2018三角函数小题专题解析

合集下载

2018版高中数学 小问题集中营 专题4.5 辅助角公式及应用

2018版高中数学 小问题集中营 专题4.5 辅助角公式及应用

专题五 辅助角公式及应用一、问题的提出【2017课标II 文13】函数()2cos sin f x x x =+的最大值为 ; . 该题可通过辅助角公式化为()sin y A x ωϕ=+形式,再运用三角函数的性质解决;我们把()sin cos a x b x x θ+=+(其中θ角所在的象限由a , b 的符号确定,θ角的值由tan baθ=确定),称作辅助角公式,该公式在高考中考查频率非常高,且常和三角函数的性质结合在一起进行考查. 二、问题的探源本题解法:有辅助角公式得;()(),tan 2f x x ϕϕ=+=,则;()f x ≤= 1.所涉及的公式(要熟记,是三角函数式变形的基础) 降幂公式:221cos21cos2cos ,sin 22αααα+-==2.关于()sin cos a b αααϕ+=+的说明(1)使用范围:三个特点:① 同角(均为α),②齐一次,③正余全(2)表达式变为:sin cos a b αααα⎫+=+⎪⎭② 二找:由221⎛⎫⎛⎫+=,故可看作同一个角的正余弦(称ϕ为辅助角), 如cos ϕϕ==可得:)sin cos cos sin sin cos a b ααϕαϕα+=+③ 三合:利用两角和差的正余弦公式进行合角:()sin cos a b αααϕ+=+(3)举例说明:sin y x x =+①12sin cos 22y x x ⎛⎫=+⎪⎝⎭②1cos sin 2cos sin sin cos 23333y x x ππππ⎛⎫==⇒=+ ⎪⎝⎭③ 2sin 3y x π⎛⎫=+⎪⎝⎭(4)注意事项:① 在找角的过程中,一定要找“同一个角”的正余弦,因为合角的理论基础是两角和差的正余弦公式,所以构造的正余弦要同角② 此公式不要死记硬背,找角的要求很低,只需同一个角的正余弦即可,所以可以从不同的角度构造角,从而利用不同的公式进行合角,例如上面的那个例子:12sin 2y x x ⎛⎫=+ ⎪⎝⎭,可视为1sin cos 266ππ==,那么此时表达式就变为: 2sin sin cos cos 66y x x ππ⎛⎫=+ ⎪⎝⎭,使用两角差的余弦公式:2cos 6y x π⎛⎫=- ⎪⎝⎭所以,找角可以灵活,不必拘于结论的形式.找角灵活,也要搭配好对应的三角函数公式. 当然,角寻找的不同,自然结果形式上也不一样,但2cos 6y x π⎛⎫=- ⎪⎝⎭与2sin 3y x π⎛⎫=+⎪⎝⎭本质是同一个式子(为什么?想想诱导公式的作用~)③ 通常遇到的辅助角都是常见的特殊角,这也为我们的化简提供了便利,如果提完系数发现括号里不是特殊角的正余弦,那么可用抽象的ϕ来代替,再在旁边标注ϕ的一个三角函数值. 3.规律探究(1)观察式子:主要看三点① 系统:整个表达式是以正余弦为主,还是正切(大多数情况是正余弦),确定后进行项的统一(有句老话:切割化弦)② 确定研究对象:是以x 作为角来变换,还是以x 的表达式(例如2x )看做一个角来进行变换.③ 式子是否齐次:看每一项(除了常数项)的系数是否一样(合角公式第二条:齐一次),若是同一个角(之前不是确定了研究对象了么)的齐二次式或是齐一次式,那么很有可能要使用合角公式,其结果成为()()sin f x A x ωϕ=+的形式.例如:齐二次式:2sin 2cos sin 2y x x x =-+,齐一次式:sin cos 6y x x π⎛⎫=++⎪⎝⎭(2)向“同角齐次正余全”靠拢,能拆就拆,能降幂就降幂:常用到前面的公式221cos21cos2cos ,sin 22αααα+-==,2sin cos sin2ααα=(还有句老话:平方降幂) 例如:sin cos 6y x x π⎛⎫=++ ⎪⎝⎭,确定研究对象了:x ,也齐一次,但就是角不一样(一个是x ,一个是6x π+)那么该拆则拆,将cos 6x π⎛⎫+⎪⎝⎭打开11sin sin sin 22y x x x x x ∴=+-=+ 于是就可合角了3三、问题的佐证【例1】(2017山东文7)函数2cos 2y x x =+ 最小正周期为( )A.π2 B. 2π3C.πD. 2π【解析】因为π2cos 22sin 23y x x x ⎛⎫=+=+⎪⎝⎭,所以其周期2ππ2T ==。

任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题及答案

任意角和弧度制、任意角的三角函数专题一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-342.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 36.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .129.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .410.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .3219.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π321.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .1222.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12D .323.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.任意角和弧度制、任意角的三角函数专题及答案一、基础小题1.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( )A .-43B .-45C .-35D .-34答案 D解析 根据三角函数的定义,tan α=y x =35-45=-34,故选D. 2.sin2cos3tan4的值( )A .小于0B .大于0C .等于0D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0,∴sin2cos3tan4<0.3.已知扇形的半径为12 cm ,弧长为18 cm ,则扇形圆心角的弧度数是( )A .23B .32C .23πD .32π答案 B解析 由题意知l =|α|r ,∴|α|=l r =1812=32.4.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是()A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ) 答案 A解析 由三角函数的定义知,选A.5.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A . 3 B .±3 C .-2 D .- 3答案 D解析 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,故选D. 6.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 答案 B解析 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0,所以y =-1+1-1=-1.7.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8 答案 C解析 设扇形的半径为R ,则12R 2|α|=2,∴R 2=1,∴R =1,∴扇形的周长为2R +|α|·R =2+4=6,故选C.8.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32 B .32 C .-12 D .12答案 D解析 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.9.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关; ④若sin α=sin β,则α与β的终边相同; ⑤若cos θ<0,则θ是第二或第三象限的角. 其中正确命题的个数是( )A .1B .2C .3D .4 答案 A解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.10.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动π3弧长到达Q 点,则Q 的坐标为________.答案 ⎝ ⎛⎭⎪⎫12,32解析 根据题意得Q (cos π3,sin π3),即Q ⎝ ⎛⎭⎪⎫12,32.11.已知角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,若α∈(-2π,2π),则所有的α组成的集合为________.答案 ⎩⎨⎧⎭⎬⎫-π3,5π3解析 因为角α的终边上有一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以角α为第四象限角,且tan α=-3,即α=-π3+2k π,k ∈Z ,因此落在(-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-π3,5π3.12.已知角α的终边上的点P 和点A (a ,b )关于x 轴对称(a ≠b ),角β的终边上的点Q 与A 关于直线y =x 对称,则sin αcos β+tan αtan β+1cos α·sin β=________. 答案 0解析 由题意得P (a ,-b ),Q (b ,a ),∴tan α=-b a ,tan β=a b (a ,b ≠0),∴sin αcos β+tan αtan β+1cos α·sin β=-b a 2+b 2b a 2+b 2+-ba ab +1a a 2+b 2·a a 2+b 2=-1-b 2a 2+a 2+b2a 2=0.二、高考小题13.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数f (x ),则y =f (x )在[0,π]的图象大致为( )答案 C解析 由题意|OM |=|cos x |,f (x )=|OM ||sin x |=|sin x cos x |= 12|sin2x |,由此可知C 正确. 14.若tan α>0,则( )A .sin α>0B .cos α>0C .sin2α>0D .cos2α>0 答案 C解析 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号, 故sin2α=2sin αcos α>0,故选C.15.设a =sin33°,b =cos55°,c =tan35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b 答案 C解析 ∵a =sin33°,b =cos55°=sin35°,c =tan35°=sin35°cos35°,∴sin35°cos35°>sin35°>sin33°.∴c >b >a ,选C.16.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( )A .12B .32C .0D .-12答案 A解析 由题意得f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫17π6+sin 17π6=f ⎝ ⎛⎭⎪⎫11π6+sin 11π6+sin 17π6=f ⎝ ⎛⎭⎪⎫5π6+sin 5π6+sin11π6+sin 17π6=0+12-12+12=12.三、模拟小题17.集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ k π+π4≤α≤k π+π2,k ∈Z中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n 时,2n π+π4≤α≤2n π+π2,此时α的终边和π4≤α≤π2的终边一样.当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.18.已知角α的终边过点P (-8m ,-6sin30°),且cos α=-45,则m 的值为( )A .-12B .12C .-32D .32答案 B解析 r =64m 2+9,∴cos α=-8m 64m 2+9=-45,∴m >0,∴4m 264m 2+9=125,∴m =±12,∴m =12.19.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 答案 A解析 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎨⎧3a -9≤0,a +2>0,即-2<a ≤3. 20.已知角x 的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,则角x 的最小正值为( )A .5π6 B .5π3 C .11π6 D .2π3答案 B解析 ∵sin 5π6=12,cos 5π6=-32,∴角x 的终边经过点⎝ ⎛⎭⎪⎫12,-32,tan x =-3,∴x =2k π+53π,k ∈Z ,∴角x 的最小正值为5π3.(也可用同角基本关系式tan x =sin xcos x得出.) 21.已知A (x A ,y A )是单位圆上(圆心在坐标原点O )任意一点,且射线OA 绕O 点逆时针旋转30°到OB 交单位圆于B (x B ,y B ),则x A -y B 的最大值为( )A . 2B .32C .1D .12答案 C解析 如图,由三角函数的定义,设x A =cos α,则y B =sin(α+30°),∴x A -y B =cos α-sin(α+30°)=12cos α-32sin α=cos(α+60°)≤1.22.已知扇形的周长是4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是( )A .2B .1C .12 D .3答案 A解析 设此扇形的半径为r ,弧长为l ,则2r +l =4,面积S =12rl =12r (4-2r )=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2.从而α=l r =21=2.23.如图,设点A 是单位圆上的一定点,动点P 从A 出发在圆上按逆时针方向转一周,点P 所旋转过的弧AP ︵的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致为( )答案 C解析 如图,取AP 的中点为D ,设∠DOA =θ,则d =2r sin θ=2sin θ,l =2θr =2θ, ∴d =2sin l2,故选C.24.已知角θ的终边经过点P (-4cos α,3cos α),α∈⎝ ⎛⎭⎪⎫π,3π2,则sin θ+cos θ=________.答案 15解析 因为π<α<3π2时,cos α<0,所以r =-5cos α,故sin θ=-35,cos θ=45,则sin θ+cos θ=15.模拟大题1.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=36x .求sin α+1tan α的值. 解 ∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=36x ,∴cos α=x x 2+2=36x . ∵x ≠0,∴x =±10,∴r =2 3.当x =10时,P 点坐标为(10,-2),由三角函数的定义,有sin α=-66,1tan α=-5,∴sin α+1tan α=-66-5=-65+66; 当x =-10时,同样可求得sin α+1tan α=65-66.2.如图所示,动点P ,Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求点P ,点Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解 设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π. 所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23). P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.3.设函数f (x )=-x 2+2x +a (0≤x ≤3)的最大值为m ,最小值为n ,其中a ≠0,a ∈R.(1)求m ,n 的值(用a 表示);(2)已知角β的顶点与平面直角坐标系xOy 中的原点O 重合,始边与x 轴的正半轴重合,终边经过点A (m -1,n +3),求sin ⎝ ⎛⎭⎪⎫β+π6的值.解 (1)由题意可得f (x )=-(x -1)2+1+a ,而0≤x ≤3,所以m =f (1)=1+a ,n =f (3)=a -3.(2)由题意知,角β终边经过点A (a ,a ), 当a >0时,r =a 2+a 2=2a , 则sin β=a 2a =22,cos β=a 2a =22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=2+64.当a <0时,r =a 2+a 2=-2a , 则sin β=a -2a=-22,cos β=a -2a=-22. 所以sin ⎝ ⎛⎭⎪⎫β+π6=sin β·cos π6+cos β·sin π6=-2+64.综上所述,sin ⎝ ⎛⎭⎪⎫β+π6=-2+64或2+64.4.在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1,y 1),α∈⎝ ⎛⎭⎪⎫π4,π2.将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及△BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.解 (1)因为x 1=35,y 1>0,所以y 1=1-x 21=45,所以sin α=45,cos α=35,所以x 2=cos ⎝ ⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=-210.(2)S 1=12sin αcos α=14sin2α.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以α+π4∈⎝ ⎛⎭⎪⎫π2,3π4,所以S 2=-12sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=-14sin ⎝ ⎛⎭⎪⎫2α+π2=-14cos2α.因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43,所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12.因为α∈⎝ ⎛⎭⎪⎫π4,π2,所以tan α=2.。

专题五 三角函数的图像与性质(基础题型)含详解

专题五 三角函数的图像与性质(基础题型)含详解

专题五三角函数的图像与性质(基础题型)一.选择题(共14小题)1.若关于x的方程2sin(2x+)=m在[0,]上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]2.三角函数y=sin 是()A.周期为4π的奇函数B.周期为的奇函数C.周期为π的偶函数D.周期为2π的偶函数3.函数y=sin(﹣2x)的单调递减区间是()A.[﹣kπ+,﹣kπ+],k∈Z B.[2kπ﹣,2kπ+],k∈ZC.[kπ﹣,kπ+],k∈Z D.[kπ﹣,kπ+],k∈Z4.已知函数f(x)=sin(2x﹣)(x∈R)下列结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)是偶函数C.函数f(x)的图象关于直线x=对称D.函数f(x)在区间上是增函数5.已知函数f(x)=|sinx|,下列结论中错误的是()A.f(x)既偶函数,又是周期函数.B.f(x)的最大值为C.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于直线x=π对称6.函数的图象的对称轴方程为()A.B.C.D.7.y=cos(x+1)图象上相邻的最高点和最低点之间的距离是()A.B.πC.2D.8.方程cosx=lgx的实根的个数是()A.1B.2C.3D.无数9.函数y=sin(2x+)是()A.周期为π的奇函数B.周期为π的偶函数C.周期为的奇函数D.周期为的偶函数10.函数y=2tan(3x﹣)的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(﹣,0)11.函数f(x)=tan(2x﹣)的单调递增区间是()A.[﹣,+](k∈Z)B.(﹣,+)(k∈Z)C.(kπ+,kπ+)(k∈Z)D.[kπ﹣,kπ+](k∈Z)12.为了得到函数y=2sin(2x+)的图象,可以将函数y=2sin2x图象()A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位13.将函数y=sin2x的图象向左平移个单位长度,所得图象的函数解析式为()A.y=sin(2x+)B.y=sin(2x﹣)C.y=sin(2x+)D.y=sin(2x﹣)14.为了得到函数的图象,只需把函数y=sin3x的图象()A.向左平移B.向左平移C.向右平移D.向右平移二.填空题(共6小题)15.函数y=3cos(2x+)的最小正周期为.16.在,则函数y=tanx的值域为.17.函数的最小正周期是.18.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则函数的解析式为f(x)=.19.函数f(x)=Asin(ω+φ)(A>0,ω>0)的图象如图所示,则f(1)+f(2)+…+f(2016)=.20.如图是的图象,则其解析式为.三.解答题(共4小题)21.求函数y=tan(x+)的定义域、周期和单调区间.22.已知函数f(x)=tan(x﹣).(1)求函数f(x)的定义域;(2)求函数f(x)的单调区间;(3)求函数f(x)的对称中心.23.已知函数f(x)=2sin(2x﹣)(x∈R).(1)求函数f(x)的最小正周期及单调递增区间;(2)当x∈[,]时,求f(x)的最大值和最小值.24.求下列函数的单调区间:(1)f(x)=sin(x+),x∈[0,π];(2)f(x)=|tanx|;(3)f(x)=cos(2x﹣),x∈[﹣,].专题五三角函数的图像与性质(基础题型)参考答案与试题解析一.选择题(共14小题)1.若关于x的方程2sin(2x+)=m在[0,]上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]【分析】把方程2sin(2x+)=m化为sin(2x+)=,画出函数f(x)=sin (2x+)在x∈[0,]上的图象,结合图象求出方程有两个不等实根时m 的取值范围.【解答】解:方程2sin(2x+)=m可化为sin(2x+)=,当x∈[0,]时,2x+∈[,],画出函数y=f(x)=sin(2x+)在x∈[0,]上的图象如图所示;根据方程2sin(2x+)=m在[0,]上有两个不等实根,得≤<11≤m<2∴m的取值范围是[1,2).故选:C.【点评】本题主要考查方程根的存在性以及个数判断以及正弦函数的图象应用问题,体现了转化、数形结合的数学思想.2.三角函数y=sin是( )A .周期为4π的奇函数B .周期为的奇函数C .周期为π的偶函数D .周期为2π的偶函数【分析】由条件利用正弦函数的奇偶性和周期性,可得结论.【解答】解:三角函数y=sin是奇函数,它的周期为=4π,故选:A .【点评】本题主要考查正弦函数的奇偶性和周期性,属于基础题.3.函数y=sin (﹣2x )的单调递减区间是( )A .[﹣kπ+,﹣kπ+],k ∈ZB .[2kπ﹣,2kπ+],k ∈ZC .[kπ﹣,kπ+],k ∈ZD .[kπ﹣,kπ+],k ∈Z【分析】利用诱导公式可得本题即求函数y=sin (2x ﹣)的单调递增区间.令 2kπ﹣≤2x ﹣≤2kπ+,求得x 的范围,可得函数y=sin (﹣2x )的单调递减区间.【解答】解:函数y=sin (﹣2x )=﹣sin (2x ﹣)的单调递减区间,即函数y=sin (2x ﹣)的单调递增区间.令 2kπ﹣≤2x ﹣≤2kπ+,求得 kπ﹣≤x ≤kπ+,k ∈z ,故函数y=sin (2x ﹣)的单调递增区间,即函数y=sin (﹣2x )的单调递减区间为[kπ﹣,kπ+],k ∈Z ,故选:D.【点评】本题主要考查诱导公式、正弦函数的增区间,体现了转化的数学思想,属于基础题.4.已知函数f(x)=sin(2x﹣)(x∈R)下列结论错误的是()A.函数f(x)的最小正周期为πB.函数f(x)是偶函数C.函数f(x)的图象关于直线x=对称D.函数f(x)在区间上是增函数【分析】由条件利用诱导公式,余弦函数的周期性、奇偶性、单调性以及图象的对称性,判断各个选项是否正确,从而得出结论.【解答】解:函数f(x)=sin(2x﹣)=﹣cos2x,故它的最小正周期为π,故A满足条件;显然,它是偶函数,故B正确;当x=时,求得函数值y=0,不是最值,故f(x)的图象不关于直线x=对称,故C错误;在区间上,f(x)=﹣cos2x是增函数,故D正确,故选:C.【点评】本题主要考查诱导公式,余弦函数的图象和性质,属于基础题.5.已知函数f(x)=|sinx|,下列结论中错误的是()A.f(x)既偶函数,又是周期函数.B.f(x)的最大值为C.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于直线x=π对称【分析】由条件利用正弦函数的值域,可得结论.【解答】解:根据函数f (x )=|sinx |的最大值为1,可得B 不正确, 故选:B .【点评】本题主要考查正弦函数的值域,属于基础题. 6.函数的图象的对称轴方程为( )A .B .C .D .【分析】根据余弦函数的性质即可求解对称轴方程 【解答】解:函数,令,k ∈Z可得:πx=,即,k ∈Z .故选:C .【点评】本题考查了余弦函数的图象及性质,对称轴方程的求法.属于基础题.7.y=cos (x +1)图象上相邻的最高点和最低点之间的距离是( ) A .B .πC .2D .【分析】y=cos (x +1)的周期是2π,最大值为1,最小值为﹣1,即可求出y=cos (x +1)图象上相邻的最高点和最低点之间的距离.【解答】解:y=cos (x +1)的周期是2π,最大值为1,最小值为﹣1,∴y=cos (x +1)图象上相邻的最高点和最低点之间的距离是=,故选:A .【点评】本题考查了函数y=Acos (ωx +φ)的图象与性质的应用问题,是基础题.8.方程cosx=lgx的实根的个数是()A.1B.2C.3D.无数【分析】本题即求函数y=cosx的图象和y=lgx的图象的交点个数,数形结合可得结论.【解答】解:方程cosx=lgx的实根的个数,即函数y=cosx的图象和y=lgx的图象的交点个数,数形结合可得函数y=cosx的图象和y=lgx的图象的交点个数为3,故选:C.【点评】本题主要考查方程根的存在性以及个数判断,余弦函数、对数函数的图象特征,体现了转化、数形结合的数学思想,属于基础题.9.函数y=sin(2x+)是()A.周期为π的奇函数B.周期为π的偶函数C.周期为的奇函数D.周期为的偶函数【分析】由条件利用诱导公式以及余弦函数的周期性和奇偶性,可得结论.【解答】解:由于函数y=sin(2x+)=sin(2x+)=cos2x,故此函数是周期为=π的偶函数,故选:B.【点评】本题主要考查诱导公式以及余弦函数的周期性和奇偶性,属于基础题.10.函数y=2tan(3x﹣)的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(﹣,0)【分析】对称中心就是函数图象与x轴的交点或函数图象的渐近线和x轴的交点,令3x﹣=,k∈z,解得x=+,k∈z,故对称中心为(+,0 ),从而得到答案.【解答】解:∵函数y=2tan(3x﹣),令3x﹣=,k∈z,可得x=+,k∈z,故对称中心为(+,0 ),令k=﹣2,可得一个对称中心是(﹣,0),故选:C.【点评】本题考查正切函数的对称中心的求法,得到3x﹣=,k∈z 是解题的关键,属于基础题.11.函数f(x)=tan(2x﹣)的单调递增区间是()A.[﹣,+](k∈Z)B.(﹣,+)(k∈Z)C.(kπ+,kπ+)(k∈Z)D.[kπ﹣,kπ+](k∈Z)【分析】由正切函数的单调性的性质即可得到结论.【解答】解:由<2x﹣,即﹣<x<+,(k∈Z),故函数的单调性增区间为(﹣,+)(k∈Z),故选:B.【点评】本题主要考查正切函数的单调性的求解,利用正切函数的图象和性质是解决本题的关键.12.为了得到函数y=2sin(2x+)的图象,可以将函数y=2sin2x图象()A.向右平移个长度单位B.向左平移个长度单位C.向右平移个长度单位D.向左平移个长度单位【分析】根据三角函数的图象平移关系进行判断即可.【解答】解:由y=2sin(2x+)=2sin2(x+),可以将函数y=2sin2x图象向左平移个长度单位即可,故选:D.【点评】本题主要考查三角函数图象关系的判断,结合平移关系是解决本题的关键.13.将函数y=sin2x的图象向左平移个单位长度,所得图象的函数解析式为()A.y=sin(2x+)B.y=sin(2x﹣)C.y=sin(2x+)D.y=sin(2x﹣)【分析】直接利用函数图象的平移变换得答案.【解答】解:将函数y=sin2x的图象向左平移个单位长度,所得图象的函数解析式为y=sin2(x+)=sin(2x+).故选:A.【点评】本题考查y=Asin(ωx+φ)型函数图象的平移,是基础题.14.为了得到函数的图象,只需把函数y=sin3x的图象()A.向左平移B.向左平移C.向右平移D.向右平移【分析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:把函数y=sin3x的图象向右平移个单位,可得函数的图象,故选:D.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.二.填空题(共6小题)15.函数y=3cos(2x+)的最小正周期为π.【分析】根据余弦函数y=Acos(ωx+φ)的最小正周期为T=,求出即可.【解答】解:函数y=3cos(2x+)的最小正周期为T===π.故答案为:π.【点评】本题考查了余弦函数y=Acos(ωx+φ)的图象与性质的应用问题,是基础题目.16.在,则函数y=tanx的值域为[﹣1,1] .【分析】根据正切函数的图象与性质,求出x∈[﹣,]时函数y=tanx的值域即可.【解答】解:∵,∴﹣1≤tanx≤1,∴函数y=tanx的值域为[﹣1,1].故答案为:[﹣1,1].【点评】本题考查了正切函数的图象与性质的应用问题,是基础题目.17.函数的最小正周期是2.【分析】由已知中函数的解析为,我们可以求出对应ω值,代入T=,即可得到函数的最小正周期.【解答】解:∵函数∴ω=∴T==2故答案为:2【点评】本题考查的知识点是正切函数的周期性,其中根据函数的解析式求出ω值,是解答本题的关键,在解答过程中易将正切型函数的周期误认为而产生错解.18.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如图所示,则函数的解析式为f(x)=.【分析】由题意求出A,T,利用周期公式求出ω,利用当x=时取得最大值3,求出φ,得到函数的解析式,即可.【解答】解:由题意可知A=3,T=2()=4π,ω==,当x=时取得最大值3,所以3=3sin(+φ),sin()=1,,∵,所以φ=,函数f(x)的解析式:f(x)=.故答案为:.【点评】本题是基础题,考查由y=Asin(ωx+φ)的部分图象确定其解析式,注意函数的周期的求法,考查计算能力,常考题型.19.函数f(x)=Asin(ω+φ)(A>0,ω>0)的图象如图所示,则f(1)+f(2)+…+f(2016)=0.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,可得函数的解析式,再利用利用正弦函数的周期性求得要求式子的值.【解答】解:由题意和图象可得A=2,T=6,则T=8,则ω=,∴f(0)+f(1)+f(2)+f(3)+…+f(8)=0,∴f(0)+f(1)+f(2)+f(3)+…+f(2016)=252×0=0,故答案为:0.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,利用正弦函数的周期性求函数的值,属于基础题.20.如图是的图象,则其解析式为.【分析】由图象可得A值,结合周期公式可得ω,代点可得φ值,可得解析式.【解答】解:由图象可得A=2,周期T=﹣(﹣)=2π,由周期公式可得ω=1,∴y=2sin(x+φ),代点(﹣,0)可得0=2sin(﹣+φ),结合0<φ<可得φ=故答案为:【点评】本题考查正弦函数的图象和性质,属基础题.三.解答题(共4小题)21.求函数y=tan(x+)的定义域、周期和单调区间.【分析】利用正切函数的定义域,求出函数的定义域,通过正切函数的周期公式求出周期,结合正切函数的单调增区间求出函数的单调增区间.【解答】解:由,解得.∴定义域.周期函数,周期.由,解得∴函数的单调递增区间为.【点评】本题是基础题,考查正切函数的基本知识,单调性、周期性、定义域,考查计算能力.22.已知函数f(x)=tan(x﹣).(1)求函数f(x)的定义域;(2)求函数f(x)的单调区间;(3)求函数f(x)的对称中心.【分析】(1)由题意利用正切函数的定义域可得x﹣≠kπ+,求得x的范围,可得函数的定义域.(2)根据题意利用正切函数的单调则区间可得kπ﹣<x﹣<kπ+,由此求得x的范围,得到f(x)的增区间.(3)利用正切函数的图象的对称性,求得函数f(x)的对称中心.【解答】解:(1)对于函数f(x)=tan(x﹣),令x﹣≠kπ+,求得x≠kπ+,k∈Z,故函数的定义域为{x|x≠kπ+,k∈Z}.(2)令kπ﹣<x﹣<kπ+,求得π﹣<x<kπ+,可得函数的增区间为(π﹣,kπ+),k∈Z.(3)令x﹣≠,求得x≠+,k∈Z,故函数的对称中心为(+,0),k∈Z.【点评】本题主要考查正切函数的定义域、单调区间、以及图象的对称性,属于基础题.23.已知函数f(x)=2sin(2x﹣)(x∈R).(1)求函数f(x)的最小正周期及单调递增区间;(2)当x∈[,]时,求f(x)的最大值和最小值.【分析】(1)根据正弦型函数求出f(x)的最小正周期和单调递增区间;(2)求出x∈[,]时2sin(2x﹣)的取值范围,即得f(x)的最大、最小值.【解答】解:(1)函数f(x)=2sin(2x﹣),∴函数f(x)的最小正周期为T==π;令2kπ﹣≤2x﹣≤2kπ+,k∈Z;解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)单调递增区间是[kπ﹣,kπ+],k∈Z;(2)当x∈[,]时,2x﹣∈[,],∴sin(2x﹣)∈[﹣,1],∴2sin(2x﹣)∈[﹣,2],∴f(x)的最大值是2,最小值是﹣.【点评】本题考查了正弦型函数的图象与性质的应用问题,是基础题.24.求下列函数的单调区间:(1)f(x)=sin(x+),x∈[0,π];(2)f(x)=|tanx|;(3)f(x)=cos(2x﹣),x∈[﹣,].【分析】(1)直接利用整体思想求出正弦型函数的单调区间.(2)直接利用整体思想求出正切型函数的单调区间.(3)直接利用整体思想求出余弦型函数的单调区间.【解答】解:(1)f(x)=sin(x+),x∈[0,π];令:(k∈Z),解得:(k∈Z),由于:x∈[0,π];则:函数的递增区间为:[0,]令:(k∈Z),解得:(k∈Z),由于:x∈[0,π];则:函数的递减区间为:[](2)f(x)=|tanx|;由于y=tanx的单调增区间为:(k∈Z),所以:函数的单调增区间为:(k)(k∈Z),函数的单调减区间为:(k∈Z),(3)f(x)=cos(2x﹣),x∈[﹣,].令:,(k∈Z),解得:,(k∈Z),当k=0时,函数的单调增区间为:[].令:,(k∈Z),解得:,(k∈Z),故函数的单调减区间为:[﹣,﹣]和[].【点评】本题考查的知识要点:三角函数的性质单调性的应用.。

