概率统计试题和答案

合集下载

概率统计基础知识试题和答案

概率统计基础知识试题和答案

第一章 概率统计基础知识第一节 概率基础知识一、单项选择题(每题的备选项中,只有1个最符合题意)ZL1A0001.已知5.0)(=A P ,6.0)(=B P ,8.0)(=⋃B A P ,可算得=)(AB P ( )。

A.0.2B.0.3C.0.4D.0.5ZL1A0002.已知已知3.0)(=A P ,7.0)(=B P ,9.0)(=⋃B A P ,则事件A 与B ( )。

A.互不兼容B.互为对立事件C.互为独立事件D.同时发生的概率大于0ZL1A0003.某种动物能活到20岁的概率为0.8,活到25岁的概率为0.4,如今已活到到20岁的这种动物至少能再活5年的概率是( )。

A. 0.3B. 0.4C. 0.5D. 0.6ZL1A0004.关于随机事件,下列说法正确的是( )。

A.随机事件的发生有偶然性与必然性之分,而没有大小之别B.随机事件发生的可能性虽有大小之别,但无法度量C.随机事件发生的可能性的大小与概率没有必然联系D.概率愈大,事件发生的可能性就愈大,相反也成立ZL1A0005.( )成为随机现象。

A.在一定条件下,总是出现相同结果的现象B.出现不同结果的现象C.在一定条件下,并不总是出现相同结果的现象D.不总是出现相同结果的现象ZL1A0006.关于样本空间,下列说法不正确的是( )。

A.“抛一枚硬币”的样本空间=Ω{正面,反面}B.“抛一粒骰子的点数”的样本空间=Ω{0,1,2,3,4,5,6}C.“一顾客在超市中购买商品件数”的样本空间=Ω{0,1,…}D.“一台电视机从开始使用到发生第一次故障的时间”的样本空间=Ω{0:≥t t } ZL1A0007.某企业总经理办公室由10人组成,现在从中选出正、副主任各一人(不兼职),将所有可能的选举结果构成样本空间,则其中包含的样本点共有( )个。

A. 4B.8C. 16D.90ZL1A0008.8件产品中有3件不合格品,每次从中随机抽取一只(取出后不放回),直到把不合格品都取出,将可能抽取的次数构成样本空间,则其中包含的样本点共有( )个。

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

概率统计测验题一答案

概率统计测验题一答案
概率论与数理统计测验试题(一)参考答案
一、单项选择题(15分,每小题5分)
1、某人射击中靶的概率为 ,则在第二次中靶之前已经失败3次的概率为(A).
(A) ;(B) ;(C) ;(D)
2、设随机变量 只能取 这四个值,其相应的概率依次为 ,则常数 (B).
(A)1;(B)2;(C)3;(D)4.
3、设随机变量 ,且 ,则 =(A).
三、(10分)10把钥匙中有(取出的这两把钥匙能打开门)= (取出的这两把钥匙至少有一把能打
开门)=1- (取出的这两把钥匙都不能打开门)= .
四、(20分)假设同一年级有两个班,一班50名学生,其中20名女生;二班45名
学生,其中15名女生,从中任选一个班,然后从中任选一名学生.(1)试求选出的是
(2)由(1)得 所求概率为
.
六、(10分)设随机变量 ,求随机变量 的概率密度 .
解:因为 ,所以其概率密度为 .
记 的分布函数为 ,故当 时, =0;当 时,有
.
所以 的概率密度为
(A) ;(B) ;(C) ;(D) .
二、填空题(25分,每小题5分)
1、设 为随机事件, , ,则 .
2、一袋中装有4只白球、2只红球,从袋中取球两次,每次取1只,取后不放回,则取到2只球都是白球的概率为 .
3、设事件 相互独立, , ,则 .
4、已知随机变量 ,且 ,则
5、设 的概率密度 = ,则 .
女生的概率;(2)已知选到的是女生,求此女生是一班的概率.
解:设 =“选出一班”, =“选出二班”, =“选出的是女生”,则有
.
(1)由全概率公式,所求概率为
.
(2)由贝叶斯公式,所求概率为 .

高中概率统计试题及答案

高中概率统计试题及答案

高中概率统计试题及答案一、选择题(每题3分,共30分)1. 如果一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 3/5D. 2/5答案:C2. 一枚均匀的硬币连续抛掷两次,出现至少一次正面的概率是多少?A. 1/2B. 3/4C. 1/4D. 1/8答案:B3. 一个班级有30个学生,其中15个男生和15个女生。

随机抽取3名学生,抽到至少1名男生的概率是多少?A. 2/3B. 3/4C. 1/2D. 5/6答案:D4. 一个骰子投掷一次,得到偶数点数的概率是多少?A. 1/2B. 1/3C. 1/6D. 2/3答案:A5. 一个袋子里有3个白球和2个黑球,不放回地连续抽取两次,抽到一白一黑的概率是多少?A. 1/5B. 3/5C. 2/5D. 4/5答案:B6. 一个袋子里有2个红球,3个蓝球和5个绿球,随机抽取一个球,抽到蓝球的概率是多少?A. 1/5B. 3/10C. 1/2D. 1/4答案:B7. 一个班级有50名学生,其中20名是优秀学生。

