高中数学典型例题详解和练习- 求函数的导数
高数求导例题
![高数求导例题](https://img.taocdn.com/s3/m/95ffa01dbf23482fb4daa58da0116c175f0e1e3f.png)
高数求导是数学中的一个重要概念,它可以帮助我们更好地理解函数的变化规律。
下面我将通过一个例题来介绍高数求导的方法和技巧。
【例题】求函数y=x^3-3x^2+2的导数。
解法一:对函数进行逐步代入求导
首先,我们可以将函数y=x^3-3x^2+2进行逐步代入求导,具体步骤如下:
1. 求出y'=x^2-6x
2. 将y'=x^2-6x代入原函数中,得到y=x^3-6x^2+2
3. 对y=x^3-6x^2+2进行求导,得到y'=3x^2-12x=3(x^2-4x)=3(x-2)(x+2)
解法二:使用公式求导
除了逐步代入求导,我们还可以使用公式来求导。
具体步骤如下:
1. 定义函数f(x)=x^3-3x^2,则f'(x)=3x^2-6x
2. 将函数y=f(x)+2代入公式y'=f(x)+C,其中C为常数,得到y'=(3x^2-6x)+2
3. 化简得到y'=3(x-2)(x+2)
两种解法得到的结果相同,说明这两种方法都是正确的。
在实际应用中,可以根据具体情况选择合适的方法。
除了上述例题,高数求导还有很多其他的例题和技巧。
例如,可以利用函数的单调性、极值点、凹凸性等性质来求导;还可以利用导数求解一些实际问题的最优解、极值等问题。
这些技巧和方法需要我们在学习过程中不断积累和掌握。
总之,高数求导是数学中的一个重要概念,需要我们熟练掌握和理解。
通过不断练习和总结,我们可以更好地掌握这一重要技能,为今后的学习和工作打下坚实的基础。
求导练习题带答案
![求导练习题带答案](https://img.taocdn.com/s3/m/84fb0cd88662caaedd3383c4bb4cf7ec4afeb683.png)
求导练习题带答案求导是微积分中的一项基本技能,它可以帮助我们理解函数的变化率以及找到函数的极值点。
以下是一些求导的练习题及其答案,适合初学者练习。
练习题1:求函数 f(x) = x^3 的导数。
解:根据幂函数的求导法则,对于函数 f(x) = x^n,其导数为 f'(x) = n * x^(n-1)。
因此,对于 f(x) = x^3,我们有 f'(x) = 3 *x^(3-1) = 3x^2。
练习题2:求函数 g(x) = sin(x) 的导数。
解:根据三角函数的求导法则,sin(x) 的导数是 cos(x)。
所以,g'(x) = cos(x)。
练习题3:求函数 h(x) = 2x^2 + 3x - 1 的导数。
解:根据多项式的求导法则,我们可以分别对每一项求导,然后将结果相加。
对于 h(x) = 2x^2 + 3x - 1,我们有 h'(x) = 2 * 2x^(2-1) + 3 * 1x^(1-1) - 0 = 4x + 3。
练习题4:求函数 k(x) = (x^2 - 1)^3 的导数。
解:这里我们使用链式法则和幂函数的求导法则。
首先,设 u = x^2- 1,那么 k(x) = u^3。
u 的导数是 u' = 2x,而 u^3 的导数是3u^2。
应用链式法则,我们得到 k'(x) = 3u^2 * u' = 3(x^2 - 1)^2 * 2x = 6x(x^2 - 1)。
练习题5:求函数 m(x) = e^x 的导数。
解:根据指数函数的求导法则,e^x 的导数是它自身。
所以,m'(x) = e^x。
练习题6:求函数 n(x) = ln(x) 的导数。
解:自然对数函数 ln(x) 的导数是 1/x。
因此,n'(x) = 1/x。
练习题7:求函数 p(x) = (3x - 2)^5 的导数。
解:使用链式法则和幂函数的求导法则。
高中数学《基本初等函数的导数》知识点讲解及重点练习
![高中数学《基本初等函数的导数》知识点讲解及重点练习](https://img.taocdn.com/s3/m/d9ce0fcb80c758f5f61fb7360b4c2e3f5727256d.png)
§5.2 导数的运算 5.2.1 基本初等函数的导数学习目标 1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x ,y =x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.知识点一 几个常用函数的导数原函数 导函数 f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=x 3 f ′(x )=3x 2 f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x知识点二 基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x1.若y =2,则y ′=12×2=1.( × )2.若f (x )=1x 3,则f ′(x )=-3x 4.( √ )3.若f (x )=5x ,则f ′(x )=5x log 5e.( × ) 4.若y =sin 60°,则y ′=cos 60°.( × )一、利用导数公式求函数的导数 例1 求下列函数的导数: (1)y =x 0; (2)y =⎝⎛⎭⎫13x; (3)y =lg x ; (4)y =x 2x ;(5)y =2cos 2x2-1.解 (1)y ′=0.(2)y ′=⎝⎛⎭⎫13x ln 13=-⎝⎛⎭⎫13x ln 3. (3)y ′=1x ln 10.(4)∵y =x 2x=32,x∴31223322y'x 'x x ⎛⎫===. ⎪⎝⎭(5)∵y =2cos 2x2-1=cos x ,∴y ′=(cos x )′=-sin x .反思感悟 (1)若所求函数符合导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合基本初等函数的导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.如y =1x 4可以写成y =x -4,y =5x 3可以写成y =35x 等,这样就可以直接使用幂函数的求导公式求导,避免在求导过程中出现指数或系数的运算失误.(3)要特别注意“1x 与ln x ”,“a x 与log a x ”,“sin x 与cos x ”的导数区别.跟踪训练1 求下列函数的导数: (1)y =2 020; (2)y =13x 2;(3)y =4x ; (4)y =log 3x .解 (1)因为y =2 020, 所以y ′=(2 020)′=0. (2)因为y =13x 2=23x -,所以y ′=251332233.x x ---=-- (3)因为y =4x , 所以y ′=4x ln 4. (4)因为y =log 3x , 所以y ′=1x ln 3. 二、利用导数研究曲线的切线方程例2 已知曲线y =ln x ,点P (e,1)是曲线上一点,求曲线在点P 处的切线方程. 解 ∵y ′=1x ,∴k =y ′|x =e =1e,∴切线方程为y -1=1e (x -e),即x -e y =0. 延伸探究求曲线y =ln x 的过点O (0,0)的切线方程.解 ∵O (0,0)不在曲线y =ln x 上. ∴设切点Q (x 0,y 0), 则切线的斜率k =1x 0.又切线的斜率k =y 0-0x 0-0=ln x 0x 0,∴ln x 0x 0=1x 0,即x 0=e , ∴Q (e,1), ∴k =1e,∴切线方程为y -1=1e(x -e),即x -e y =0.反思感悟 (1)利用导数的几何意义解决切线问题的两种情况 ①若已知点是切点,则在该点处的切线斜率就是该点处的导数;②若已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. (2)求过点P 与曲线相切的直线方程的三个步骤跟踪训练2 (1)函数y =x 3在点(2,8)处的切线方程为( ) A .y =12x -16 B .y =12x +16 C .y =-12x -16 D .y =-12x +16答案 A解析 因为y ′=3x 2, 当x =2时,y ′=12, 故切线的斜率为12, 切线方程为y =12x -16.(2)已知曲线y =ln x 的一条切线方程为x -y +c =0,求c 的值. 解 设切点为(x 0,ln x 0),由y =ln x 得y ′=1x.因为曲线y =ln x 在x =x 0处的切线方程为x -y +c =0,其斜率为1. 所以0=|x x y'=1x 0=1,即x 0=1, 所以切点为(1,0). 所以1-0+c =0, 所以c =-1.利用导数公式求切点坐标问题典例 已知直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点,O 是坐标原点,试求与直线l 平行的抛物线的切线方程,并在弧AOB 上求一点P ,使△ABP 的面积最大. 解 由于直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点, ∴|AB |为定值,要使△ABP 的面积最大,只要点P 到AB 的距离最大,设P (x 0,y 0)为切点,过点P 与AB 平行的切线斜率为k =y ′=2x 0,∴k =2x 0=2,∴x 0=1,y 0 =1.故可得P (1,1),∴与直线l 平行的抛物线的切线方程为2x -y -1=0. 故P (1,1)点即为所求弧AOB 上的点,使△ABP 的面积最大.