最新概率统计试题库及答案
概率统计基础知识试题和答案
![概率统计基础知识试题和答案](https://img.taocdn.com/s3/m/942a7b217c1cfad6185fa79f.png)
第一章 概率统计基础知识第一节 概率基础知识一、单项选择题(每题的备选项中,只有1个最符合题意)ZL1A0001.已知5.0)(=A P ,6.0)(=B P ,8.0)(=⋃B A P ,可算得=)(AB P ( )。
A.0.2B.0.3C.0.4D.0.5ZL1A0002.已知已知3.0)(=A P ,7.0)(=B P ,9.0)(=⋃B A P ,则事件A 与B ( )。
A.互不兼容B.互为对立事件C.互为独立事件D.同时发生的概率大于0ZL1A0003.某种动物能活到20岁的概率为0.8,活到25岁的概率为0.4,如今已活到到20岁的这种动物至少能再活5年的概率是( )。
A. 0.3B. 0.4C. 0.5D. 0.6ZL1A0004.关于随机事件,下列说法正确的是( )。
A.随机事件的发生有偶然性与必然性之分,而没有大小之别B.随机事件发生的可能性虽有大小之别,但无法度量C.随机事件发生的可能性的大小与概率没有必然联系D.概率愈大,事件发生的可能性就愈大,相反也成立ZL1A0005.( )成为随机现象。
A.在一定条件下,总是出现相同结果的现象B.出现不同结果的现象C.在一定条件下,并不总是出现相同结果的现象D.不总是出现相同结果的现象ZL1A0006.关于样本空间,下列说法不正确的是( )。
A.“抛一枚硬币”的样本空间=Ω{正面,反面}B.“抛一粒骰子的点数”的样本空间=Ω{0,1,2,3,4,5,6}C.“一顾客在超市中购买商品件数”的样本空间=Ω{0,1,…}D.“一台电视机从开始使用到发生第一次故障的时间”的样本空间=Ω{0:≥t t } ZL1A0007.某企业总经理办公室由10人组成,现在从中选出正、副主任各一人(不兼职),将所有可能的选举结果构成样本空间,则其中包含的样本点共有( )个。
A. 4B.8C. 16D.90ZL1A0008.8件产品中有3件不合格品,每次从中随机抽取一只(取出后不放回),直到把不合格品都取出,将可能抽取的次数构成样本空间,则其中包含的样本点共有( )个。
概率统计考试试题
![概率统计考试试题](https://img.taocdn.com/s3/m/fd7e5de7783e0912a2162ade.png)
主讲人:
一. 填空题(每小题3分,共30分)
1. 设事件A 与B 相互独立,且 P( A) 0.2, P(B) 0.3 , 则 P( A B) ______
2. 对随机变量 X 与Y,已知EX=2,EY=5,DX=16,DY=4,
XY 0.25 ,则E(X+3Y)=_____,D(X-Y)=_____.
1 kex 2 , x 0 F(x)
0 , x0 试求 (1) k 的值; (2) E(X) , D(X).
四. 有一批建筑房屋用的木柱,其中80%的长度不小于 3 米,现 从这批木柱中随机抽取100根,问其中至少有30根短于3米的 概率是多少?
( 已知 (1.5) 0.9332, (2.0) 0.9772, (2.3) 0.9893,(2.5) 0.9938
注:运算时取最接近的数据
五. 设随机变量X服从标准正态分布,试求 Y X 2 1
的概率密度函数。
六、已知离散型随机变量(X,Y)概率分布表为:
Y -1 0 2 X 0 0.2 0.1 0 1 0.05 0.3 0.1 2 0 0.15 0.1
(1) 求X,Y的边缘概率分布,判断X,Y是否独立. (2) 求Z=X+Y的概率分布.
6. 设随机变量 X 的分布函数为 0
F(x)
Asin
x
1
则 A _____, P{ X } _____.