五年(2018-22)高考数学真题分类汇编(全国卷新高考卷卷等)专题16 三角函数单选题(解析版)

五年(2018-22)高考数学真题分类汇编(全国卷新高考卷卷等)专题16  三角函数单选题(解析版)
A.0B.1C.2D.3
【答案】C解析:法1:由基本不等式有 ,
同理 , ,
故 ,故 不可能均大于 .
取 , , ,则 ,
故三式中大于 的个数的最大值为2,故选C.
法2:不妨设 ,则 ,
由排列不等式可得:

而 ,
故 不可能均大于 .
取 , , ,则 ,
故三式中大于 的个数的最大值为2,故选C.
【题目栏目】三角函数\三角恒等变换\三角恒等变换的综合应用
又因为函数图象关于点 对称,所以 ,且 ,
所以 ,所以 , ,
所以 .故选:A
【题目栏目】三角函数\三角函数的图像与性质\三角函数的图象
【题目来源】2022新高考全国I卷·第6题
6.(2022年高考全国乙卷数学(文)·第11题)函数 在区间 的最小值、最大值分别为( )
A. B. C. D.
【答案】D
2018-2022五年全国各省份高考数学真题分类汇编
专题16三角函数单选题
一、选择题
1.(2022高考北京卷·第5题)已知函数 ,则( )
A. 在 上单调递减B. 在 上单调递增
C. 在 上单调递减D. 在 上单调递增
【答案】C
解析:因为 .
对于A选项,当 时, ,则 在 上单调递增,A错;
对于B选项,当 时, ,则 在 上不单调,B错;
对于C选项,当 时, ,则 在 上单调递减,C对;
对于D选项,当 时, ,则 在 上不单调,D错.
故选,C.
【题目栏目】三角函数\三角函数的图像与性质\三角函数的单调性与周期性
【题目来源】2022高考北京卷·第5题
2.(2022年浙江省高考数学试题·第6题)为了得到函数 1年新高考Ⅰ卷·第4题

专题01 三角函数的实际应用(解析版)

专题01 三角函数的实际应用(解析版)

一、三角函数的实际应用知识点拨一、在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义边范围数量关系正弦斜边的对边A A ∠=sin c a A =sin 1sin 0<<A (∠A 为锐角)余弦斜边的邻边A A ∠=cos cb A =cos 1cos 0<<A (∠A 为锐角)B A cos sin =BA sin cos =1cos sin 22=+A A 正切的邻边的对边A tan ∠∠=A A baA =tan 0tan >A (∠A 为锐角)余切的对边的邻边A A A ∠∠=cot ab A =cot 0cot >A (∠A 为锐角)B A cot tan =B A tan cot =AA cot 1tan =(倒数)1cot tan =⋅AA 二、0°、30°、45°、60°、90°特殊角的三角函数值三角函数0°30°45°60°90°αsin 02122231αcos 12322210αtan 03313不存在αcot 不存在31330三、常见术语:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

对边邻边AC(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l =。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi l α==。

例题演练一.选择题(共20小题)1.如图,为了测量旗杆AB 的高度,小明在点C 处放置了高度为2米的测角仪CD ,测得旗杆顶端点A 的仰角∠ADE =50.2°,然后他沿着坡度为i =的斜坡CF 走了20米到达点F ,再沿水平方向走8米就到达了旗杆底端点B .则旗杆AB 的高度约为( )米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A .8.48B .14C .18.8D .30.8【解答】解:如图,延长AB 交水平线于M ,作FN ⊥CM 于N ,延长DE 交AM 于H .:i h l=hlα在Rt△CFN中,∵=,CF=20米,∴FN=BM=12米,CN=16米,∴DH=CM=16+8=24米,在Rt△ADH中,AH=DH•tan50.2=24×1.2=28.8米,∴AB=AM﹣BM=AH+HM=BM=28.8+2﹣12=18.8米,故选:C.2.我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C 处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30米处的D点.再测得顶点A 的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB的高度为( )(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.60B.70C.80D.90【解答】解:作AH⊥ED交ED的延长线于H,设DE=x米,∵CD的坡度:i=1:2,∴CE=2x米,由勾股定理得,DE2+CE2=CD2,即x2+(2x)2=(30)2,解得,x=30,则DE=30米,CE=60米,设AB=y米,则HE=y米,∴DH=y﹣30,∵∠ACB=45°,∴BC=AB=y,∴AH=BE=y+60,在Rt△AHD中,tan∠DAH=,则≈0.4,解得,y=90,∴高楼AB的高度为90米,故选:D.3.小敏利用无人机测量某座山的垂直高度AB.如图所示,无人机在地面BC上方130米的D 处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A ,B,C,D在同一平面内,则此山的垂直高度AB约为( )(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)A.146.4米B.222.9米C.225.7米D.318.6米【解答】解:如图,过点D作DH⊥AB于H,过点C作CR⊥DH于R,设AB=x米,则AH=(x﹣130)米.∵AB:BC=1:0.75,∴BC=RH=0.75x(米),BH=CR=130米,在Rt△DCR中,DR===65(米),∵tan∠ADH=,∴=0.4,解得x≈222.9,∴AB=222.9(米),故选:B.4.重庆实验外国语学校某数学兴趣小组,想测量华岩寺内七佛塔的高度,他们在点C处测得七佛塔顶部A处的仰角为45°,再沿着坡度为i=1:2.4的斜坡CD向上走了5.2米到达点D,此时测得七佛塔顶部A的仰角为37°,七佛塔AB所在平台高度EF为0.8米,则七佛塔AB的高约为( )米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.20.8B.21.6C.23.2D.24【解答】解:根据题意可知:∠AHC=90°,∠ACH=45°,∴AH=HC,∵DN:NC=i=1:2.4,CD=5.2米,∴DN=2米,CN=4.8米,设DG⊥AB,垂足为G,在Rt△ADG中,∠ADG=37°,∵AG=AB﹣GB=AB﹣(DN﹣EF)=AB﹣1.2,又DG=NH=CN+HC=4.8+AH=4.8+AB+0.8=AB+5.6,∴tan∠ADG=,∴×(5.6+AB)≈AB﹣1.2,解得AB=21.6(米),答:碧津塔AB的高约为21.6米.故选:B.5.春节期间,某老师读到《行路难》中“闲来垂钓碧溪上,忽复乘舟梦日边.”邀约好友一起在江边垂钓,如图,河堤AB的坡度为1:2.4,AB长为5.2米,钓竿AC与水平线的夹角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角也是60°,则浮漂D与河堤下端B 之间的距离约为( )(参考数据:=1.732)A.2.33米B.2.35米C.2.36米D.2.42米【解答】解:如图,延长CA交DB延长线于点E,过点A作AF⊥BE于点F,则∠CED=60°,∵AB的坡比为1:2.4,∴==,设AF=5x,BF=12x,在Rt△ABF中,由勾股定理知,5.22=25x2+144x2.解得:x=0.4,∴AF=5x=2(米),BF=12x=4.8(米),由题意得:AC=6米,∠CAG=∠C=60°,AG∥DF,∴∠EAF=90°﹣60°=30°,∠AEF=∠CAG=60°,∴EF=AF=(米),AE=2EF=(米),∵∠C=∠CED=60°,∴△CDE是等边三角形,∴DE=CE=AC+AE=(6+)米,∵BD=DE﹣EF﹣BF=6+﹣﹣4.8≈2.35(米),即浮漂D与河堤下端B之间的距离约为2.35米,故选:B.6.如图,为测量观光塔AB的高度,冬冬在坡度i=1:2.4的斜坡CD的D点测得塔顶A的仰角为52°,斜坡CD长为26米,C到塔底B的水平距离为9米.图中点A,B,C,D在同一平面内,则观光塔AB的高度约为( )米.(结果精确到0.1米,参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)A.10.5米B.16.1米C.20.7米D.32.2米【解答】解:如图,延长AB交过点D的水平面于F,作CE⊥DF于E,由题意得:CD=26米,BC=EF=9米,BF=CE,在Rt△CDE中,i=1:2.4,CD=26米,∴BF=CE=10米,ED=24米,在Rt△AFD中,∠AFD=90°,FD=EF+ED=33米,∠ADF=52°,∴AF=FD•tan52°≈33×1.28=42.24(米),∴AB=AF﹣BF=42.24﹣10≈32.2(米);即建筑物AB的高度为32.2米;故选:D.7.如图,一棵松树AB挺立在斜坡CB的顶端,斜坡CB长为52米,坡度为i=12:5,小张从与点C相距60米的点D处向上爬12米到达观景台DE的顶端点E,在此测得松树顶端点A的仰角为39°,则松树的高度AB约为( )(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A.16.8米B.28.8米C.40.8米D.64.2米【解答】解:延长AB交DC的延长线于H,作EF⊥AH于F,则四边形EDHF为矩形,∴FH=DE=12米,EF=DH,∵斜坡CB的坡度为t=12:5,∴设BH=12x,CH=5x,由勾股定理得,(5x)2+(12x)2=522,解得,x=4,则BH=12x=48米,CH=5x=20米,则EF=DH=DC+CH=60+20=80(米),在Rt△AEF中,tan∠AEF=,则AF=EF•tan∠AEF≈80×0.81=64.8(米),∴AB=AF+HF﹣BH=64.8+12﹣48=28.8(米),故选:B.8.小明和好朋友一起去三亚旅游,他们租住的酒店AB坐落在坡度为i=1:2.4的斜坡CD上,酒店AB高为129米.某天,小明在酒店顶楼的海景房A处向外看风景,发现酒店前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线上的点D的距离CD为260米,雕像C与酒店AB的水平距离为36米,他站在A处还看到远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线上的点D的距离ED的长大约为( )米.(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.276【解答】解:如图,延长AB交ED的延长线于G,过C作CH⊥DG于H,CF⊥BG于F,则四边形CFGH是矩形,∴HG=CF=36(米),FG=CH,在Rt△CDH中,CD=260米,CH:DH=1:2.4,∴CH=100(米),DH=240(米),在Rt△BCF中,CF=36米,BF:CF=1:2.4,∴BF=15(米),FG=CH=100(米),∴DG=DH+HG=276(米),AG=AB+BF+FG=244(米),∵tan27°=≈0.5,即≈,解得:DE≈212(米),故选:B.9.保利观澜旁边有一望江公园,公园里有一文峰塔,工程人员在与塔底中心的D同一水平线的A处,测得AD=20米,沿坡度i=0.75的斜坡AB走到B点,测得塔顶E仰角为37°,再沿水平方向走20米到C处,测得塔顶E的仰角为22°,则塔高DE为( )米.(结果精确到十分位)(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,)A.18.3米B.19.3米C.20米D.21.2米【解答】解:连接DE,作BF⊥DE于F,BG⊥DA于G,如图:则DF=BG,BF=DG=AD+AG,∵AB=斜坡AB的坡度i=0.75=,∴设BG=3xm,则AG=4xm,BF=DG=20+4x(m),CF=BF+BC=20+4x+20=40+4x (m),由题意得:∠EBF=37°,∠ECF=22°,∵tan∠BEF==,tan∠ECF==,∴EF=tan37°(20+4x),EF=tan22°(40+4x),∴0.75(20+4x)=0.40(40+4x),解得:x=,∴DF=BG=3x=(m),EF=0.40(40+4x)=(m),∴DE=DF+EF=+≈19.3(m);故选:B.10.小李同学想测量广场科技楼CD的高度,他先在科技楼正对面的智慧楼AB的楼顶A点测得科技楼楼顶C点的仰角为45°.再在智慧楼的楼底B点测得科技楼楼顶C点的仰角为61°,然后从楼底B点经过4米长的平台BF到达楼梯F点,沿着坡度为i=1:2.4的楼梯向下到达楼梯底部E点,最后沿水平方向步行20米到达科技楼楼底D点(点A、B、C、D、E 、F在同一平面内,智慧楼AB和科技楼CD与水平方向垂直).已知智慧楼AB的高为24米,则科技楼CD的高约为( )米.(结果精确到0.1,参考数据:sin61°≈0.87.cos61°≈0.48,tan61°≈1.80)A.54.0B.56.4C.56.5D.56.6【解答】解:作AM⊥CD于M,FN⊥CD于N,FG⊥DE于点G,则四边形AMNB,四边形NDGF是矩形.在Rt△FEG中,FG:EG=1:2.4,设FG=5x,则EG=12x,∴FN=DG=12x+20,AB=24米,AM=BN=(24+12x)米,∵∠CAM=45°,∴AM=CM=(24+12x)米,∴CN=CM+MN=(48+12x)米,∵∠CBN=61°,∴tan∠CBN==,∴x=,∴CD=CM+MN+DN=24+12x+24+5x=24+17×+24=56.5(米).故选:C.11.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福士最高楼顶点F的仰角为45°,此时他头顶正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD 走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为( )(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米【解答】解:如图所示:延长AC和FE交于点G,过点B作BM⊥FE于点M,作DH⊥AG于点H,得矩形ABMG、DHEG,设DH=x,则HC=2x,BM=AG=160+120+2x=280+2x.EG=DH=x,∵∠FAG=45°,∠FGA=90°,∴∠AFG=45°,∴FG=AG,EF=FG﹣EG=AG﹣EG=280+2x﹣x=280+x,∴FM=FG﹣MG=280+2x﹣146=134+2x,在Rt△FBM中,tan31°=,即=0.6,解得x=42.5,则EF=280+x=322.5.故选:B.12.如图是杨家坪步行街某天桥扶梯横截面的平面图.身高为1.5米的小明站在距离扶梯底端A处8米远的点P处,测得扶梯顶端B的仰角为18°,扶梯AB的坡度i=3:4,已知扶梯顶端B到天桥顶部的距离为2.3米,则小明所在位置点P到天桥顶部的距离是( )(参考数据:sin18°≈0.29,cos18°≈0.95,tan18°≈)A.12.3米B.9.8米C.7.9米D.7.5米【解答】解:作BC⊥PA交PA的延长线于点C,作QD⊥BC于点D,∵扶梯AB的坡度i=3:4,∴,设BC=3x米,则AC=4x米,∵AP=8米,QP=1.5米,∴DQ=(4x+8)米,BD=(3x﹣1.5)米,∵∠BQD=18°,tan∠BQD=,tan18°≈,∴≈,解得x=2.5,∴BC=3x=7.5,∵点B到顶部的距离是2.3米,∴点C到顶部的距离是2.3+7.5=9.8(米),即点P到顶部的距离是9.8米,故选:B.13.如图,在某山坡前有一电视塔.小明在山坡坡脚P处测得电视塔顶端M的仰角为60°,在点P处小明沿山坡向上走39m到达D处,测得电视塔顶端M的仰角为30°.已知山坡坡度i=1:2.4,请你计算电视塔的高度ME约为( )m.(结果精确到0.1m,参考数据:≈1.732)A.59.8B.58.8C.53.7D.57.9【解答】解:如图,作DC⊥EP延长线于点C,作DF⊥ME于点F,作PH⊥DF于点H,则DC=PH=FE,DH=CP,HF=PE,∵山坡坡度i=DC:CP=1:2.4,PD=39,设DC=5x,则CP=12x,根据勾股定理,得(5x)2+(12x)2=392,解得x=3,则DC=15,CP=36,∴DH=CP=36,FE=DC=15,设MF=y,则ME=MF+FE=y+15,在Rt△DMF中,∠MDF=30°,∴DF=y,在Rt△MPE中,∠MPE=60°,∴PE=(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=36,解得y=7.5+18,∴ME=MF+EF=7.5+18+15≈53.7(m).答:电视塔的高度ME约为53.7米.故选:C.14.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度i=1:0.75的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为45°,广告牌顶部E的仰角为53°(小辉的身高忽略不计),已知广告牌DE=15米,则该主楼AD的高度约为( )(结果精确到整数,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)A.80m B.85m C.89m D.90m【解答】解:过C作CF⊥AE于F,CG⊥AB于G,如图所示:则四边形AFCG是矩形,∴AF=CG,∵斜坡AB的坡度i=1:0.75==,BC=50米,∴BG=30(米),AF=CG=40(米),设DF=x米.在Rt△DCF中,∠DCF=45°,∴CF=DF=x米.在Rt△ECF中,∠ECF=53°,∴EF=tan53°•CF=1.3x(米),∵DE=15米,∴1.3x﹣x=15,∴x=50,∴DF=50米,∴AD=AF+DF=40+50=90(米),故选:D.15.图中的阴影部分是某水库大坝横截面,小明站在大坝上的A处看到一棵大树CD的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面的夹角为60°,在A处测得树顶D的俯角为15°,如图所示,已知斜坡AB的坡度i=:1,若大树CD的高为8米,则大坝的高为( )米(结果精确到1米,参考数据≈1.414 ≈1.732)( )A.18B.19C.20D.21【解答】解:如图,过点D作DP⊥AB于点P,作AQ⊥BC交CB延长线于点Q,∵∠DBC=60°、CD=8,∴BD===16,∵AB的坡度i=tan∠ABQ=,∴∠ABQ=∠EAB=60°,∴∠ABD=60°,∴PD=BD sin∠ABD=16×=8,BP=BD cos∠ABD=16×=8,∵∠EAD=15°,∴∠DAP=∠BAE﹣∠EAD=45°,∴PA=PD=8,则AB=AP+BP=8+8,∴AQ=AB cos∠ABQ=(8+8)×=4+12≈19,故选:B.16.3月中旬某中学校园内的樱花树正值盛花期,供全校师生驻足观赏.如图,有一棵樱花树AB垂直于水平平台BC,通往平台有一斜坡CD,D、E在同一水平地面上,A、B、C、D、E均在同一平面内,已知BC=3米,CD=5米,DE=1米,斜坡CD的坡度是,李同学在水平地面E处测得树冠顶端A的仰角为62°,则樱花树的高度AB约为( )(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)A.9.16米B.12.04米C.13.16米D.15.04米【解答】解:过C作CG⊥DE交ED的延长线于G,延长AB交ED的延长线于H,如图所示:则四边形BHGC为矩形,∴BH=CG,GH=BC=3米,∵斜坡CD的坡度是=,∴设CG=3x米,则DG=4x,由勾股定理得,CD2=CG2+DG2,即52=(3x)2+(4x)2,解得:x=1,∴BH=CG=3(米),DG=4(米),∴EH=DE+DG+GH=1+4+3=8(米),在Rt△AHE中,tan∠AEH==tan62°≈1.88,∴AH≈1.88EH=1.88×8=15.04(米),∴AB=AH﹣BH≈15.04﹣3=12.04(米),故选:B.17.某数学兴趣小组在歌乐山森林公园借助无人机测量某山峰的垂直高度AB.如图所示,无人机在地面BC上方120米的D处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A,B,C,D在同一平面内,则山峰的垂直高度AB约为( )(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)A.141.4米B.188.6米C.205.7米D.308.6米【解答】解:如图,过点D作DH⊥AB于H,过点C作CR⊥DH于R,设AB=x米,则AH=(x﹣120)米.∵AB:BC=1:0.75,∴BC=RH=0.75x(米),BH=CR=120米,在Rt△DCR中,DR=≈=60(米),∵tan∠ADH=,∴=0.4,解得x≈205.7,∴AB=205.7(米),故选:C.18.小菁在数学实践课中测量路灯的高度.如图,已知她的身高AB1.2米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°.那么该路灯顶端O到地面的距离约为( )(sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2 .1)A.3.2米B.3.9米C.4.4米D.4.7米【解答】解:过点O作OE⊥AC于点E,延长BD交OE于点F,设DF=x,∴BF=BD+DF=3+x,∵tan65°=,∴OF=x tan65°,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x≈0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15(米),∴OE=3.15+1.2=4.35≈4.4(米),故选:C.19.如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)A.23.1B.21.9C.27.5D.30【解答】解:如图所示:过点B作BN⊥AD,BM⊥DC垂足分别为:N,M,∵i=1:2.4,AB=26m,∴设BN=x,则AN=2.4x,∴AB=2.6x,则2.6x=26,解得:x=10,故BN=DM=10m,则tan30°===,解得:BM=10,则tan35°===0.7,解得:CM≈11.9(m),故DC=MC+DM=11.9+10=21.9(m).故选:B.20.如图,某数学活动小组为测量学校旗杆AB的高度,从旗杆正前方2m处的点C出发,沿坡度l=1:2的斜坡CD前进5m到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5m,已知A,B,C,D,E在同一平面内,AB⊥BC,AB∥D E,则旗杆AB的高度是( )(参考数据:sin37°≈,cos37°≈,tan37°≈,≈1.732,≈2.236,结果保留一位小数)A.8.2B.8.4C.8.6D.8.8【解答】解:延长ED交BC的延长线于点F,作EG⊥AB于G,DH⊥AB于H,则四边形GHDE为矩形,∴GH=DE=1.5,GE=DH,设DF=x,∵斜坡CD的坡度为1:2,∴CF=2x,由勾股定理得,x2+(2x)2=52,解得,x=,则DF=,CF=2,∴GE=DH=BC+CF=2+2,在Rt△AGE中,tan∠AEG=,则AG=EG•tan∠AEG≈(2+2),∴AB=AG+GH+BH≈4.85+1.5+2.24≈8.6(米),故选:C.。

2017-2018年人教A版必修4《任意角的三角函数》同步练习(A)含答案(数学试卷新课标人教版)

2017-2018年人教A版必修4《任意角的三角函数》同步练习(A)含答案(数学试卷新课标人教版)

专题二任意角的三角函数测试卷(A 卷)(测试时间:120分钟 满分:150分)第I 卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中, 目要求的•1 .若 sin :• ::: 0,且 tan 用 > 0,则:•是( )A.第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】C【解析】根据各个象限的三角函数符号 :一全二正三切四余,可知 :-是第三象限角. 12【解析】••• a 是第二象限角,二cosa =-(1—sin 2 a = -- ,故选D.133.若口是第四象限角,tan a =- 5 则 sin a =1八1155A .—.B .- —.CD551313【答案】 选D【解析】 根据tanasin a 51 m '・sin 2 a +cos2 . .a = 1,二 sin a =- 5cosa12134 .若角a 的终边经过点 P(1-2) ,则tana 的值为()A. —2B.C.1 D.122【答案】A【解析】由正切函数的定义即得 tan - = ^ = — - -2 .x 15 .已知角的终边上一点(),且,则的值是( )A. B. C. D. 【答案】B【解析】由三角函数定义知,,当时,;项是符合题13A12 r 5 512 A . — B . —— CD .-13 13 13152.已知a 是第二象限角,sina=—,则cosa =()当时,,故选B6.【2018河北石家庄二中八月模拟】点 P 、、3,a 是角660终边上一点,贝U a 二() A. -3 B. 3 C.-1 D. 1【答案】A因为 tan660、>_a _,所以 _、3」_]=V 3V 327 .已知 tan=2,,贝U 3sin -cossin+1 =()A.3B.-3C.4D.-4 【答案】A【解析】3sin 5 Cf _cos OC sm^+l=4sin (2~cos CC sinCZ+cos a C£4 sin 2 a-sin acosa+cos'2 a.nasin" tz+cos - a-4tan 2 a —taxi a+1 =3 tan 2 a+lCOST tan r+ ~~肓+ _石的值是()cos 8| |ta n 6|A . 1B . — 1 C. 3D . 4【答案】B—1 = — 1./rr 19 •若…'0,则点 Q(cos 〉, sin :•)位于()2【解析】a = -3,应选答案A 。

专题15 三角函数的图象与性质(核心素养练习)(解析版)

专题15 三角函数的图象与性质(核心素养练习)(解析版)

专题十五 三角函数的图象与性质 核心素养练习一、核心素养聚焦考点一 逻辑推理-—三角函数奇偶性与周期性的综合运用例题13.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3等于( )A .-12 B.12 C .-32 D.32【答案】D【解析】f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-π=f ⎝ ⎛⎭⎪⎫2π3=f ⎝ ⎛⎭⎪⎫2π3-π=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.考点二 数学运算-求三角函数的值域例题14、函数y =cos 2x +sin x ,x ∈R 的值域为________.【答案】⎣⎢⎡⎦⎥⎤-1,54【解析】y =cos 2x +sin x =1-sin 2x +sin x =-⎝⎛⎭⎪⎫sin x -122+54.因为-1≤sin x ≤1,所以-1≤y ≤54,所以函数y =cos 2x +sin x ,x ∈R 的值域为⎣⎢⎡⎦⎥⎤-1,54。