[素养提升] (1)利用基本初等函数的求导公式,可求其图象在某一点P (x 0,y 0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关.解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算. (2)结合图象,利用公式计算求解,体现了直观想象与数学运算的数学核心素养.1.给出下列命题: ①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2; ④y =log 2x ,则y ′=1x ln 2.其中正确命题的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 对于①,y ′=0,故①错;对于②,∵y ′=-2x 3,∴y ′|x =3=-227,故②正确;显然③,④正确.2.已知f (x )=x ,则f ′(8)等于( ) A .0 B .2 2 C.28D .-1 答案 C解析 f (x )=x ,得f ′(x )=1212x -,∴f ′(8)121=828⨯=-3.(多选)下列结论正确的是( ) A .若y =3,则y ′=0 B .若y =1x,则y ′=-12xC .若y =x ,则y ′=12xD .若y =x ,则y ′=1 答案 ACD解析 只有B 是错误的.因为y ′132212'x 'x --⎛⎫===-= ⎪⎝⎭4.已知f (x )=ln x 且f ′(x 0)=1x 20,则x 0= .答案 1解析 因为f (x )=ln x (x >0),所以f ′(x )=1x ,所以f ′(x 0)=1x 0=1x 20,所以x 0=1.5.曲线y =9x 在点M (3,3)处的切线方程是 .答案 x +y -6=0 解析 ∵y ′=-9x 2,∴y ′|x =3=-1,∴过点(3,3)的斜率为-1的切线方程为y -3=-(x -3), 即x +y -6=0.1.知识清单: (1)常用函数的导数. (2)基本初等函数的导数公式. (3)切线方程.2.方法归纳:方程思想、待定系数法. 3.常见误区:不化简成基本初等函数.1.下列求导运算正确的是( ) A .(cos x )′=-sin x B .(x 3)′=x 3ln x C .(e x )′=x e x -1 D .(ln x )′=1x ln 10答案 A2.下列各式中正确的个数是( )①(x 7)′=7x 6;②(x -1)′=x -2;③(5x 2)′352;5x -= ④(cos 2)′=-sin 2. A .2 B .3 C .4 D .5答案 A解析 ∵②(x -1)′=-x -2; ④(cos 2)′=0. ∴②④错误,故选A.3.已知函数f (x )=x α(α∈Q ,且α≠0),若f ′(-1)=-4,则α的值等于( ) A .4 B .-4 C .5 D .-5 答案 A解析 ∵f ′(x )=αx α-1,f ′(-1)=α(-1)α-1=-4, ∴a =4.4.若函数f (x )=cos x ,则f ′⎝⎛⎭⎫π4+f ⎝⎛⎭⎫π4的值为( ) A .0 B .-1 C .1 D .2 答案 A解析 f ′(x )=-sin x ,所以f ′⎝⎛⎭⎫π4+f ⎝⎛⎭⎫π4=-sin π4+cos π4=0. 5.(多选)已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-1,1) B .(-1,-1) C .(1,1) D .(1,-1)答案 BC解析 y ′=3x 2,因为k =3,所以3x 2=3,所以x =±1,则P 点坐标为(-1,-1)或(1,1). 6.已知[cf (x )]′=cf ′(x ),其中c 为常数.若f (x )=ln 5log 5x ,则曲线f (x )在点A (1,0)处的切线方程为 . 答案 x -y -1=0解析 由已知得f ′(x )=ln 51x ln 5=1x, 所以f ′(1)=1,在A 点处的切线方程为x -y -1=0.7.若曲线y =x 在点P (a ,a )处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是 . 答案 4解析 因为y ′=12x,所以切线方程为y -a =12a (x -a ),令x =0,得y =a2,令y =0,得x =-a , 由题意知12·a2·a =2,所以a =4.8.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为 . 答案 (1,1) 解析 设f (x )=e x , 则f ′(x )=e x ,所以f ′(0)=1.设g (x )=1x (x >0),则g ′(x )=-1x2.由题意可得g ′(x P )=-1,解得x P =1. 所以P (1,1).9.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.解 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x , 所以0e x=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1). 利用点到直线的距离公式得最小距离为22. 10.已知抛物线y =x 2,求过点⎝⎛⎭⎫-12,-2且与抛物线相切的直线方程. 解 设直线的斜率为k ,直线与抛物线相切的切点坐标为(x 0,y 0),则直线方程为y +2=k ⎝⎛⎭⎫x +12, 因为y ′=2x ,所以k =2x 0,又点(x 0,x 20)在切线上,所以x 20+2=2x 0⎝⎛⎭⎫x 0+12, 所以x 0=1或x 0=-2,则k =2或k =-4, 所以直线方程为y +2=2⎝⎛⎭⎫x +12或 y +2=-4⎝⎛⎭⎫x +12, 即2x -y -1=0或4x +y +4=0.11.已知函数f (x )=x 3在某点处的切线的斜率等于1,则这样的切线有( ) A .1条 B .2条 C .多于2条 D .不能确定答案 B解析 y ′=f ′(x )=3x 2,设切点为(x 0,x 30), 由3x 20=1,得x 0=±33, 即在点⎝⎛⎭⎫33,39和点⎝⎛⎭⎫-33,-39处均有斜率为1的切线,故有2条. 12.若曲线y =x α+1(α∈Q 且α≠0)在点(1,2)处的切线经过原点,则α= . 答案 2解析 y ′=αx α-1,所以y ′|x =1=α,所以切线方程为y -2=α(x -1),即y =αx -α+2,该直线过点(0,0),所以α=2.13.已知f (x )=cos x ,g (x )=x ,则关于x 的不等式f ′(x )+g ′(x )≤0的解集为 .答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x =π2+2k π,k ∈Z 解析 ∵f ′(x )=-sin x ,g ′(x )=1, ∴由f ′(x )+g ′(x )≤0,得-sin x +1≤0,即sin x ≥1,则sin x =1,解得x =π2+2k π,k ∈Z , ∴其解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =π2+2k π,k ∈Z . 14.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 020(x )= . 答案 sin x解析 由已知得,f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,…,依次类推可得,函数呈周期变化,且周期为4,则f 2 020(x )=f 4(x )=sin x .15.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是 .答案 21解析 ∵y ′=2x ,∴y =x 2(x >0)的图象在点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点坐标为(a k +1,0),∴a k +1=12a k ,即数列{a k }是首项为a 1=16,公比为q =12的等比数列, ∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.16.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,求a 1+a 2+…+a 99的值.解 导函数y ′=(n +1)x n ,切线斜率k =y ′|x =1=n +1,所以切线方程为y =(n +1)x -n ,可求得切线与x 轴的交点为⎝ ⎛⎭⎪⎫n n +1,0,则a n =lg n n +1=lg n -lg(n +1),所以a 1+a 2+…+a 99=(lg 1-lg 2)+(lg 2-lg 3)+…+(lg 99-lg 100)=lg 1-lg 100=-2.。
导数的应用举例
![导数的应用举例](https://img.taocdn.com/s3/m/1046fa641eb91a37f1115c08.png)
求下列函数的导数: (1)y=(2x2+3)(3x-2); (2)y=x2sinx+2cosx; (3)y=( x+1)( 1 -1). x
解: (1)y=(2x2+3)(3x-2)+(2x2+3)(3x-2) =4x(3x-2)+(2x2+3)3 =18x2-8x+9. 法2 y=(6x3-4x2+9x-6) =18x2-8x+9. (2)y=(x2sinx)+(2cosx) =(x2)sinx+x2(sinx)+2(cosx) =2xsinx+x2cosx-2sinx.