3
x0
0 x 2 x 2
7. 已知 E( X ) 10, D( X ) 4, 由切比雪夫不等式,若 P{ X 10 c} 0.08,则c ___
8. 设随机变量 X ~ N (,1),Y ~ 2 (3);又X与Y相互独立, 则 X 服从 __________分布 Y3
概率论与数理统计期末考试试题(答案)
![概率论与数理统计期末考试试题(答案)](https://img.taocdn.com/s3/m/e1064fe9a216147916112836.png)
概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。
事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
概率统计课程复习考试试题及答案卷
![概率统计课程复习考试试题及答案卷](https://img.taocdn.com/s3/m/c49c884176c66137ee0619b8.png)
《概率统计》复习纲要A一、单项选择题1.对以往数据分析的结果表明,机器在良好状态时,生产的产品合格率为90%,而当机器有故障状态时,产品合格率为30%,每天开机时机器良好的概率为75%。
当某天开机后生产的第一件产品为合格品时,机器是良好状态的概率等于( )。
A 、 B 、 C 、 D 、 2.袋中有5个球(3个新球,2个旧球)。
现每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )。
A 、3/5B 、3/4C 、1/2D 、3/10 3.事件A 与B 相互独立的充要条件为( )。
A 、P(B)P(A)B)P(A +=⋃B 、ΦAB ,ΩB A ==⋃C 、P(A)P(B)P(AB)=D 、P(B)P(A)B)P(A -=- 4.以A 表示事件“零件长度合格且直径不合格”,则A 的对立事件为( )。
A 、零件长度不合格且直径合格B 、零件长度与直径均合格C 、零件长度不合格或直径合格D 、零件长度不合格 5.对于任意两个事件A 与B ,则有P(A-B)为( )。
A 、P(A)-P(B)B 、P(A)-P(B)+P(AB)C 、P(A)-P(AB)D 、P(A)+P(AB) 6.设二维随机变量(X,Y )的分布律为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛41a1b 41010,已知事件{X=0}与{X+Y=1}相互独立,则a ,b 的值是( )。
A 、61b ,31a ==B 、31b ,61a ==C 、103b ,51a ==D 、81b ,83a ==7.设函数⎪⎪⎩⎪⎪⎨⎧>≤<≤=1x ,11x 0,2xx ,0(x)F ,则( )。
A 、F(x)是随机变量的分布函数B 、F(x)不是随机变量的分布函数C 、F(x)是离散型随机变量的分布函数D 、F(x)是连续型随机变量的分布函数 8.设随机变量()2,~σμN ξ,且{}{}c ξP c ξP >=≤,则c =( )。
A 、0 B 、μ C 、μ- D 、σ9.设ξ服从[0,1]的均匀分布,12+=ξη则( )。
高中概率统计试题及答案
![高中概率统计试题及答案](https://img.taocdn.com/s3/m/59657eb35ff7ba0d4a7302768e9951e79a896903.png)
高中概率统计试题及答案一、选择题(每题3分,共30分)1. 如果一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 3/5D. 2/5答案:C2. 一枚均匀的硬币连续抛掷两次,出现至少一次正面的概率是多少?A. 1/2B. 3/4C. 1/4D. 1/8答案:B3. 一个班级有30个学生,其中15个男生和15个女生。
随机抽取3名学生,抽到至少1名男生的概率是多少?A. 2/3B. 3/4C. 1/2D. 5/6答案:D4. 一个骰子投掷一次,得到偶数点数的概率是多少?A. 1/2B. 1/3C. 1/6D. 2/3答案:A5. 一个袋子里有3个白球和2个黑球,不放回地连续抽取两次,抽到一白一黑的概率是多少?A. 1/5B. 3/5C. 2/5D. 4/5答案:B6. 一个袋子里有2个红球,3个蓝球和5个绿球,随机抽取一个球,抽到蓝球的概率是多少?A. 1/5B. 3/10C. 1/2D. 1/4答案:B7. 一个班级有50名学生,其中20名是优秀学生。
随机抽取5名学生,抽到至少2名优秀学生的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.9答案:A8. 一个袋子里有5个红球和5个蓝球,随机抽取3个球,抽到至少2个红球的概率是多少?A. 1/2B. 2/3C. 1/3D. 1/4答案:B9. 一个骰子投掷两次,两次都是6点的概率是多少?A. 1/6B. 1/36C. 1/12D. 1/24答案:B10. 一个班级有40名学生,其中10名是优秀学生。
随机抽取4名学生,抽到至少1名优秀学生的概率是多少?A. 1B. 3/4C. 2/5D. 1/4答案:A二、填空题(每题4分,共20分)1. 一个袋子里有10个球,其中4个是红球,6个是蓝球。
随机抽取一个球,抽到红球的概率是________。
答案:2/52. 一个班级有50名学生,其中25名是女生。
(完整word版)概率论和数理统计考试试题和答案解析.doc
![(完整word版)概率论和数理统计考试试题和答案解析.doc](https://img.taocdn.com/s3/m/c0e46f140029bd64783e2ce9.png)
一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
最新《概率论与数理统计》期末考试试题及答案教案资料
![最新《概率论与数理统计》期末考试试题及答案教案资料](https://img.taocdn.com/s3/m/abf978aa0975f46527d3e1b7.png)
四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分)1、ABC 或A B C U U2、0.63、2156311C C C 或411或0.3636 4、1 5、13 6、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知01.0.20.10.10.21a +++++=故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠==所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率统计期末考试试题及答案
![概率统计期末考试试题及答案](https://img.taocdn.com/s3/m/327795ba5ff7ba0d4a7302768e9951e79a896968.png)
概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。
假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。
2. 至多有5件产品是不合格的。
试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。
2. X的方差Var(X)。
试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。
求:1. 该银行连续5天的总交易量超过500万元的概率。
