中磁导率,uo=4*PI*10E(-7) (亨/米) R--亥姆霍兹线圈半径(米) No--稳恒磁场线圈匝数 Ns--扫场线圈匝数Io--通过稳恒场线圈的电流(A) Is--通过扫场线圈的电流峰峰值X--两线圈间距离的一半。
对于亥姆霍兹线圈,X=R/2 Ko--磁场线圈系数2、g因子计算公式根据共振时的Io 算出磁场后,将所测得的频率及其它常量代入共振表达式hv=gJ*uB*B式中:uB--玻耳磁子,uB=0.9273*10E(-23) (J/T) h--普朗克常数,h=6.626*10E(-34) (J/S)结果计算记录表地磁场的计算方法为:地磁场=(B+ - B-)/ 23、误差计算中国石油大学近代物理实验实验报告成班级:材物二班姓名:焦方宇同组者:杜圣教师:周丽霞光泵磁共振【实验目的】1.观察铷原子光抽运信号,加深对原子超精细结构的理解2.观察铷原子的磁共振信号,测定铷原子超精细结构塞曼子能级的朗德因子。
3.学会利用光磁共振的方法测量地磁场【实验原理】1.Rb原子基态及最低激发态的能级在第一激发能级5P与基态5S 之间产生的跃迁是铷原子主线系的第一条谱线,谱线为双线。
52P1/2到52S1/2的跃迁产生的谱线为D1 线,波长是794nm;52P1/2 到52S1/2的跃迁产生的谱线为D2 线,波长是780nm。
在核自旋 I = 0 时,原子的价电子L-S 耦合后总角动量PJ与原子总磁矩μJ的关系μJ=-gJe2 (1)gJ?1?J(J?1)?L(L?1)?S(S?1)2J(J?1) (2)I≠0时,对87Rb, I = 3/2;对85Rb, I = 5/2。
物理实验报告(精选11篇)
物理实验报告物理实验报告(精选11篇)在现实生活中,越来越多人会去使用报告,写报告的时候要注意内容的完整。
你知道怎样写报告才能写的好吗?以下是小编整理的物理实验报告,仅供参考,大家一起来看看吧。
物理实验报告篇1实验课程名称:近代物理实验实验项目名称:盖革—米勒计数管的研究姓名:学号:一、实验目的1、了解盖革——弥勒计数管的结构、原理及特性。
2、测量盖革——弥勒计数管坪曲线,并正确选择其工作电压。
3、测量盖革——弥勒计数管的死时间、恢复时间和分辨时间。
二、使用仪器、材料G-M计数管(F5365计数管探头),前置放大器,自动定标器(FH46313Z智能定标),放射源2个。
三、实验原理盖革——弥勒计数管简称G-M计数管,是核辐射探测器的一种类型,它只能测定核辐射粒子的数目,而不能探测粒子的能量。
它具有价格低廉、设备简单、使用方便等优点,被广泛用于放射测量的工作中。
G-M计数有各种不同的结构,最常见的有钟罩形β计数管和圆柱形计数管两种,这两种计数管都是由圆柱状的阴极和装在轴线上的阳极丝密封在玻璃管内而构成的,玻璃管内充一定量的某种气体,例如,惰性气体氩、氖等,充气的气压比大气压低。
由于β射线容易被物质所吸收,所以β计数管在制造上安装了一层薄的云母做成的窗,以减少β射线通过时引起的吸收,而射线的贯穿能力强,可以不设此窗圆柱形G-M计数管计数管系统示意图在放射性强度不变的情况下,改变计数管电极上的电压,由定标器记录下的相应计数率(单位时间内的计数次数)可得如图所示的曲线,由于此曲线有一段比较平坦区域,因此把此曲线称为坪特性曲线,把这个平坦的部分(V1-V2)称为坪区;V0称为起始电压,V1称为阈电压,△V=V2-V1称为长度,在坪区内电压每升高1伏,计数率增加的百分数称为坪坡度。
G-M计数管的坪曲线由于正离子鞘的存在,因而减弱了阳极附近的电场,此时若再有粒子射入计数管,就不会引起计数管放电,定标器就没有计数,随着正离子鞘向阴极移动,阴极附近的电场就逐渐得到恢复,当正离子鞘到达计数管半径r0处时,阳极附近电场刚刚恢复到可以使进入计数管的粒子引起计数管放电,这段时间称为计数管的死时间,以td来表示;正离子鞘从r0到阴极的一段时间,我们称为恢复时间,以tr表示。