典型例题 5
典型例题 6
1-ax 已知 a>0, 函数 f(x)= x , x(0, +∞), 设 0<x1< 2 . 记曲线 a y=f(x) 在点 M(x1, f(x1)) 处的切线为 l. (1)求 l 的方程; (2)设 l 与 x 1 1 1 轴的交点为 (x2, 0), 证明: ① 0<x2≤ a ; ②若 x1< a , 则 x1<x2< a . 1 1 (1)解: f(x)=( x -a)=(x-1) =-x-2=- x2 . 1 (x-x )+ 1-ax1 . ∴切线 l 的方程为 y=- x 2 1 x
∵f(0)=2a, ∴b=2a. ∴f(x)=x3-(a+1)x2+(a-2)x+2a =x2(x-a)-x(x-a)-2(x-a) =(x-a)(x2-x-2)
=(x+1)(x-2)(x-a)
令 (x+1)(x-2)(x-a)<0, 由于 a≥2, 则 当 a=2 时, 不等式 f(x)<0 的解集为(-∞, -1); 当 a>2 时, 不等式 f(x)<0 的解集为(-∞, -1)∪(2, a).
高中数学典型例题解析导数及其应用
![高中数学典型例题解析导数及其应用](https://img.taocdn.com/s3/m/43593cd6172ded630b1cb6d9.png)
高中数学典型例题分析第十章 导数及其应用§10.1导数及其运算一、知识导学1.瞬时变化率:设函数)(x f y =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应地改变)()(0x f x x f y -∆+=∆,如果当x ∆趋近于0时,平均变化率xx f x x f x y ∆-∆+=∆∆)()(00趋近于一个常数c (也就是说平均变化率与某个常数c 的差的绝对值越来越小,可以小于任意小的正数),那么常数c 称为函数)(x f 在点0x 的瞬时变化率。
2.导数:当x ∆趋近于零时,xx f x x f ∆-∆+)()(00趋近于常数c 。
可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c xx f x x f x =∆-∆+→∆)()(lim 000,符号“→”读作“趋近于”。
函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '。
3.导函数:如果)(x f 在开区间),(b a 内每一点x 都是可导的,则称)(x f 在区间),(b a 可导。
这样,对开区间),(b a 内每个值x ,都对应一个确定的导数)(x f '。
于是,在区间),(b a 内,)(x f '构成一个新的函数,我们把这个函数称为函数)(x f y =的导函数。
记为)(x f '或y '(或x y ')。
4.导数的四则运算法则:1)函数和(或差)的求导法则:设)(x f ,)(x g 是可导的,则)()())()((x g x f x g x f '±'='±即,两个函数的和(或差)的导数,等于这两个函数的导数的和(或差)。
2)函数积的求导法则:设)(x f ,)(x g 是可导的,则)()()()(])()([x g x f x g x f x g x f '+'='即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘第二个函数的导数。
导数典型例题(含答案)
![导数典型例题(含答案)](https://img.taocdn.com/s3/m/c3f0312e2af90242a995e507.png)
导数典型例题导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点.一、与导数概念有关的问题【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=xf x f x ∆-∆+→∆)0()0(lim=xx x x x ∆--∆-∆-∆∆→∆0)100()2)(1(lim=lim 0→∆x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D.解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D.点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解.【例2】 已知函数f (x )=nn n k k n n n n x c nx c k x c x c c 1121221++++++ ,n ∈N *,则 x x f x f x ∆∆--∆+→∆)2()22(lim= .解 ∵xx f x f x ∆∆--∆+→∆)2()22(lim=2xf x f x ∆-∆+→∆2)2()22(lim+[]xf x f x ∆--∆-+→∆-)2()(2lim=2f '(2)+ f '(2)=3 f '(2),又∵f '(x )=1121--+++++n n n k k n n n x c x c x c c ,∴f '(2)=21(2nn n k n k n n c c c c 222221+++++ )=21[(1+2)n -1]= 21(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如xm x f x m x f x ∆--∆-→∆-)()(000lim,且其定义形式可以是xm x f x m x f x ∆--∆-→∆)()(000lim,也可以是00)()(limx x x f x f x --→∆(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,背景新颖.【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2'=2πR ·t R '=4πR ,∴t S '/R =10=4πR/R =10=40π cm 2/s.点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的(R 是中间变量),此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s ”的错误.本题考查导数的物理意义及复合函数求导法则,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考查导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.二、与曲线的切线有关的问题【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是A.⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3 B. []π,0 C.⎥⎦⎤⎢⎣⎡4π3,4π D. ⎥⎦⎤⎢⎣⎡4π,0∪⎦⎤⎢⎣⎡4π3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[)π,0,∴α∈⎦⎤⎢⎣⎡4π,0∪⎥⎦⎤⎢⎣⎡π,4π3.故选A.点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点(x 0,f (x 0))处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.本题若不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.【例5】 曲线y =x 3-ax 2的切线通过点(0,1),且过点(0,1)的切线有两条,求实数a 的值.解 ∵点(0,1)不在曲线上,∴可设切点为(m ,m 3-am 2).而y '=3x 2-2ax , ∴k 切=3m 3-2am ,则切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过(0,1),∴2m 3-am 2+1=0.(*)设(*)式左边为f (m ),∴f (m )=0,由过(0,1)点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0”.由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3a, ∴a ≠0,f (0)·f (3a )=0,即a ≠0,-271a 3+1=0,∴a =3.点评 本题解答关键是把“切线有2条”的“形”转化为“方程有2个不同实根”的“数”,即数形结合,然后把三次方程(*)有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0”.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.三、与函数的单调性、最(极)值有关的问题【例6】 以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是A.①、②B.①、③C.③、④D.①、④解 由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x 轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,故选C.点评 f '(x )>0(或<0)只是函数f '(x )在该区间单递增(或递减)的充分条件,可导函数f '(x )在(a ,b )上单调递增(或递减)的充要条件是:对任意x ∈(a ,b ),都有f '(x )≥0(或≤0)且f '(x )在(a ,b )的任意子区间上都不恒为零.利用此充要条件可以方便地解决“已知函数的单调性,反过来确定函数解析式中的参数的值域范围”问题.本题考查函数的单调性可谓新颖别致.【例7】函数y =f (x )定义在区间(-3,7)上,其导函数如图所示,则函数y =f (x )在区间(-3,7)上极小值的个数是 个.解 如图,A 、O 、B 、C 、E 这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O 点、C 点是极小值点,故在区间(-3,7)上函数y =f (x )的极小值个数是2个.