考点三 直观想象-利用三角函数图象解三角不等式 例题15.函数y =2sin x -1的定义域为________.【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z【解析】由2sin x -1≥0得sin x ≥12, 画出y =sin x 的图象和直线y =12.可知sin x ≥12的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z .二、学业质量测评一、选择题1.(2012·全国高一课时练习)若函数[]cos cos ,0,2y x x x π=+∈的大致图像是( )A .B .C .D .【答案】D【解析】30,2232,0222x y cosx cosx cosx x x πππππ⎧⎪⎪=+=⎨⎪<<⎪⎩或,cos y x =在[0,)2π为减函数,在3(2π,2]π为增函数,并且函数值都大于等于0,只有D 符合,故答案为:D2.(2018·全国高一课时练习)函数sin 2y x =-,x ∈R 是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数【答案】A【解析】设()sin2,y f x x ==- 则()()()sin2sin2,f x x x f x -=--==- 故函数函数sin2y x =-,x R ∈是奇函数,由2,2T ππ== 故函数sin2y x =-,x R ∈是最小正周期为π的奇函数. 故选A.3.(2018·全国高一课时练习)函数2cos 1y x =+的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】D【解析】由2cos 1x +⩾0得1cos 2x -,∴222233k x k ππππ-+,k ∈Z. 故选D.4.(2012·全国高一课时练习)下列函数中,周期为π,且在[,]42ππ上为减函数的是( )A .sin()2y x π=+ B .cos()2y x π=+ C .cos(2)2y x π=+ D .sin(22)y x π=+【答案】D【解析】由题意得,函数的周期为π,只有C,D 满足题意,对于函数cos(2)sin 22y x x π=+=-在[,]42ππ上为增函数, 函数sin(2)cos 22y x x π=+=在[,]42ππ上为减函数,故选D. 5.(2018·全国高一课时练习)函数2sin(2)3y x π=+的图像 ( )A .关于y 轴对称B .关于直线6x π=对称C .关于点(0,0)对称D .关于点(,0)6π-对称 【答案】D 【解析】当0x =时,2sin33y π==0,且无法取到最值,选项A ,C 错误;当6x π=时,2sin 333y ππ⎛⎫=+=⎪⎝⎭0,且无法取到最值,选项B 错误; 当6x π=-时,2sin 033y ππ⎛⎫=-+= ⎪⎝⎭,函数值为0,关于点,06π⎛⎫- ⎪⎝⎭中心对称; 本题选择D 选项.6.(2016·全国课时练习)下列不等式中正确的是( ) A .3π2πtantan55> B .tan 4tan 3>C .tan 281tan 665︒>︒D .13π12πtan tan 45⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】3πtan05<,2πtan 05>,所以A 选项错误;因为π33π,π4π22<<<<,所以tan 30,tan 40<>,故B 选项正确;()()tan 281tan 79,tan 665tan 55︒=-︒︒=-︒,正切函数tan y x=在ππ,22⎛⎫-⎪⎝⎭上单调递增,所以tan 281tan 665︒<︒,C 选项错误; 13ππtan πtan 3πtan 444⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12π2πtan tan 2π55⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭2πtan 5⎛⎫- ⎪⎝⎭ ,正切函数tan y x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以 13π12πtan tan 45⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 错误.7.(2016·全国课时练习)函数()πtan 23f x x ⎛⎫=+⎪⎝⎭,则( ) A .函数的最小正周期为π,且在5ππ,1212⎛⎫-⎪⎝⎭上是增函数 B .函数的最小正周期为π2,且在5ππ,1212⎛⎫-⎪⎝⎭上是减函数 C .函数的最小正周期为π,且在π7π,1212⎛⎫⎪⎝⎭上是减函数 D .函数的最小正周期为π2,且在π7π,1212⎛⎫ ⎪⎝⎭上是增函数 【答案】D【解析】对于函数()πtan 23f x x ⎛⎫=+⎪⎝⎭,因为πππtan 2223f x x ⎡⎤⎛⎫⎛⎫+=++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()ππtan π2tan 233x x f x ⎛⎫⎛⎫++=+= ⎪ ⎪⎝⎭⎝⎭,所以它的最小正周期为π2,当π7π,1212x ⎛⎫∈ ⎪⎝⎭时,ππ3π2,322x ⎛⎫+∈ ⎪⎝⎭,函数()πtan 23f x x ⎛⎫=+ ⎪⎝⎭单调递增,故选D.8.(2016·全国课时练习)若3tan 1x <≤-,则x 的取值集合为( )A .ππ2π,2π,34k k k ⎛⎫--∈ ⎪⎝⎭Z B .π3π2π+,2π+,24k k k ⎛⎫∈ ⎪⎝⎭Z C .πππ,π,34k k k ⎛⎤--∈ ⎥⎝⎦Z D .πππ,π+,34k k k ⎛⎤-∈ ⎥⎝⎦Z 【答案】C【解析】在ππ,22⎛⎫-⎪⎝⎭这个周期内,3tan 1x <≤-所对应的区间是ππ,34⎛⎤-- ⎥⎝⎦,故在R 上,3tan 1x -≤-的解集为πππ,π,34k k k ⎛⎤--∈ ⎥⎝⎦Z .9.(2016·全国课时练习)函数2cos sin 1y x x =+-的值域为( )A .11,44⎡⎤-⎢⎥⎣⎦ B .10,4⎡⎤⎢⎥⎣⎦ C .12,4⎡⎤-⎢⎥⎣⎦ D .11,4⎡⎤-⎢⎥⎣⎦【答案】C【解析】222211cos sin 11sin sin 1sin sin sin 24y x x x x x x x ⎛⎫=+-=-+-=-+=--+ ⎪⎝⎭,当sin 1x =-时,min 2;y =-当1sin 2x =时,max 14y =.所以值域为12,4⎡⎤-⎢⎥⎣⎦. 10.(2016·全国课时练习)下列关系式中正确的是( )A .sin11sin168cos77︒<︒<︒B .sin168sin11cos77︒<︒<︒C .sin11cos77sin168︒<︒<︒D .sin168cos77sin11︒<︒<︒ 【答案】A【解析】∵()sin168sin 18012sin12︒=︒-︒=︒,()cos77cos 9013sin13︒=︒-︒=︒, 由正弦函数的单调性得sin11sin12sin13︒<︒<︒,即sin11sin168cos77︒<︒<︒.11.(2016·全国课时练习)当ππ44x -≤≤时,函数()π2sin 4f x x ⎛⎫=+ ⎪⎝⎭有 ( )A .最大值为1,最小值为1-B .最大值为2,最小值为1-C .最大值为2,最小值为2-D .最大值为2,最小值为0 【答案】D 【解析】∵ππ44x -≤≤,∴ππ042x ≤+≤. ∴π02sin 24x ⎛⎫≤+≤ ⎪⎝⎭,函数()f x 有最小值0,最大值2. 12.(2016·全国课时练习)要得到函数[]3sin ,0,2πy x x =-∈的图象,只需将函数[]3sin ,0,2πy x x =∈的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线y x =对称 【答案】B【解析】由于()y f x =与()y f x =-的图象关于x 轴对称,所以要得到函数3sin ,y x =-[]0,2πx ∈的图象,只需将函数[]3sin ,0,2πy x x =∈的图象关于x 轴对称.二、填空题13.(2018·浙江省诸暨市牌头中学高一课时练习)函数()23s 34f x in x cosx =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是__________. 【答案】1【解析】化简三角函数的解析式, 可得()22311cos 3cos 344f x x x x x =-+-=-+= 23(cos 1x -+, 由[0,]2x π∈,可得cos [0,1]x ∈,当3cos x =时,函数()f x 取得最大值1. 14.(2016·辽宁高一课时练习(文))①函数y =cos (23x +2π)是奇函数; ②存在实数α,使得sin α+cos α=2;③若α、β是第一象限角且α<β,则tan α<tan β;④x =8π是函数y =sin (2x +54π)的一条对称轴方程; ⑤函数y =tan (2x +3π)的图象关于点(12π,0)成中心对称图形.其中正确命题的序号为__________. 【答案】①④⑤【解析】①函数22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭,而2sin 3y x =-是奇函数,故函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数,故①正确;②因为sinx ,cosx 不能同时取最大值1,所以不存在实数x 使sinx+cosx=2成立,故②错误.③令 α=3π,β=136π,则3tanβ=tan 136π=tan 6π3tanα>tanβ,故③不成立. ④把x=8π代入函数5sin 24y x π⎛⎫=+⎪⎝⎭,得y=-1,为函数的最小值,故x =8π是函数5sin 24y x π⎛⎫=+ ⎪⎝⎭的一条对称轴,故④正确;⑤因为y=tan (2x+3π)图象的对称中心在图象上,而点(12π,0)在图象上,所以⑤成立 15.(2016·全国课时练习)函数cos y x =在区间[]π,a -上为增函数,则a 的取值范围是________. 【答案】(]π,0-【解析】因为cos y x =在[]π,0-上是增函数,在[]0,π上是减函数, 所以只有π0a -<≤时满足条件,故(]π,0a ∈-.16.(2012·全国高一课时练习)函数y =√log 12tanx 的定义域是______.【答案】{x |k π<x ≤k π+π4,k ∈Z} 【解析】要使函数有意义,必须log 12tan x ≥0, ∴0<tan x ≤1,∴k π<x ≤k π+π4,k ∈Z ,∴该函数的定义域是{x |k π<x ≤k π+π4,k ∈Z}.三、解答题17.(2019·全国高一课时练习)已知函数f (x )=2sin (2x 6π-)+a ,a 为常数 (1)求函数f (x )的最小正周期;(2)若x ∈[0,2π]时,f (x )的最小值为﹣2,求a 的值. 【答案】(1)π;(2)a =-1. 【解析】(1)∵f (x )=2sin (2x 6π-)+a , ∴f (x )的最小正周期T 22π==π. (2)当x ∈[0,2π]时,2x 6π-∈[6π-,56π],故当2x 66ππ-=-时,函数f (x )取得最小值,即sin (6π-)12=-, ∴f (x )取得最小值为﹣1+a =﹣2, ∴a =﹣1.18.(2018·全国高一课时练习)已知函数f(x)2)4x π+(1)求函数f(x)的最小正周期和单调递减区间; (2)在所给坐标系中画出函数f(x)在区间4[,]33ππ上的图象(只作图不写过程).【答案】(1)π.,5,,88k k k Zππππ⎡⎤++∈⎢⎥⎣⎦(2)见解析【解析】(1)T==π.令2kπ+≤2x+≤2kπ+π,k∈Z,则2kπ+≤2x≤2kπ+π,k∈Z,得kπ+≤x≤kπ+π,k∈Z,∴函数f(x)的单调递减区间为,k∈Z.(2)列表:2x+ππ2ππxf(x)=sin0-0描点连线得图象如图:19.(2016·全国课时练习)判断下列函数的奇偶性:(1)()sin cos f x x x =+;(2)()1cos cos 1f x x x =-- 【答案】(1)偶函数 (2)既是奇函数又是偶函数【解析】(1)函数的定义域为R ,()()()()sin cos sin cos f x x x x x f x -=-+-=+=, 所以此函数是偶函数.(2)由1cos 0x -≥且cos 10x -≥,得cos 1x =,从而2πx k =,k ∈Z , 此时()0f x =,故该函数既是奇函数又是偶函数.20.(2016·全国课时练习)比较下列各组数的大小.(1)cos870,cos890︒︒;(2)37π49πsin ,sin 63⎛⎫-⎪⎝⎭. 【答案】(1)cos870cos890︒>︒(2)37π49πsin sin 63⎛⎫-< ⎪⎝⎭【解析】(1)()cos870cos 2360150cos150.︒=⨯︒+︒=︒()cos890cos 2360170cos170.︒=⨯︒+︒=︒∵余弦函数cos y x =在[]0,180︒︒上是减函数, ∴cos150cos170︒>︒,即cos870cos890︒>︒.(2)37πππ49πππsin sin 6πsin ,sin sin 16πsin ,666333⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ∵正弦函数sin y x =在ππ,22⎡⎤-⎢⎥⎣⎦上是增函数, ∴ππsin sin 63⎛⎫-< ⎪⎝⎭,即37π49πsin sin 63⎛⎫-< ⎪⎝⎭. 21.(2012·全国高一课时练习)已知函数f (x )=2a sin 23x π⎛⎫- ⎪⎝⎭+b 的定义域为0,2π⎡⎤⎢⎥⎣⎦,函数最大值为1,最小值为-5,求a 和b 的值.【答案】a =12-3b =-23+3,或a =-12+3,b =19-3【解析】∵0≤x ≤2π,∴-3π≤2x -3π≤23π. ∴-32≤sin 23x π⎛⎫- ⎪⎝⎭≤1.若a >0,则21{35a b a b +=-+=-,解得1263{23123a b =-=-+,若a <0,则25{31a b a b +=-+=,解得1263{193a b =-+=-综上可知,a =12-3,b =-23+3a =-12+3b =19-322.(2018·全国高一课时练习)已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:x6π-3π 56π 43π 116π73π 176πy1- 1 3 1 1- 1 3(1)根据表格提供的数据求函数()f x 的一个解析式; (2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m = 恰有两个不同的解,求实数m 的取值范围.【答案】(1)()2sin 13f x x π⎛⎫=-+ ⎪⎝⎭(2))31,3 【解析】(1)绘制函数图象如图所示:设()f x 的最小正周期为T ,得11266T πππ=-=.由2T πω=得1ω=. 又31B A B A +=⎧⎨-=-⎩解得21A B =⎧⎨=⎩, 令5262k ππωφπ⋅+=+,即5262k ππφπ+=+,k Z ∈, 据此可得:23k πϕπ=-,又2πφ<,令0k =可得3πφ=-.所以函数的解析式为()213f x sin x π⎛⎫=-+ ⎪⎝⎭. (2)因为函数()213y f kx sin kx π⎛⎫==-+ ⎪⎝⎭的周期为23π,又0k >,所以3k =. 令33t x π=-,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,33t ππ⎡⎤∈-⎢⎥⎣⎦. sint s =在2,33ππ⎡⎤-⎢⎥⎣⎦上有两个不同的解的条件是3s ⎫∈⎪⎪⎣⎭, 所以方程()f kx m =在0,3x π⎡⎤∈⎢⎥⎣⎦时恰好有两个不同的解的条件是)31,3m ⎡∈⎣, 即实数m 的取值范围是)31,3.。

专题04 二倍角的三角函数(知识串讲+热考题型+专题训练)(解析版)

专题04 二倍角的三角函数(知识串讲+热考题型+专题训练)(解析版)

专题4二倍角的三角函数(一)二倍角的正弦S 2α:sin2α=2sin αcos α(二)二倍角的余弦C 2α:cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(三)二倍角的正切T 2α:tan2α=2tan α1-tan 2α;公式应用的条件:α≠24k ππ+且α≠k π+2π(k ∈Z ),当α=k π+2π(k ∈Z )时,tan α不存在,求tan2α的值可采用诱导公式(四)二倍角公式的逆用、变形1.逆用形式:2sin αcos α=sin2α;sin αcos α=12sin2α;cos α=sin2α2sin α;cos 2α-sin 2α=2cos 2α-1=1-2sin 2α=cos2α;2tan α1-tan 2α=tan2α.2.变形用形式:1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2;1+cos2α=2cos 2α;1-cos2α=2sin 2α;cos 2α=1+cos2α2;sin 2α=1-cos2α2.题型一公式的正用【典例1】(2022春·江苏南京·高一南京航空航天大学附属高级中学校考期中)已知()0,απ∈,1tan 2α=,则cos2α=()A .15B .35C .45D .1225【典例2】(2022春·江苏苏州·高一统考期末)已知向量3sin ,2,1,1cos a b αα=-=-,若2a b ⋅=-,则tan2α=()A .1213-B .613-C .125-D .65-【典例3】(2022春·江苏徐州·高一校考竞赛)求sin sin sin 181818的值.由给出的某些角的三角函数值,求另外一些角的三角函数值,关键在于“变角”使“目标角”变成“已知角”,另外角的范围应根据所给条件进一步缩小,避免出现增解.题型二公式的逆用【典例4】(2022春·江苏盐城·高一江苏省响水中学校考阶段练习)设212tan13cos 66,,21tan 13a b c ︒=︒-︒==-︒则有()A .a b c >>B .a b c <<C .a c b<<D .b<c<a正确的是()A .tan 25tan 3525tan 35︒+︒+︒⋅︒=B .22ππ1cos sin 12122-=C .2tan22.51tan45tan 22.52︒=︒-︒D.12sin10=(1)求值()4sin 67cos 27sin 23cos 27tan 40-- ;(2)已知ππ1sin sin 634αα⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭,ππ,32α⎛⎫∈ ⎪⎝⎭,求sin 2α的值当出现(或可化成)公式右端结构形式时,注意“逆用”公式,简化解题过程.题型三公式的变用【典例7】(2023秋·重庆沙坪坝·=()A .1BCD 122122212212222sin cos sin cos π,Z sin cos sin cos sin θθθθθk θθθθθ⎛⎫+-+++=≠∈ ⎪+++-⎝⎭.【典例9】(2023·江苏·高一专题练习)已知cos 2,252θθπ=<<.(1)求tan θ的值;(2)求22cos sin 24θθπθ-⎛⎫+ ⎪⎝⎭的值.公式变形的主要形式有1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2,1+cos2α=2cos 2α,1-cos2α=2sin 2α,cos 2α=1+cos2α2,sin 2α=1-cos2α2.题型四三角函数式化简问题【典例10】(2022秋·河北承德·高一河北承德第一中学校考期末)化简:1cos15sin15·sin170cos15sin15⎫︒+︒-⎪⎪︒︒-︒⎝⎭____.sin21tan tan2ααα⎛⎫+=⎪⎝⎭__.︒-︒cos40sin501︒+︒︒1.三角公式化简求值的策略(1)使用倍角公式,首先要记住公式的结构特征和符号变化规律.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.(3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用.2.注意三角函数公式逆用、变形用及“变角、变名、变号”的“三变”问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,,23入特殊角,把“值变角”构造适合公式的形式.题型五三角恒等式证明问题【典例13】(2023·江苏·高一专题练习)证明:ππ2sin sin cos 244ααα⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭;【典例14】(2023·江苏·高一专题练习)求证:tan 1sin 2cos 2ααα=++【典例15】(2023春·湖北黄冈·高一校考阶段练习)(1)化简:cos()2sin sin αβαβ--;(2)求证:1sin cos sin 1sin cos 1cos θθθθθθ+-=+++.三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目.(2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.一、单选题1.(2023·江苏·高一专题练习)1sin cos ,sin25ααα+=-=()A .2425-B .2425C .1225D .1225-2.(2023春·安徽·高三合肥市第六中学校联考开学考试)已知2sin 2cos24θ+=,则sin 2θ=A .1516-B .1516C .34-D .34tan 26πα⎛⎫+= ⎪⎝⎭,则4tan 23πα⎛⎫+= ⎪⎝⎭()A .512B .43-C .34D .43A .0B .2cos αC π4α⎛⎫- ⎪⎝⎭D π4α⎛⎫+ ⎪⎝⎭5.(2022春·江苏宿迁·高一统考期末)若51sin 123⎛⎫+= ⎪⎝⎭πα,则cos 26πα⎛⎫- ⎪⎝⎭的值为()A .9B .9-C .79D .79-sin (1sin 2)sin cos θθθθ+=+()A .25B .25-C .65D .65-7.(2022春·江苏苏州·高一江苏省沙溪高级中学校考期中)已知0,απ∈,且sin cos 5αα-=,则22sin2cos sin ααα=-()A .247B .12C .12-D .247-,且,则α=()A .9B .18C .27oD .36o【答案】D【分析】根据二倍角公式和逆用余弦的差角公式化简得到()cos 29sin 9α+=,结合090α<< 得到29909α+=- ,求出α.【详解】因为()()sin181sin 22sin 9cos 91sin 2αα+=+,所以()22cos 9cos 22sin 9cos 91sin 2αα=+,整理得:cos9cos 2sin 9sin 2sin 9αα=+ ,cos9cos 2sin 9sin 2sin 9αα-= ,()cos 29sin 9α+= ,因为090α<< ,所以929189α<+< ,所以29909α+=- ,解得:36α= 故选:D.二、多选题9.(2022春·江苏盐城·高一盐城市伍佑中学校考期中)下列等式成立的是()A .22cos 15sin 15-B .sincos 882ππ=C .1sin 4040sin 702=D .tan152=10.(2022春·江苏徐州·高一统考期中)已知sin cos 5αα+=,以下选项正确的是()A .24sin 225α=±B .7sin cos 5αα-=±C .7cos 225α=±D .447sin cos 25αα-=±11.(2023秋·宁夏银川·高一银川唐徕回民中学校考期末)24cos 20︒=___________.12.(2022春·江苏盐城·高一统考期中)若(,2)2απ∈_____.13.(2022秋·上海宝山·高一上海交大附中校考阶段练习)已知tan 2θ=-π02θ<<.(1)求tan θ;(2)求22cos sin 12π4θθθ+-⎛⎫- ⎪⎝⎭.14.(2023秋·陕西渭南·高一统考期末)(1)已知2sin sin 22α=-,求sin cos cos2ααα+的值;(2)已知ππ22x -<<,1sin cos 5x x +=,则2sin22sin 1tan x x x+-.15.(2023·江苏·高一专题练习)已知向量()()sin ,1,3,cos m n αα=-=-,其中,π2α⎛⎫∈ ⎪⎝⎭,且m n ⊥ .(1)求tan α和sin 2α的值;(2)若sin()αβ+=0,2πβ⎛⎫∈ ⎪⎝⎭,求角β的值.16.(2022春·江苏盐城·高一盐城中学校考期中)已知向量()cos ,sin a αα=,122b ⎫=-⎪⎪⎝⎭,02πα<<.(1)若a b ⊥时,求sin 21cos 2αα+的值;(2)若a b -= sin 212απ⎛⎫+ ⎪⎝⎭的值.。

方法技巧专题18 三角函数的图像和性质(学生版)

方法技巧专题18 三角函数的图像和性质(学生版)

方法技巧专题18三角函数的图像和性质解析版一、 三角函数的图像和性质知识框架【一】化为同角同函型1.例题【例1】函数()cos cos sin 2y x x x π⎛⎫=-+ ⎪⎝⎭的单调递增区间是( ) A . 32,288k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k Z ∈ B . 3,88k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ C . ,44k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈ D . 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k Z ∈2.巩固提升综合练习【练习1】已知函数()sin 2cos f x x x =-. ①()f x 的最大值为________ ;②设当x θ=时,()f x 取得最大值,则cos θ=______.【练习2】已知函数1)cos (sin cos 2)(+-=x x x x f ,求函数)(x f 的最小正周期和单调增区间;【练习3】已知22sin cos cos ()()x x x f x x x =--∈R ,求()f x 的最小正周期及单调递增区间.1.例题【例1】函数)2cos(62cos )(x x x f -+=π的最大值为 ____________.【例2】函数y =sin x +cos x +sin x cos x 的值域为_______2.巩固提升综合练习【练习1】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【练习2】求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值.【练习3】函数y =sin x -cos x +sin x cos x ,x ∈[0,π]的值域为________.【一】图像型1.例题【例1】已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><的部分图象如图所示,其中()()2,1,8,1M N -分别是函数()f x 的图象的一个最低点和一个最高点,则Aωϕ+=( )A. 23π-B. 6π-C. 6πD. 23π【例2】函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<的图象如图所示,则( )A . ()f x 在,313ππ⎛⎫-⎪⎝⎭上是增函数B . ()f x 在,213ππ⎛⎫-⎪⎝⎭上是增函数 C . ()f x 在27,36ππ⎛⎫⎪⎝⎭上是増函数D . ()f x 在,212ππ⎛⎫-⎪⎝⎭上是增函数【例3】已知函数()()2sin (0f x x ωϕω=+>,)x ϕ<的部分图像如图所示,已知点(A ,,06B π⎛⎫⎪⎝⎭,若将它的图像向右平移6π个单位长度,得到函数()g x 的图像,则函数()g x 图像的一条对称轴方程为( )A . 24x π=- B . 4x π=C . 3x π=D . 23x π=2.巩固提升综合练习【练习1】函数()()sin f x A x ωϕ=+ (其中0A >, 2πϕ<)的部分图象如图所示,将函数()f x 的图象( )可得()sin 24g x x π⎛⎫=+⎪⎝⎭的图象A . 向右平移12π个长度单位B . 向左平移24π个长度单位C . 向左平移12π个长度单位D . 向右平移24π个长度单位【练习2】如图,某港口一天6时到18时的谁深变化曲线近似满足函数y =3sin (6πx +Φ)+k ,据此函数可知,这段时间水深(单位:m )的最大值为____________.【二】性质型1.例题【例1】已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-, 为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( ) (A )11(B )9(C )7(D )5【例2】设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上单调,且⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为( ) A .2πB .2πC .4πD .π【例3】设函数,,其中,.若,,且的最小正周期大于,则( )(A ),(B ),(C ),(D ),2.巩固提升综合练习【练习1】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________.【练习2】若函数()()()cos f x x x θθ+++的图象关于y 轴对称,则θ的一个值为( ) A . 6πB .3π C .23π D .56π【例1】已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【例2】设函数,其中.已知.(Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.2.巩固提升综合练习【练习1】函数()()sin f x x ωϕ=+(0ω>, 2πϕ<)的最小正周期是π,若其图象向左平移3π个单位后得到的函数为奇函数,则函数()f x 的图象( ) A . 关于点012π⎛⎫⎪⎝⎭,对称 B . 关于直线12x π=对称C . 关于点06π⎛⎫ ⎪⎝⎭,对称 D . 关于直线6x π=对称【练习2】已知函数1()2sin()3f x x π=+,将()y f x =的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再将图象向左平移1个单位,所得图象对应的函数为()g x ,若函数的图象在P ,Q 两处的切线都与x 轴平行,则||PQ 的最小值为( )A B .4 C .4π D .1.例题【例1】 已知函数()22sin cos 44f x x x x ππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,则()f x 在02x π⎡⎤∈⎢⎥⎣⎦,上的最大值与最小值之差为 .【例2】函数的最小值为 .【例3】函数()sin cos 2sin cos ,44f x x x x x x ππ⎛⎫⎡⎤=++∈-⎪⎢⎥⎣⎦⎝⎭的最小值是__________.【例4】求函数xxy cos 2sin 2--=的值域x x x f sin 22cos )(+=2.巩固提升综合练习【练习1】已知的定义域为[].求的最小值.【练习2】函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 。

三角函数计算练习题及答案详解

三角函数计算练习题及答案详解

三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。

三角函数及三角恒等变换测试题及答案

三角函数及三角恒等变换测试题及答案

三角函数及恒等变换考试试卷一、选择题(共12小题,满分60分,每小题5分)1、(5分)(2018•陕西)方程|x|=cosx在(﹣∞,+∞)内()A、没有根B、有且仅有一个根C、有且仅有两个根D、有无穷多个根2、(5分)(2018•天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,﹣π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则()A、f(x)在区间[﹣2π,0]上是增函数B、f(x)在区间[﹣3π,﹣π]上是增函数C、f(x)在区间[3π,5π]上是减函数D、f(x)在区间[4π,6π]上是减函数3、(5分)(2018•山东)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A、B、C、2 D、34、(5分)(2018•辽宁)已知函数,y=f(x)的部分图象如图,则=()A、B、C、D、5、(5分)(2018•重庆)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A、ω=1,φ=B、ω=1,φ=﹣C、ω=2,φ=D、ω=2,φ=﹣6、(5分)(2018•重庆)下列关系式中正确的是()A、sin11°<cos10°<sin168°B、sin168°<sin11°<cos10°C、sin11°<sin168°<cos10°D、sin168°<cos10°<sin11°7、(5分)(2018•山东)将函数y=sin2x的图象向左平移个单位,再向上平移1个单位,所得图象的函数解析式是()A、y=2cos2xB、y=2sin2xC、D、y=cos2x8、(5分)(2018•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A、B、C、D、39、(5分)(2018•江西)已知函数f(x)=Acos(ωx+φ)的图象如图所示,f()=﹣,则f(0)=()A、﹣B、﹣C、D、10、(5分)(2018•广东)函数y=2cos2(x﹣)﹣1是()A、最小正周期为π的奇函数B、最小正周期为π的偶函数C、最小正周期为的奇函数D、最小正周期为的偶函数11、(5分)(2018•天津)设,,,则()A、a<b<cB、a<c<bC、b<c<aD、b<a<c12、(5分)已知函数f(x)=sin(2x﹣),若存在a∈(0,π),使得f(x+a)=f(x+3a)恒成立,则a=()A、B、C、D、二、填空题(共4小题,满分16分,每小题4分)13、(4分)(2018•辽宁)已知f(x)=sin(ω>0),f()=f(),且f(x)在区间上有最小值,无最大值,则ω=_________.14、(4分)(2018•四川)已知函数(ω>0)在单调增加,在单调减少,则ω=_________.15、(4分)(2007•四川)下面有5个命题:①函数y=sin4x﹣cos4x的最小正周期是π;②终边在y轴上的角的集合是;③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有3个公共点;④把函数的图象向右平移得到y=3sin2x的图象;⑤角θ为第一象限角的充要条件是sinθ>0其中,真命题的编号是_________(写出所有真命题的编号)16、(4分)若=_________.三、解答题(共7小题,满分74分)17、(10分)(2018•四川)求函数y=7﹣4sinxcosx+4cos2x﹣4cos4x的最大值与最小值.18、(10分)(2018•北京)已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.19、(10分)(2018•陕西)如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?20、(10分)(2018•浙江)已知函数,x∈R,A>0,.y=f(x)的部分图象,如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(Ⅰ)求f(x)的最小正周期及φ的值;(Ⅱ)若点R的坐标为(1,0),,求A的值.21、(10分)(2018•江苏)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β.(1)该小组已经测得一组α、β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125m,试问d为多少时,α﹣β最大?22、(10分)(2018•广东)已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点.(1)求f(x)的解析式;(2)已知,且,,求f(α﹣β)的值.23、(14分)已知函数,(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)画出函数的图象,由图象研究并写出g(x)的对称轴和对称中心.答案与评分标准一、选择题(共12小题,满分60分,每小题5分)1、(5分)(2018•陕西)方程|x|=cosx在(﹣∞,+∞)内()A、没有根B、有且仅有一个根C、有且仅有两个根D、有无穷多个根考点:余弦函数的图象。