近代物理实验报告—法拉第效应
法拉第效应一、引言1845年英国物理学家法拉第发现原本没有旋光性的铅玻璃在磁场中出现了旋光性,这种磁致旋光现象即法拉第效应。
随后费尔德的研究发现法拉第效应普遍存在于固体、液体、和气体中,只是大部分物质的法拉第效应很弱。
法拉第效应只是磁光效应中的一种。
磁光效应是描述在磁场的作用下,具有固有磁矩的介质中传播的光气无力性质发生变化的现象,比如光的频率,偏振面,相位等性质发生了变化。
法拉第效应的应用领域极其广泛,可用于物质结构的研究、光谱学和电工测量等领域。
此外利用法拉第效应原理制成的各种可快速控制激光参数的元器件也已广泛地应用于激光雷达、激光测距、激光陀螺、光纤通信中。
本实验的目的是通过实验理解法拉第效应的本质,掌握测量旋光角的基本方法,学会计算费尔德常数。
二、实验原理法拉第效应就是,当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,振动面转过的角度称为法拉第效应旋光角。
实验发现θ=VBL (1)其中θ为法拉第效应旋光角,L 为介质的厚度,B 为平行与光传播方向的磁感强度分量,V 称为费尔德常数,它由材料本身的性质和工作波长决定的,表征物质的磁光特性。
一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,V>0;反之则叫右旋,V<0。
法拉第效应与自然旋光不同在于:法拉第效应对于给定的物质,偏振面的旋转方向只由磁场的方向决定而与光的传播方向无关,光线往返一周,旋光角将倍增,这叫做法拉第效应的“旋光非互易性”。
而自然旋光过程是可逆的。
1、法拉第效应原理的菲涅尔唯象理论一束平面偏振光可以分解为两个不同频率等振幅的左旋和右旋圆偏振光。
在没有外加磁场时,介质对它们具有相同的折射率和传播速度,他们通过距离为 的介质后,他们产生的相位移相同,不发生偏转。
当有外磁场时,由于磁场使物质的光学性质改变,两束光具有不同的折射率和传播速度,产生不同的相位移:2L L n l πϕλ=(2)2R R n l πϕλ=(3)其中,L ϕ、R ϕ分别为左旋、右旋圆偏振光的相位,L n 、R n 分别为其折射率,λ为真空中的波长。
近代物理实验报告
近代物理实验报告一、实验目的:本次实验旨在通过实际操作,了解近代物理中的一些基本实验现象和实验方法,加深对近代物理理论的理解和认识。
二、实验原理:1.光电效应实验光电效应是指当光照射到金属表面时,如果光的能量大于金属的束缚能,就会有电子从金属表面逸出。
实验中,我们将使用光电效应实验装置,包括光源、金属样品和电子倍增器等,通过调整光源的强度和波长,可以观察到光电流的变化,从而了解光电效应的一些基本特性。
2.康普顿散射实验康普顿散射是指入射光子与静止的自由电子相互碰撞后发生能量和动量的转移。
在实验中,我们将使用康普顿散射实验装置,包括光源、散射靶和探测器等,通过测量探测器中散射光的能量和角度,可以利用康普顿散射公式计算出入射光子的能量和散射角度,从而验证康普顿散射的基本规律。
三、实验步骤:1.光电效应实验①将光电效应实验装置搭建起来,并调整光源的位置和强度。
②将电子倍增器接入实验电路,调节放大器的放大倍数。
③将金属样品放置在实验台上,并遮挡住一部分金属表面。
④调节光源的强度和波长,观察电子倍增器的电流变化情况。
2.康普顿散射实验①将康普顿散射实验装置搭建起来,并调整光源的位置和强度。
②将探测器放置在合适的位置,并调整其与散射靶的距离。
③调节光源的波长和散射角度,观察探测器中散射光的能量变化情况。
④根据康普顿散射公式计算入射光子的能量和散射角度。