点评 导数f '(x )=0的点不一定是函数y =f (x )的极值点,如使f '(x )=0的点的左、右的导数值异号,则是极值点,其中左正右负点是极大值点,左负右正点是极小值点.本题考查函数的极值可以称得上是匠心独运.【例8】 设函数f (x )与数列{a n }满足关系:①a 1>α,其中α是方程f (x )=x 的实数根;②a n+1=f (a n ),n ∈N *;③f (x )的导数f '(x )∈(0,1).(1)证明:a n >α,n ∈N *;(2)判断a n 与a n+1的大小,并证明你的结论. (1)证明:(数学归纳法)当n =1时,由题意知a 1>α,∴原式成立. 假设当n =k 时,a k >α,成立. ∵f '(x )>0,∴f (x )是单调递增函数.∴a k+1= f (a k )> f (α)=α,(∵α是方程f (x )= x 的实数根)即当n =k +1时,原式成立.故对于任意自然数N *,原式均成立.(2)解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[)+∞,α上是单调递增函数.而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由(1)知,a n >α,∴a n >f (a n )=a n+1.点评 本题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.四、与不等式有关的问题【例9】 设x ≥0,比较A =xe -x ,B =lg(1+x ),C =xx +1的大小.解 令f (x )=C -B=xx +1-lg(1+x ),则f '(x )=xx x ++-+1)1(2)11(2>0,∴f (x )为[)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B .令g (x )=B -A =lg(1+x )-xe -x,则当x ≥0时,g '(x )=xx e x +---1)1(12≥0,∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .因此,C ≥B ≥A (x =0时等号成立).点评 运用导数比较两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),则只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用多次,2004年全国卷Ⅱ的压轴题就考查了此知识点.五、与实际应用问题有关的问题【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2ax =时,y =a 3.并且技术改造投入比率:)(2x a x-∈(]t ,0,其中t 为常数,且t ∈(]2,0.(1)求y =f (x )的解析式及定义域;(2)求出产品的增加值y 的最大值及相应的x 值. 解:(1)由已知,设y =f (x )=k (a -x )x 2,∵当2a x =时,y = a 3,即a 3=k ·2a ·42a ,∴k =8,则f (x )=8-(a -x )x 2.∵0<)(2x a x-≤t ,解得0<x ≤122+t at .∴函数f (x )的定义域为0<x ≤122+t at .(2)∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,则x =0(舍去),32ax =,当0<x <32a 时,f '(x )>0,此时f (x )在(0,32a)上单调递增;当x >32a 时,f '(x )<0,此时f (x )是单调递减.∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=32732a ;当122+t at <32a 时,即0<t <1时,y max =f (122+t at )=323)12(32+t t a . 综上,当1≤t ≤2时,投入32a 万元,最大增加值是32732a ,当0<t <1时,投入122+t at万元,最大增加值是323)12(32+t t a .点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.。
求导数的方法及例题
![求导数的方法及例题](https://img.taocdn.com/s3/m/c8eff0c018e8b8f67c1cfad6195f312b3169ebc4.png)
求导数的方法及例题
求导数是微积分中的一个重要概念,它是描述函数变化的一种量度,是解决某些物理问题的一种重要方法。
掌握正确的求导数方法,是掌握微积分的重要基础。
一、求导数的概念
求导数是对函数的解析,它可以对函数的每一点进行分析,了解函数围绕某一点变化的情况。
它是一种精确描述函数局部变化的量度,可以表达函数围绕某一点的变化程度以及变化方向。
求导数具有一定的运算规律,熟悉运算规律,能够帮助我们准确地求导,从而掌握微积分。
二、求导数的方法
1、基础函数求导:当函数由多项式、三角函数等基本函数的乘积、商、复合等形式构成时,可以利用求导的基本法则和求导的运算规律,从而准确求出函数的求导式。
2、一阶变化率:求导数时,有时可以利用函数的一阶变化率来
求出该函数的求导式,在函数围绕某点的变化量有限的情况下,可以将函数的一阶变化率求出来,用变化率/自变量的变化量来求出求导式。
3、极限方法:求导数时,也可以利用极限的方法,将函数的变
化量求取一定的极限,两边取极限,再求出极限,即可得到求导式。
三、求导数的例题
例1、求以下函数的求导式:y=x^2+x
解:用基本函数求导法:
y=2x+1
例2、求以下函数的求导式:y=3x^4-4x^3+5x^2
解:用基本函数求导法:
y=12x^3-12x^2+10x
例3、求以下函数的求导式:y=sin(x)
解:用基本函数求导法:
y=cos(x)
四、总结
以上是求导数的基本方法和一些例题的解答,求导数的方法有基本函数求导法、一阶变化率法、极限法等,了解基本的求导规律,解决问题时可以根据具体情况灵活运用各种求导方法,从而更准确的求解求导数。
函数求导练习题(含解析)
![函数求导练习题(含解析)](https://img.taocdn.com/s3/m/2954b1466fdb6f1aff00bed5b9f3f90f76c64deb.png)
一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。
导数高中试题及解析答案
![导数高中试题及解析答案](https://img.taocdn.com/s3/m/c1becf5d03020740be1e650e52ea551810a6c9a8.png)
导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。
解析:首先,我们需要找到函数 \( f(x) \) 的导数。
根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。
2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。
解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。
因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。
3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。
解析:这是一个复合函数,我们可以使用链式法则来求导。
首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。
对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。
导数专题,导数题型归纳
![导数专题,导数题型归纳](https://img.taocdn.com/s3/m/246bd641f342336c1eb91a37f111f18583d00c24.png)
导数专题,导数题型归纳贾老师高考数学一轮复【题型归纳】系列辅导资料导数专题:导数题型归纳目录:第1节:导数的概念与导函数题型48:导数的概念与求极限知识点摘要:本题型主要考察导数的概念和求导函数的极限值。
需要掌握导数的定义和求导法则,以及极限的基本概念和计算方法。
典型例题精讲精练:例题1:已知函数$f(x)=x^2+3x-4$,求$f(x)$在$x=2$处的导数。
解析:根据导数的定义,导数$f'(x)$表示函数$f(x)$在$x$处的变化率。
因此,我们可以使用导数的定义来求$f(x)$在$x=2$处的导数:f'(2)=\lim_{\Delta x\to 0}\frac{f(2+\Delta x)-f(2)}{\Delta x}$$将函数$f(x)=x^2+3x-4$代入上式,得到:f'(2)=\lim_{\Delta x\to 0}\frac{(2+\Delta x)^2+3(2+\Delta x)-4-(2^2+3\times 2-4)}{\Delta x}$$化简得:f'(2)=\lim_{\Delta x\to 0}\frac{(4\Delta x+\Deltax^2)+3\Delta x}{\Delta x}=\lim_{\Delta x\to 0}(4+\Deltax+3)=\boxed{7}$$因此,$f(x)$在$x=2$处的导数为$7$。
例题2:已知函数$f(x)=\sqrt{x^2+1}$,求$f'(x)$。
解析:根据导数的定义,导数$f'(x)$表示函数$f(x)$在$x$处的变化率。
因此,我们可以使用导数的定义来求$f(x)$的导数:f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$将函数$f(x)=\sqrt{x^2+1}$代入上式,得到:f'(x)=\lim_{\Delta x\to 0}\frac{\sqrt{(x+\Delta x)^2+1}-\sqrt{x^2+1}}{\Delta x}$$分子有两个根号,难以计算,因此我们需要进行有理化。