随机抽取5名学生,抽到至少2名优秀学生的概率是多少?A. 0.7B. 0.3C. 0.5D. 0.9答案:A8. 一个袋子里有5个红球和5个蓝球,随机抽取3个球,抽到至少2个红球的概率是多少?A. 1/2B. 2/3C. 1/3D. 1/4答案:B9. 一个骰子投掷两次,两次都是6点的概率是多少?A. 1/6B. 1/36C. 1/12D. 1/24答案:B10. 一个班级有40名学生,其中10名是优秀学生。

随机抽取4名学生,抽到至少1名优秀学生的概率是多少?A. 1B. 3/4C. 2/5D. 1/4答案:A二、填空题(每题4分,共20分)1. 一个袋子里有10个球,其中4个是红球,6个是蓝球。

随机抽取一个球,抽到红球的概率是________。

答案:2/52. 一个班级有50名学生,其中25名是女生。

概率统计试题及答案

概率统计试题及答案

<概率论〉试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,.则=3.若事件A和事件B相互独立,,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6。

设离散型随机变量分布律为则A=______________7。

已知随机变量X的密度为,且,则________ ________8。

设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11。

设,,则12.用()的联合分布函数F(x,y)表示13。

用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为 . 15。

已知,则=16。

设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20。

设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。

特别是,当同为正态分布时,对于任意的,都精确有~或~ .21.设是独立同分布的随机变量序列,且, 那么依概率收敛于 .22。

设是来自正态总体的样本,令则当时~。

23。

设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A); (B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销",则其对立事件为(A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销"。

概率统计试题及答案

概率统计试题及答案

概率统计试题及答案概率统计是数学中的一个重要分支,它在自然科学、社会科学、工程技术等多个领域都有着广泛的应用。

本文将提供一套概率统计的试题及答案,以供学习和复习之用。

一、选择题1. 概率论中,如果事件A和B是互斥的,那么P(A∪B)等于:A. P(A) + P(B)B. P(A) - P(B)C. P(A) / P(B)D. 1 - (1 - P(A))(1 - P(B))答案:A2. 以下哪项不是随机变量的典型性质?A. 可测性B. 有界性C. 随机性D. 独立性答案:D3. 标准正态分布的数学期望和方差分别是:A. 0和1B. 1和0C. 1和1D. 0和0答案:A4. 若随机变量X服从参数为λ的指数分布,其概率密度函数为f(x) = λe^(-λx), x > 0,则λ的值为:A. E(X)B. Var(X)C. E(X)^2D. 1 / Var(X)答案:D5. 在贝叶斯定理中,先验概率是指:A. 基于经验或以往数据得到的概率B. 基于主观判断得到的概率C. 事件实际发生的概率D. 事件未发生的概率答案:B二、填空题1. 事件的空间是指包含所有可能发生的事件的集合,其记作______。

答案:Ω2. 若随机变量X服从均匀分布U(a,b),则X在区间[a, b]上的概率密度函数是______。

答案:1 / (b - a)3. 两个事件A和B相互独立的必要不充分条件是P(A∩B) = ______。

答案:P(A)P(B)4. 若随机变量X服从正态分布N(μ, σ^2),则其概率密度函数为f(x) = (1 / (σ * √(2π))) * e^(- (x - μ)^2 / (2σ^2)),其中μ是______,σ^2是______。

答案:数学期望,方差5. 拉普拉斯定理表明,对于独立同分布的随机变量序列,当样本容量趋于无穷大时,样本均值的分布趋近于______分布。

答案:正态三、简答题1. 请简述条件概率的定义及其计算公式。

概率统计试题和答案

概率统计试题和答案

概率统计试题和答案题目答案的红色部分为更正部分,请同志们注意下统计与概率1.(2017课标1,理2)如图,正方形ABCD( B ) A.14B.π8C.12D.π42.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次, 表示抽到的二等品件数,则D X = 1.96 。

4.(2016年全国I 理14)5(2)x x +的展开式中,x 3的系数是 10 .(用数字填写答案)5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B )(A )13 (B )12 (C )23 (D )345.(2016年全国2理10)从区间随机抽取个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为( C )(A ) (B ) (C ) (D ) 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为[]0,12n 1x 2x nx 1y 2y n y ()11,x y ()22,x y (),n n x y m π4nm 2n m 4m n 2m n50C。

概率统计试题及答案

概率统计试题及答案

概率论与数理统计复习试卷一、填空题(本题共10小题,每小题2分,共20分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为1234020104Xp ..a .b c+-,则常数c b a ,,应满足的条件为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率{}P X a ,Y b >>= .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D .5.设12n X ,X ,,X 是从正态总体),(~2σμN X 中抽取的样本,则概率()202221201037176i i P .X X.σσ=⎧⎫≤-≤=⎨⎬⎩⎭∑ .6、设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信度为1α-的单侧置信区间的下限为7、设θ∧是参数θ的估计,若θ∧满足________________,则称θ∧是θ的无偏估计。