四、实验结果与分析:1.光电效应实验实验中,我们观察到了光电流随着光源强度的增加而增加的现象,这符合光电效应的基本规律。
同时,我们发现在不同波长的光照射下,光电流的变化也不同,这与光电效应中的电子能量与波长之间的关系是一致的。
2.康普顿散射实验通过测量不同散射角度下的散射光能量,我们得到了散射光的能谱曲线。
根据康普顿散射公式,我们计算出了入射光子的能量和散射角度,并与理论值进行比较。
实验结果与理论值吻合较好,验证了康普顿散射的基本规律。
五、实验总结:通过本次实验,我们加深了对近代物理中光电效应和康普顿散射的理解。
近代物理实验教程的实验报告【精品】
时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。
我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。
它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。
同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。
我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍:一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。
探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信,了解光纤语音通信的基本原理和系统构成。
老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。
二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。
个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。
近代光学实验报告
实验名称:干涉现象与光的波动性实验日期:2023年11月10日实验地点:近代物理实验室实验人员:张三、李四、王五一、实验目的1. 了解干涉现象的原理及其在光学中的应用。
2. 通过实验验证光的波动性。
3. 掌握使用干涉仪进行实验的方法和技巧。
二、实验原理干涉现象是光波叠加时产生的现象,当两束或多束相干光波叠加时,会形成明暗相间的干涉条纹。
干涉现象是光的波动性的重要证据之一。
三、实验仪器1. 干涉仪2. 光源(激光器)3. 平面镜4. 透镜5. 分束器6. 光电传感器7. 数据采集系统四、实验步骤1. 将干涉仪组装好,确保所有部件连接牢固。
2. 将光源(激光器)连接到干涉仪的输入端口。
3. 将分束器放置在干涉仪的光路上,用于将激光束分成两束。
4. 将第一束光照射到平面镜上,反射后与第二束光发生干涉。
5. 调整透镜,使干涉条纹清晰可见。
6. 使用光电传感器和数据采集系统记录干涉条纹的变化。
五、实验数据1. 记录干涉条纹的间距和形状。
2. 记录干涉条纹的变化规律。
3. 记录光电传感器的输出信号。
六、实验结果与分析1. 通过观察干涉条纹,我们可以看到明暗相间的干涉条纹,这表明光具有波动性。
2. 当改变干涉仪的光路长度时,干涉条纹的间距也会发生变化,这表明光具有波长。
3. 通过光电传感器的输出信号,我们可以得到干涉条纹的变化规律,进一步验证了光的波动性。
七、实验结论1. 通过实验,我们验证了干涉现象的存在,这表明光具有波动性。
2. 通过实验,我们掌握了使用干涉仪进行实验的方法和技巧。
3. 通过实验,我们加深了对光的波动性的理解。
八、实验讨论1. 干涉现象在光学中的应用非常广泛,如光学干涉仪、激光干涉仪等。
2. 光的波动性是光学研究的基础,对于理解光的性质和现象具有重要意义。