高中数学导数的计算精选题目(附答案)
![高中数学导数的计算精选题目(附答案)](https://img.taocdn.com/s3/m/eeb939d3ad02de80d5d84072.png)
高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 当g (x )=c 时,[cf (x )]′=cf ′(x ).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x ;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1. 3.(1)y =x 3·e x ; (2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ; (3)y =1+x 1-x +1-x1+x; (4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ;(3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1) 8.求下列函数的导数. (1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6;(6)f (x )=co S 2x .9.求下列函数的导数. (1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2; (4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x.(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1=S i n 2x2+2S i n x 2co S x 2+co S 2x 2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x . 3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x ) =12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.(4)设y =5log 2u ,u =2x +1, 则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2. (4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′ =1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x ,∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3. (3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x. 11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e-2x+1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。
高中数学常用公式、重要结论及典型例题(函数与导数)
![高中数学常用公式、重要结论及典型例题(函数与导数)](https://img.taocdn.com/s3/m/fdf23483cf2f0066f5335a8102d276a20129601a.png)
高中数学常用公式、重要结论及典型例题函数与导数(内部资料翻录必究)相关概念1. 函数的定义域:定义域是一个集合,要用集合或区间来表示,如果用区间表示,不能用“或”连接,要用U “”连接。
2. 如()f x 的定义域为[,]a b ,则复合函数(())f g x 的定义域由()a g x b ≤≤求出。
3. 任何一个定义域关于原点对称的函数)(x f ,都可以写成一个奇函数)(x h 与一个偶函数)(x g 之和的形式(事实上,这种表示还是唯一的,令()()()()12h x f x f x =--,()()()()12g x f x f x =+-即可)。
1) 凸函数(凹函数):设函数)(x f 在区间I 有定义,若对12,(0,1)x x I t ∀∈∈、,都有 )()1()())1((2121x f t x tf x t tx f -+≤-+(或)()1()())1((2121x f t x tf x t tx f -+≥-+),则称)(x f 为区间I 上的凸函数(或凹函数)。
2) 凸函数(凹函数)快速判断:如果函数)(x f 的二阶导数存在,则()0f x ''>时,)(x f 是凹函数(图像开口向上);()0f x ''<时,)(x f 是凸函数(图像开口向下)。
此性质往往可以用来快速判断函数图像类选填题。
3) 函数)(x f y =在0x 处可导,如果0()0f x '>,则)(x f 在0x 附近递增;如果0()0f x '<,则)(x f 在0x 附近递减。
此性质往往可以用来速解某些函导混合类选填题难题。
4. 方程)0(02≠=++a c bx ax 在),(21k k 内有且只有一个实根,等价于12()()0f k f k ⋅< 5. 闭区间上二次函数的最值:)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处或区间的两端点处取得,具体如下: (1)当0a >时,若[]q p a bx ,2∈-=,则{}min max ()(),()max (),()2b f x f f x f p f q a =-=; 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = (2)当0a <时,若[]q p abx ,2∈-=,则{}min ()min (),()f x f p f q =, 若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q = 6. 函数单调性的等价关系(1)设[]1212,,,x x a b x x ∈≠那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数7. 单调性的典型应用:(1)利用单调性求函数值域(2)利用单调性解方程:例如,对于方程2332(2038)484152x x x x x -+=-+- 可将其变形为2323(2038)4(2038)4x x x x x x -++-+=+ 构造函数3()4f x x x =+,原方程变为2(2038)()f x x f x -+=考虑到()f x 为单调递增函数,故必有22038x x x -+=,解得2x =或19x =。
2.7导数的应用(讲义+典型例题+小练)(原卷版)
![2.7导数的应用(讲义+典型例题+小练)(原卷版)](https://img.taocdn.com/s3/m/790e5600640e52ea551810a6f524ccbff121ca3c.png)
2.7导数的应用(讲义+典型例题+小练)1. 基本方法:(1)函数的导数与函数的单调性的关系:设函数y =f (x )在某个区间内有导数,如果在这个区间内/y >0,那么函数y =f (x )为这个区间内的增函数;如果在这个区间内/y <0,那么函数y =f (x )为这个区间内的减函数.(2)用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间. ③令f ′(x )<0解不等式,得x 的范围,就是递减区间.(3)判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值.(4)求函数f (x )的极值的步骤:①确定函数的定义区间,求导数f ′(x ). ②求方程f '(x )=0的根. ③用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格. 检查f '(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,即都为正或都为负,则f (x )在这个根处无极值.2、基本思想:学习的目的,就是要会实际应用,本讲主要是培养学生运用导数知识解决实际问题的意识,思想方法以及能力.解决实际应用问题关键在于建立数学模型和目标函数. 把“问题情景”译为数学语言,找出问题的主要关系,并把问题的主要关系近似化,形式化,抽象成数学问题,再化为常规问题,选择合适的数学方法求解.根据题设条件作出图形,分析各已知条件之间的关系,借助图形的特征,合理选择这些条件间的联系方式,适当选定变化区间,构造相应的函数关系,是这部分的主要技巧.知识当回归于生活,在现实生活中,有很多时候我们需要用到最大、最小。
导数的基本公式14个例题
![导数的基本公式14个例题](https://img.taocdn.com/s3/m/61175b9a2dc58bd63186bceb19e8b8f67c1cef8f.png)
导数的基本公式14个例题一、导数的基本公式。
1. 常数函数的导数:若y = C(C为常数),则y^′=0。
- 例如:y = 5,求y^′。
- 解析:根据常数函数导数公式,y^′ = 0。
2. 幂函数的导数:若y=x^n,则y^′ = nx^n - 1。
- 例如:y=x^3,求y^′。
- 解析:根据幂函数导数公式,n = 3,所以y^′=3x^2。
- 例如:y = x^(1)/(2),求y^′。
- 解析:n=(1)/(2),根据公式y^′=(1)/(2)x^(1)/(2)-1=(1)/(2)x^-(1)/(2)=(1)/(2√(x))。
3. 正弦函数的导数:若y = sin x,则y^′=cos x。
- 例如:y=sin x,求y^′。
- 解析:根据正弦函数导数公式,y^′=cos x。
4. 余弦函数的导数:若y=cos x,则y^′ =-sin x。