小题必刷卷(五) 三角函数

小题必刷卷(五) 三角函数

小题必刷卷(五)三角函数题组一刷真题角度1三角函数的概念1.[2018·全国卷Ⅰ]已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=()A.15B.√55C.2√55D.1角度2同角三角函数的基本关系式与诱导公式2.[2015·福建卷]若sin α=-513,且α为第四象限角,则tan α的值等于()A.125B.-125C.512D.-5123.[2017·北京卷]在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则sin β=.角度3三角函数的图像与变换图X5-14.[2016·全国卷Ⅱ]函数y=A sin(ωx+φ)的部分图像如图X5-1所示,则()A.y=2sin2x-π6B.y=2sin2x-π3C.y=2sin x+π6D.y=2sin x+π35.[2017·全国卷Ⅰ] 已知曲线C 1:y=cos x ,C 2:y=sin (2x +2π3),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 26.[2015·陕西卷] 如图X5-2,某港口一天6时到18时的水深变化曲线近似满足函数y=3sinπ6x+φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为 ( )图X5-2A .5B .6C .8D .10角度4 三角函数的性质7.[2017·全国卷Ⅲ] 设函数f (x )=cos (x +π3),则下列结论错误的是 ( )A .f (x )的一个周期为-2πB .y=f (x )的图像关于直线x=8π3对称 C .f (x+π)的一个零点为x=π6 D .f (x )在(π2,π)单调递减8.[2018·全国卷Ⅲ] 函数f (x )=tanx1+tan 2x 的最小正周期是( )429.[2018·全国卷Ⅰ]已知函数f(x)=2cos2x-sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为410.[2018·全国卷Ⅱ]若f(x)=cos x-sin x在[-a,a]是减函数,则a的最大值是()A.π4B.π2C.3π4D.π11.[2018·天津卷]将函数y=sin2x+π5的图像向右平移π10个单位长度,所得图像对应的函数()A.在区间[3π4,5π4]上单调递增B.在区间[3π4,π]上单调递减C.在区间[5π4,3π2]上单调递增D.在区间[3π2,2π]上单调递减12.[2018·全国卷Ⅲ]函数f(x)=cos(3x+π6)在[0,π]的零点个数为.13.[2018·北京卷]设函数f(x)=cos(ωx-π6)(ω>0).若f(x)≤f(π4)对任意的实数x都成立,则ω的最小值为.题组二刷模拟14.[2018·南阳一中月考]已知α-π4的终边上有一点(-1,√2),则sin α-cos α=()A.√6-√33B.√2-13C.√33D.2√3315.[2018·烟台一模]在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sin α=35,则sin β的值为()555516.[2018·辽宁育才学校月考] 设a=sin 33°,b=cos 55°,c=tan 35°,则 ( ) A .a>b>cB .c>b>aC .a>c>bD .c>a>b17.[2018·青岛二模] 要得到函数y=sin 2x 的图像,需要将函数y=sin (2x +π6)的图像( )A .向左平移π6个单位长度 B .向右平移π6个单位长度 C .向左平移π12个单位长度D .向右平移π12个单位长度18.[2018·长春模拟] 已知sin (α+π3)+sin α=-4√35,-π2<α<0,则cos (α+2π3)= ( )A .-45 B .-35C .35D .4519.[2018·福建南平质检] 将函数f (x )=2sin(3x+φ)的图像向右平移π12个单位,得到的图像关于y 轴对称,则|φ|的最小值为( )A .π12 B .π4 C .π3 D .5π1220.[2018·成都一模] 已知函数f (x )=A sin(ωx+φ)A>0,ω>0,|φ|<π2的最大值是2,f (x )的图像相邻两条对称轴之间的距离为π2,且关于直线x=π6对称,则下列判断正确的是 ( ) A .要得到函数f (x )的图像,只需将y=2cos 2x 的图像向左平移π12个单位 B .当x ∈[-π6,π6]时,函数f (x )的最小值是-2C .函数f (x )的图像关于直线x=-7π12对称 D .函数f (x )在[2π3,π]上单调递增21.[2018·江苏盐城中学月考] 已知tan θ=2,则sin θcos θ= .22.[2018·泸州一诊] 已知函数f (x )=2cos (π2+x),且f (-a )=13,则f (a )的值为 .23.[2018·金华十校联考] 在平面直角坐标系中,角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边过点P (-√3,-1),则tan α= ,cos α+sin (α-π2)= .24.[2018·雅安三诊] 函数f (x )=√3sin (2x +π3)的图像在区间(0,π2)上的对称轴方程为 .25.[2018·武昌调研] 若tan α=cos α,则1sinα+cos 4α= . 26.[2018·莆田八中期中] 设函数f (x )=sin(ωx+φ)ω>0,φ∈-π2,π2的最小正周期为π,且其图像关于直线x=π12对称,对于函数f (x )有下面四个结论:①其图像关于点π4,0对称;②其图像关于点π3,0对称;③在0,π6上是增函数;④在-π6,0上是增函数.其中所有正确结论的编号为 .。

专题25 导数中的三角函数问题(解析版)

专题25 导数中的三角函数问题(解析版)

专题25导数中的三角函数问题1.已知函数()e (sin cos )x f x x x kx =++,R k ∈,()(),()().g x f x h x g x ''==(1)已知(0)(0)f h =,求k 的值;(2)是否存在k ,使得对任意R x ∈,恒有()2()2()0h x g x f x -+=成立?说明理由.【解析】(1)因为()()()e 2cos x g x f x x kx k '==++,()()()e 2cos 2sin 2xh x g x x x kx k '==-++,所以()022h k =+,而()01f =,由221k +=解得12k =-.(2)对任意R x ∈,()2()2()0h x g x f x -+=恒成立,即()()e 2cos 2sin 22e 2cos 2e (sin cos )0x x x x x kx k x kx k x x kx -++-+++++=,化简可得,0kx =,所以0k =时,可使得对任意R x ∈,恒有()2()2()0h x g x f x -+=成立.2.设函数()sin x f x e a x b =++.(1)若()f x 在0x =处的切线为10x y --=,求,a b 的值;(2)当[)1,0,a x =∈+∞时,()0f x ≥恒成立,求b 的范围.【解析】(1)由()sin x f x e a x b =++得:()cos x f x e a x =+',且()01f b =+.由题意得:()001f e a '=+=,即0a =,又()0,1b +在切线10x y --=上.∴0110b ---=,得2b =-.(2)当1a =时,()sin x f x e x b =++,得()cos xf x e x '=+,当[)0,x ∈+∞时,[]1,cos 1,1xe x ≥∈-,当cos 1x =-时,2,x k k N ππ=+∈,此时e 1x >.∴()0f x ¢>,即()f x 在[)0,+∞上单调递増,则()()min 01f x f b ==+,要使()0f x ≥恒成立,即10b +≥,∴1b ≥-.3.设函数()2cos ,x f x e a x a =+∈R .(1)若()f x 在0,2π⎛⎫⎪⎝⎭上存在零点,求实数a 的取值范围;(2)证明:当[]1,2,0,2a x π⎛⎫∈∈ ⎪⎝⎭时,()23f x x +.【解析】(1)设()2,()cos x g x e h x a x ==,因为当0,2x π⎛⎫∈ ⎪⎝⎭时,()g x 为增函数,当0a ≥时,0()h x a ≤≤,22()2g x e π<<,所以()f x 在0,2π⎛⎫ ⎪⎝⎭上恒大于零,所以()f x 在0,2π⎛⎫⎪⎝⎭上不存在零点,当0a <时,()h x 在0,2π⎛⎫⎪⎝⎭上为增函数,根据增函数的和为增函数,所以()f x 在0,2π⎛⎫⎪⎝⎭上为单调函数,所以()f x 在0,2π⎛⎫⎪⎝⎭上若有零点,则仅有1个,所以(0)()02f f π<,即2(2)20a e π+⋅<,解得2a <-,所以实数a 的取值范围(,2)-∞-(2)证明:设()()232cos 23x G x f x x e a x x =--=+--,则'()2sin 2x G x e a x =--,则'0(0)2sin 020G e a =--=,所以''()2cos xG x e a x ⎡⎤=-⎣⎦,因为[1,2]a ∈,所以''()0G x ⎡⎤≥⎣⎦,所以'()G x 在0,2π⎛⎫ ⎪⎝⎭上递增,'()0G x >在0,2π⎛⎫⎪⎝⎭上恒成立,所以()G x 在0,2π⎛⎫⎪⎝⎭上递增,而(0)231G a a =+-=-,因为[1,2]a ∈,所以(0)0G ≥,所以()0G x ≥恒成立,所以当[1,2]a ∈时,()23f x x +4.已知函数()sin ,[0,],0x f x ae x x x a π=++∈<.(1)证明:当1a =-时,函数()f x 有唯一的极大值;(2)当()21f x x <-恒成立,求实数a 的取值范围.【解析】(1)证明:()e cos 1x f x a x '=++,因为[]0,x π∈,所以1cos 0x +≥,当1a =-时,()cos 1x f x e x '=-++,令()e cos 1,()e sin 0x x g x x g x x '=-++=--<,()g x 在区间[]0,π上单调递减;(0)121,()e 0g g ππ=-+==-<,存在()00,π∈x ,使得()00f x '=,所以函数()f x 递增区间是[]00,x ,递减区间是[]0,x π.所以函数()f x 存在唯一的极大值()0f x .(2)由()21f x x <-,即令()e sin 10,0,()e cos 10'=+-+<<∴=+-<x x h x a x x a h x a x ,()h x ∴在区间[]0,π上单调减函数,()(0)1≤=+h x h a ,只要10a +<即可,即1a <-.5.已知函数()cos x f x e x ax =--.(1)当a=2时,证明:()f x 在(),0-∞上单调递减.(2)若对任意x≥0,()cos f x x x ≥-恒成立,求实数a 的取值范围.【解析】(1)证明:当a=2时,函数()cos 2x f x e x x =--,()sin 2x f x e x '=+-,若0x <,则1x e <,.因为sin 1x <,所以()sin 20x f x e x '=+-<,故()f x 在(),0-∞上单调递减.(2)解:当0x =时,()01f x =≥-,对a ∈R 恒成立;当x>0时,由()cos f x x x >-,整理得1xea x≤-.设()1xe g x x=-,则2(1)()x e x g x x -'=.令()0g x '>,得1x >,则()g x 在()1,+∞上单调递增令()0g x '<,得01x <<,则()g x 在(0,1)上单调递减.所以min ()(1)1g x g e ==-,1a e -≤.综上,实数a 的取值范围是(],1e -∞-.6.已知函数()()e cos xf x a x x a R =--∈(1)若2a =,求曲线()y f x =在()()0,0f 处的切线方程;(2)若()f x 在()0,π上有两个极值点,求实数a 的取值范围.【解析】(1)当2a =时,()2e cos xf x x x =--,()2e sin 1x f x x '∴=+-,()002e sin 011f '∴=+-=,()02e cos0010f --== ,∴()y f x =在()()0,0f 处的切线方程为()110y x -=⨯-,即10x y -+=;(2)()f x 在()0,π上有两个极值点等价于()e sin 10xf x a x '=+-=在()0,π上有两个不同的实数根,即1sin e x x a -=在()0,π上有两个不同的实数根,令()1sin e xxh x -=,()0,πx ∈,()π1sin cos 14ee xxx x x h x ⎛⎫-- ⎪--⎝⎭'∴==令()0h x '=,解得π2x =,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0h x '>,()h x 单调递增;又()01sin 001e h -==,π2π1sin π202e h -⎛⎫== ⎪⎝⎭,()()πππ1sin π1πe 0,1e e h --===∈,∴当()π0,e a -∈时,方程1sin exx a -=在()0,π上有两个不同的实数根,∴实数a 的取值范围为()π0,e -.7.已知函数()e sin xf x x ax=+(1)若1a =,判断f (x )在(2π-,0)的单调性;(2)()f x 在[0,2π]上有且只有2个零点,求a 的取值范围.【解析】(1)当1a =时,()e sin ,(,0)2xf x x ax x π=+∈-()e sin e cos 1sin 14x x x f x x x x π⎛⎫=++=++ ⎪⎝⎭'.当,02x π⎛⎫∈- ⎪⎝⎭时,,444x πππ⎛⎫+∈- ⎪⎝⎭,所以sin 112424x x ππ⎛⎫⎛⎫-<+<-<+< ⎪ ⎪⎝⎭⎝⎭,又0e 1x <<,sin 14xx π⎛⎫+>- ⎪⎝⎭,从而()0f x '>,所以,f (x )在(2π-,0)上单调递增;(2)由函数()e sin 0,2xf x x axx π⎡⎤=+∈⎢⎥⎣⎦,,可知()00f =,则f (x )在0,2x π⎛⎤∈ ⎥⎝⎦上有且只有1个零点.()e sin e cos x x f x x x a +'=+,令()e sin e cos x x h x x x a =++,则()2e cos 0xh x x '=≥在[0.2π]上恒成立.即()f x '在[0,2π]上单调递,()201e 2f a f aππ⎛'⎫=+=⎪⎭'+ ⎝,当1a ≥-时,()()00f x f '≥'≥,f (x )在[0.2π]上单调递增.则f (x )在(0,2π]上无零点,不合题意,舍去,当π2e a ≤-时,()02f x f π⎛⎫'≤'≤ ⎪⎝⎭,()f x 在[0,2π]上单调递减,则()f x 在(0,2π]上无零点,不合题意,舍去,当2e 1a π-<<-时,2(0)10,()e 02f a f a ππ'=+<'=+≥则()f x '在(0,2π)上只有1个零点,设为0x .且当0(0,)x x ∈时,()0f x <′;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x >′所以当()00x x ∈,时,()f x 在(0,0x )上单调递减,在(0x ,2π)上单调递增,又()200e 22f f a πππ⎛⎫==+ ⎪⎝⎭,,因此只需2e 022f a ππ⎛⎫=+≥ ⎪⎝⎭即可,即22e 1a ππ-≤<-综上所述:22e 1παπ-≤<-8.已知函数()sin cos f x x ax x =-,a ∈R(1)若()f x 在0x =处的切线为y x =,求实数a 的值;(2)当13a ≥,[0,)x ∈+∞时,求证:()2.f x ax ≤【解析】(1)∵()cos cos sin f x x a x ax x '=-+,∴(0)11f a '=-=,∴0a =(2)要证()2f x ax ≤,即证sin cos 2x ax x ax -≤,只需证sin (2cos )x ax x ≤+,因为2cos 0x +>,也就是要证sin 02cos x ax x -≤+,令sin ()2cos xg x ax x =-+,22cos (2cos )sin (sin )2cos 1()(2cos )(2cos )x x x x x g x a a x x +--+'=-=-++∵13a ≥,∴2222cos 11(cos 1)()0(2cos )33(2cos )x x g x x x +--'≤-=≤++∴()g x 在[0,)+∞为减函数,∴()(0)0g x g ≤=,∴sin cos 2x ax x ax -≤,得证9.已知函数()ln f x x x =.(1)求()f x 的图象在点()()1,1A f 处的切线方程,并证明()f x 的图象上除点A 以外的所有点都在这条切线的上方;(2)若函数()()()ln 1sin cos g x x x f x x =+-,1π,e 2x ⎡⎫∈⎪⎢⎣⎭,证明:()11cos e e g x ≥.(其中e 为自然对数的底数)【解析】(1)()ln f x x x = ,则()1ln f x x '=+,()()11,10f f '∴==.()f x ∴的图象在点()()1,1A f 处的切线方程为1y x =-.设()ln 1h x x x x =-+,则()ln h x x '=,令()0h x '<,得()0,1x ∈;令()0h x '>,得()1,x ∈+∞.()h x ∴在()0,1上单调递减,在()1,+∞上单调递增,∴当0x >且1x ≠时,()()10h x h >=,()f x ∴的图象上除点A 以外的所有点都在这条切线的上方;(2)由题可知,()()ln 1sin ln cos g x x x x x x =+-,1π,e 2x ⎡⎫∈⎪⎢⎣⎭.()()sin 1ln 1cos ln cos cos ln sin ln sin ,xg x x x x x x x x x x x x x x⎛⎫'∴=++--+=+ ⎪⎝⎭1π,e 2x ⎡⎫∈⎪⎢⎣⎭,sin 0x ∴>,由(1)知ln 1x x x ≥-,当且仅当1x =时,等号成立,11ln 1110x x x x x ∴+≥+-≥-=>.()0g x '∴>,函数()g x 在区间1π,e 2⎡⎫⎪⎢⎣⎭上为增函数。

专题11 三角函数定义与三角函数恒等变换(解析版)

专题11 三角函数定义与三角函数恒等变换(解析版)

专题11 三角函数定义与三角函数恒等变换考点36 三角函数定义1.(2018•新课标Ⅰ,文11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||(a b -= ) A .15BCD .1【答案】B【解析】角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,22cos22cos 13αα∴=-=,解得25cos 6α=,|cos |α∴=,|sin |α∴=,|sin ||tan |||||21|cos |b a a b ααα-==-===-,故选B .2.(2014新课标I ,文2)若tan 0α>,则A. sin 20α> B . cos 0α> C . sin 0α> D . cos20α> 【答案】A【解析】由tan 0α>知,α在第一、第三象限,即2k k ππαπ<<+(k Z ∈),∴222k k παππ<<+,即2α在第一、第二象限,故只有sin 20α>,故选A .3.(2011全国课标理5文7)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ= (A )45-(B)35- (C) 35 (D) 45【答案】B【解析】在直线2y x =取一点P (1,2),则rsin θ=y r∴cos2θ=212sin θ-=35-,故选B .4.(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点34(,)55P --.(1)求sin()απ+的值;(2)若角β满足5sin()13αβ+=,求cos β的值. 【解析】(1)由角α的终边过点34(,)55P --得4sin 5α=-, 所以4sin()sin 5απα+=-=. (2)由角α的终边过点34(,)55P --得3cos 5α=-, 由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-. 考点37同角三角函数基本关系与诱导公式1.(2019•新课标Ⅱ,文11)已知(0,)2πα∈,2sin2cos21αα=+,则sin (α= )A .15B C D 【答案】B 【解析】2sin2cos21αα=+,∴可得:24sin cos 2cos ααα=,(0,)2πα∈,sin 0α>,cos 0α>,cos 2sin αα∴=,22222sin cos sin (2sin )5sin 1ααααα+=+==,∴解得:sin α,故选B . 2.(2016新课标卷3,理5)若 ,则 (A)(B) (C) 1 (D) 【答案】A 【解析】由,得或,所以 ,故选A .3.(2013浙江)已知,则( ) A .B .C .D .3tan 4α=2cos 2sin 2αα+=6425482516253tan 4α=34sin ,cos 55αα==34sin ,cos 55αα=-=-2161264cos 2sin 24252525αα+=+⨯=210cos 2sin ,=+∈αααR =α2tan 344343-34-【答案】C【解析】由2210(sin 2cos )()2αα+=可得2222sin 4cos 4sin cos 10sin cos 4αααααα++=+,进一步整理可得23tan 8tan 30αα--=,解得tan 3α=或1tan 3α=-,于是22tan 3tan 21tan 4ααα==--,故选C . 4.(2012江西)若,则tan2α=( )A .−B .C .−D . 【答案】B【解析】分子分母同除cos α得:sin cos tan 11,sin cos tan 12αααααα++==--∴tan 3α=-,∴22tan 3tan 21tan 4ααα==- 5.(2013广东)已知,那么 A . B . C . D . 【答案】C 【解析】,选C . 6.(2016•新课标Ⅰ,文14)已知θ是第四象限角,且3sin()45πθ+=,则tan()4πθ-= .【答案】43-【解析】θ是第四象限角,∴222k k ππθπ-+<<,则22,444k k k Z ππππθπ-+<+<+∈,又3sin()45πθ+=,4cos()45πθ∴+=,∴)4cos(θπ-=)4sin(θπ+ =53,4sin()cos()445ππθθ-=+=,则)4tan(πθ-=)4tan(θπ-- =)4cos()4sin(θπθπ---=5354- =34-. 7.(2013新课标Ⅱ,理15)若θ为第二象限角,1tan()42πθ+=,则sin cos θθ+= . 【答案】sin cos 1sin cos 2αααα+=-3434434351sin()25πα+=cos α=25-15-152551sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭【解析】(法1)由1tan()42πθ+=得,tan θ=13-,即cos 3sin θθ=-,∵22sin cos 1θθ+=, θ为第二象限角,∴sin θcos θ=sin cos θθ+=. 8.(2014江苏)已知,.(1)求的值;(2)求的值. 【解析】(1)∵()sin 2ααπ∈π,,,∴cos α== ()sin sin cos cos sin sin )444αααααπππ+=+=+=;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,∴()()314cos 2cos cos2sin sin 2666525ααα5π5π5π-=+=+⨯-=考点38三角恒等变换1.(2020全国Ⅰ理9)已知() 0,πα∈,且3cos28cos 5αα-=,则sin α= ( )AB .23C .13 D【答案】A【思路导引】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又()0,,sin 3απα∈∴==,故选A .2.(2020全国Ⅱ理2)若α为第四象限角,则( )A .02cos >αB .02cos <αC .02sin >αD .02sin <α 【答案】D【思路导引】由题意结合二倍角公式确定所给的选项是否正确即可.),2(ππα∈55sin =α)4sin(απ+)265cos(απ-【解析】当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误;当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确,故选D .3.(2020全国Ⅲ文5)已知sin sin 13θθπ⎛⎫++= ⎪⎝⎭,则sin 6θπ⎛⎫+= ⎪⎝⎭( )A .12 B C .23D .2【答案】B【思路导引】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.【解析】由题意可得:1sin sin 12θθθ++=,则:3sin 12θθ+=1cos 2θθ+=从而有:sin coscos sin 663ππθθ+=,即sin 63πθ⎛⎫+= ⎪⎝⎭.故选B . 4.(2020全国Ⅲ理9)已知2tan tan 74θθπ⎛⎫-+= ⎪⎝⎭,则tan θ= ( )A .2-B .1-C .1D .2 【答案】D【思路导引】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271t t t +-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选D .5.(2019•新课标Ⅱ,理10)已知(0,)2πα∈,2sin2cos21αα=+,则sin (α= )A .15B C D 【答案】B【解析】2sin2cos21αα=+,∴24sin cos 2cos ααα=,(0,)2πα∈,sin 0α>,cos 0α>,cos 2sin αα∴=,22222sin cos sin (2sin )5sin 1ααααα+=+==,∴sin α,故选B .6.(2019•新课标Ⅲ,文5)函数()2sin sin 2f x x x =-在[0,2]π的零点个数为( ) A .2 B .3C .4D .5【答案】B【解析】函数()2sin sin 2f x x x =-在[0,2]π的零点个数,即:2sin sin20x x -=在区间[0,2]π的根个数,即2sin sin2x x =,即0)cos 1(sin =-x x ,即0sin =x 或1cos =x ,∵∈x [0,2]π,∴ππ2,,0=x ,故选B .7.(2019•新课标Ⅰ,文7)tan 255(︒= ) A.2-B.2-+C.2D.2【答案】D【解析】∵tan 255tan(18075)tan75tan(4530)︒=︒+︒=︒=︒+︒1tan 45tan 3021tan 45tan 30+︒+︒======+-︒︒故选D .8.(2018•新课标Ⅲ,理4文4)若1sin 3α=,则cos2(α= )A .89B .79 C .79-D .89-【答案】B 【解析】1sin 3α=,217cos212sin 1299αα∴=-=-⨯=,故选B . 9.(2017新课标卷3,文4)已知4sin cos 3αα-=,则sin 2α= A .79-B .29-C .29D .79【答案】A【解析】因为()2sin cos 17sin 22sin cos 19ααααα--===-- ,故选A .10.(2016•新课标Ⅱ,理9)若3cos()45πα-=,则sin 2(α= )A .725B .15C .15-D .725-【答案】D【解析】法31:cos()45πα︒-=,297sin 2cos(2)cos2()2cos ()1212442525πππαααα∴=-=-=--=⨯-=-,法32:cos()cos )45πααα︒-=+=,∴19(1sin 2)225α+=,97sin 2212525α∴=⨯-=-, 故选D .11.(2015新课标Ⅰ,理2)sin20°cos10°-con160°sin10°=A .B C .12- D .12【答案】D【解析】原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D . 12.(2014新课标Ⅰ,理8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】B【解析】∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B13.(2013新课标Ⅰ,文6 ) (A (B (C (D 【答案】A【解析】因为2sin 23α=,所以21cos ()[1cos 2()]424ππαα+=++=1(1sin 2)2α-=16,故选A ., 14.(2015重庆)若tan 2tan5πα=,则3cos()10sin()5παπα--=( )A .1B .2C .3D .4 【答案】C【解析】3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin55ππαππα+=-33cos2tan sin 105102tan cos sin 555ππππππ+=-33cos cos 2sin sin 510510sin cos55ππππππ+= =155(cos cos )(cos cos )21010101012sin 25πππππ++-3cos103cos 10ππ==,选C . 15.(2012山东)若,,则( ) A .B .C .D .【答案】D【解析】由可得,,,故选D . 16.(2011浙江)若02πα<<,02πβ-<<,1cos()43πα+=,cos()423πβ-=,则cos()2βα+= A.33 B .33- C .539 D .69- 【答案】C 【解析】cos()cos[()()]2442βππβαα+=+--cos()cos()442ππβα=+-sin()sin()442ππβα++-,而3(,)444πππα+∈,(,)4242πβππ-∈,因此sin()43πα+=,sin()423πβ-=, 则1cos()233βα+=+= 17.(2020全国Ⅱ文13)设32sin -=x ,则=x 2cos .【答案】19【思路导引】直接利用余弦的二倍角公式进行运算求解即可. 【解析】22281cos 212sin 12()1399x x =-=-⨯-=-=.故答案为:19. ⎥⎦⎤⎢⎣⎡∈2,4ππθ8732sin =θ=θsin 5354474342ππθ⎡⎤∈⎢⎥⎣⎦,],2[2ππθ∈812sin 12cos 2-=--=θθ4322cos 1sin =-=θθ18.(2020江苏8)已知22sin ()43πα+=,则sin2α的值是________. 【答案】13【解析】∵22sin ()43πα+=,由2112sin ()(1cos(2))(1sin 2)42223ππααα+=-+=+=,解得1sin 23α=.19.(2020浙江13)已知tan 2θ=,则cos2θ= ;πtan 4θ⎛⎫-= ⎪⎝⎭ .【答案】35-;13【思路导引】利用二倍角余弦公式以及弦化切得cos2θ,根据两角差正切公式得tan()4πθ-【解析】22222222cos sin 1tan 3cos 2cos sin cos sin 1tan 5θθθθθθθθθ--=-===-++,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,故答案为:35-;13. 20.(2020北京14)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为 .【答案】2π 【解析】∵()sin()cos f x x x ϕ=++sin cos cos sin cos x x x ϕϕ=++sin cos cos (sin 1)x x ϕϕ=++)x θ=+,则22cos(sin 1)4ϕϕ++=,22cos sin 2sin 1ϕϕϕ+++12sin 14ϕ=++=,∴sin 1ϕ=,∴2πϕ=. 21.(2018•新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+= . 【答案】12-【解析】sin cos 1αβ+=,两边平方可得:22sin 2sin cos cos 1ααββ++=,①,cos sin 0αβ+=,两边平方可得:22cos 2cos sin sin 0ααββ++=,②,由①+②得:22(sin cos cos sin )1αβαβ++=,即22sin()1αβ++=,2sin()1αβ∴+=-,1sin()2αβ∴+=-. 22.(2018•新课标Ⅱ,文15)已知51tan()45πα-=,则tan α= . 【答案】32【解析】51tan()45πα-=,1tan()45πα∴-=,则11tan()tan1563544tan tan()14451421tan()tan 11445ππαππααππα+-++=-+=====----⨯. 23.(2017新课标卷,文14)已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________.【解析】由tan 2α=得sin 2cos αα=,又22sin cos 1αα+=,所以21cos 5α=,因为(0,)2πα∈,所以cos αα==,因为cos()cos cos sin sin444πππααα-=+,所以cos()4525210πα-=+=.24.(2019北京9)函数f (x )=sin 22x 的最小正周期是 ________.【解析】因为21cos 411sin 2cos 4222x f x x x -===-()(),所以f x ()的最小正周期2π4T ==25.(2019江苏13)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_________.【解析】由tan 23tan()4αα=-π+,得tan 23tan tan 41tan tan4ααα=-π+π-, 所以tan (1tan )21tan 3ααα-=-+,解得tan 2α=或1tan 3α=-.当tan 2α=时,22tan 4sin21tan 5ααα==+,221tan 3cos21tan 5ααα-==-+,43sin(2)sin2cos cos2sin 44455αααπππ+=+==当1tan 3α=-时,22tan 3sin21tan 5ααα==-+,221tan 4cos21tan 5ααα-==+,11 / 11所以34sin(2)sin2cos cos2sin 444525210αααπππ+=+=-⨯+⨯=. 综上,sin(2)4απ+的值是10. 26.(2017北京)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 【答案】79-【解析】∵角α与角β的终边关于y 轴对称,所以2k αβππ+=+,所以1sin sin(2)sin 3k βππαα=+-==,cos cos βα=-;222cos()cos cos sin sin cos sin 2sin 1αβαβαβααα-=+=-+=-2172()139=⨯-=-.27.(2017江苏)若1tan()46πα-=,则tan α= . 【答案】75 【解析】tan()tan 744tan tan[()]4451tan()tan 44ππαππααππα-+=-+==--⨯.28.(2015四川)=+ 75sin 15sin .【答案】2【解析】. 6sin15sin 75sin15cos152sin(1545)+=+=+=。