3. 在实验过程中,我们需要注意调整光路,确保干涉条纹清晰可见。
九、实验反思1. 在实验过程中,我们遇到了一些问题,如干涉条纹不清晰、光电传感器输出信号不稳定等。
近代物理创新实验报告(3篇)
第1篇一、实验背景随着科技的不断发展,物理学领域的研究也在不断深入。
近代物理实验作为物理学研究的重要手段,对于培养科学精神和创新意识具有重要意义。
为了进一步提高实验教学质量,激发学生的学习兴趣,我们设计了一项近代物理创新实验,旨在探究光子与电子的相互作用,为光电子学领域的研究提供新的思路。
二、实验目的1. 了解光子与电子相互作用的原理和实验方法;2. 通过实验验证康普顿效应,探究光子与电子的散射过程;3. 分析实验数据,总结实验规律,为光电子学领域的研究提供参考。
三、实验原理康普顿效应是指当高能光子(如X射线)与物质中的自由电子发生碰撞时,光子会被散射,同时其波长发生变化的现象。
康普顿效应揭示了光子与电子的相互作用规律,为量子力学的发展奠定了基础。
实验原理如下:1. 当入射光子与电子发生碰撞时,光子将部分能量传递给电子,使其获得动能;2. 由于能量守恒和动量守恒,光子波长发生变化,即发生散射;3. 通过测量散射光子的波长,可以验证康普顿效应,并探究光子与电子的相互作用。
四、实验仪器与材料1. 激光器:用于产生高能光子;2. 电子靶:由自由电子组成的靶材料;3. 检测器:用于测量散射光子的波长;4. 光谱仪:用于分析散射光子的波长;5. 计算机软件:用于数据处理和分析。
五、实验步骤1. 将激光器、电子靶和检测器依次连接,搭建实验装置;2. 设置激光器的参数,调整电子靶与检测器之间的距离;3. 启动激光器,使光子与电子靶中的自由电子发生碰撞;4. 检测器接收散射光子,通过光谱仪分析散射光子的波长;5. 记录散射光子的波长数据,并进行数据处理和分析。
六、实验结果与分析1. 实验结果显示,散射光子的波长与入射光子的波长之间存在差异,符合康普顿效应的规律;2. 通过对实验数据进行拟合,可以得到散射光子波长的变化量与入射光子能量的关系;3. 分析实验结果,可以得出以下结论:(1)光子与电子的相互作用符合康普顿效应的规律;(2)散射光子的波长变化量与入射光子能量之间存在线性关系;(3)实验结果与理论预期相符,验证了康普顿效应的正确性。
中南大学近代物理实验报告-原子力显微镜实验报告
近代物理实验实验报告实验名称:原子力显微镜所在学院:物理与电子学院专业班级:物理升华班1301学生姓名:黄佳清学生学号:0801130117指导教师:黄迪辉一、目的要求(1) 了解原子力显微镜的工作原理。
(2) 初步掌握用原子力显微镜进行表面观测的方法。
二、实验原理1.基本原理AFM是利用一个对力敏感的探针针尖与样品之间的相互作用力来实现表面成像的,工作原理如图1所示。
将一个对微弱力极敏感的弹性微悬臂一端固定,另一端有一微小的针尖,针尖与样品的表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的作用力(10-8~10-6 N),微悬臂会发生微小的弹性形变。
针尖和样品之间的力F与微悬臂的形变△z 之间遵循胡克定律(Hooke Law)F = k·△z其中,k为微悬臂的力常数。
测定微悬臂形变量的大小,就可以获得针尖与样品之间作用力的大小。
针尖与样品之间的作用力与距离有着强烈的依赖关系,所以在扫描过程中利用反馈回路保持针尖和样品之间的作用力恒定,即保持微悬臂的形变量不变,针尖就会随表面的起伏上下移动。
记录针尖上下运动的轨迹即可得到样品表面形貌的信息。
这种检测方式被称为“恒力”模式(Constant Force Mode),是AFM使用最广泛的扫描方式。