- 例如:y = cos x,求y^′。
- 解析:根据余弦函数导数公式,y^′=-sin x。
5. 指数函数y = a^x的导数(a>0,a≠1):y^′=a^xln a。
- 例如:y = 2^x,求y^′。
- 解析:根据指数函数导数公式,a = 2,所以y^′=2^xln2。
6. 对数函数y=log_ax的导数(a>0,a≠1,x>0):y^′=(1)/(xln a)。
- 例如:y=log_2x,求y^′。
- 解析:根据对数函数导数公式,a = 2,所以y^′=(1)/(xln2)。
- 特别地,当a = e时,y=ln x,y^′=(1)/(x)。
- 例如:y=ln x,求y^′。
- 解析:根据自然对数函数导数公式,y^′=(1)/(x)。
7. 正切函数的导数:若y=tan x=(sin x)/(cos x),则y^′=sec^2x=(1)/(cos^2)x。
- 例如:y = tan x,求y^′。
- 解析:根据正切函数导数公式,y^′=sec^2x=(1)/(cos^2)x。
求导数例题
![求导数例题](https://img.taocdn.com/s3/m/6be3c6d5710abb68a98271fe910ef12d2bf9a95a.png)
求导数例题
求导数是高中数学学习中的一个重要部分,它给学生提供了开展数学研究和解决实际问题的方法。
这里将介绍几个求导数的例题,帮助学生更好地掌握求导数的技巧。
例题1:设函数f(x) = x2+2x,求f(x)的值
解:我们已知f(x) = x2+2x,用一阶导数的定义求出f(x) = 2x+2,所以f(x)的值为2x+2。
例题2:设函数f(x) = x3+3x2-2x,求f(x)的值
解:答案是f(x) = 3x2+6x-2。
例题3:设函数f(x) = sin x,求f(x)的值
解:f(x) = cos x,所以f(x)的值为cos x。
以上三个例题均是计算求导数的基本例题,它们可以帮助学生更好地了解求导数的概念和方法。
计算求导数的过程基本一致,其中重要的步骤是使用一阶微分定义和求值,熟悉这一基本步骤后,学生可以对更复杂的求导问题也能有效求出求导数的值。
除了掌握计算求导数的基本步骤,学生还需要学习求导数的相关知识,如函数的定义、利用泰勒级数计算求导数等,这些内容都是学习求导数的基础。
在学习求导数的时候,学生还需要不断的练习,并积极查找更复杂的求导数例题,通过多次练习,学生可以更好地掌握求导数的基本技能。
此外,学生还可以尝试解决求导数的应用题,例如使用求导数来分析函数的波峰、波谷点以及函数的单调性等。
求导数的学习涉及到较为抽象的概念,因此在学习的过程中,学生可以寻求老师或者辅导老师的帮助,以便更好地理解和掌握求导数的知识点。
总之,求导数是高中数学学习中一个重要的知识点,学习者需要不断练习,并积极查找不同类型的求导数例题,了解求导数相关的基础知识,同时也可以咨询老师以及辅导老师,从而掌握求导数的基本技能。
高中数学导数的计算精选题目(附答案)
![高中数学导数的计算精选题目(附答案)](https://img.taocdn.com/s3/m/03abfb1b284ac850ac024222.png)
高中数学导数的计算精选题目(附答案)(1)基本初等函数的导数公式(2)导数运算法则①[f(x)±g(x)]′=f′(x)±g′(x);②[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);#当g(x)=c时,[cf(x)]′=cf′(x).③⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).(3)复合导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.求下列函数的导数: (1)y =10x ; (2)y =lg x ; (3)y =log 12x ;!(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1.2.求下列函数的导数: (1)y =⎝ ⎛⎭⎪⎫1e x ;(2)y =⎝ ⎛⎭⎪⎫110x;(3)y =lg 5; (4)y =3lg 3x ; (5)y =2co S 2x2-1./3.(1)y =x 3·e x ;(2)y =x -S i n x 2co S x2; (3)y =x 2+log 3x; (4)y =e x +1e x -1.4.求下列函数的导数: (1)y =cos x x ; (2)y =xS i n x +x ;(3)y =1+x 1-x +1-x1+x; …(4)y =lg x -1x 2.5.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 6.求过曲线y =co S x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.7.求下列函数的导数. (1)y =1-2x 2; (2)y =e S i n x ; (3)y =S i n ⎝ ⎛⎭⎪⎫2x +π3;(4)y =5log 2(2x +1);8.求下列函数的导数.(1)f (x )=(-2x +1)2; (2)f (x )=l n (4x -1); (3)f (x )=23x +2; (4)f (x )=5x +4; (5)f (x )=S i n ⎝ ⎛⎭⎪⎫3x +π6; (6)f (x )=co S 2x .9.求下列函数的导数.&(1)y =x 1+x 2;(2)y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2.10.求下列函数的导数. (1)y =S i n 2x3; (2)y =S i n 3x +S i n x 3; (3)y =11-x 2;(4)y =x l n (1+x ).11. 设f (x )=l n (x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.[12.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23 D .1参考答案:1.解: (1)y ′=(10x )′=10x l n 10. (2)y ′=(lg x )′=1x ln 10.(3)y ′=(log 12x )′=1x ln 12=-1x ln 2.(4)y ′=(4x 3)′=(x 34)′=34x -14=344x .(5)∵y =⎝ ⎛⎭⎪⎫sin x2+cos x 22-1?=S i n 2x 2+2S i n x 2co S x 2+co S 2x2-1 =S i n x ,∴y ′=(S i n x )′=co S x .2.解:(1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x l n 1e =-1e x =-e -x .(2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x l n 110=-ln 1010x=-10-x l n 10.(3)∵y =lg 5是常数函数,∴y ′=(lg 5)′=0. (4)∵y =3 lg 3x =lg x ,∴y ′=(lg x )′=1x ln 10.·(5)∵y =2co S 2x2-1=co S x ,∴y ′=(co S x )′=-S i n x .3.解: (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x . (2)∵y =x -12S i n x ,∴y ′=x ′-12(S i n x )′=1-12co S x . (3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln 3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.4.解:(1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos xx 2.:(2)y ′=(xS i n x )′+(x )′=S i n x +x co S x +12x.(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2,∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln 10+2x 3. 5.解:如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.—6.解:∵y =co S x ,∴y ′=(co S x )′=-S i n x ,∴曲线在点P π3,12处的切线的斜率为k =y ′|x =π3=-S i n π3=-32,∴过点P 且与切线垂直的直线的斜率为233,∴满足题意的直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3,即233x -y +12-239π=0. 7.解: (1)设y =u 12,u =1-2x 2, 则y ′=⎝ ⎛⎭⎪⎫u 12′(1-2x 2)′=⎝ ⎛⎭⎪⎫12u -12·(-4x )=12(1-2x 2)-12(-4x )=-2x 1-2x 2 .(2)设y =e u ,u =S i n x ,则y x ′=y u ′·u x ′=e u ·co S x =e S i n x co S x . (3)设y =S i n u ,u =2x +π3,则y x ′=y u ′·u x ′=co S u ·2=2co S ⎝ ⎛⎭⎪⎫2x +π3.!(4)设y =5log 2u ,u =2x +1,则y ′=5(log 2u )′(2x +1)′=10u ln 2=10(2x +1)ln 2.8.解:(1)设y =u 2,u =-2x +1,则y ′=y u ′·u x ′=2u ·(-2)=-4(-2x +1)=8x -4. (2)设y =l n u ,u =4x -1, 则y ′=y u ′·u x ′=1u ·4=44x -1.