专题03 两角和与差的三角函数(知识串讲+热考题型+专题训练)(解析版)

专题03 两角和与差的三角函数(知识串讲+热考题型+专题训练)(解析版)

专题3两角和与差的三角函数(一)两角和与差的余弦C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;【点拨】①简记为:“同名相乘,符号反”.②公式本身的变用,如cos(α-β)-cosαcosβ=sinαsinβ.③公式中的α,β不仅可以是任意具体的角.角的变用,也称为角的变换,如cosα=cos[(α+β)-β],cos2β=cos[(α+β)-(α-β)].(二)两角和与差的正弦S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;S(α-β):sin(α-β)=sinαcosβ-cosαsinβ;【点拨】①简记为:“异名相乘,符号同”.②公式中的α,β不仅可以是任意具体的角,还可以是任意形式的“整体”.(三)两角和与差的正切T(α+β):tan(α+β)=tanα+tanβ1-tanαtanβ;.T(α-β):tan(α-β)=tanα-tanβ1+tanαtanβ【点拨】1公式T α±β只有在α≠2π+k π,β≠2π+k π,α±β≠2π+k π(k ∈Z )时才成立,否则就不成立.②当tan α或tan β或tan(α±β)的值不存在时,不能使用T α±β处理有关问题,但可改用诱导公式或其他方法.③变形公式:tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β),如tan α+tan β+tan αtan βtan(α+β)=tan(α+β),tan(α+β)-tan α-tan β=tan αtan βtan(α+β),1-tan αtan β=tan tan tan()αβαβ++.1+tan αtan β=tan tan tan()αβαβ--.(四)辅助角公式函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=sin(α+φ)或f(α)=-φ),其中φ可由a ,b 的值唯一确定.4sin(2cos sin πααα±=±.题型一公式的正用【典例1】【多选题】(2022春·江苏徐州·高一统考阶段练习)如图,在平面直角坐标系xOy 中,角α、β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A 、B 两点,若点A 、B 的坐标分别为34,55⎛⎫ ⎪⎝⎭和43,55⎛⎫- ⎪⎝⎭,则以下结论正确的是()A .3cos 5α=B .3cos 5β=C .()cos 0αβ+=D .()cos 0αβ-=【答案】AD(0,π)β∈,则tan()αβ+的值为______.【典例3】(2023·江苏·高一专题练习)已知tan ,4αα=-是第四象限角.(1)求cos sin αα-的值;(2)求ππcos ,tan 44αα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的值.正用公式问题,一般属于“给角求值”、“给值求值”问题,应该通过应用公式,转化成“特殊角”的三角函数值计算问题.给角求值问题的策略:一般先要用诱导公式把角化整化小,化“切”为“弦”,统一函数名称,然后观察角的关系以及式子的结构特点,选择合适的公式进行求值.题型二公式的变用、逆用【典例4】(2022春·江苏泰州·高一江苏省姜堰第二中学校联考阶段练习)已知sin100cos100M =︒-︒,44cos 78cos 46cos12)N =︒︒+︒︒,1tan101tan10P -︒=+︒,那么M ,N ,P 之间的大小顺序是()A .M N P <<B .N M P<<C .P M N<<D .P N M<<A cos15︒︒B .2cos 15sin15cos75︒︒︒-C .2tan 301tan 30︒︒-D .1tan151tan15︒︒+-【答案】AD【分析】运用辅助角公式、诱导公式、和差角公式的逆用、特殊角的三角函数值、三角恒等变换中“1”的代换化简即可.(1)1-tan75°1+tan75°;(2)(1+tan1°)(1+tan2°)…(1+tan44°);(3)tan25°+tan35°+3tan25°tan35°.【答案】(1)3-;(2)222;(3【解析】尝试使用两角和与差的正切公式及其变形式对原式进行变形求值.详解:(1)原式=tan45°-tan75°1+tan45°tan75°tan(45°-75°)=33-.(2)因为(1+tan1°)(1+tan44°)=1+tan1°+tan44°+tan1°×tan44°=2,同理(1+tan2°)(1+tan43°)=2,…,所以原式=222.(3)∵tan60°=tan(25°+35°)=tan25°+tan35°1-tan25°tan35°=,∴tan25°+tan35°=3(1-tan25°tan35°)∴tan25°+tan35°.【规律方法】1.“1”的代换:在T α±β中如果分子中出现“1”常利用1=tan45°来代换,以达到化简求值的目的.2.若α+β=4π+k π,k ∈Z ,则有(1+tan α)(1+tan β)=2.3.若化简的式子里出现了“tan α±tan β”及“tan αtan β”两个整体,常考虑tan(α±β)的变形公式.题型三给值求值【典例7】(2023·江苏·高一专题练习)已知34sin sin ,cos cos 55+=+=αβαβ,则cos()αβ-=()A .12-B .13-C .12D .34取得最大值,则πcos 24θ⎛⎫+= ⎪⎝⎭()A .B .12-C D【典例9】(2021春·江苏南京·高一校考阶段练习)已知cos 27βα⎛⎫-=- ⎪⎝⎭,1sin 22αβ⎛⎫-= ⎪⎝⎭,2απ<<π,02βπ<<,求:(1)cos2αβ+的值;tanαβ+的值.(2)()给值求值问题的解题策略.(1)从角的关系中找解题思路:已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,根据需要灵活地进行拆角或凑角的变换.(2)常见角的变换.①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).题型四给值求角【典例10】(2022春·江苏南通·高一金沙中学校考期末)已知()0παβ∈,,,1tan()2αβ-=,1tan 7β=-,则2αβ-=()A .5π4B .π4C .π4-D .3π4-1,0,,cos 222π2a a βαββ⎛⎫⎛⎫⎛⎫∈-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求αβ+的值.解题的一般步骤是:(1)先确定角α的范围,且使这个范围尽量小(极易由于角的范围过大致误);(2)根据(1)所得范围来确定求tan α、sin α、cos α中哪一个的值,尽量使所选函数在(1)得到的范围内是单调函数;(3)求α的一个三角函数值;(4)写出α的大小.题型五三角函数式化简问题【典例12】(2022春·江苏镇江·高一统考期末)计算:70cos10︒︒=︒()A .1B .2C .3D .4【答案】C【分析】根据两角差的正弦公式化简求解即可.【详解】【典例13】(2022春·江苏泰州·高一校考阶段练习)已知,且()(),22k k k k ππαβπα+≠+∈≠∈Z Z ,则()tan tan αβα+=___________.1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.(3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用.2.注意三角函数公式逆用、变形用及“变角、变名、变号”的“三变”问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,33,23入特殊角,把“值变角”构造适合公式的形式.题型六三角恒等式证明问题【典例14】(2023春·上海浦东新·高一校考阶段练习)求证:(1)22sin cos 1sin cos 1cot 1tan αααααα+=-++;(2)在非直角三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=【典例15】(2023·高一课时练习)求证:(1)当18045()k k αβ+=⋅︒+︒∈Z 时,(1tan )(1tan )2αβ++=;(2)当180()k k αβγ++=⋅︒∈Z 时,tan tan tan tan tan tan αβγαβγ++=⋅⋅.【答案】(1)证明见解析(2)证明见解析【分析】(1)根据正切两角和公式求解即可.(2)根据正切两角和公式求解即可.【详解】(1)因为18045()k k αβ+=⋅︒+︒∈Z 所以(1tan )(1tan )αβ++1tan tan tan tan αβαβ=+++()()1tan 1tan tan tan tan αβαβαβ=++-+()()1tan 451801tan tan tan tan k αβαβ=++⋅-+ ()1tan 451tan tan tan tan αβαβ=+-+ 11tan tan tan tan αβαβ=+-+2=.即证:(1tan )(1tan )2αβ++=.(2)因为180()k k αβγ++=⋅︒∈Z 所以tan tan tan αβγ++()()tan 1tan tan tan αβαβγ=+-+()()tan 1801tan tan tan k γαβγ=⋅--+ ()tan 1tan tan tan γαβγ=--+tan tan tan αβγ=⋅⋅.即证:tan tan tan tan tan tan αβγαβγ++=⋅⋅.【总结提升】三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目.(2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.一、单选题1.(2023秋·江苏连云港·高一江苏省海头高级中学校考期末)5cos 12π=()A B C D2.(2023·江苏·高一专题练习)化简tan tan 44A A ⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭()A .2tan AB .2tan A-C .2tan 2AD .2tan 2A-,,1,2b =,且a b ⊥,则()tan 45θ-︒的值是()A .1B .3-C.3D .134.(2023·江苏·高一专题练习)若1tan θ-=+,则cot 4θ⎛⎫+ ⎪⎝⎭的值为().A .12B C D .1【答案】C5.(2023·江苏·高一专题练习)在ABC 中,若cos 5A =,cos 13B =-,则cos()A B +等于()A .1665-B .3365C .5665D .6365-6.(2023·江苏·高一专题练习)若cos 5θ=-且(,π)2θ∈,则πsin 3θ⎛⎫+ ⎪⎝⎭的值为()A B.410+-C D 7.(2022春·江苏苏州·高一统考期中)已知02α<<,02β<<,且()sin 5αβ-=-,12sin 13β=,则sin α=()A .6365B .5665C .3365D .1665-合,将角α的终边绕O 点顺时针旋转π3后,经过点()3,4-,则sin α=()A B C D .9.(2022春·江苏泰州·高一校考阶段练习)对任意的锐角αβ、,下列不等关系恒成立的是()A .()sin cos cos αβαβ+<+B .()cos sin sin αβαβ+<+C .()sin cos cos αβαβ-<+D .()cos sin sin αβαβ-<+【答案】ACA .1sin15222-=-B .sin20cos10cos160sin102-C .sin1212ππ=D .sin105=11.(2023·江苏·高一专题练习)化简:πtan 3π13αα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭______.12.(2023秋·陕西西安·高一西安市第六中学校考期末)已知α,β满足04α<<,44β<<,3cos 45πα⎛⎫+= ⎪⎝⎭,π12sin 413β⎛⎫+= ⎪⎝⎭,则()sin αβ-=______.13.(2023春·湖北黄冈·高一校考阶段练习)求sin 36sin15sin 39cos36cos15sin 39︒︒︒-︒︒+︒的值.()cos ,sin b ααβ=- ,且a b ⊥ .(1)求()cos αβ+的值;(2)若0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭且tan 3α=-,求2αβ+的值.︒︒+︒︒+︒︒=,tan10tan20tan20tan60tan60tan101tan20tan30tan30tan40tan40tan201︒︒+︒︒+︒︒=,tan33tan44tan44tan13tan33tan131︒︒+︒︒+︒︒=.(1)尝试再写出一个相同规律的式子;(2)写出能反映以上式子一般规律的恒等式,并对你写出的恒等式进行证明.。

微专题 三角函数的范围与最值(解析版)(1)

微专题 三角函数的范围与最值(解析版)(1)