AFM的图像也可以使用“恒高”模式(Constant Height Mode)来获得,也就是在x、y扫描过程中,不使用反馈回路,保持针尖与参考水平面之间的距离恒定,检测器直接测量微悬臂z 方向的形变量来成像。
这种方式由于不使用反馈回路,可以采用更高的扫描速度,通常在观察原子、分子像时用得比较多,而对于表面起伏较大的样品不适合。
图1 AFM原理示意图2. AFM的工作模式当AFM的针尖与样品表面原子相互作用时,通常有几种力同时作用于微悬臂,其中最主要的是范德瓦尔斯力(Van der Waals forces)。
针尖与样品表面原于间的范德瓦尔斯力与距离关系曲线如图2所示。
近代物理实验报告
近代物理实验报告近代物理实验报告一、引言近代物理实验是物理学研究的重要手段之一,通过实验可以验证理论,揭示自然界的规律。
本次实验旨在探究几个与近代物理相关的实验,包括光电效应、康普顿散射和量子力学的基础实验。
二、光电效应实验光电效应是指当光照射到金属表面时,金属会发射出电子的现象。
为了验证光电效应的基本规律,我们设计了以下实验步骤:1. 准备材料:光电效应实验装置、金属样品、光源、电流计等。
2. 实验步骤:a. 将金属样品安装在实验装置上,并连接好电路。
b. 调节光源的强度和波长,使其分别达到不同的数值。
c. 测量不同波长下金属样品发射的电流强度。
3. 实验结果与分析:根据实验结果,我们发现金属样品发射的电流强度与光源波长呈反比关系。
这符合光电效应的基本规律,即光的能量与波长成反比。
三、康普顿散射实验康普顿散射是指入射光子与物质中自由电子发生碰撞后,光子的能量和方向发生改变的现象。
为了验证康普顿散射的基本规律,我们进行了以下实验:1. 准备材料:康普顿散射实验装置、散射体、探测器等。
2. 实验步骤:a. 将散射体和探测器安装在实验装置上,并连接好电路。
b. 调节入射光子的能量和散射体的角度,记录下散射后的光子能量和方向。
c. 重复实验多次,得到一系列数据。
3. 实验结果与分析:根据实验结果,我们发现入射光子的能量和散射后的光子能量呈正比关系,而散射角度与散射后的光子方向呈正相关关系。
这符合康普顿散射的基本规律,即光子与自由电子碰撞后,能量和动量守恒。
四、量子力学基础实验量子力学是描述微观粒子行为的理论,为了验证量子力学的基本原理,我们进行了以下实验:1. 准备材料:双缝干涉实验装置、光源、屏幕等。
2. 实验步骤:a. 将双缝干涉实验装置搭建起来,并调节好光源的强度和波长。
b. 观察在屏幕上形成的干涉条纹,并记录下实验数据。
c. 改变光源的强度和波长,再次观察并记录数据。
3. 实验结果与分析:根据实验结果,我们发现在屏幕上形成的干涉条纹符合波粒二象性的原理。
近代物理实验教程的实验报告
近代物理实验教程的实验报告实验报告:近代物理实验教程实验名称:测量光速实验目的:通过实验测量光的速度,并了解光的本质和光速度的重要性。
实验器材:- 激光器- 两个距离固定的反射镜- 一个光电探测器- 一个计时器实验步骤:1. 将激光器放置在适当的位置,并使其光束直射向一个固定的反射镜。
2. 另一块反射镜放在距离第一个反射镜一定距离的位置上,使激光束反射到光电探测器上。
3. 打开激光器,使其发出光束。
4. 使用计时器,记录激光束从激光器到第一个反射镜的时间间隔。
5. 同时,使用光电探测器测量光从第一个反射镜反射到第二个反射镜再反射到光电探测器的时间间隔。
6. 计算光从第一个反射镜到第二个反射镜的距离,并根据测得的时间间隔计算光的速度。
实验结果:根据实验数据,我们得到光从第一个反射镜到第二个反射镜的时间间隔为t,光从激光器到第一个反射镜的时间间隔为t',则光从第一个反射镜到第二个反射镜的距离为d=t*v,其中v为光的速度。
根据测量得到的数据,我们可以计算出光的速度v=d/t。
讨论与结论:通过实验测量,我们得到了光的速度,并发现光速度非常接近299,792,458m/s,这个值是一个常数,通常用c表示。