(3)设y =2u ,u =3x +2,则y ′=y u ′·u x ′=2u l n 2·3=3l n 2·23x +2.…(4)设y =u ,u =5x +4, 则y ′=y u ′·u x ′=12u·5=525x +4.(5)设y =S i n u ,u =3x +π6,则y ′=y u ′·u x ′=co S u ·3=3co S ⎝ ⎛⎭⎪⎫3x +π6.(6)法一:设y =u 2,u =co S x , 则y ′=y u ′·u x ′=2u ·(-S i n x ) =-2co S x ·S i n x =-S i n 2x ; 法二:∵f (x )=co S 2x =1+cos 2x 2=12+12co S 2x , 【所以f ′(x )=⎝ ⎛⎭⎪⎫12+12cos 2x ′=0+12·(-S i n 2x )·2=-S i n 2x . 9.解: (1)y ′=(x 1+x 2)′ =x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(2)∵y =x co S ⎝ ⎛⎭⎪⎫2x +π2S i n ⎝ ⎛⎭⎪⎫2x +π2=x (-S i n 2x )co S 2x =-12xS i n 4x , ∴y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12S i n 4x -x2co S 4x ·4 =-12S i n 4x -2x co S 4x .10.解:(1)y ′=⎝ ⎛⎭⎪⎫sin 2x 3′=2S i n x 3·⎝ ⎛⎭⎪⎫sin x 3′ =2S i n x 3·co S x 3·⎝ ⎛⎭⎪⎫x 3′=13S i n 2x3.(2)y ′=(S i n 3x +S i n x 3)′=(S i n 3x )′+(S i n x 3)′ =3S i n 2x co Sx +co S x 3·3x 2=3S i n 2x co S x +3x 2co S x 3.(3)y ′=0-(1-x 2)′1-x 2=-12(1-x 2)-12(1-x 2)′1-x 2=x (1-x 2)-121-x 2=x(1-x 2) 1-x 2.(4)y ′=x ′l n (1+x )+x []ln (1+x )′ =l n (1+x )+x 1+x.11.解: 由曲线y =f (x )过(0,0)点,可得l n 1+1+b =0,故b =-1.由f (x )=l n (x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a ,此即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0.12.解析:选A 依题意得y ′=e -2x ·(-2)=-2e -2x ,y ′|x =0=-2e-2×0=-2.曲线y =e -2x +1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2、y =0与y =x 的图象,因为直线y =-2x +2与y =x的交点坐标是⎝ ⎛⎭⎪⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),结合图象可得,这三条直线所围成的三角形的面积等于12×1×23=13.。
高中数学选择性必修二 5 2 1基本初等函数的导数(知识梳理+例题+变式+练习)(含答案)
![高中数学选择性必修二 5 2 1基本初等函数的导数(知识梳理+例题+变式+练习)(含答案)](https://img.taocdn.com/s3/m/b3235a34a66e58fafab069dc5022aaea988f4154.png)
5.2.1基本初等函数的导数要点一 几个常用函数的导数要点二【重点小结】(1)几个基本初等函数导数公式的特点①正、余弦函数的导数可以记忆为“正余互换,(符号)正同余反”. ②指数函数的导数等于指数函数本身乘以底数的自然对数. ③对数函数的导数等于x 与底数的自然对数乘积的倒数. (2)函数与其导函数奇偶性的关系 ①常数的导数是0.②奇函数的导函数为偶函数. ③偶函数的导函数为奇函数.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)⎝⎛⎭⎫1x ′=1x 2.( ) (2)(log 3x )′=13ln x.( )(3)⎣⎡⎦⎤sin ⎝⎛⎭⎫π2-x ′=cos ⎝⎛⎭⎫π2-x .( ) (4)若y =e 3,则y ′=e 3.( ) 【答案】(1)×(2)×(3)×(4)×2.(多选题)下列导数运算正确的是( )A .(ln x )′=xB .(a x )′=xa x -1C .(sin x )′=cos xD .(x -5)′=-5x -6 【答案】CD【解析】由导数公式得C 、D 正确.3.曲线y =e x 在点A (0,1)处的切线方程是( ) A .x +y +1=0 B .x -y -2=0 C .x -y +1=0 D .x +y -2=0 【答案】C【解析】y ′|x =0=e x |x =0=1,即切线斜率为1,又切点为A (0,1),故切线方程为y =x +1,即x -y +1=0. 4.函数f (x )=sin x ,则f ′(6π)=________. 【答案】1【解析】f ′(x )=cos x ,所以f ′(6π)=1.题型一 利用导数公式求函数的导数 【例1】求下列函数的导数:(1)y =x -3; (2)y =3x ;(3)y = x x x ; (4)y =log 5x ;(5)y =cos ⎝⎛⎭⎫π2-x ;(6)y =sin π6;(7)y =ln x ; (8)y =e x .【解析】(1)y ′=-3x -4;(2)y ′=3x ln 3;(3)y =x ·x ·x 12=xx 32=x ·x 34=x 78,∴y ′=78x1-8;(4)y ′=1x ln 5;(5)y =sin x ,y ′=cos x ;(6)y ′=0;(7)y ′=1x;(8)y ′=e x .不能用基本初等函数公式直接求导的,应先化为基本初等函数再求导. 【方法归纳】求简单函数的导数有两种基本方法(1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 【跟踪训练1】求下列函数的导数:(1)y =lg x ; (2)y =⎝⎛⎭⎫12x; (3)y =x x ;(4)y =⎝⎛⎭⎫sin x 2+cos x22-1. 【解析】(1)y ′=(lg x )′=1x ln 10. (2)y ′=⎣⎡⎦⎤⎝⎛⎭⎫12x ′=⎝⎛⎭⎫12x ln 12=-⎝⎛⎭⎫12x ln 2. (3)y ′=(x x )′=(x32)′=32x12=32x ; (4)∵y =⎝⎛⎭⎫sin x 2+cos x22-1 =sin 2x 2+2sin x 2cos x 2+cos 2x 2-1=sin x ,∴y ′=(sin x )′=cos x .题型二 利用导数公式求曲线的切线方程【例2】已知曲线y =ln x ,点P (e,1)是曲线上一点,求曲线在点P 处的切线方程. 【解析】∵y =ln x ,∴y ′=1x ,∴y ′|x =e =1e ,即切线斜率为1e .∴切线方程为y -1=1e(x -e),即x -e y =0.【变式探究】本例中的曲线不变,求过点(0,0)的切线方程. 【解析】因为点(0,0)不在曲线上,所以设切点Q (a ,b ).则切线斜率k =y ′|x =a =1a,又k =b -0a -0=b a,且b =ln a∴a =e ,b =1,∴切线方程为x -e y =0. 【方法归纳】(1)求过点P 的切线方程时应注意,P 点在曲线上还是在曲线外,两种情况的解法是不同的;(2)解决此类问题应充分利用切点满足的三个关系:一是切点坐标满足曲线方程;二是切点坐标满足对应切线的方程;三是切线的斜率是曲线在此切点处的导数值.【跟踪训练2】已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 垂直的曲线y =x 2的切线方程.【解析】∵y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′|0x x ==2x 0,又∵直线PQ 的斜率为k =4-12+1=1,而切线垂直于直线PQ ,∴2x 0=-1,即x 0=-12,所以切点为M ⎝⎛⎭⎫-12,14.∴所求的切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.易错辨析 混淆幂函数与指数函数求导公式致错【例3】曲线f (x )=2x 在点(0,1)处的切线方程为________. 【答案】y =x ln 2+1【解析】∵f (x )=2x ,∴f ′(x )=2x ln 2,∴f ′(0)=ln 2 故所求切线方程为y -1=(x -0)ln 2 即y =x ln 2+1. 【易错警示】 1.出错原因记错导数公式(a x )′=a x ln a ,与幂函数y =x α的求导公式混淆. 2.纠错心得利用导数公式求导时,应先弄清是指数函数,还是幂函数.一、单选题1.若函数5()(2cos )sin 2f x a x x x =-+(其中a 为参数)在R 上单调递增,则a 的取值范围是( )A .10,2⎡⎤⎢⎥⎣⎦B .11,22⎡⎤-⎢⎥⎣⎦C .11,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭D .1,02⎡⎤-⎢⎥⎣⎦【答案】B 【分析】先求解函数的导数,再根据函数的单调性建立不等式,将问题转化为不等式恒成立问题,进而求解参数的值. 【解析】根据题意,()22259cos 2sin 2cos cos 4cos 22f x a x x x a x x '=+-+=-+()f x 在R 上单调递增 ()0f x ∴'≥ 在R 上恒成立令cos x t =,[]1,1t ∈-,则 ()f x '可写为 ()[]294,1,12g t at t t =-+∈-根据题意()g t 在[]1,1-上的最小值非负()()1010g g ⎧-≥⎪∴⎨≥⎪⎩解得 1122a -≤≤,所以选项B 正确故选:B.2.