2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。
试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。
2. 零件长度的95%置信区间。
试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。
品牌B:平均打印速度为每分钟55页,标准差为4页。
样本量均为30台打印机。
假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。
答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。
根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。
2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。
根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。
答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。
2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。
最新 年月全国自考概率论与数理统计(二)试题及答案
![最新 年月全国自考概率论与数理统计(二)试题及答案](https://img.taocdn.com/s3/m/35de8c0cdd36a32d7375818a.png)
1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计试题库及答案(考试必做)
![概率论与数理统计试题库及答案(考试必做)](https://img.taocdn.com/s3/m/37f905ef0875f46527d3240c844769eae009a321.png)
概率论与数理统计试题库及答案(考试必做)概率论试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8。
则P(B A)=3.若事件A和事件B相互独立, P(A)= ,P(B)=0.3,P(A B)=0.7,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词__的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X分布律为P{X k} 5A(1/2)A=______________7. 已知随机变量X的密度为f(x)k(k 1,2, )则ax b,0 x 1,且P{x 1/2} 5/8,则0,其它a ________b ________28. 设X~N(2, ),且P{2 x 4} 0.3,则P{x 0} _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x+ x+1=0有实根的概率是280,则该射手的命8111.设P{X 0,Y 0}34,P{X 0} P{Y 0} ,则P{max{X,Y} 0} 7712.用(X,Y)的联合分布函数F(x,y)表示P{a X b,Y c} 13.用(X,Y)的联合分布函数F(x,y)表示P{X a,Y b} 14.设平面区域D 由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知X~N( 2,0.4),则E(X 3)=16.设X~N(10,0.6),Y~N(1,2),且X与Y相互独立,则17.设X的概率密度为f(x)22D(3X Y)x2,则D(X)=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,2),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)= 219.设D(X) 25,D Y 36, xy 0.4,则D(X Y) 20.设X1,X2, ,Xn, 是独立同分布的随机变量序列,且均值为,方差为,那么当n充分大时,近似有X~或2~。
概率统计试题及答案(本科完整版)
![概率统计试题及答案(本科完整版)](https://img.taocdn.com/s3/m/0fd580a8960590c69fc37608.png)
填空题(每题2分,共20分)A1、记三事件为A ,B,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 .A3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__⋃==。
A4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。
A5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >,必有概率{}P c x c e <<+ =⎧+<⎪⎪-⎨-⎪+>⎪-⎩e,c e b b a b c ,c e b b aA6、设X 服从正态分布2(,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) .A7、设1128363X B EX DX ~n,p ),n __,p __==(且=,=,则 A8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。
则X 的数学期望=)(X E 4.5 。
A9、设随机变量(,)X Y 的分布律为则条件概率 ===}2|3{Y X P 2/5 .A10、设121,,X X 来自正态总体)1 ,0(N , 2129285241⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑===i i i i i i X X X Y ,当常数k =1/4 时,kY 服从2χ分布。
A 二、计算题(每小题10分,共70分)A1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率(2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则:P ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得()()()()()123123109080850612P A A A P A P A P A ....=⋅⋅=⨯⨯=ABC ABC ABC()()()12312321101020150997P A A A P A A A ....⋃⋃=-=-⨯⨯= ()()()()()()1231231231231231231231233010808509020850908015090808500680153010806120941P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=A2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。
概率论与数理统计模拟试题集(6套,含详细答案)
![概率论与数理统计模拟试题集(6套,含详细答案)](https://img.taocdn.com/s3/m/8b99bea1b9d528ea81c779f2.png)
《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
概率论与数理统计模拟试题5套带答案