这个实验结果进一步验证了光速度是一个常数,并说明光在真空中传播时的速度是恒定的,不受其他因素的影响。
光速度的稳定性和恒定性是现代物理的一项重要发现,不仅证明了光的波粒二象性,也为相对论的发展提供了基础。
实验中可能存在的误差:1. 仪器精度问题:实验中所使用的仪器可能存在一定的误差,如计时器的精度、光电探测器的灵敏度等。
2. 实验操作问题:实验过程中的不准确操作也可能引入误差,如指向不准确、记录时间时的误差等。
3. 实验环境问题:实验环境的温度、湿度等因素可能对实验数据产生一定的影响。
改进方案:为了提高实验的准确性和精度,可以考虑以下方面的改进:1. 使用更精密的实验仪器,如高精度计时器和高灵敏度的光电探测器,以减小仪器误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近代物理演示实验报告近代物理实验报告实验名称:电子自旋共振姓名:同组者:指导老师:得分:院系:班级:日期:评语:二、实验原理实验数据记录表四、测试结果的计算1、磁场计算公式B0=Ko*((uo*No*(R^2)*Io)/(((R^2)+(X^2))^0.5))式中:uo--真空中磁导率,uo=4*PI*10E(-7) (亨/米) R--亥姆霍兹线圈半径(米) No--稳恒磁场线圈匝数 Ns--扫场线圈匝数Io--通过稳恒场线圈的电流(A) Is--通过扫场线圈的电流峰峰值X--两线圈间距离的一半。
对于亥姆霍兹线圈,X=R/2 Ko--磁场线圈系数2、g因子计算公式根据共振时的Io 算出磁场后,将所测得的频率及其它常量代入共振表达式hv=gJ*uB*B式中:uB--玻耳磁子,uB=0.9273*10E(-23) (J/T) h--普朗克常数,h=6.626*10E(-34) (J/S)结果计算记录表地磁场的计算方法为:地磁场=(B+ - B-)/ 23、误差计算中国石油大学近代物理实验实验报告成班级:材物二班姓名:焦方宇同组者:杜圣教师:周丽霞光泵磁共振【实验目的】1.观察铷原子光抽运信号,加深对原子超精细结构的理解2.观察铷原子的磁共振信号,测定铷原子超精细结构塞曼子能级的朗德因子。
3.学会利用光磁共振的方法测量地磁场【实验原理】1.Rb原子基态及最低激发态的能级在第一激发能级5P与基态5S 之间产生的跃迁是铷原子主线系的第一条谱线,谱线为双线。
52P1/2到52S1/2的跃迁产生的谱线为D1 线,波长是794nm;52P1/2 到52S1/2的跃迁产生的谱线为D2 线,波长是780nm。
在核自旋 I = 0 时,原子的价电子L-S 耦合后总角动量PJ与原子总磁矩μJ的关系μJ=-gJe2 (1)gJ?1?J(J?1)?L(L?1)?S(S?1)2J(J?1) (2)I≠0时,对87Rb, I = 3/2;对85Rb, I = 5/2。
总角动量F= I+J,?,| I-J |。
87Rb基态F 有两个值:F = 2 及F = 1;85Rb基态有F = 3 及F = 2。
由F 量子数表征的能级称为超精细结构能级。
原子总角动量与总磁矩之间的关系为:μF=-gFe2mPF (3)gF?gJF(F?1)?J(J?1)?I(I?1)2F(F?1) (4)在磁场中原子的超精细结构能级产生塞曼分裂,磁量子数mF=F, F-1, ? ,-F,裂成2F+1 个能量间隔基本相等的塞曼子能级。
在弱磁场条件下,通过解Rb原子定态薛定锷方程可得能量本征值为E?E0??h2[F(F?1)?J(J?1)?I(I?1)]?gFmF?BB (5)由(5)式可得基态52S1/2的两个超精细能级之间的能量差为?EF?ah''[F(F?1)?F(F?1)] (6) 2相邻塞曼子能级之间(ΔmF=±1)的能量差为?EmF?gF?BB0(7)2. 圆偏振光对Rb原子的激发与光抽运效应电子在原子能级间发生跃迁时,需要满足总能量和总角动量守恒。