已知函数()tan f x x =,则4f π⎛⎫' ⎪⎝⎭等于( )A .12 BC .1D .2【答案】D 【分析】先对函数求导,然后求出4f π⎛⎫' ⎪⎝⎭即可【解析】由()sin tan cos x f x x x ==,得2222cos sin 1()cos cos x x f x x x+==',所以2124cos4f ππ⎛⎫=='= ⎪⎝⎭, 故选:D3.已知函数()()2e e ln ex f x f x '=⋅⋅-(e是自然对数的底数),则()e f 等于( ) A .e 1- B .21e-C .1D .11e-【答案】C 【分析】利用导数的运算可得出关于()e f '的方程,求出()e f '的值,可得出函数()f x 的解析式,进而可求得()e f 的值. 【解析】因为()()2e e ln e xf x f x '=⋅⋅-,则()()2e e 1e f f x x ''=-, 所以,()()1e 2e e f f ''=-,所以,()1e e f '=,故()2ln exf x x =-,因此,()e 2lne 11f =-=. 故选:C.4.函数()ln 25y x x =+的导数为( )A .()2ln 25y x x '=+B .25xy x '=+ C .()ln 2525xy x x '=+++ D .()2ln 2525xy x x '=+++ 【答案】D 【分析】利用复合函数的求导法则,乘法公式的求导法则及基本初等函数的导数公式对函数()ln 25y x x =+求导即可. 【解析】因为()ln 25y x x =+,所以()()()ln 25ln 25ln 25y x x x x x x ''⎡''=+=⎤⎡+++⎤⎣⎦⎣⎦()()()12ln 2525ln 252525xx x x x x x =++⋅⋅+=++++'. 故选:D.5.若()e ln2xf x x =,则()f x '等于( )A .e e ln 22xx x x+B .e ln 2xx x -C .e e ln 2xxx x+D .12e x x⋅【答案】C 【分析】直接根据基本初等函数的导数公式及导数的运算法则计算可得; 【解析】解:()()()ee ln 2e ln 2e ln 2xxx x f x x x x x'''=⋅+⋅=+.故选:C. 6.函数()1f x x=在2x =和3x =处的导数的大小关系是( ) A .()()23f f ''< B .()()23f f ''> C .()()23f f ''= D .不能确定【答案】A 【分析】求出函数导数即可比较. 【解析】 ()1f x x =,()21f x x '∴=-,所以()()112,349f f ''=-=-,即()()23f f ''<.故选:A.7.给出下列命题:①ln 2y =,则12y ;②21y x=,则3227x y ==-';③2x y =,则2ln 2x y '=;④2log y x =,则1ln 2y x '=.其中正确命题的个数为( ) A .1 B .2 C .3 D .4【答案】C 【分析】利用求导公式和法则逐个分析判断即可 【解析】①中ln 2y =为常数函数,故0y '=,故①错误; 对于②,∵32y x '=-,∵3227x y ==-',故②正确; 显然③④正确. 故选:C.8.下列导数运算正确的是( ) A .()121x x-'=B .11ln 222x x'⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦C .()cos sin x x '=D .()1ln 1x x x'+=+【答案】D 【分析】利用求导公式和法则逐个分析判断即可 【解析】因为()121x x -'=-,11ln 222x x'⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,()cos sin x x '=-,()1ln 1x x x '+=+,所以选项A ,B ,C 均不正确,选项D 正确, 故选:D.二、多选题9.(多选)以下运算正确的是( )A .211x x '⎛⎫= ⎪⎝⎭B .()sin cos x x '=C .()22ln 2x x '=D .()1lg ln10x x =-' 【答案】BC 【分析】利用基本初等函数的导数公式,依次计算判断即可 【解析】对于A ,因为1211()x x x -'⎛⎫'==- ⎪⎝⎭,所以A 不正确; 对于B ,因为()sin cos x x '=,所以B 正确; 对于C ,因为()22ln 2x x '=,所以C 正确; 对于D ,因为()1lg ln10x x '=,所以D 不正确. 故选:BC.10.下列求导运算不正确的是( ) A .2111x x x '⎛⎫+=+ ⎪⎝⎭B .2sin cos sin x x x x x x '-⎛⎫=⎪⎝⎭C .()555log x x x '=D .()2cos 2sin x x x x '=-【答案】ACD 【分析】利用基本初等函数的导数公式和运算法则求解. 【解析】2111x x x '⎛⎫+=- ⎪⎝⎭,故A 错误; 2sin cos sin x x x x x x '-⎛⎫= ⎪⎝⎭,故B 正确; ()55ln 5xx'=,故C 错误;()22cos 2cos sin xx x x x x '=-,故D 错误.故选:ACD11.下列各式正确的是( ) A .sin cos 33ππ'⎛⎫= ⎪⎝⎭B .()cos sin x x '=C .()sin cos x x '=D .'⎛ ⎝【答案】CD 【分析】直接根据导数的运算公式计算即可. 【解析】对于A ,sin 03π'⎛⎫= ⎪⎝⎭,故错误;对于B ,()cos sin x x '=-,故错误; 对于C ,()sin cos x x '=,故正确; 对于D ,'⎛=⎝ 故选:CD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.对于三次函数()()320ax bx d a f x cx =+++≠给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用公式2求函数的导数
例 求下列函数的导数:
1.12x y =;2.41x
y =;3.53x y =. 分析:根据所给问题的特征,恰当地选择求导公式,将题中函数的结构施行调整.函数41x
y =和53x y =的形式,这样,在形式上它们都满足幂函数的结构特征,可直接应用幂函数的导数公式求导.
解:1..1212)(1111212x x x y =='='-
2..44)4()(55144x x x x y -
=-=-='='---- 3..535353)()(52521535353x
x x x x y ==='='='-- 说明:对于简单函数的求导,关键是合理转化函数关系式为可以直接应用公式的基本函数的模式,以免求导过程中出现指数或系数的运算失误.运算的准确是数学能力高低的重要标志,要从思想上提高认识,养成思维严谨,步骤完整的解题习惯,要形成不仅会求,而且求对、求好的解题标准.
根据斜率求对应曲线的切线方程
例 求曲线122-=x y 的斜率等于4的切线方程.
分析:导数反映了函数在某点处的变化率,它的几何意义就是相应曲线在该点处切线的斜率,由于切线的斜率已知,只要确定切点的坐标,先利用导数求出切点的横坐标,再根据切点在曲线上确定切点
的纵坐标,从而可求出切线方程.
解:设切点为),(00y x P ,则
x x y 4)12(2='-=',∴40='=x x y ,即440=x ,∴10=x
当10=x 时,10=y ,故切点P 的坐标为(1,1).
∴所求切线方程为)1(41-=-x y
即.034=--y x
说明:数学问题的解决,要充分考虑题设条件,捕捉隐含的各种因素,确定条件与结论的相应关系,解答这类问题常见的错误是忽略切点既在曲线上也在切线上这一关键条件,或受思维定势的消极影响,先设出切线方程,再利用直线和抛物线相切的条件,使得解题的运算量变大.
求直线方程
例 求过曲线x y cos =上点⎪⎭⎫ ⎝⎛21
,3πP 且与过这点的切线垂直的直线方程.
分析:要求与切线垂直的直线方程,关键是确定切线的斜率,从已知条件分析,求切线的斜率是可行的途径,可先通过求导确定曲线在点P 处切线的斜率,再根据点斜式求出与切线垂直的直线方程.
解:x y cos =Θ,∴.sin x y -=' 曲线在点⎪⎭⎫ ⎝⎛21,3πP 处的切线斜率是.2
33sin 3-=-='=ππx y
∴过点P 且与切线垂直的直线的斜率为
32, ∴所求的直线方程为⎪⎭⎫ ⎝
⎛-=
-33221πx y , 即0233232=+--πy x . 说明:已知曲线上某点的切线这一条件具有双重含义.在确定与切线垂直的直线方程时,应注意考察函数在切点处的导数y '是否为零,当0='y 时,切线平行于x 轴,过切点P 垂直于切线的直线斜率不存在.
求曲线方程的交点处切线的夹角
例 设曲线21x y =和曲线x
y 1=在它们的交点处的两切线的夹角为α,求αtan 的值. 分析:要求两切线的夹角,关键是确定在两曲线交点处的切线的斜率.根据导数的几何意义,只需先求出两曲线在交点处的导数,再应用两直线夹角公式求出夹角即可.
解:联立两曲线方程⎪⎩⎪⎨⎧==--12x
y x y 解得两曲线交点为(1,1). 设两曲线在交点处的切线斜率分别为21k k 、,则
.111,221121213121-=-='⎪⎭
⎫ ⎝⎛=-=-='⎪⎭⎫ ⎝⎛=====x x x x x x k x x k 由两直线夹角公式
.3
1)1()2(1)1(21tan 2121=-⋅-+---=⋅+-=k k k k α 说明:探求正确结论的过程需要灵巧的构思和严谨的推理运算.两曲线交点是一个关键条件,函数在交点处是否要导也是一个不能忽视的问题,而准确理解题设要求则是正确作出结论的前提.
求常函数的导数
例 设2π=y ,则y '等于( )
A .π2
B .2π
C .0
D .以上都不是
分析:本题是对函数的求导问题,直接利用公式即可
解:因为π是常数,常数的导数为零,所以选C .。