8、设E (X )=-1,D (X )=4,则由切比雪夫不等式估计概率:P {-4<X<2}≥_______________.9、设随机变量X 服从二项分布()2.0,100B ,应用中心极限定理可以得到{}≈≥30X P (已知()9938.05.2=Φ)。

10、设样本,,,,21n X X X 取自正态总体()2,,0Nμσσ>X ______________。

二、单项选择题(本题共10小题,每小题2分,共20分)注意:在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写下面的表格内.............。

错选、多选或未选均无分。

1、如果 1)()(>+B P A P ,则 事件A 与B 必定( ))(A 独立;)(B 不独立;)(C 相容;)(D 不相容.2、已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目答案的红色部分为更正部分,请同志们注意下统计与概率1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14B .π8 C .12 D .π42.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A )A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。

4.(2016年全国I 理14)5(2)x x +的展开式中,x 3的系数是 10 .(用数字填写答案)5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )345.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( C )(A )4n m (B )2n m (C )4m n (D )2mn6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(D )(A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A ) (A ) (B ) (C ) (D )8.(15年新课标1理科10)25()x x y ++的展开式中,52x y 的系数为( C ) (A )10 (B )20 (C )30(D )609.(15年新课标2理3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( D )(A ) 逐年比较,2008年减少二氧化硫排放量的效果最显着 (B ) 2007年我国治理二氧化硫排放显现成效 (C ) 2006年以来我国二氧化硫年排放量呈减少趋势 (D ) 2006年以来我国二氧化硫年排放量与年份正相关10.(14年新课标2理科5).某地区空气质量监测资料表明,一天的空气质量为优良的概率是,连续两为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A ) A. B. C. D. 11.(14年新课标2理13)()10x a +的展开式中,7x 的系数为15,则a =__21______. 12.(14年新课标1理5) 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为(D )A.81 B .83 C .85 D .87 13.(13理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( B ) A 、5 B 、6 C 、7 D 、814.(13年新课标2理5)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( D )(A )4- (B )3- (C )2- (D )1-15.(13年新课标1理19)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n 。

如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。

假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望。

【答案】(1)设第一次取出的4件产品中恰有3件优质品为事件1A 。

第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第一次取出的1件产品为事件2B ,这批产品通过检验为事件题意有A=()1122()A B A B 与,且11A B 与22A B 互斥,所以()()1122()P A P A B P A B =+ (2)X 的可能取值为400、500、800;4111(400)1161616P X ==--=,1(500)16P X ==,1(800)4P X ==,则X 的分布列为 X400500800P16.(2017课标1,理19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,1622116211(16)161()0.21216i i i i x x s x x ===-=≈-∑∑ 其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的学科网(去掉)数据,用剩下的数据估计μ和σ(精确到). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.17.(2017课标II ,理18)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下: (1) 设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到)附:22()()()()()n ad bcKa b c d a c b d-=++++()0.0680.0460.0100.00850.66+++⨯=,故()P C的估计值为0。

66因此,事件A的概率估计值为0.620.660.4092⨯=。

(2)根据箱产量的频率分布直方图得列联表箱产量50kg<箱产量50kg≥旧养殖法62 38新养殖法34 66由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关。

18.(2017课标3,理18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解:(1)X 所有的可能取值为200,300,500,利用题意求得概率即可得到随机变量的分布列; (2)由题中所给条件分类讨论可得n =300时,Y 的数学期望达到最大值520元. 试题解析:(1)由题意知,X 所有的可能取值为200,300,500,由表格数据知 ()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X 的分布列为19、(2016年全国I 高考19)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个? 解:⑴ 每台机器更换的易损零件数为8,9,10,11记事件i A 为第一台机器3年内换掉7i +个零件()1,2,3,4i = 记事件i B 为第二台机器3年内换掉7i +个零件()1,2,3,4i =由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B ==设2台机器共需更换的易损零件数的随机变量为X ,则X 的可能的取值为16,17,18,19,20,21,2216 17 18 19 20 21 22⑵ 要令()0.5P x n ≤≥则n 的最小值为19⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当19n =时,费用的期望为192005000.210000.0815000.044040⨯+⨯+⨯+⨯= 当20n =时,费用的期望为202005000.0810000.044080⨯+⨯+⨯=20.(2016年全国II 高考18)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数 01234≥5保费 a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数 0 1 2 3 4 ≥5概率0. 05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值. 【解析】 ⑴设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=.⑵设续保人保费比基本保费高出60%为事件B , ()0.100.053()()0.5511P AB P B A P A +===. ⑶解:设本年度所交保费为随机变量X .平均保费0.2550.150.250.30.1750.1 1.23a a a a a a a =+++++=, ∴平均保费与基本保费比值为1.23.21.(13年新课标2理19)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元。

相关文档
最新文档