一定频率的光可引起能量差为原子能级之间的跃迁(能量守恒)。
而当入射光是左旋圆偏振光(角动量为)时,量子力学给出的跃迁定则为 ?L??1,?F?0,?1,?mF??1(角动量守恒)。
87?当入射光是D1的?光时,Rb的52S1/2态及52P1/2态的磁量子数mF最大值都是+2,由于只能产生ΔmF =+1 的跃迁,基态mF=+2 子能级的粒子不能跃迁,当原子经历无辐射跃迁过程从52P1/2回到52S1/2时,粒子返回到基态各子能级的概率相等,这样经过若干循环之后,基态mF =+2 的子能级上的粒子数就会大大增加,即大量粒子被“抽运”到基态mF =+2 的子能级上,这就是光抽运效应。
3. 弛豫过程在热平衡状态下,基态各子能级上的粒子数遵从玻尔兹曼分布N?N0exp(?E)(8) kT由于各子能级能量差极小,可近似认为各能级上的粒子数相等。
光抽运使能级之间的粒子数之差大大增加,使系统远远偏离热平衡分布状态。
系统由偏离热平衡分布状态趋向热平衡分布状态的过程称为弛豫过程。
本实验涉及的几个主要弛豫过程有以下几种:1、铷原子与容器器壁的碰撞:导致子能级之间的跃迁,使原子恢复到热平衡分布。
2、铷原子之间的碰撞:导致自旋-自旋交换弛豫,失去偏极化。
3、铷原子与缓冲气体的碰撞:缓冲气体的分子磁矩很小,对原子的偏极化基本没影响。
4. 塞曼子能级间的磁共振???垂直于B0的方向所加一圆频率为?1的射频场B1?B1(excos(?1t)?eysin(?1t)),当h?1??EmF?gF?FB0(9)时,塞曼子能级之间将发生磁共振。
抽运到2??基态mF??2子能级上的大量粒子,由于射频场B1的作用产生感应跃迁,即由mF??2跃满足共振条件迁到mF??1。
同时由于光抽运的存在,处于mF??2子能级上的粒子又将被抽运到mF??2子能级上,感应跃迁与光抽运将达到一个新的平衡。
在发生磁共振时,由于mF??2子能级上的粒子数比未共振时多,因此对D1??光的吸收增大。
5. 光探测射到样品泡上D1线的光??一方面起到光抽运作用,另一方面透过样品的光又可以兼作探测光。
测量透过样品的D1? 光强的变化即可得到磁共振的信号,实现了磁共振的光探测,巧妙地将一个低频射频光子(1―10MHz)转换为一个光频光子(108 MHz),使信号功率提高了7-8 个数量级。
【实验仪器】本实验系统由主体单元、主电源、辅助源、射频信号发生器及示波器五部分组成,见图1.?图1 光磁共振实验装置方框图图2 主体单元示意图主体如图2所示。
光源采用高频无极放电Rb灯,其优点是稳定性好,噪音小,光强大。
由于D2线的存在不利于D2线的光抽运,故用透过率大于60%,带宽小于15nm的干涉滤光片就能很好地滤去D2线。
用高碘硫酸奎宁偏振片和40微米左右的云母1/4波片可产生左旋偏振光б+,透镜L1可将光源发出的光变为平行光,透镜L2将透过样品泡的平行光汇聚到光电 __上。
【实验内容】1.观测光抽运信号:1)将“垂直场”、“水平场”、“扫场幅度”旋钮调至最小,射频信号发生器“幅度调节”调至最小,接通主电源开关和池温开关,约30分钟后,灯温、池温指示灯点亮。
2) 调节“水平场”旋钮,调节水平磁场线圈电流的大小在0.20A 以下,将指南针置于吸收池上边,判断水平磁场和地磁场的方向关系,改变水平场的方向,使水平场方向与地磁场水平方向相反,然后将指南针拿开,并且将水平磁场线圈电流调至最小。
3)扫场方式选择“方波”,调大扫场幅度。
再将指南针置于吸收池上边,改变扫场的方向,设置扫场方向与地磁场水平分量方向相反,然后将指南针拿开。
4)预置垂直场电流为0.07A,用来抵消地磁场垂直分量,然后调节扫场幅度,使光抽运信号幅度等高。