微专题三角函数的范围与最值【秒杀总结】一、三角函数f(x)=A sin(ωx+φ)中ω的大小及取值范围1.任意两条对称轴之间的距离为半周期的整数倍,即k T2(k∈Z);2.任意两个对称中心之间的距离为半周期的整数倍,即k T2(k∈Z);3.任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即T4+k T2(k∈Z);4.f(x)=A sin(ωx+φ)在区间(a,b)内单调⇒b-a≤T2且kπ-π2≤aω+φ≤bω+φ≤kπ+π2(k∈Z)5.f(x)=A sin(ωx+φ)在区间(a,b)内不单调⇒(a,b)内至少有一条对称轴,aω+φ≤kπ+π2≤bω+φ(k∈Z)6.f(x)=A sin(ωx+φ)在区间(a,b)内没有零点⇒b-a≤T2且kπ≤aω+φ≤bω+φ≤(k+1)π(k∈Z)7.f(x)=A sin(ωx+φ)在区间(a,b)内有n个零点⇒(k-1)π≤aω+φ<kπ(k+n-1)π<bω+φ≤(k+n)π(k∈Z) .二、三角形范围与最值问题1.坐标法:把动点转为为轨迹方程2.几何法3.引入角度,将边转化为角的关系4.最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023·全国·高三专题练习)在△ABC中,cos A=725,△ABC的内切圆的面积为16π,则边BC长度的最小值为( )A.16B.24C.25D.36【答案】A【解析】因为△ABC的内切圆的面积为16π,所以△ABC的内切圆半径为4.设△ABC内角A,B,C所对的边分别为a,b,c.因为cos A=725,所以sin A=2425,所以tan A=247.因为S△ABC=12bc sin A=12(a+b+c)×4,所以bc=256(a+b+c).设内切圆与边AC切于点D,由tan A=247可求得tan A 2=34=4AD,则AD =163.又因为AD =b +c -a 2,所以b +c =323+a .所以bc =256323+2a =253163+a .又因为b +c ≥2bc ,所以323+a ≥2253163+a ,即323+a 2≥1003163+a ,整理得a 2-12a -64≥0.因为a >0,所以a ≥16,当且仅当b =c =403时,a 取得最小值.故选:A .例2.(2023·全国·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点:且f (x )≤f π4 恒成立,f (x )在-π12,π24区间上有最小值无最大值,则ω的最大值是( )A.11 B.13C.15D.17【答案】C【解析】由题意,x =π4是f (x )的一条对称轴,所以f π4 =±1,即π4ω+φ=k 1π+π2,k 1∈Z ①又f -π4 =0,所以-π4ω+φ=k 2π,k 2∈Z ②由①②,得ω=2k 1-k 2 +1,k 1,k 2∈Z 又f (x )在-π12,π24 区间上有最小值无最大值,所以T ≥π24--π12 =π8即2πω≥π8,解得ω≤16,要求ω最大,结合选项,先检验ω=15当ω=15时,由①得π4×15+φ=k 1π+π2,k 1∈Z ,即φ=k 1π-13π4,k 1∈Z ,又|φ|≤π2所以φ=-π4,此时f (x )=sin 15x -π4 ,当x ∈-π12,π24 时,15x -π4∈-3π2,3π8 ,当15x -π4=-π2即x =-π60时,f (x )取最小值,无最大值,满足题意.故选:C例3.(2023·高一课时练习)如图,直角ΔABC 的斜边BC 长为2,∠C =30°,且点B ,C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA =xOB +yOC ,(x ,y ∈R ),记M =OA ⋅OC,N =x +y ,分别考查M ,N 的所有运算结果,则A.M 有最小值,N 有最大值B.M 有最大值,N 有最小值C.M 有最大值,N 有最大值D.M 有最小值,N 有最小值【答案】B【解析】依题意∠BCA =30∘,BC =2,∠A =90∘,所以AC =3,AB =1.设∠OCB =α,则∠ABx =α+30∘,0∘<α<90∘,所以A 3sin α+30∘ ,sin α+30∘,B 2sin α,0 ,C 0,2cos α ,所以M =OA ⋅OC =2cos αsin α+30∘ =sin 2α+30∘ +12,当2α+30∘=90∘,α=30∘时,M 取得最大值为1+12=32.OA =xOB +yOC ,所以x =3sin α+30∘ 2sin α,y =sin α+30∘2cos α,所以N =x +y =3sin α+30∘2sin α+sin α+30∘ 2cos α=1+32sin2α,当2α=90∘,α=45∘时,N 有最小值为1+32.故选B .例4.(2023·全国·高三专题练习)已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23 B.22C.3D.2【答案】D【解析】由a 2+b 2=1,令a =sin θ,b =cos θ,由f x =a sin x +b cos x +cx ,得f x =a cos x -b sin x +c =sin θcos x -cos θsin x +c =sin θ-x +c ,所以c -1≤f x ≤c +1由题意可知,存在x 1,x 2,使得f (x 1)f (x 2)=-1,只需要c -1 c +1 =c 2-1 ≥1,即c 2-1≤-1,所以c 2≤0,c =0,a +b +c =a +b =sin θ+cos θ=2sin θ+π4≤2所以a +b +c 的最大值为2.故选:D .例5.(2023·全国·高三专题练习)已知m >0,函数f (x )=(x -2)ln (x +1),-1<x ≤m ,cos 3x +π4,m <x ≤π,恰有3个零点,则m 的取值范围是( )A.π12,5π12 ∪2,3π4B.π12,5π12 ∪2,3π4C.0,5π12 ∪2,3π4D.0,5π12 ∪2,3π4【答案】A【解析】设g x =(x -2)ln (x +1),h x =cos 3x +π4,求导g x =ln (x +1)+x -2x +1=ln (x +1)+1-3x +1由反比例函数及对数函数性质知g x 在-1,m ,m >0上单调递增,且g 12<0,g 1 >0,故gx 在12,1 内必有唯一零点x 0,当x ∈-1,x 0 时,g (x )<0,g x 单调递减;当x ∈x 0,m 时,g (x )>0,g x 单调递增;令g x =0,解得x =0或2,可作出函数g x 的图像,令h x =0,即3x +π4=π2+k π,k ∈Z ,在0,π 之间解得x =π12或5π12或3π4,作出图像如下图数形结合可得:π12,5π12∪2,3π4,故选:A例6.(2023·全国·高三专题练习)已知函数f x =cos ωx -π3(ω>0)在π6,π4 上单调递增,且当x ∈π4,π3 时,f x ≥0恒成立,则ω的取值范围为( )A.0,52 ∪223,172B.0,43 ∪8,172C.0,43 ∪8,283D.0,52 ∪223,8【答案】B【解析】由已知,函数fx =cos ωx -π3(ω>0)在π6,π4 上单调递增,所以2k 1π-π≤ωx -π3≤2k 1πk 1∈Z ,解得:2k 1πω-2π3ω≤x ≤2k 1πω+π3ωk 1∈Z ,由于π6,π4 ⊆2k 1πω-2π3ω,2k 1πω+π3ω k 1∈Z ,所以π6≥2k 1πω-2π3ωπ4≤2k 1πω+π3ω,解得:12k 1-4≤ω≤8k 1+43k 1∈Z ①又因为函数f x =cos ωx -π3(ω>0)在x ∈π4,π3上f x ≥0恒成立,所以2k 2π-π2≤ωx -π3≤2k 2π+π2k 2∈Z ,解得:2k 2πω-π6ω≤x ≤2k 2πω+5π6ωk 2∈Z ,由于π4,π3 ⊆2k 2πω-π6ω,2k 2πω+5π6ω k 2∈Z ,所以π4≥2k 2πω-π6ωπ3≤2k 2πω+5π6ω,解得:8k 2-23≤ω≤6k 2+52k 2∈Z ②又因为ω>0,当k 1=k 2=0时,由①②可知:ω>0-4≤ω≤43-23≤ω≤52,解得ω∈0,43;当k 1=k 2=1时,由①②可知:ω>08≤ω≤283223≤ω≤172,解得ω∈8,172.所以ω的取值范围为0,43 ∪8,172.故选:B .例7.(2023·全国·高三专题练习)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为S ,若sin (A +C )=2S b 2-a2,则tan A +13tan (B -A )的取值范围为( )A.233,+∞ B.233,43C.233,43D.233,43【答案】C【解析】在△ABC 中,sin (A +C )=sin B ,S =12ac sin B ,故题干条件可化为b 2-a 2=ac ,由余弦定理得b 2=a 2+c 2-2ac cos B ,故c =2a cos B +a ,又由正弦定理化简得:sin C =2sin A cos B +sin A =sin A cos B +cos A sin B ,整理得sin (B -A )=sin A ,故B -A =A 或B -A =π-A (舍去),得B =2A △ABC 为锐角三角形,故0<A <π20<2A <π20<π-3A <π2 ,解得π6<A <π4,故33<tan A <1tan A +13tan (B -A )=tan A +13tan A ∈233,43故选:C例8.(2023·上海·高三专题练习)在钝角△ABC 中,a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,点G 是△ABC 的重心,若AG ⊥BG ,则cos C 的取值范围是( )A.0,63B.45,63C.63,1D.45,1【答案】C【解析】延长CG 交AB 于D ,如下图所示:∵G 为△ABC 的重心,∴D 为AB 中点且CD =3DG ,∵AG ⊥BG ,∴DG =12AB ,∴CD =32AB =32c ;在△ADC 中,cos ∠ADC =AD 2+CD 2-AC 22AD ⋅CD=52c 2-b 232c 2=5c 2-2b 23c 2;在△BDC 中,cos ∠BDC =BD 2+CD 2-BC 22BD ⋅CD =52c 2-a 232c 2=5c 2-2a 23c 2;∵∠BDC +∠ADC =π,∴cos ∠BDC =-cos ∠ADC ,即5c 2-2a 23c 2=-5c 2-2b 23c 2,整理可得:a 2+b 2=5c 2>c 2,∴C 为锐角;设A 为钝角,则b 2+c 2<a 2,a 2+c 2>b 2,a >b ,∴a 2>b 2+a 2+b 25b 2<a 2+a 2+b 25,∴b a 2+15+15b a 2<1b a 2<1+15+15b a2,解得:b a 2<23,∵a >b >0,∴0<b a <63,由余弦定理得:cos C =a 2+b 2-c 22ab =25⋅a 2+b 2ab =25a b +b a >25×63+36 =63,又C 为锐角,∴63<cos C <1,即cos C 的取值范围为63,1.故选:C .例9.(2023·全国·高三专题练习)设锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若A =π3,a =3,则b 2+c 2+bc 的取值范围为( )A.(1,9] B.(3,9]C.(5,9]D.(7,9]【答案】D 【解析】因为A =π3,a =3,由正弦定理可得asin A=332=2=b sin B =csin 2π3-B ,则有b =2sin B ,c =2sin 2π3-B ,由△ABC 的内角A ,B ,C 为锐角,可得0<B <π2,0<2π3-B <π2,,∴π6<B <π2⇒π6<2B -π6<5π6⇒12<sin 2B -π6 ≤1⇒2<4sin 2B -π6≤4, 由余弦定理可得a 2=b 2+c 2-2bc cos A ⇒3=b 2+c 2-bc ,因此有b 2+c 2+bc =2bc +3=8sin B sin 2π3-B+3=43sin B cos B +4sin 2B +3=23sin2B -2cos2B +5=5+4sin 2B -π6∈7,9 故选:D .例10.(2023·上海·高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形MN ,NP ,PQ ,QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为MN ,PQ 的中点,OA =OD =50米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域MQ ,NP 边界上(不含端点),且设计成∠BAC =π2,另一段玻璃桥F -D -E 满足FD ⎳AC ,FD =AC ,ED ⎳AB ,ED =AB .(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:2≈1.414,3≈1.732)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB +AC +DE +DF ,宽度、连接处忽略不计).【解析】(1)由题意,OA =50,OM =100,则MQ =100,AM =503,∠BAC =π2,设∠MAB =θ,∠NAC =α=π2-θ.若C ,P 重合,tan α=100503=23,tan θ=1tan α=32=MB503,得MB =75,∴75<MB <100,32<tan θ<23,MB =AM ⋅tan θ=503tan θ,NC =AN ⋅tan α=503tan θ,而MF =CP =100-NC =100-503tan θ,∴BF =MB -MF =503tan θ+1tan θ -100≥100(3-1),当tan θ=1(符合题意)时取等号,又100(3-1)>70,∴可以修建70米长廊.(2)AB =AM cos θ=503cos θ,AC =AN cos α=503sin θ,则AB +AC =503cos θ+503sin θ=503(sin θ+cos θ)sin θcos θ.设t =sin θ+cos θ=2sin θ+π4 ,则t 2=1+2sin θcos θ,即sin θcos θ=t 2-12.AB +AC =1003t t 2-1=1003t -1t,由(1)知32<tan θ<23,而33<32<1<23<3,∴∃θ使θ+π4=π2且π4<θ+π4<3π4,即1<t ≤2,0<t -1t ≤22,∴AB +AC =1003t -1t≥1006,当且仅当t =2,θ=π4时取等号.由题意,AB +AC =DE +DF ,则玻璃桥总长的最小值为2006米,∴铺设好亲水玻璃桥,最少需2006×0.3=606万元.例11.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足b sin A =a sin B +π3(1)设a =3,c =2,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE ⋅EA的值;(2)若△ABC 为锐角三角形,c =2,求△ABC 面积的取值范围.【解析】(1)b sin A =a sin B +π3,由正弦定理得:sin B sin A =sin A sin B +π3 =12sin A sin B +32sin A cos B ,所以12sin A sin B -32sin A cos B =0,因为A ∈0,π ,所以sin A ≠0,所以12sin B -32cos B =0,即tan B =3,因为B ∈0,π ,所以B =π3,因为a =3,c =2,由余弦定理得:b 2=a 2+c 2-2ac cos B =9+4-6=7,因为b >0,所以b =7,其中S △ABC =12ac sin B =12×3×2×32=332,所以BD =2S △ABC AC =337=3217,因为点E 为线段BD 的中点,所以BE =32114,由题意得:EA =ED +DA =BE +DA,所以BE ⋅EA =BE ⋅BE +DA =BE 2+0=2728.(2)由(1)知:B =π3,又c =2,由正弦定理得:a sin A =c sin C =2sin A +π3,所以a =2sin A sin A +π3 =2sin A 12sin A +32cos A =41+3tan A,因为△ABC 为锐角三角形,所以A ∈0,π2C =2π3-A ∈0,π2,解得:A ∈π6,π2 ,则tan A ∈33,+∞,3tan A ∈0,3 ,1+3tan A∈1,4 ,故a =41+3tan A∈1,4 ,△ABC 面积为S =12ac sin B =32a ∈32,23 故△ABC 面积的取值范围是32,23.【过关测试】一、单选题1.(2023·全国·高三专题练习)已知a ,b ∈R ,设函数f 1(x )=cos2x ,f 2(x )=a -b cos x ,若当f 1(x )≤f 2(x )对x ∈[m ,n ](m <n )恒成立时,n -m 的最大值为3π2,则( )A.a ≥2-1 B.a ≤2-1C.b ≥2-2D.b ≤2-2【答案】A【解析】设t =cos x ,x ∈[m ,n ],因为n -m 的最大值为3π2>π=T2,所以x ∈[m ,n ]时,t =cos x 必取到最值,当n -m =3π2时,根据余弦函数对称性得cos m +n 2=1⇒m +n2=2k π,k ∈Z ,此时cos m =cos m +n 2-n -m 2=cos 2k π-3π4 =cos 3π4=-22cos n =cos m +n 2+n -m 2 =cos 2k π+3π4 =cos 3π4=-22或者cos m +n 2=-1⇒m +n 2=π+2k π,k ∈Z ,此时cos m =cos m +n 2-n -m2 =cos 2k π+π-3π4 =-cos 3π4=22cos n =cos m +n 2+n -m 2=cos 2k π+π+3π4 =-cos 3π4=22由f 1(x )≤f 2(x )⇒2cos 2x -1≤a -b cos x ⇒2cos 2x +b cos x -1+a ≤0,设t =cos x ,x ∈[m ,n ]时 2t 2+bt -1+a ≤0对应解为t 1≤t ≤t 2,由上分析可知当t 1=-22,t 2≥1或t 1≤-1,t 2=22时,满足n -m 的最大值为3π2,所以t 1t 2≤-22,即-1+a 2≤-22,所以a ≥2-1.-b 2=t 1+t 2≥1-22或-b 2=t 1+t 2≤-1+22,即b ≤2-2或b ≥2-2,故选:A .2.(2023·全国·高三专题练习)△ABC 中,AB =2,∠ACB =π4,O 是△ABC 外接圆圆心,是OC ⋅AB+CA ⋅CB的最大值为( )A.0 B.1C.3D.5【答案】C【解析】过点O 作OD ⊥AC ,OE ⊥BC ,垂足分别为D ,E ,如图,因O 是△ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在△ABC 中,AB =CB -CA ,则|AB |2=|CA |2+|CB|2-2CA ⋅CB ,即CA ⋅CB =|CA |2+|CB|2-22,CO ⋅CA =CO CA cos ∠OCA = CD ⋅ CA =12CA 2,同理CO ⋅CB =12|CB |2,因此,OC ⋅AB +CA ⋅CB =OC ⋅CB -CA+CA ⋅CB =CO ⋅CA -CO ⋅CB +CA ⋅CB=12|CA |2-12|CB |2+|CA |2+|CB |2-22=|CA |2-1,由正弦定理得:|CA |=|AB|sin B sin ∠ACB =2sin B sin π4=2sin B ≤2,当且仅当B =π2时取“=”,所以OC ⋅AB +CA ⋅CB的最大值为3.故选:C3.(2023·全国·高三专题练习)在锐角△ABC 中,若3sin A cos A a +cos Cc=sin B sin C ,且3sin C +cos C =2,则a +b 的取值范围是( )A.23,4 B.2,23C.0,4D.2,4【答案】A【解析】由3sin C +cos C =2sin C +π6 =2,得C +π6=π2+2k π,k ∈Z ,∵C ∈0,π2 ,∴C =π3.由题cos A a +cos C c =sin B sin C 3sin A,由正弦定理有cos A a +cos Cc =b ⋅323a=b 2a ,故cos A sin A +cos C sin C =b 2sin A,即cos A ⋅sin C +sin A ⋅cos C =b sin C 2=3b 4,故sin A +C =sin B =3b 4,即b sin B =433,由正弦定理有a sin A=b sin B =c sin C =433,故a =433sin A ,b =433sin B ,又锐角△ABC ,且C =π3,∴A ∈0,π2 ,B =2π3-A ∈0,π2 ,解得A ∈π6,π2 ,∴a +b =433(sin A +sin B )=433sin A +sin 2π3-A =433sin A +32cos A +12sin A =4sin A +π6,∵A ∈π6,π2,∴A +π6∈π3,2π3 ,sin A +π6 ∈32,1 ,∴a +b 的取值范围为23,4 .故选:A .4.(2023·全国·高三专题练习)设ω∈R ,函数f x =2sin ωx +π6 ,x ≥0,32x 2+4ωx +12,x <0,g x =ωx .若f (x )在-13,π2 上单调递增,且函数f x 与g (x )的图象有三个交点,则ω的取值范围是( )A.14,23B.33,23C.14,33D.-43,0 ∪14,23【答案】B 【解析】当x ∈0,π2 时,ωx +π6∈π6,πω2+π6 ,因为f (x )在-13,π2 上单调递增,所以πω2+π6≤π2-4ω3≤-132sin π6≥12 ,解得14≤ω≤23,又因函数f x 与g (x )的图象有三个交点,所以在x ∈-∞,0 上函数f x 与g (x )的图象有两个交点,即方程32x 2+4ωx +12=ωx 在x ∈-∞,0 上有两个不同的实数根,即方程3x 2+6ωx +1=0在x ∈-∞,0 上有两个不同的实数根,所以Δ=36ω2-12>0-ω<032×02+6ω×0+1>0 ,解得ω>33,当ω∈33,23时,当x ≥0时,令f x -g x =2sin ωx +π6-ωx ,由f x -g x =1>0,当ωx +π6=5π2时,ωx =7π3,此时,f x -g x =2-7π3<0,结合图象,所以x ≥0时,函数f x 与g (x )的图象只有一个交点,综上所述,ω∈33,23.故选:B .5.(2023秋·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=sin ωx +π3 (ω>0)在π3,π上恰有3个零点,则ω的取值范围是( )A.83,113 ∪4,143 B.113,4 ∪143,173C.113,143 ∪5,173D.143,5 ∪173,203【答案】C 【解析】x ∈π3,π,ωx +π3∈π3ω+π3,πω+π3 ,其中2πω≤π-π3<4πω,解得:3≤ω<6,则π3ω+π3≥4π3,要想保证函数在π3,π 恰有三个零点,满足①π+2k 1π≤π3ω+π3<2π+2k 1π4π+2k 1π<πω+π3≤5π+2k 1π,k 1∈Z ,令k 1=0,解得:ω∈113,143 ;或要满足②2k 2π≤π3ω+π3<π+2k 2π2k 2π+3π<πω+π3≤2k 2π+4π,k 2∈Z ,令k 2=1,解得:ω∈5,173;经检验,满足题意,其他情况均不满足3≤ω<6条件,综上:ω的取值范围是113,143 ∪5,173.故选:C6.(2023·全国·高三专题练习)已知函数f (x )=sin ωx +π4(ω>0)在区间[0,π]上有且仅有4条对称轴,给出下列四个结论:①f (x )在区间(0,π)上有且仅有3个不同的零点;②f (x )的最小正周期可能是π2;③ω的取值范围是134,174;④f (x )在区间0,π15上单调递增.其中所有正确结论的序号是( )A.①④ B.②③C.②④D.②③④【答案】B【解析】由函数f (x )=sin ωx +π4 (ω>0), 令ωx +π4=π2+k π,k ∈Z ,则x =1+4k π4ω,k ∈Z 函数f (x )在区间[0,π]上有且仅有4条对称轴,即0≤1+4k π4ω≤π有4个整数k 符合,由0≤1+4k π4ω≤π,得0≤1+4k4ω≤1⇒0≤1+4k ≤4ω,则k =0,1,2,3,即1+4×3≤4ω<1+4×4,∴134≤ω<174,故③正确;对于①,∵x ∈(0,π),∴ωx +π4∈π4,ωπ+π4,∴ωπ+π4∈7π2,9π2当ωx +π4∈π4,7π2时,f (x )在区间(0,π)上有且仅有3个不同的零点;当ωx +π4∈π4,9π2时,f (x )在区间(0,π)上有且仅有4个不同的零点;故①错误;对于②,周期T =2πω,由134≤ω<174,则417<1ω≤413,∴8π17<T ≤8π13,又π2∈8π17,8π13,所以f (x )的最小正周期可能是π2,故②正确;对于④,∵x ∈0,π15 ,∴ωx +π4∈π4,ωπ15+π4 ,又ω∈134,174 ,∴ωπ15+π4∈7π15,8π15 又8π15>π2,所以f (x )在区间0,π15 上不一定单调递增,故④错误.故正确结论的序号是:②③故选:B7.(2023·全国·高三专题练习)函数y =sin ωx -π6ω>0 在0,π 有且仅有3个零点,则下列说法正确的是( )A.在0,π 不存在x 1,x 2使得f x 1 -f x 2 =2B.函数f x 在0,π 仅有1个最大值点C.函数f x 在0,π2上单调进增D.实数ω的取值范围是136,196 【答案】D【解析】对于A ,f (x )在0,π 上有且仅有3个零点,则函数的最小正周期T <π ,所以在0,π 上存在x 1,x 2 ,且f (x 1)=1,f (x 2)=-1 ,使得f x 1 -f x 2 =2,故A 错误;由图象可知,函数在0,π 可能有两个最大值,故B 错误;对于选项D ,令ωx -π6=k π,k ∈Z ,则函数的零点为x =1ωk π+π6 ,k ∈Z ,所以函数在y 轴右侧的四个零点分别是:π6ω,7π6ω,13π6ω,19π6ω,函数y =sin ωx -π6ω>0 在0,π 有且仅有3个零点,所以13π6ω≤π19π6ω>π,解得ω∈136,196 ,故D 正确;由对选项D 的分析可知,ω的最小值为136,当0<x <π2 时,ωx -π6∈-π6,11π12 ,但-π6,11π12 不是0,π2的子集,所以函数f x 在0,π2上不是单调进增的,故C 错,故选:D .8.(2023·上海·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin (A +C )cos B b +cos C c =sin A sin C ,B =π3,则a +c 的取值范围是( )A.32,3B.32,3C.32,3 D.32,3【答案】A【解析】由题知sin (A +C )cos B b+cos C c=sin A sin C ,B =π3∴sin B cos B b +cos C c =sin Asin C 即cos B b +cos C c =23sin A3sin C由正弦定理化简得∴c ⋅cos B +b ⋅cos C =23bc sin A 3sin C=23ab3∴sin C cos B +cos C sin B =23b sin A3∴sin (B +C )=sin A =23b sin A3∴b =32∵B =π3∴a sin A =b sin B =c sin C =1∴a +c =sin A +sin C =sin A +sin 2π3-A =32sin A +32cos A =3sin A +π6∵0<A <2π3∴π6<A +π6<5π6∴32<3sin A +π6≤3即32<a +c ≤3故选:A .二、多选题9.(2023秋·山东济南·高三统考期中)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +B 1-tan A tan B =3ca cos B,则下列结论正确的是( )A.A =π6B.若b -c =33a ,则△ABC 为直角三角形C.若△ABC 面积为1,则三条高乘积平方的最大值为33D.若D 为边BC 上一点,且AD =1,BD :DC =2c :b ,则2b +c 的最小值为977【答案】BCD【解析】对于A ,因为tan A +B 1-tan A tan B =3c a cos B ,所以tan A +tan B =3ca cos B,则由正弦定理得3sin C =sin A cos B tan A +tan B =sin A cos B ⋅sin A cos B +cos A sin Bcos A cos B =sin A ⋅sin A +B cos A =sin A ⋅sin Ccos A ,则3sin C cos A =sin A sin C ,因为0<C <π,所以sin C >0,故tan A =3,又0<A <π,所以A =π3,故A 错误;对于B ,由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ,因为b -c =33a ,即b =33a +c ,代入上式得a 2=33a +c 2+c 2-33a +c c ,整理得3c 2+3ac -2a 2=0,解得a =3c 或a =-32c (舍去),则b =2c ,所以b 2=a 2+c 2,故B 正确;对于C ,设AB ,AC ,BC 边上的高分别是CE ,BF ,AD ,则由三角形面积公式易得AD =2a ,BF =2b ,CE =2c ,则AD ×BF ×CE 2=8abc2,因为1a +1b +1c ≥331abc ,当且仅当1a =1b=1c ,即a =b =c 时,等号成立,此时S =12bc sin A =34b 2=1,得b 2=433,所以AD ×BF ×CE 2=8abc2≤33,故C 正确;对于D ,因为BD :DC =2c :b ,所以AD =AB +BD =AB+2c b +2c BC =AB +2cb +2c AC -AB=b b +2c AB +2c b +2cAC,可得1=b 2(b +2c )2c 2+4c 2(b +2c )2b 2+22bc (b +2c )2cb cos60°,整理得b +2c 2=7b 2c 2,故1c +2b=7,所以2b +c =2b +c ×171c +2b =172b c +2c b +5 ≥1722b c ⋅2c b+5=977,当且仅当2b c =2c b 且1c +2b=7,即b =c =377时,等号成立,所以2b +c ≥977,即2b +c 的最小值为977,故D 正确.故选:BCD .10.(2023秋·江苏苏州·高三苏州中学校考阶段练习)已知函数f x =sin2x1+2cos 2x,则下列说法中正确的是( )A.f x +π =f xB.f x 的最大值是33C.f x 在-π2,π2上单调递增D.若函数f x 在区间0,a 上恰有2022个极大值点,则a 的取值范围为60643π,60673π【答案】ABD 【解析】f x =sin2x 1+2cos 2x =sin2x 1+21+cos2x 2=sin2x2+cos2x ,A 选项:f x +π =sin 2x +2π 2+cos 2x +2π=sin2x 2+cos2x =f x ,A 选项正确;B 选项:设f x =sin2x2+cos2x=t ,则sin2x -t cos2x =2t =1+t 2sin 2x +φ ≤1+t 2,解得t 2≤13,-33≤t ≤33,即t max =33,即f x 的最大值为33,B 选项正确;C 选项:因为f -π2 =f π2 =0,所以f x 在-π2,π2 上不单调,C 选项错误;D 选项:f x =2cos2x 2+cos2x -sin2x -2sin2x 2+cos2x 2=4cos2x +22+cos2x2,令f x =0,解得cos2x =-12,即x =π3+k π或x =2π3+k π,k ∈Z ,当x ∈π3+k π,2π3+k π ,k ∈Z 时,f x <0,函数单调递减,当当x ∈2π3+k π,4π3+k π ,k ∈Z 时,f x >0,函数单调递增,所以函数f x 的极大值点为π3,4π3,⋯,π3+n-1π,又函数f x 在区间0,a上恰有2022个极大值点,则a∈π3+2021π,π3+2022π,即a∈6064π3,6067π3,D选项正确;故选:ABD.11.(2023·全国·高三专题练习)在△ABC中,角A、B、C的对边分别为a、b、c,面积为S,有以下四个命题中正确的是( )A.Sa2+2bc的最大值为3 12B.当a=2,sin B=2sin C时,△ABC不可能是直角三角形C.当a=2,sin B=2sin C,A=2C时,△ABC的周长为2+23D.当a=2,sin B=2sin C,A=2C时,若O为△ABC的内心,则△AOB的面积为3-13【答案】ACD【解析】对于选项A:Sa2+2bc =12bc sin Ab2+c2-2bc cos A+2bc=12×sin Abc+cb+2-2cos A≤-14×sin Acos A-2(当且仅当b=c时取等号).令sin A=y,cos A=x,故Sa2+2bc≤-14×yx-2,因为x2+y2=1,且y>0,故可得点x,y表示的平面区域是半圆弧上的点,如下图所示:目标函数z=yx-2上,表示圆弧上一点到点A2,0点的斜率,数形结合可知,当且仅当目标函数过点H12,32,即A=60∘时,取得最小值-3 3,故可得z=yx-2∈-33,0,又Sx2+2bc≤-14×yx-2,故可得Sa2+2bc≤-14×-33=312,当且仅当A=60∘,b=c,即三角形为等边三角形时,取得最大值,故选项A正确;对于选项B:因为sin B=2sin C,所以由正弦定理得b=2c,若b是直角三角形的斜边,则有a2+c2= b2,即4+c2=4c2,得c=233,故选项B错误;对于选项C,由A=2C,可得B=π-3C,由sin B=2sin C得b=2c,由正弦定理得,bsin B=csin C,即2csinπ-3C=csin C,所以sin3C=2sin C,化简得sin C cos2C+2cos2C sin C=2sin C,因为sin C≠0,所以化简得cos2C=3 4,因为b=2c,所以B>C,所以cos C=32,则sin C=12,所以sin B=2sin C=1,所以B=π2,C=π6,A=π3,因为a=2,所以c=233,b=433,所以△ABC的周长为2+23,故选项C正确;对于选项D,由C可知,△ABC为直角三角形,且B=π2,C=π6,A=π3,c=233,b=433,所以△ABC的内切圆半径为r=122+233-433=1-33,所以△ABC的面积为12cr=12×233×1-33=3-13所以选项D正确,故选:ACD12.(2023·全国·高三专题练习)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,且c-b=2b cos A,则下列结论正确的有( )A.A=2BB.B的取值范围为0,π4C.a b的取值范围为2,2D.1tan B-1tan A+2sin A的取值范围为533,3【答案】AD【解析】在△ABC中,由正弦定理可将式子c-b=2b cos A化为sin C-sin B=2sin B cos A,把sin C=sin A+B=sin A cos B+cos A sin B代入整理得,sin A-B=sin B,解得A-B=B或A-B+B=π,即A=2B或A=π(舍去).所以A=2B.选项A正确.选项B:因为△ABC为锐角三角形,A=2B,所以C=π-3B.由0<B<π2,0<2B<π2,0<π-3B<π2解得B∈π6,π4,故选项B错误.选项C :a b =sin A sin B =sin2Bsin B =2cos B ,因为B ∈π6,π4 ,所以cos B ∈22,32,2cos B ∈2,3 ,即ab的取值范围2,3 .故选项C 错误.选项D :1tan B -1tan A +2sin A =sin A -B sin A sin B +2sin A =1sin A +2sin A .因为B ∈π6,π4,所以A =2B ∈π3,π2 ,sin A ∈32,1.令t =sin A ,t ∈32,1,则f t =2t +1t.由对勾函数的性质知,函数f t =2t +1t 在32,1上单调递增.又f 32 =533,f 1 =3,所以f t ∈533,3 .即1tan B -1tan A+2sin A 的取值范围为533,3 .故选项D 正确.故选:AD .三、填空题13.(2023·全国·高三专题练习)已知函数f (x )=sin ωx +π6,ω>0,若f π4 =f 5π12 且f (x )在区间π4,5π12 上有最小值无最大值,则ω=_______.【答案】4或10【解析】∵f (x )满足f π4 =f 5π12 ,∴x =π4+5π122=π3是f (x )的一条对称轴,∴π3⋅ω+π6=π2+k π,∴ω=1+3k ,k ∈Z ,∵ω>0,∴ω=1,4,7,10,13,⋯.当x ∈π4,5π12时,ωx +π6∈π4ω+π6,5π12ω+π6 ,y =sin x 图像如图:要使f (x )在区间π4,5π12上有最小值无最大值,则:π2≤π4ω+π6<3π23π2<5π12ω+π6≤5π2⇒4≤ω<163 或5π2≤π4ω+π6<7π27π2<5π12ω+π6≤9π2⇒283≤ω<525 ,此时ω=4或10满足条件;区间π4,5π12 的长度为:5π12-π4=5π12-3π12=π6,当ω≥13时,f (x )最小正周期T =2πω≤2π13<π6,则f (x )在π4,5π12 既有最大值也有最小值,故ω≥13不满足条件.综上,ω=4或10.故答案为:4或10.14.(2023·全国·高三专题练习)函数f x =3sin ωx +φ ω>0,φ <π2,已知f π3 =3且对于任意的x ∈R 都有f -π6+x +f -π6-x =0,若f x 在5π36,2π9上单调,则ω的最大值为______.【答案】5【解析】因为函数f x =3sin ωx +φ ω>0,φ <π2 ,f π3=3,所以f π3=33sin ω·π3+φ =3,所以πω3+φ=π2+k π(k ∈Z ),φ=π2-k π3+k 1π(k 1∈Z ),因为于任意的x ∈R 都有f -π6+x +f -π6-x =0,所以f -π6+x =-f -π6-x ,所以sin x -π6 ⋅ω+φ =-sin -ω⋅x +π6 +φ ,所以sin ωx -ωπ6+φ =sin ωx +ωπ6-φ ,所以ωx -ωπ6+φ=ωx +ωπ6-φ+2k 2π(k 2∈Z )或ωx -ωπ6+φ+ωx +ωπ6-φ=k 3π(k 3∈Z ),所以φ=ωπ6+k 2π(k 2∈Z )或2ωx =k 3π(k 3∈Z ),即x =k 3π2ω(k 3∈Z )(舍去),所以φ=ωπ6+k 2π(k 2∈Z ),因为φ=π2-k π3+k 1π(k 1∈Z ),所以π2-k π3+k 1π=ωπ6+k 2π(k 1∈Z ),即ω=1+2(k 1-k 2),令t =k 1-k 2,所以ω=1+2t (t ∈Z ),f x 在5π36,2π9上单调,所以π12≤T 2=πω,所以ω≤12,而ω=1+2t (t ∈Z ),当ω=11,φ=-π6,所以f x =3sin 11x -π6 ,函数在5π36,2π9不单调,舍去;当ω=9,φ=3π2+k π(k ∈Z ),舍去;当ω=7,φ=π6,所以f x =3sin 7x +π6 ,函数在5π36,2π9 不单调,舍去;当ω=5,φ=-π6,所以f x =3sin 5x -π6 ,函数在5π36,2π9 单调,所以ω的最大值为5.故答案为:5.15.(2023·全国·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,|φ|≤π2,-π4为f (x )的零点,且f (x )≤f π4恒成立,f (x )在区间-π12,π24 上有最小值无最大值,则ω的最大值是_______【答案】15【解析】由题意知函数f x =sin ωx +φ ω>0,φ ≤π2 ,x =π4为y =f (x )图象的对称轴,x =-π4为f (x )的零点,∴2n +14•2πω=π2,n ∈Z ,∴ω=2n +1.∵f (x )在区间-π12,π24 上有最小值无最大值,∴周期T ≥π24+π12 =π8,即2πω≥π8,∴ω≤16.∴要求ω的最大值,结合选项,先检验ω=15,当ω=15时,由题意可得-π4×15+φ=k π,φ=-π4,函数为y =f (x )=sin 15x -π4,在区间-π12,π24 上,15x -π4∈-3π2,3π8 ,此时f (x )在x =-π12时取得最小值,∴ω=15满足题意.则ω的最大值为15.故答案为:15.16.(2023·全国·高三对口高考)在△ABC 中,AB =3cos x ,cos x ,AC =cos x ,sin x ,则△ABC 面积的最大值是____________【答案】34【解析】S △ABC =12AB⋅AC sin AB ,AC =12AB 2⋅AC 21-cos 2AB ,AC =12AB 2⋅AC 2-AB ⋅AC 2=124cos 2x -3cos 2x +sin x cos x 2=123cos x sin x -cos 2x =12sin 2x -π6 -12 ≤34,当sin 2x -π6 =-1时等号成立.此时2x -π6=-π2,即x =-π6时,满足题意.故答案为:34.17.(2023·高一课时练习)用M I 表示函数y =sin x 在闭区间I 上的最大值.若正数a 满足M [0,a ]≥2M [a ,2a ],则a 的最大值为________.【答案】1312π【解析】①当a ∈0,π2时,2a ∈[0,π),M [0,a ]=sin a ,M [a ,2a ]=1,若M [0,a ]≥2M [a ,2a ],则sin a ≥2,此时不成立;②当a ∈π2,π时,2a ∈[π,2π),M [0,a ]=1,M [a ,2a ]=sin a ,若M [0,a ]≥2M [a ,2a ],则1≥2sin a ⇒sin a ≤12,又a ∈π2,π ,解得a ∈5π6,π ;③当a ∈π,3π2时,2a ∈[2π,3π),M [0,a ]=1,M [a ,2a ]=sin2a ,若M [0,a ]≥2M [a ,2a ],则1≥2sin2a ⇒sin2a ≤12,又a ∈π,3π2 ,解得a ∈π,13π12;④当a ∈3π2,+∞时,2a ∈[3π,+∞),M [0,a ]=1,M [a ,2a ]=1,不符合题意.综上所述,a ∈5π6,13π12 ,即a 的最大值为1312π.故答案为:1312π18.(2023·上海·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =2,b cos C -c cos B =4,π4≤C ≤π3,则tan A 的最大值为_______.【答案】12【解析】在△ABC 中,因为a =2,b cos C -c cos B =4,所以b cos C -c cos B =4=2a ,所以sin B cos C -sin C cos B =2sin A 所以sin B cos C -sin C cos B =2sin (B +C ),所以sin B cos C -sin C cos B =2sin B cos C +2cos B sin C ,所以sin B cos C +3cos B sin C =0,所以sin B cos C +cos B sin C +2cos B sin C =0,所以sin (B +C )+2cos B sin C =0,所以sin A +2cos B sin C =0,所以由正弦定理得a +2c cos B =0,所以cos B =-1c<0,所以角B 为钝角,角A 为锐角,所以要tan A 取最大值,则A 取最大值,B ,C 取最小值,从而b ,c 取最小值.又b cos C =c cos B +4=c ×-1c +4=3,∴cos C =3b,由π4≤C ≤π3,得12≤cos C ≤22,∴12≤3b≤22,∴32≤b ≤6,由cos B =a 2+c 2-b 22ac =-1c,∴b 2-c 2=8,∴10≤c ≤27,∴tan A 取最大值时,b =32,c =10,此时由余弦定理可得cos A =b 2+c 2-a 22bc =18+10-42×32×10=255,从而求得tan A =1cos 2A-1=12,即tan A 最大值为12.故答案为:1219.(2023·全国·高三专题练习)在△ABC 中,若∠BAC =120°,点D 为边BC 的中点,AD =1,则AB⋅AC的最小值为______.【答案】-2【解析】AB ⋅AC =AD +DB ⋅AD +DC=AD 2+AD ⋅DC +DB +DB ⋅DC,因为D 为边BC 的中点,AD =1,故AB ⋅AC =1-DB 2,故求DB 的最大值.设DB =DC =x ,AC =a ,AB =c ,则由余弦定理,cos ∠BDA =x 2+12-c 22x ,cos ∠CDA =x 2+12-b 22x,因为∠BDA +∠CDA=180∘,故x 2+12-c 22x +x 2+12-b 22x=0,即2x 2+2=b 2+c 2,又2x 2=b 2+c 2+bc ≥3bc ,故2x 2+2=4x 2-bc ,即2x 2=2+bc ≤2+43x 2,此时x 2≤3,故AB ⋅AC =1-x 2≥-2,当且仅当b =c 时取等号.即AB ⋅AC的最小值为-2故答案为:-220.(2023·全国·高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________.【答案】3【解析】因为△ABC 的面积为1,所12bc sin A =12b ×2b sin A =b 2sin A =1,可得b 2=1sin A,由BC =AC -AB ,可得|BC |2=|AC |2+|AB |2-2AC ⋅AB =b 2+c 2-2bc cos A =b 2+2b2-2b ×2b cos A =5b 2-4b 2cos A =5sin A -4cos A sin A =5-4cos Asin A,设m =sin A -4cos A +5=-14×sin A cos A -54,其中A ∈(0,π),因为sin A cos A -54=sin A -0cos A -54表示点P 54,0 与点(cos A,sinA )连线的斜率,如图所示,当过点P 的直线与半圆相切时,此时斜率最小,在直角△OAP 中,OA =1,OP =54,可得PA =34,所以斜率的最小值为k PA =-tan ∠APO =-43,所以m 的最大值为-14×-43 =13,所以|BC |2≥3,所以|BC |≥3,即BC 的最小值为3,故答案为:3.21.(2023·全国·高三专题练习)已知θ>0,对任意n ∈N *,总存在实数φ,使得cos (nθ+φ)<32,则θ的最小值是___【答案】2π5【解析】在单位圆中分析,由题意,nθ+φ的终边要落在图中阴影部分区域(其中∠AOx =∠BOx =π6),必存在某个正整数n ,使得nθ+φ终边在OB 的下面,而再加上θ,即跨越空白区域到达下一个周期内的阴影区域内,∴θ>∠AOB =π3,∵对任意n ∈N *要成立,所以必存在某个正整数n ,使得以后的各个角的终边与前面的重复(否则终边有无穷多,必有两个角的终边相差任意给定的角度比如1°,进而对于更大的n ,次差的累积可以达到任意的整度数,便不可能在空白区域中不存在了),故存在正整数m ,使得2m πθ∈N *,即θ=2m πk ,k ∈N *,同时θ>π3,∴θ的最小值为2π5,故答案为:2π5.22.(2023·上海·高三专题练习)已知函数f (x )=sin (ωx +φ),其中ω>0,0<φ<π,f (x )≤f π4恒成立,且y =f (x )在区间0,3π8上恰有3个零点,则ω的取值范围是______________.【答案】6,10【解析】由已知得:f (x )≤f π4恒成立,则f (x )max =f π4 ,π4ω+φ=π2+2k π,k ∈Z ⇒φ=π2-πω4+2k π,k ∈Z ,由x ∈0,3π8 得ωx +φ∈φ,3π8ω+φ ,由于y =f (x )在区间0,3π8上恰有3个零点,故0<φ<π3π<3π8ω+φ≤4π,则0<π2-πω4+2k π<π3π<3πω8+π2-πω4+2k π≤4π,k ∈Z ,则8k -2<ω<8k +220-16k <ω≤28-16k,k ∈Z ,只有当k =1时,不等式组有解,此时6<ω<104<ω≤12 ,故6<ω<10,故答案为:6,1023.(2023·全国·高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A >B ,若sin C =2cos A sin B +725,则tan B 的取值范围为_______.【答案】34,247【解析】∵sin C =2cos A sin B +725,∴sin A +B =sin A cos B +cos A sin B =2cos A sin B +725,即sin A -B =725,∵又A >B ,且A ,B 都为锐角,故cos A -B =2425,tan A -B =724,因为锐角三角形ABC ,所以tan A >0,tan B >0,tan C >0,所以tan A =tan A -B +B =tan A -B +tan B 1-tan A -B ⋅tan B =724+tan B1-724⋅tan B >0所以1-724⋅tan B>0,所以tan B<247,又因为tan C=-tan A+B=tan A+tan Btan A⋅tan B-1>0所以tan A⋅tan B-1=724+tan B1-724⋅tan B⋅tan B-1>0所以12tan2B+7tan B-12>0,解得tan B>34或tan B<-43(舍去)故34<tan B<247.故答案为:3 4,247.24.(2023·全国·高三专题练习)若函数f x =43x-13sin2x+a cos x在-∞,+∞内单调递增,则实数a的取值范围是___________.【答案】-423,423【解析】因函数f(x)在-∞,+∞内单调递增,则∀x∈R,f (x)=43-23cos2x-a sin x≥0,即a sin x≤43-23cos2x,整理得a sin x≤43sin2x+23,当sin x=0时,则0≤23成立,a∈R,当sin x>0时,a≤43sin x+23sin x,而43sin x+23sin x=232sin x+1sin x≥432,当且仅当2sin x=1sin x,即sin x=22时取“=”,则有a≤423,当sin x<0时,a≥43sin x+23sin x,而43sin x+23sin x=-23(-2sin x)+1-sin x≤-432,当且仅当-2sin x=1-sin x,即sin x=-22时取“=”,则有a≥-423,综上得,-423≤a≤423所以实数a的取值范围是-423,423.故答案为:-423,42325.(2023秋·湖南衡阳·高一衡阳市八中校考期末)设函数f x =2sinωx+φ-1(ω>0),若对于任意实数φ,f x 在区间π4,3π4上至少有2个零点,至多有3个零点,则ω的取值范围是________.【答案】4,16 3【解析】令f x =0,则sinωx+φ=12,令t=ωx+φ,则sin t12,。