![概率论与数理统计模拟试题5套带答案](https://img.taocdn.com/s3/m/48ffea0b700abb68a882fbf0.png)
06—07—1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________. 2。
已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()nii Xμσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________。
二、选择题(每题3分,共15分)1。
一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B ) (1)()(1)a a a b a b -++-;(C ) a a b +;(D ) 2a ab ⎛⎫ ⎪+⎝⎭。
2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X )= 【 】(A) 2; (B)12; (C ) 3; (D)13。
3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】 ()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ; ()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率。
概率统计试题
![概率统计试题](https://img.taocdn.com/s3/m/c8994cfdb04e852458fb770bf78a6529647d3525.png)
概率统计试题概率统计试题一.选择填空1. 设A B =Φ ,则下列选项成立的是______B_____。
(A )()()P A 1P B =- (B)(|)0P A B = (C)1P(A |B )= (D)0P(AB )=2.设连续型随机变量的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的是___________。
A(A )0()1F x ≤≤ (B)0()1f x ≤≤ (C){}()P X x F x ==(D){}()P X x f x ==3.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现2点的概率___D________。
(A) 3/6 (B)2/3 (C)1/6 (D) 1/34.已知DX=2,DY=1,且X 和Y 相互独立,则D(X-2Y)=_____C____。
(A)1 (B)-2 (C)6 (D)45.设)4,5.1(~N ξ,且,9599.0)75.1(=Φ,则P{-2<ξ<4}=___A______。
(A)0.8543 (B)0.1457 (C)0.3541 (D)0.25436.随机变量X 的分布函数为F(x),则Y=3X+1的分布函数为_____ ____。
(A))31(-y F (B) )13(+y F (C) 1)(3+y F (D) 31)(31-y F7.有r 个球,随机地放在n 个盒子中(r ≤n),则某指定的r 个盒子中各有一球的概率为 1/cnr 。
8..已知3.0)(=B P ,7.0)(=?B A P ,且A 与B 相互独立,则=)(A P 。
9.设随机变量的概率密度21()01qx x f x x -?>=?≤?,则q=_1___。
10.设),2(~2σN X ,且2.0}42{=<<="" p="" ,则="<}0{X">11. 随机变量)4,1(~N X ,)6,2(~N Y ,则~23Y X Z +=_______N(7,33)_______。
(完整版)概率论与数理统计试题及答案.doc
![(完整版)概率论与数理统计试题及答案.doc](https://img.taocdn.com/s3/m/4447d1d3a45177232e60a222.png)
2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。
1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。
若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。
6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。
概率论与数理统计模拟试题5套带答案
![概率论与数理统计模拟试题5套带答案](https://img.taocdn.com/s3/m/f379bc260c22590103029d5b.png)
06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】(A) 11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】 ()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。
概率论与数理统计试题及答案
![概率论与数理统计试题及答案](https://img.taocdn.com/s3/m/194ec18c0129bd64783e0912a216147917117e9b.png)
概率论与数理统计一、单选题1.随机地掷一骰子两次,则两次出现的点数之和等于8的概率为()。
(4分)A :3/36B :4/36C :5/36D :2/362.A,B为任意两事件,若A,B之积为不可能事件,则称()。
(4分)A :A与B相互独立B :A与B互不相容C :A与B互为对立事件D :A与B为样本空间Ω的一个划分3.设A,B,C是三个事件,在下列各式中,不成立的是( ) .(4分)A :(A-B)UB=AUBB :(AUB)-B=AC :(AUB)-AB= UBD :(AUB)-C=(A-C)U(B-C)4.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为().(4分)A :“甲种产品滞销,乙种产品畅销”;B :“甲,乙两种产品均畅销”;C :“甲种产品滞销”;D :“甲种产品滞销或乙种产品畅销”。
5..掷二枚骰子,事件A为出现的点数之和等于3的概率为()。
(4分)A :11B :44,214C :44,202D :都不对6.设A,B为两个事件,且B A,则下列各式中正确的是( ).(4分)A :P(AUB)= P(A)B :P(AB)=P(A)C :P(BIA)= P(B)D :P(B-A)=P(B)- P(A)7.某小组共9人,分得一张观看亚运会的入场券,组长将一张写有“得票”字样和8张写有“不得票”字样的纸签混合后让大家依次各抽一张,以决定谁得入场券,则()。
(4分)A :A.第1个抽签者得“得票”的概率最大B :第5个抽签者“得票”的概率最大C :每个抽签者得“得票”的概率相等D :最后抽签者得“得票”的概率最小8.设A,B是两个事件,且P(A)≤P(AIB)则有( ).(4分)A :P(A)= P(AIB)B :P(B)>0C :P(A)≥P(AIB)D :前三者都不一定成立9.设有10个零件,其中2个是次品,现随机抽取2个,恰有一个是正品的概率为().(4分)A :8/45B :16/45C :8/15D :8/3010.设盒中有10个木质球,6个玻璃球,玻璃球有两个为红色,4个为蓝色;木质球有3个为红色,7个为蓝色,现从盒中任取一球,用A表示“取到蓝色球”;B表示“取到玻璃球”。