2.观测光磁共振信号1)扫场方式选择“三角波”,幅度保持1状态,设置水平磁场方向、扫场方向和地磁场水平分量相同,调节射频信号发生器“幅度调节”旋钮,使射频信号峰峰值在4.5V。
在水平场电流分别为0.24A,0.20A和0.18A时,,读出对应的频率ν1。
2)按动水平场方向开关,使水平场方向与地磁场水平分量和扫场方向相反。
仍用上述方法,可得到ν2,则利用公式(7-3-10)可求出gF因子。
3.测量地磁1)同测gF因子方法类似,先使扫场和水平场与地磁场水平分量方向相同,测得ν1; 2)再按动扫场及水平场方向开关,使扫场、水平场方向与地磁场水平分量方向相反,又得到ν3。
这样由(7-3-14)式可得地磁场水平分量Be//,并根据Be=(B2e//+B2e?)可得到地磁场的大小。
3)垂直磁场由下式计算B??1/232?NI?10?7 (T)(7-3-15)3/25r式中N和r是两个垂直磁场线圈每边的线圈匝数和线圈有效半径。
因为两个垂直场线圈是串联的,数字表显示的I值是流过单个线圈的电流。
表7-3-1 厂家给出的线圈参数一、测量gF因子表1 测量gF数据表用式(7-3-11)BDC?h(?1??2)16?NI?7?10可算出B 可DC ,用式(7-3-10)gF?3/25r2?BBDC算出gF,其中N和r可从表7-3-1中读出。
利用式(7-3-12)可得:gf(Rb)/gf(Rb)=0.5044/0.3371=1.4997因此实验数据和结果与理论基本相符。
二、测量地磁场表2 测量地磁场数据表8785利用式(7-3-15)可得垂直方向上的地磁场的平均强度为:B??地磁场的强度大小为:32?NI5r?10?7?5.87?10?4(T)5.8736六、思考题1、光抽运的物理过程如何?造成什么后果?光抽运的物理过程为:气态原子受D1??左旋圆偏振光照射时,遵守光跃迁选择定则?F?0, ±1,?MF??1,进行跃迁π,只能产生在由5S1/2能级到5P1/2能级的激发跃迁中,由于D1?光子的角动量为?h/222??MF??1的跃迁。
基态MF??2子能级上原子若吸收光子就将跃迁到MF??3的状态,但5P1/2各自能级最高为MF??2。
因此基态中MF??2子能级上的粒子就不能跃迁。
2第三次近代物理实验PN结正向压降与温度关系研究全息光学迈克尔逊干涉仪PN结正向压降与温度关系研究一、实验目的1.了解PN结正向压降与正向电流的基本关系,测定PN结IF?VF 特性曲线及玻尔兹曼常数。
2.测绘PN结正向压降随温度变化的关系曲线,确定其灵敏度及PN结材料的禁带宽度。
3.学会用PN结测量温度的一般方法。
二、实验原理1.半导体物理学中有PN结正向电流IF与正向电压VF满足如下关系:IF?IS(expeVF?1) kTE为电子电荷,k为玻尔兹曼常数,T为热力学温度。
IS为反向饱和电流,是一个与PN结材料禁带宽度和温度有关的系数,不睡电压变化而变化。
在常温下exp是有: IF?ISexpeVF??1,于kTkT这就是IF?VF关系,如果测得IF?VF关系曲线,则可以求出e/kT,测得温度T后就可以求出玻尔兹曼常数k。
2.PN结禁带宽度的测量物理学中有如下结论,PN结材料禁带宽度是绝对零度时PN结材料的导带底和价带顶间的电势差Vg(0),二极管反向饱和电流IS有如下关系:?eVg(0)? IS?CTexp???kT??rr是常数,C是与PN结面积、掺杂浓度有关的常数,取对数后可得:VF?Vg(0)?(lnkCkT)T?lnTr?VI?VnI IFeC)T VnI??kTlnTr IFe其中VI?Vg?(lnke式中有非线性项VnI,可以证明当温度变化范围不大(-50℃~150℃)时,VnI引起的误差可以忽略不计。
因此在恒流供电条件下,PN结的正向压降主要依赖于线性项VI。