专题2 三角函数压轴小题(解析版)

专题2 三角函数压轴小题(解析版)

专题2三角函数压轴小题一、单选题 1.(2021·上海市吴淞中学高三期中)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线12,l l 之间,12l l //,l 与半圆相交于F 、G 两点,与三角形ABC 两边相交于点E 、D ,设弧FG 的长为x (0)x π<<,y EB BC CD =++,若l 从1l 平行移动到2l ,则函数()y f x =的图像大致是( )A .B .C .D .【答案】D 【分析】根据给定条件求出函数()y f x =的解析式,再借助函数性质即可判断作答. 【详解】依题意,正ABC 的高为1,则其边长BC =如图,连接OF ,OG ,过O 作ON ⊥l 1于N ,交l 于点M ,过E 作EH ⊥l 1于H ,因OF =1,弧FG 的长为x (0)x π<<,则FOG x ∠=,又12////l l l ,即有1122FON FOG x ∠=∠=,于是得cos cos 2x OM OF FON =⋅∠=,1cos 2x EH MN ON OM ==-=-,2cos )sin 6032EH xEB ==-,因此,2cos )22x xy EB BC CD EB BC =++=+=-=,即()2xf x =,0πx <<,显然()f x 在(0,)π上单调递增,且图象是曲线,排除选项A ,B ,而2312432fππ+⎛⎫==<=⎪⎝⎭⎭,C选项不满足,D选项符合要求,所以函数()y f x=的图像大致是选项D.故选:D【点睛】方法点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.2.(2021·上海市晋元高级中学高三期中)已知(){}|sin,A y y n n Zωϕ==+∈,若存在ϕ使得集合A中恰有3个元素,则ω的取值不可能是()A.27πB.25πC.2πD.23π【答案】A【分析】利用赋值法逐项写出一个周期中的元素,再结合三角函数诱导公式判断是否存在ϕ符合题意即可.【详解】解:对A,当2=7πω,27siny nϕπ⎛⎫=+⎪⎝⎭,函数的周期为22727Tπππω===在一个周期内,对n赋值当0n=时,sinyϕ=;当1n=时,27sinyπϕ⎛⎫=+⎪⎝⎭;当2n=时,47sinyπϕ⎛⎫=+⎪⎝⎭;当3n=时,67sinyπϕ⎛⎫=+⎪⎝⎭;当4n=时,867s n si7i nyϕππϕ⎛⎫⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭-;当5n=时,10s4n7i n7siyππϕϕ⎛⎫⎛⎫=+=+⎪-⎪⎝⎭⎝⎭;当6n=时,12s2n7i n7siyππϕϕ⎛⎫⎛⎫=+=+⎪-⎪⎝⎭⎝⎭;令2ϕπ=时,sin sin12πϕ==sin sin cos27722227πππππ-⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭sin sin cos47724247πππππ-⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭sin sin cos 67726267πππππ-⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭所以存在ϕ使得1n =时的y 值等于6n =时的y 值,2n =时的y 值等于5n =时的y 值,3n =时的y 值等于4n =时的y 值.但是当n 等于0、1、2、3时,不存在ϕ使得这个y 值中的任何两个相等 所以当2=7πω时,集合A 中至少有四个元素,不符合题意,故A 错误; 对B ,当2=5πω,25sin y n ϕπ⎛⎫=+ ⎪⎝⎭,函数的周期为22525T πππω=== 在一个周期内,对n 赋值当0n =时,sin y ϕ=;当1n =时,25sin y πϕ⎛⎫=+ ⎪⎝⎭; 当2n =时,45sin y πϕ⎛⎫=+ ⎪⎝⎭;当3n =时,645s n si 5i n y ϕππϕ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭-; 当4n =时,825s n si 5i n y ϕππϕ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭-; 令2ϕπ=,sin 12π= sin sin cos 25522225πππππ-⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭sin sin cos 45524245πππππ-⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭所以当2=5πω时,符合题意,故B 正确; 对C ,当=2πω,2sin y n πϕ⎛⎫=+ ⎪⎝⎭,函数的周期为2242T πππω=== 在一个周期内,对n 赋值 当0n =时,sin y ϕ=;当1n =时,sin cos 2y πϕϕ⎛⎫=+= ⎪⎝⎭;当2n =时,()sin sin y ϕπϕ=+=-; 当3n =时,sin os 3c 2y πϕϕ⎛⎫=+=- ⎪⎝⎭; 令0ϕ=,则sin0sin00=-=,cos01=,cos01-=- 所以当=2πω时,符合题意,故C 正确;对D ,当32=πω,23sin y n ϕπ⎛⎫=+ ⎪⎝⎭,函数的周期为22323T πππω=== 在一个周期内,对n 赋值当0n =时,sin y ϕ=;当1n =时,23sin y πϕ⎛⎫=+ ⎪⎝⎭; 当2n =时,43sin y πϕ⎛⎫=+ ⎪⎝⎭; 令0ϕ=,sin00=,2sin 3π=4sin 3π= 所以当32=πω时,符合题意,故D 正确. 故选:A. 【点睛】方法点睛:本题一共有三个变量:ω,n ,ϕ.属于多变量题目,对于该题,要先确定一个变量,再对第二个变量赋值,然后再对第三个变量赋值,以此分类讨论即可.3.(2021·广西南宁·高三月考(文))已知函数f (xx +4cos x )+2sin x ,则f (x )的最大值为( ) A .B .172C .6D .【答案】B 【分析】先将sin 2x 展开,提公因式并结合拼凑法可得())()21sin 24f x x x =++-,结合22a b ab +⎛⎫≤ ⎪⎝⎭放缩,联立辅助角公式化简,即可求解. 【详解】()))sin 24cos 2sin 2sin cos 4cos 2sin f x x x x x x x x ++++()())()sin 22sin 2421sin 24x x x x x =+++-=++-,由sin 20x +>可知,要求()f x最大值,只需10x +>即可,结合基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭可得())()222sin 3321sin 242442x f x x x π⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=++-≤⋅-=-⎝⎭172≤,当且仅当1sin 2sin 13x x x π+=+⎨⎛⎫+=⎪ ⎪⎝⎭⎩,即62,x k k Z ππ=+∈时等号成立,因此当62,x k k Z ππ=+∈时()f x的最大值为172. 故选:B4.(2021·江苏扬州·高三月考)已知△ABC 的内角,,A B C 所对的边分别为,,a b c 若sin sin 2B Cb a B +=,且△ABC 内切圆面积为9π,则△ABC 面积的最小值为( )AB .C .D .【答案】D 【分析】根据已知条件及正弦定理可得3A π=,由内切圆的面积可得内切圆半径3r =,最后根据()1sin 22ABCr a b c Sbc A ++==及余弦定理,并结合基本不等式求bc 的范围,进而求△ABC 面积的最小值. 【详解】 由题设,sin sin sin sin 2B C B A B +=,而sin 0B ≠且222B C Aπ+=-, ∴cos sin 2sin cos 222A A A A ==,022A π<<,则1sin 22A =,∴3A π=,由题设△ABC 内切圆半径3r =,又()1sin 22ABCr a b c Sbc A ++==,∴)a b c bc ++=,而222222cos a b c bc A b c bc bc =+-=+-≥,即a ≥∴bc ≥108bc ≥,当且仅当a b c ===.∴1sin 2ABCSbc A =≥ 故选:D5.(2021·四川绵阳·高三月考(理))函数()()3sin x x f ωϕ=+(0>ω,2πϕ<),已知||33f π⎛⎫= ⎪⎝⎭,且对于任意的R x ∈都有066f x f x ππ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,若()f x 在52,369ππ⎛⎫⎪⎝⎭上单调,则ω的最大值为( )A .11B .9C .7D .5【答案】D 【分析】结合正弦函数的最值,对称性求ϕ的值,再结合单调性确定ω的最大值. 【详解】∵ ||33f π⎛⎫= ⎪⎝⎭,()()3sin x x f ωϕ=+,∴32k ππωϕπ+=+,k Z ∈,又对于任意的R x ∈都有066f x f x ππ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭, ∴ 6m πωϕπ-+=,m Z ∈,∴ 3(2)2k m πϕπ=++,又2πϕ<,∴ 6π=ϕ或6πϕ=-,当6π=ϕ时, 31w k =+,k Z ∈且61w m =-+, 当7w =时,()3sin 76f x x π⎛⎫ ⎪⎝=⎭+,若52,369x,则4131736618x πππ≤+≤, ∴()f x 在52,369ππ⎛⎫⎪⎝⎭上不单调,C 错误, 当6πϕ=-时, 32w k =+,k Z ∈且61w m =--,当11w =时,()3sin 116f x x π⎛⎫ ⎪⎝-⎭=,若52,369x,则49411136618x πππ≤-≤, ∴()f x 在52,369ππ⎛⎫ ⎪⎝⎭上不单调,A 错误, 当5w =时,()3sin 56f x x π⎛⎫ ⎪⎝=⎭-,若52,369x,则1917536618x πππ≤-≤, ∴()f x 在52,369ππ⎛⎫⎪⎝⎭上单调,D 正确, 故选:D. 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的性质求函数解析式的关键在于转化为正弦函数的问题.6.(2021·河北·邯郸市肥乡区第一中学高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .⎣D .32⎡⎢⎣【答案】A 【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C b c C⎛⎫++= ⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案. 【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π= ∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos B C b c +=由正弦定理化简得∴cos cos c B b C ⋅+⋅==∴sin cos cos sin C B C B +∴sin()sin B C A +==∴b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin )326a c A C A A A A A ππ+=+=+-=+=+203A π<<∴5666A πππ<+<∴)6A π<+≤a c <+≤故选:A .【点睛】方法点睛:边角互化的方法 (1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边: ①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r= ②利用余弦定理:222cos 2b c a A bc+-=7.(2021·四川·绵阳中学实验学校模拟预测)某城市要在广场中央的圆形地面设计一块浮雕,彰显城市积极向上的活力.某公司设计方案如图,等腰PMN 的顶点P 在半径为20m 的大⊙O 上,点M ,N 在半径为10m 的小⊙O 上,点O ,点P 在弦MN 的同侧.设2(0)2MON παα=<<∠,当PMN 的面积最大时,对于其它区域中的某材料成本最省,则此时cos α=( )A .12B C D 【答案】C 【分析】用α表示出PMN 的面积为()S α,求导()S α',令()0S α'=求得极值点,从而求得PMN 面积最大时对应的cos α值. 【详解】如图所示,等腰PMN 中,2(0)2MON παα=<<∠设PMN 的面积为()S α, 则()2OPN OMNS SSα=⨯+1122010sin()1010sin 222παα⎡⎤=⨯⨯⨯⨯-+⨯⨯⨯⎢⎥⎣⎦200sin 50sin 2,(0)2πααα=+<<求导()200cos 250cos 2200cos 100cos 2S ααααα'=+⨯=+22200cos 100(2cos 1)100(2cos 2cos 1)αααα=+-=+-令()0S α'=,即22cos 2cos 10αα+-=,解得:1cos 2α=-记01cos 2α=-, 00,2πα⎛⎫∈ ⎪⎝⎭当()00,αα∈,()0S α'>,函数单调递增;当 0,2παα⎛⎫∈ ⎪⎝⎭,()0S α'<,函数单调递减;故当0αα=时,即1cos 2α=-, ()S α取得极大值,即最大值.故选:C8.(2021·北京八中高三月考)已知()()3sin 2f x x ϕ=+(ϕ∈R )既不是奇函数也不是偶函数,若()y f x m =+的图像关于原点对称,()y f x n =+的图像关于y 轴对称,则m n +的最小值为( ) A .π B .2π C .4π D .8π 【答案】C 【分析】结合五点作图法及函数图象进行计算求解即可. 【详解】可设0ϕ满足00,22ππϕπ⎛⎫⎛⎫∈⋃ ⎪ ⎪⎝⎭⎝⎭,, 且02t ϕπϕ=+(t Z ∈),则()()03sin 2f x x ϕ=+,注意到五点作图法的最左边端点为0,02ϕ⎛⎫- ⎪⎝⎭,而22T π=,44T π=,故有0000min ,min ,2222m ϕπϕϕπϕ--⎛⎫⎛⎫=- ⎪ ⎪⎝=⎭⎝⎭,002244n ϕππϕ-=-+=, 当002πϕ⎛⎫∈ ⎪⎝⎭,时,02m ϕ=,024n πϕ-=,此时4m n π+=;当0,2πϕπ⎛⎫∈ ⎪⎝⎭时,02m πϕ-=,024n ϕπ-=,此时002244m n πϕϕππ--+=+=, 故选:C .9.(2021·吉林·梅河口市第五中学高三月考(理))已知点,024A π⎛⎫⎪⎝⎭在函数()()cos f x x ωϕ=+(0>ω且,*ω∈N ,0ϕπ<<)的图像上,直线6x π=是函数()f x 图像的一条对称轴.若()f x 在区间,63ππ⎛⎫⎪⎝⎭上单调,则ϕ=( ) A .6πB .4πC .3π D .23π【答案】C 【分析】由()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调求出ω的范围,先由函数零点与对称轴之间的关系求出周期,进而求得ω,利用对称轴即可求出ϕ. 【详解】∵()f x 在区间,63ππ⎛⎫⎪⎝⎭内单调,3662T πππ∴-=≤,得1226ππω⨯≥,所以06ω<≤ ∵24x π=是函数()()cos f x x ωϕ=+的零点,直线6x π=是函数()f x 的图象的一条对称轴,∴6248πππ-=,若84T π=,则2T π=,此时22ππω=,得4ω=,满足条件,若384T π=,则6T π=,此时26ππω=,得12ω=,不满足条件, 综上可知,函数()()cos 4f x x ϕ=+, ∵6x π=是函数()f x 的图象的一条对称轴,∴4,6k k Z πϕπ⨯+=∈,即2,3k k Z πϕπ=-∈, ∵0ϕπ<<,∴3πϕ=,故选:C 【点睛】关键点点睛:本题主要考查三角函数性质的应用,结合的单调区间以及对称轴对称中心之间的关系求出周期和ω是解决本题的关键,属于一般题.10.(2021·浙江·高三专题练习)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小,若15,25,30AB cm AC cm BCM ==∠=︒,则tan θ的最大值是( ).(仰角θ为直线AP 与平面ABC 所成的角)A B C D 【答案】D 【分析】由题可得,20BC =,过P 作PP BC '⊥,交BC 于P ',连接'AP ,则tan PP AP θ'=',设(0)BP x x '=>,分类讨论,若P '在线段BC 上,则20CP x '=-,可求出PP '和'AP ,从而可得出220tan 225x x θ-=+利用函数的单调性,可得出0x =时,取得最大值;若P '在CB 的延长线上,同理求出PP '和'AP ,可得出220tan 225x x θ++,可得当454x =时,函数取得最大值;结合两种情况的结果,即可得出结论. 【详解】 解:15,25AB cm AC cm ==,AB BC ⊥,由勾股定理知,20BC =,过点P 作PP BC '⊥交BC 于P ',连结'AP ,则tan PP AP θ'=', 设(0)BP x x '=>,若P '在线段BC 上,则20CP x '=-,由30BCM ∠=︒,得tan30)PP CP x ''=︒-,在直角ABP '△中,AP '2320tan 225x x θ-∴=+令y ,则函数在[0x ∈,20]单调递减,0x ∴=若P '在CB 的延长线上,tan30)PP CP x ''=︒+,在直角ABP '△中,AP '2320tan 225x x θ+∴=+令22(20)225x y x +=+,则0y '=可得454x =..11.(2021·全国·高三专题练习)设△ABC 的三边长为BC a =,=CA b ,AB c =,若tan 2A a b c =+,tan 2B ba c=+,则△ABC 是( ). A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形【答案】B 【分析】若三角形各边长为a 、b 、c 且内切圆半径为r , 法一:由内切圆的性质有tan2A a b c =+、tan 2B ba c=+,根据边角关系可得a b =或222+=a b c ,注意讨论所得关系验证所得关系的内在联系;法二:由半角正切公式、正弦定理可得A B =或π2A B +=,结合三角形内角的性质讨论所得关系判断三角形的形状. 【详解】 设()12P a b c =++,△ABC 的内切圆半径为r ,如图所示,法一: ∴tan2A r a p a b c ==-+①;tan 2B r b p b a c==-+②. ①÷②,得:p b a a cp a b c b -+=⋅-+,即()()()()22p b a a c p a b b c -+=-+. 于是()()()()b b c c a b a a c b c a ++-=++-,232232ab b bc a b a ac -+=-+,()()2220a b a b c -+-=,从而得a b =或222+=a b c ,∴A B ∠=∠或90C ∠=︒.故△ABC 为等腰三角形或直角三角形, (1)当a b =时,内心I 在等腰三角形CAB 的底边上的高CD 上,12ABCS AB CD c =⋅△,从而得2S r a b c ==++. 又()1122p a b c a c -=+-=()22a abc a ca c c ==+++⋅a a c=+, 上式两边同时平方,得:()2222a c a a c a c -=++,化简2220c a -=,即c .即△ABC 直角三角形, ∴△ABC 为等腰直角三角形.(2)当222+=a b c 时,易得()12r a b c =+-.代入②式,得()()1212a b c b a c a c b +-=++-,此式恒成立, 综上,△ABC 为直角三角形. 法二: 利用sin tan21cos A A A =+,sin tan 21cos B B B =+及正弦定理和题设条件,得sin sin 1cos sin sin A A A B C=++①,sin sin 1cos sin sin B B B A C=++②.∴1cos sin sin A B C +=+③;1cos sin sin B A C +=+④.由③和④得:1cos sin 1cos sin A B B A +-=+-,即sin cos sin cos A A B B +=+,ππsin sin 44A B ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,因为,A B 为三角形内角, ∴ππ44A B +=+或πππ44A B +=--,即A B =或π2A B+=.(1)若A B =,代入③得:1cos sin sin A B C +=+⑤又ππ2C A B A =--=-,将其代入⑤,得:1cos sin sin 2A A A +=+. 变形得()()2sin cos sin cos 0A A A A ---=, 即()()sin cos sin cos 10A A A A ---=⑥,由A B =知A 为锐角,从而知sin cos 10A A --≠. ∴由⑥,得:sin cos 0A A -=,即π4A =,从而π4B =,π2C =.因此,△ABC 为等腰直角三角形. (2)若π2A B +=,即π2C =,此时③④恒成立, 综上,△ABC 为直角三角形. 故选:B12.(2021·河北·石家庄一中高三月考)在锐角ABC 中,角、、A B C 所对的边分别为,,a b c ,若22a c bc -=,则113sin tan tan A C A-+的取值范围为( )A .)+∞B .C .(6D .)6【答案】C 【分析】根据余弦定理以及正弦定理化简条件得A 、C 关系,再根据二倍角正切公式以及函数单调性求范围. 【详解】∵22a c bc -=,∴所以22cos 2cos sin 2sin cos sin ,b bc A bc b c A c B C A C -=∴-=∴-=sin()2sin cos sin ,sin()sin ,2A C C A C A C C A C C A C +-=∴-=∴-==因此22111111tan 1tan 3sin =3sin 3sin 3sin tan tan tan tan 2tan 2tan 2tan C CA A A A C A C C C C C-+-+-+=-+=+ 113sin 3sin 2sin cos sin A A C C A=+=+设sin A t =,∵ABC 是锐角三角形,∴(0,),(0,),(0,)22222A A A C B A ππππ∈=∈=--∈,∴(,)32A ππ∈∴sin A t =∈,1+3t t 在t ∈上单调递增,∴1113sin +34)tan tan A t C A t -+=∈, 故选:C13.(2021·贵州遵义·高三月考(文))已知函数()()cos 33f x a x x a ππ⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭R 是偶函数.若将曲线()2y f x =向左平移12π个单位长度后,再向上平移1个单位长度得到曲线()y g x =,若关于x 的方程()g x m =在70,12π⎡⎤⎢⎥⎣⎦有两个不相等实根,则实数m 的取值范围是( )A .[]0,3B .[)0,3C .[)2,3D .)1,3【答案】C 【分析】本题首先可根据函数()f x 是偶函数得出33f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,通过计算得出1a =-,然后通过转化得出()2sin 2f x x π⎛⎫=- ⎪⎝⎭,通过图像变换得出()2sin 213g x x π⎛⎫=-+ ⎪⎝⎭,最后根据正弦函数对称性得出52,636x πππ⎡⎤-∈⎢⎥⎣⎦且232x ππ-≠,通过求出此时()g x 的值域即可得出结果. 【详解】因为函数()()cos 33f x a x x a ππ⎛⎫⎛⎫=--∈ ⎪ ⎪⎝⎭⎝⎭R 是偶函数,所以33f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,即22cos 00cos 33a a ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭, 1322a a =--,解得1a =-,()cos 33f x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,则()1cos 2cos 33323f x x x x x ππππ⎤⎛⎫⎛⎫⎛⎫⎛⎫---=---⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2sin 32sin 62x x πππ⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭=,则()22sin 22y f x x π⎛⎫==- ⎪⎝⎭,向左平移12π个单位长度后,得到2sin 23y x π⎛⎫=- ⎪⎝⎭, 向上平移1个单位长度,得到()2sin 213y g x x π⎛⎫- ⎝=+⎪⎭=,当70,12x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤-∈-⎢⎥⎣⎦,结合正弦函数对称性易知,()g x m =在70,12π⎡⎤⎢⎥⎣⎦有两个不相等实根,则52,636x πππ⎡⎤-∈⎢⎥⎣⎦且232x ππ-≠,此时()[)2,3g x ∈,实数m 的取值范围是[)2,3,故选:C. 【点睛】关键点点睛:本题考查三角函数图像变换、正弦函数性质、偶函数的性质的应用以及两角差的正弦公式,能够根据偶函数的性质求出1a =-是解决本题的关键,考查计算能力,考查化归与转化思想,体现了综合性,是难题.14.(2021·全国·高三专题练习(文))在ABC 中,()sin sin sin A B B C -+=,点D 在边BC 上,且22CD BD ==,设sin sin ABDk BAD∠=∠,则当k 取最大值时,sin ACD ∠=( )A .14BCD【答案】B 【分析】根据()sin sin sin A B B C -+=,利用两角和与差的正弦公式化简得到sin 2cos sin B A B =,进而求得A ,根据点D 在边BC 上,且2CD BD =,得到sin 3sin ABD AD AD k BAD BD BC∠===∠,再由余弦定理结合2133AD AB AC =+两边平方,得到2222242421c b c b bc b c k c b c b bc b c ++++==+-+-,令c t b =,得到()222142421111t t t t k f t t t t t ++++===-++-,用基本不等式法或者导数法求得最大值时a ,b ,c 的关系,再利用正弦定理求解. 【详解】因为()sin sin sin A B B C -+=,所以()()sin sin sin A B B A B -+=+,即sin 2cos sin B A B =, 因为()0,B π∈, 所以sin 0B ≠,1cos 2A =, 因为()0,A π∈, 所以3A π=,因为点D 在边BC 上,且2CD BD =, 所以sin 3sin ABD AD ADk BAD BD BC∠===∠,设,,AB c AC b BC a ===,则13AD ak =,在ABC 中,由余弦定理得222222cos a c b bc A c b bc =+-=+-,()121333AD AB BD AB BA AC AB AC =+=++=+, 所以222133AD AB AC ⎛⎫=+ ⎪⎝⎭,即22221414cos 9999a k c b bc BAC =++∠, 即222242a k c b bc =++,所以222222224242421c bc b bc c b bc b c k c b a c b bc b c++++++===+-+-,令c t b =,得()222142421111t t t t k f t t t t t ++++===-++-,下面采用基本不等式和导数两种方法求解: 方法一:利用基本不等式求解:222211426()4212411311()24t t t t t k t t t t t ++-++===+-++--+,要使k 最大,需2k 最大,当2k 取最大值时,必有102t ->,2216()6244441313()()12424()2t k t t t -=+=+≤+=+-+-+-当且仅当13124()2t t -==-t所以t 2224211t t k t t ++=-+有最大值4+k的最大值为1c b =所以)1b c =,解得a ==,在ABC 中,由正弦定理得sin sin a cA C=,解得sin sin c A C a ==,即sin ACD ∠=下面采用导数的方法求解:求导得()()2226631t t f t tt -++'=-+,令()0f t '=,解得t =,当0t <<()0f t '>,当t >()0f t '<,所以当t =时,()f t 取得最大值,此时c b =,所以)1b c =,解得a ==, 在ABC 中,由正弦定理得sin sin a cA C=,解得sin sin c A C a ==,即sin ACD ∠= 故选:B. 【点睛】关键点点睛:本题关键是利用正弦定理得到sin 3sin ABD AD ADk BAD BD BC∠===∠,然后利用余弦定理表示BC ,利用平面向量表示AD 而得解.15.(2021·新疆·莎车县第一中学高三期中)已知函数()()sin 02f x x πωω⎛⎫=+> ⎪⎝⎭,将()f x 的图象向右平移3ωπ个单位得到函数()g x 的图象,点A ,B ,C 是()f x 与()g x 图象的连续相邻的三个交点,若ABC 是钝角三角形,则ω的取值范围是( )A .,⎫+∞⎪⎪⎝⎭B .,⎫+∞⎪⎪⎝⎭C .⎛⎫⎪ ⎪⎝⎭ D .⎛⎫⎪ ⎪⎝⎭【答案】D 【分析】由函数图象的平移可得()πcos 3g x x ω⎛⎫=- ⎪⎝⎭,作出函数的图象,结合三角函数的图象与性质、平面几何的知1<,即可得解. 【详解】由条件可得,()πcos 3g x x ω⎛⎫=- ⎪⎝⎭,作出两个函数图象,如图:A ,B ,C 为连续三交点,(不妨设B 在x 轴下方),D 为AC 的中点,.由对称性可得ABC 是以B 为顶角的等腰三角形,2π2AC T CD ω===,由πcos cos 3x x ωω⎛⎫=- ⎪⎝⎭,整理得cos x x ωω=,得cos x ω=,则C B y y =-=2B BD y = 要使ABC 为钝角三角形,只需π4ACB ∠<即可,由tan 1BD ACB DC ∠==<,所以0ω<<.故选:D. 【点睛】关键点点睛:解决本题的关键是准确把握三角函数的图象与性质,合理转化条件,得到关于ω的不等式,运算即可.16.(2021·全国·高三专题练习(理))已知2()2sin 1(0)3f x x πωω⎛⎫=+-> ⎪⎝⎭,给出下列结论:①若f (x 1)=1,f (x 2)=﹣1,且|x 1﹣x 2|min =π,则ω=1;②存在ω∈(0,2),使得f (x )的图象向左平移6π个单位长度后得到的图象关于y 轴对称; ③若f (x )在[0,2π]上恰有7个零点,则ω的取值范围为4147,2424⎡⎤⎢⎥⎣⎦;④若f (x )在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤⎥⎝⎦.其中,所有正确结论的编号是( )A .①②B .②③C .①③D .②④【答案】D 【分析】对函数()f x 化简可得()sin 26f x x πω⎛⎫=+ ⎪⎝⎭,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案. 【详解】∵22()2sin 1cos 2sin 2336f x x x x πππωωω⎛⎫⎛⎫⎛⎫=+-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴()f x 的最小正周期为22ππωω=. 对于① :因为f (x 1)=1,f (x 2)=﹣1,且|x 1﹣x 2|min =π,所以()f x 的最小正周期为T =2π,122ππωω∴=⇒=. 故① 错误; 对于② :图象变换后所得函数为sin 236y x ωππω⎛⎫=++ ⎪⎝⎭, 若其图象关于y 轴对称,则362k ωππππ+=+,k ∈Z ,解得ω=1+3k ,k ∈Z ,当k =0时,1(0,2)ω=∈.故② 正确;对于③ :设26t x πω=+,当[]0,2x π∈时,2,4666t x πππωωπ⎡⎤=+∈+⎢⎥⎣⎦. ()f x 在[0,2]π上有7个零点,即sin y t =在,466t ππωπ⎡⎤∈+⎢⎥⎣⎦上有7个零点.则7486ππωππ≤+<,解得41472424ω≤<. 故③错误; 对于④ :由222,262k x k k Z ππππωπ-+++∈,得,,36k k xk Z ππππωωωω-++∈, 取k =0,可得36x ππωω-, 若f (x )在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增,则3664ππωππω⎧--⎪⎪⎨⎪⎪⎩,解得203ω<.故④ 正确. 故选:D. 【点睛】关键点睛:本题考查三角函数的恒等变形和正弦函数的单调性、周期性、奇偶性、零点等知识,解答③的关键是先化简函数不等式得()sin 26f x x πω⎛⎫=+ ⎪⎝⎭,设26t x πω=+,当[]0,2x π∈时,2,4666t x πππωωπ⎡⎤=+∈+⎢⎥⎣⎦,将问题转化为sin y t =在,466t ππωπ⎡⎤∈+⎢⎥⎣⎦上有7个零点.17.(2021·浙江·高三专题练习)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0 B .1 C .2 D .3【答案】C 【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值. 【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C. 【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向.视频18.(2021·天津市天津中学高三月考)函数()()2sin (0,0)f x x ωϕωϕπ=+><<的图象如图,把函数()f x 的图象上所有的点向右平移6π个单位长度,可得到函数()y g x =的图象,下列结论中: ①3πϕ=;②函数()g x 的最小正周期为π;③函数()g x 在区间,312ππ⎡⎤-⎢⎥⎣⎦上单调递增;④函数()g x 关于点,03π⎛-⎫⎪⎝⎭中心对称其中正确结论的个数是( ).A .4B .3C .2D .1【答案】C 【分析】对①,先根据图象分析出ω的取值范围,然后根据()0f ϕ的可取值,然后分类讨论ϕ的可取值是否成立,由此确定出,ωϕ的取值;对②,根据图象平移确定出()g x 的解析式,利用最小正周期的计算公式即可判断;对③,先求解出()g x 的单调递增区间,然后根据k 的取值确定出,312ππ⎡⎤-⎢⎥⎣⎦是否为单调递增区间;对④,根据3g π⎛⎫- ⎪⎝⎭的值是否为0,即可判断.【详解】解:由图可知: 1112113124T T ππ⎧<⎪⎪⎨⎪>⎪⎩,11211129πππω∴<<, 即18241111ω<<, 又()02sin f ϕ==0ϕπ<<,由图可知:23ϕπ=, 又11112sin 21212f ππωϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 112,122k k Z ππωϕπ∴+=+∈, 且113,2122ππωπ⎛⎫∈ ⎪⎝⎭, 113,3122ππωϕπ⎛⎫⎛⎫∴+∈ ⎪ ⎪⎝⎭⎝⎭, 故1k =, 当23ϕπ=时,1111126πωπ=,解得:2ω=,满足条件, ()22sin 23f x x π⎛⎫∴=+⎪⎝⎭, 故()22sin 22sin 2633g x x x πππ⎛⎫⎛⎫⎛⎫=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,对①,由上述可知①错误; 对②,()2sin 23g x x π⎛⎫=+ ⎪⎝⎭,()g x ∴的最小正周期为2=2ππ,故②正确; 对③,令222,232k x k k Z πππππ-≤+≤+∈,即5,1212k x k k Z ππππ-≤≤+∈, 令0k =,此时单调递增区间为5,1212ππ⎡⎤-⎢⎥⎣⎦,且5,,3121212ππππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,故③正确; 对④,2sin 20333g πππ⎛⎫⎛⎫⎛⎫-=⨯-+=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,03π⎛⎫∴- ⎪⎝⎭不是对称中心,故④错误; 故选:C. 【点睛】方法点睛:已知函数()()sin g x A x ωϕ=+()0ω>, 若求函数()g x 的单调递增区间,则令ππ2π2π22k x k ωϕ-<+<+,Z k ∈; 若求函数()g x 的单调递减区间,则令π3π2π2π22k x k ωϕ+<+<+,Z k ∈; 若求函数()g x 图象的对称轴,则令ππ2x k ωϕ+=+,Z k ∈; 若求函数()g x 图象的对称中心或零点,则令πx k ωϕ+=,Z k ∈.19.(2021·山西太原·三模(理))在ABC 中,()sin sin sin A B B C -+=,点D 在边BC 上,且2CD BD =,设sin sin ABDk BAD∠=∠,则当k 取最大值时,sin ACD ∠=( )A .14BCD.(36【答案】B 【分析】根据()sin sin sin A B B C -+=,利用两角和与差的正弦公式化简得到sin 2cos sin B A B =,进而求得A ,根据点D 在边BC 上,且2CD BD =,得到sin 3sin ABD AD AD k BAD BD BC∠===∠,再由余弦定理结合2133AD AB AC =+两边平方,得到2222242421c b c b bc b c k c b c b bc b c ++++==+-+-,令c t b =,得到()222142421111t t t t k f t t t t t ++++===-++-,用导数法求得最大值时a ,b ,c 的关系,再利用正弦定理求解. 【详解】因为()sin sin sin A B B C -+=,所以()()sin sin sin A B B A B -+=+,即sin 2cos sin B A B =, 因为()0,B π∈, 所以sin 0B ≠,1cos 2A =, 因为()0,A π∈,所以3A π=,因为点D 在边BC 上,且2CD BD =, 所以sin 3sin ABD AD ADk BAD BD BC∠===∠,设,,AB c AC b BC a ===,则13AD ak =,在ABC 中,由余弦定理得222222cos a c b bc A c b bc =+-=+-,()121333AD AB BD AB BA AC AB AC =+=++=+, 所以222133AD AB AC ⎛⎫=+ ⎪⎝⎭,即22221414cos 9999a k c b bc BAC =++∠, 即222242a k c b bc =++,所以222222224242421c bc b bc c b bc b c k c b a c b bc b c++++++===+-+-, 令c t b =,得()222142421111t t t t k f t t t t t ++++===-++-,则()()2226631t t f t tt -++'=-+,令()0f t '=,解得t当0t <<()0f t '>,当t >()0f t '<,所以当t =时,()f t取得最大值,此时c b =,所以)1b c =,解得a ==, 在ABC 中,由正弦定理得sin sin a c A C =,解得sin sin c A C a ==即sin ACD ∠= 故选:B 【点睛】关键点点睛:本题关键是利用正弦定理得到sin 3sin ABD AD ADk BAD BD BC∠===∠,然后利用余弦定理表示BC ,利用平面向量表示AD 而得解.20.(2021·山西太原·一模(理))已知函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象关于3x π=-对称,且06f π⎛⎫= ⎪⎝⎭,()f x 在11,324ππ⎡⎤⎢⎥⎣⎦上单调递增,则ω的所有取值的个数是( ) A .3 B .4 C .1 D .2【答案】D 【分析】直接利用正弦型函数的性质对称性和单调性的应用求出结果. 【详解】由于函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象关于3x π=-对称,则:132k ππωϕπ-+=+,()1k ∈Z ①,由于06f π⎛⎫= ⎪⎝⎭,所以2()6k k πωϕπ+=∈Z ②,-②①得:()2122k k ππωπ=--,所以()()211221k k k k ω=---∈Z , 故ω为奇数,且()f x 在11,324ππ⎡⎤⎢⎥⎣⎦上单调递增,所以112243T πππω=≥-,解得08ω<≤. 当211,2,3,4k k -=,故ω的取值为:1,3,5,7,当1ω=时,可以求得()sin()6f x x π=-,11,324x ππ⎡⎤∈⎢⎥⎣⎦时,7[,][,]662422x πππππ-∈⊆-,满足条件; 当3ω=时,因为2πϕ<,所以不满足条件;当5ω=时,()sin(5)6f x x π=+,11,324x ππ⎡⎤∈⎢⎥⎣⎦时,1159355[,][,]662422x πππππ+∈⊆,满足条件;当7ω=时,()sin(7)6f x x π=-,13737[,]6624x πππ-∈,既有增区间,又有减区间, 所以不满足条件;所以满足条件的ω的所有取值的个数是2, 故选:D . 【点睛】关键点点睛:该题考查的是有关正弦型函数的性质,正确解题的关键是要明确正弦型函数的对称性与单调性.21.(2021·江西鹰潭·一模(理))函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭,已知,06π⎛⎫- ⎪⎝⎭为()f x 图象的一个对称中心,直线1312x π=为() f x 图象的一条对称轴,且() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减.记满足条件的所有ω的值的和为S ,则S 的值为( ) A .125 B .85C .165D .185【答案】A 【分析】由一条对称轴和一个对称中心可以得到131264T kT ππ+=+或133,1264T kT k ππ+=+∈Z ,由() f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减可以得到191312122Tππ-≤,算出ω的大致范围,验证即可. 【详解】 由题意知:131264T kT ππ+=+或133,1264TkT k ππ+=+∈Z ∴51244k ππω⎛⎫=+⋅ ⎪⎝⎭或53244k ππω⎛⎫=+⋅ ⎪⎝⎭ ∴2(14)5k ω=+或2(34),5k k Z ω=+∈∵()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴191312122T ππ-≤ ∴12222ππωω≤⋅⇒≤①当2(14)5k ω=+时,取0k =知25ω=此时2()sin 515f x x π⎛⎫=+ ⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,27,515210x πππ⎡⎤+∈⎢⎥⎣⎦满足()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴25ω=符合 取1k =时,2ω=,此时()sin 23f x x π⎛⎫=+ ⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,572,322x πππ⎛⎫+∈ ⎪⎝⎭满足()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递减,∴2ω=符合当1k ≤-时,0ω<,舍去,当2k ≥时,2ω>也舍去②当2(34)5k ω=+时,取0k =知65ω=此时6()sin 55f x x π⎛⎫=+ ⎪⎝⎭,当1319,1212x ππ⎡⎤∈⎢⎥⎣⎦时,6321,55210x πππ⎡⎤+∈⎢⎥⎣⎦,此时()f x 在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,舍去 当1k ≤-时,0ω<,舍去,当1k 时,2ω>也舍去综上:25ω=或2,212255S =+=.故选:A. 【点睛】本题考查三角函数的图象与性质,难度较大,易错点在于已知一条对称轴和一个对称中心要分两种情况分析.22.(2021·山东·模拟预测)函数()sin 24cos f x x x =-的最大值为( )A B .C D 【答案】A 【分析】根据周期性只需考虑[]0,2x π∈函数最值,结合()()sin 24cos 2cos sin 2f x x x x x =-=-得3,2x ππ⎛⎫∈ ⎪⎝⎭时函数取得最大值,利用导函数分析单调性,结合隐零点求解最值. 【详解】由题()()sin 24cos 2f x x x f x π=-=+,只需考虑[]0,2x π∈函数最值即可,()()sin 24cos 2cos sin 2f x x x x x =-=-,所以当sin 0,cos 0x x <<即3,2x ππ⎛⎫∈ ⎪⎝⎭时函数取得最大值, ()()222cos 24sin 212sin 4sin 4sin 4sin 2f x x x x x x x '=+=-+=-++,考虑函数()()2442,1,0h t t t t =-++∈-,()()10,00h h -<>, 所以必存在唯一零点0t ,()2000210,2t h t t +==, 且()01,t t ∈-()2442h t t t =-++递减,()0,0t t ∈()2442h t t t =-++递增,记00sin t x =,由正弦函数单调性可得:()0,x x π∈函数()f x 递增,03,2x x π⎛⎫∈ ⎪⎝⎭函数()f x 递减,所以函数()()()000max 2cos sin 2f x f x x x ==-2002sin 1sin 2x x +=,解得00sin x x ==所以()()()000max 2cos sin 222f x f x x x ⎛⎫ ==-=⨯=⎪⎪ ⎝⎭⎝ 故选:A 【点睛】此题考查求函数的最值,关键在于准确分析函数的周期性和单调性,结合导函数解决隐零点问题求解最值,属于难题.二、多选题23.(2021·全国·模拟预测)已知函数()44sin cos 66f x x x ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝=+-⎭+在区间(),88t t t R ππ⎡⎤-+∈⎢⎥⎣⎦上的最大值为()M t ,最小值为()m t ,令()()()h t M t m t =-,则下列结论中正确的是( )A .2h π⎛⎫= ⎪⎝⎭B .()h tC .()h t 的最小值为1D .当()1h t =时,()5Z 6t k k ππ=+∈ 【答案】AB【分析】应用同角平方关系、二倍角余弦公式得()sin(2)6f x x π=-,A 将2t π=代入求区间,根据正弦型函数的性质即可求2h π⎛⎫ ⎪⎝⎭,B 、C 讨论(),88t t t R ππ⎡⎤-+∈⎢⎥⎣⎦与()f x 的递增区间的关系,结合已知区间的长度为4T ,分析不同情况下的()h t 的取值范围,进而确定最大、小值,D 由题设知()1M t =,()0m t =或()0M t =,()1m t =-,结合区间长度即可求t . 【详解】()4422sin cos sin cos cos 266663f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+-+=-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭sin 2sin 266x x ππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭.A :当2t π=时,由,88x t t ππ⎡⎤∈-+⎢⎥⎣⎦,得35,88x ππ⎡⎤∈⎢⎥⎣⎦,此时7132,61212x πππ⎡⎤-∈⎢⎥⎣⎦,∴()7sin 12M t π=,()13sin 12m t π=,于是()()()713sin sin cos sin 12121212124h t M t m t ππππππ⎛⎫=-=-=++ ⎪⎝⎭3π==由()222262k x k k Z πππππ-≤-≤+∈可得()63k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 当()6883k t t k k Z ππππππ-≤-<+≤+∈,即()52424k t k k Z ππππ-≤≤+∈时,则有()()()88h t M t m t f t f t ππ⎛⎫⎛⎫=-=+--= ⎪ ⎪⎝⎭⎝⎭sin 2sin 28686t t ππππ⎡⎤⎡⎤⎛⎫⎛⎫+---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦5sin 2sin 2sin 2121212t t t πππ⎛⎫⎛⎫⎛⎫=+--=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 22123t t ππ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭,而()3222434k t k k Z πππππ+≤+≤+∈,23t π⎛⎫⎡+∈ ⎪⎣⎝⎭,即()h t ⎡∈⎣. 当()8823t t k k Z ππππ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=+∈,即()3t k k Z ππ=+∈时,()()()5324h t M t m t f k f k ππππ⎛⎫⎛⎫=-=+-+= ⎪ ⎪⎝⎭⎝⎭5sin 2sin 21362462k k ππππππ⎡⎤⎡⎤⎛⎫⎛⎫+--+-=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦. ∵函数()f x 的最小正周期T π=,而区间,88t t ππ⎡⎤-+⎢⎥⎣⎦的长度为4π,即4T ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018三角函数小题专题
(一)命题特点和预测:分析近7年的高考题发现,7年13考,每年至少1题,多数年
份是2小、3小,个别年份4小,主要考查三角函数定义、诱导公式、同角三角函数基本
关系、和差倍半公式、图象变换、三角函数的图象与性质、利用正余弦定理解三角形,难
度一般为1个基础题、2个中档题、有时也会为压轴题.2018年高考仍将坚持至少1小、难
度为1基础1(或2)中档、重点考查三角公式、图象变换、三角函数图象与性质、正余弦
定理应用,可能在与其他知识交汇处命题,适度创新.
(二)历年试题比较:
年份题目答案
D 2017年
(9)已知曲线,则下面结论正确的是
A.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲
线向右平移个单位长度,得到曲线
B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲
线向左平移个单位长度,得到曲线
C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲
线向右平移个单位长度,得到曲线
D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲
线向左平移个单位长度,得到曲线
2016年
(12)已知函数为的零点,
为图像的对称轴,且在单调,则的最大值为()
(A)11 (B)9 (C)7 (D)5
B
2015年(2) =( )
(A)(B)(C)(D)
D
(8)函数=的部分图像如图所示,则的单调递减区
间为( )
(A) (B)
(C) (D)
D
(16)在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是 . ,
2014年(6)如图,圆O的半径为1,A是圆上的定点,P是圆
上的动点,角的始边为射线,终边为射线,
过点作直线的垂线,垂足为,将点到直线
的距离表示为的函数,则=在[0,]上的图像大致为
C
(8)设且则()
(A)(B)(C)(D)
C
(16)已知分别为三个内角的对边,,且
,则面积的最大值为
____________.
2013年(15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=
__________.
2012年
(9)已知>0,函数=在(,)单调递减,则的
取值范围是()
A
.[,] .[,] .(0, ] .(0,2]
B 2011年(5)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( )
A.-B.- C.D.
A (11)设函数=(>0,<)的最
小正周期为,且=,则
(A)在(0,)单调递减 (B)在(,)单调递减
(C) 在(0,)单调递增 (D)在(,)单调递增
(16)在△ABC中,B=60°,AC=,则AB+2BC的最大值为
__________.
(2017年)【解析】因为函数名不同,所以先将利用诱导公式转化成与相同
的函数名,则,则由上各点的
横坐标缩短到原来的倍变为,再将曲线向左平移个单位长度得到,故
选D.
【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱
导公式,需要重点记住;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一
个变换总是对变量而言.
(2016年)【解析】当时,由,,∴
,因为,所以,所以=,当
时,,因为在不单调,故A
错;当时,由,,∴,因为,
所以,所以=,当时,,因为
在单调,故选B.
(2015年)(2)【解析】原式= ==,故选D.
(16)【解析】如图所示,延长BA, CD交于E,平移AD,当A与D重合与E 点时,AB最长,在△BCE中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得
,即,解得=,平移AD ,当D与C重合时,AB最短,此时与AB交于F,在△BCF中,∠B=∠BFC=75°,∠FCB=30°,由正
弦定理知,,即,解得BF=,所以AB的取值范围为(,).
(2014年)(4)【解析】如图所示,当时,在中,
.在中,;当时,在中,,在中,
,所以当时,的图象大致为C.
(8)【解析】由已知得,,去分母得,

=sin(α+x),当x=2kπ+-α(k∈Z)时,sin(α+x)有最大值1,f(x)有最大值,即θ=2kπ+-α(k∈Z),所以cos θ===sin α=
.
则有AB+2BC
(三)命题专家押题
题号试题
1.
若,则的值为()
A. B. C. D.
2.
已知角α的顶点与原点O重合,始边与x轴的正半轴重合,若它的终边经过点,则
A. -7
B.
C.
D. 7
3
在中,角所对应的边分别是,若
,则角等于
A. B. C. D.
4 的三个内角,,的对边分别为,,,若
,,则的取值范围是()
A. B. C. D.
5 函数的部分图像如图所示,则关于函数
的下列说法正确的是( )
A. 图像关于点中心对称
B. 图像关于直线对称
C. 图像可由的图像向左平移个单位长度得到
D. 在区间上单调递减
6 将函数的图象向左平移个单位长度后,所得图象关于轴对称,则
函数在上的最小值为()
A. B. C. D.
7
已知函数,若,的图象恒在直线的上方,则的取值范围是( )
A. B. C. D.
8
若将函数f(x)=sin(2x+φ)+cos(2x+φ)(0<φ<π)的图象向左平移个单位长度,平移后的图象关于点对称,则函数g(x)=cos(x+φ)在上的最小值是
A. -
B. -
C.
D.
9 在中,角的对边分别为,设的面积为,若,则
的最大值为___________.
10
已知点在内部,平分,,对满足上述条件的所有,下列说法正确的是()
A.的三边长一定成等差数列
B. 的三边长一定成等比数列
C. ,,的面积一定成等差数列
D. ,,的面积一定成等比数列
3.【答案】D
【解析】∵,∴(a﹣b)(a+b)=c
(c+b),∴a2﹣c2﹣b2=bc,由余弦定理可得cosA=∵A是三角形内角,∴A=故选D.
4.【答案】D
【解析】由cosAcosBcosC>0,可知,三角形是锐角三角形,由题意有
sinB=sin2A=2sinAcosA,结合正弦定理有b=2acosA,,∵
A+B+C=180°,B=2A,∴3A+C=180°, ,∵2A<90°,∴,
,即的取值范围是,故选D.
7.【答案】C
【解析】的图象恒在直线的上方,即恒成立,
当k=0时,的取值范围是.
8.【答案】D
【解析】,将函数
向左平移个单位后,得到函数解析式为:
,图象关于点对称,则对
称中心在函数图象上,可得:,解得
,,,,,,,,则函数
在上的最小值为,故选
9.【答案】
,①
,②
.③
由①+②整理得,。

相关文档
最新文档