2018三角函数专题(2018高考真题)

合集下载

2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解

2018年高考数学分类汇编之三角函数和解三角形汇编(理)附详解

2018年高考数学分类汇编之三角函数和解三角形、选择题B • 305)的图象向右平移10个单位长度,所得图象对应的函数3 5A 在区间[-,—]上单调递增4 4 3B 在区间[―,]上单调递减45 3C 在区间[予‘专]上单调递增3D 在区间[厅,2 ]上单调递减7.【2018浙江卷5]函数y= 2|x|sin2x 的图象可能是1.【2018全国二卷 6】在厶ABC 中,C cos— 2,BC 1,AC 5,则 AB52.【2018全国二卷 10]若 f(x) cosxsinx 在[a, a ]是减函数,贝U a 的最大值是3.【2018全国三卷 4] 若sin1 … 3,则cos24. 5. 0, C . 【2018全国三卷9] △ ABC 的内角 A, B, C 的对边分别为 2 2 2a ,b ,c ,若△ ABC 的面积为-— -,4【2018北京卷7]在平面直角坐标系中,记m 变化时,d 的最大值为d 为点P A. 1(COS 0 sin 0到直线x my 2 0的距离,当B. 2C. 3D.4C . . 296.【2018天津卷6]将函数y sin(2x1. 【2018全国一卷16】已知函数f x 2sinx sin2x ,则f x 的最小值是 _______________ .2.【2018 全国二卷 15】已知 sin a cos 3 1 , cos a sin 3 0,则 sin( a ® __________________ .3. 【2018全国三卷15】函数f x cos 3x n在0, n 的零点个数为6 ---------------------------------------------------4. 【2018北京卷11】设函数f (x ) =cos( x n ( 0),若f(x) f (n)对任意的实数x 都成立,则co的最小值为 _________ . 5.【2018江苏卷7】已知函数y sin(2x _______________________ )(--)的图象关于直线x -对称,则 的值是 ____________________ .2236. 【2018江苏卷13】在厶ABC 中,角A, B,C 所对的边分别为a,b,c , ABC 120 , ABC 的平分线 交AC 于点D ,且BD 1,则4a c 的最小值为 _________ .7. 【2018浙江卷13】在厶ABC 中,角A ,B ,C 所对的边分别为a ,b ,c •若a= 7,b=2, A=60°,贝U sin B= _________ , c= _________.、填空题B .三.解答题1. [2018 全国一卷17】在平面四边形ABCD 中,ADC 90°, A 45°, AB 2 , BD 5.12. 【2018 北京卷15】在厶ABC 中,a=7, b=8, cosB=—.(△)求/ A ;(△)求AC边上的高.3. 【2018天津卷15】在厶ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinAacos(B ). 6(I)求角B的大小;(II)设a=2, c=3,求b和sin(2A B)的值.4. 【2018江苏卷16】已知,为锐角‘tan 3 ,迹()舟.(1)求cos2的值;(2)求tan( )的值.5. 【2018江苏卷17】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN (P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚I内的地块形状为矩形ABCD,大棚U内的地块形状为△ CDP,要求A,B均在线段MN上,C,D均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形ABCD和厶CDP的面积,并确定sin的取值范围;(2)若大棚I内种植甲种蔬菜,大棚U内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4 :3 .求当为何值时,能使甲、乙两种蔬菜的年总产值最大.6. 【2018浙江卷18】已知角a的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P345'(I)求sin (a + n 的值; (U)若角B满足sin (a+B=13,求cos B的值・7.【2018上海卷18】设常数a R,函数f(x) a sin 2x c 22cos x(1)若f(x)为偶函数,求a的值; (2) 若〔匸〕1,求方程f(x) 1 .2在区间[,的解.参考答案、选择题 1.A 2.A 3.B 4.C 5.C 6.A 7.D、填空题 1. 3.3223. 34.235. 7.3 ;37三•解答题 1.解: (1)在厶ABD中,由正弦定理得一BLsin AABsin ADB由题设知,5sin 452 sinADB,所以sin ADB -5由题设知, ADB 90,所以cos ADB 1225 5(2)由题设及(1) 知, cos BDC sin ADB 辽在△ BCD 中,5 由余弦定理得2 2 2BC BD DC 2 BD DC cos BDC 25 8 25. 所以BC 5.32.解:(1)在厶ABC 中,1 n _________________________________ 2—T cosB= —7 ,二 B €( — , n ,二 sinB= 1 cos B<3 7由正弦定理得—sin A bsin B8 -二=<3,二 sinA= £ . T B €( f ,sin A227•- A €( 0,亍),(n )在厶ABC 中,■/ sinC=sin (A+B ) =sinAcosB+sinBcosA=—3 21 (-)71 4.3_ 3.3 2714女口图所示,在△ ABC 中sinC=g ,二 h=BC sinC = 7 3 弓BC14••• AC 边上的高为子.3.解:在厶ABC 中,由正弦定理— sin A—,可得 bsinA asinB sin B又由 bsinA acos(B n ),6得 as in B acos(B n ),6即sinB cos(B ,可得tanB 3 .又因为 B (0 ,可得(n)解:在△ ABC 中,由余弦定理及a =2, c=3, B =^,有 b 2 a 2 c 2 2accosB 7,故 b= J7 .由 bsin A acos(B —), 6可得sin A因为 a<c , 故cosA因此 sin 2 A 2sin AcosA2,cos2 A 2cos A所以,si n(2A B)sin 2Acos Bcos2 A sinB ^^3 73 3 3 2144.解:(1)因为tan4, tan 3汇,所以sin4c o s cos因为sin 22cos1,所以 2cos25,因此,cos222cos7 25(2)因为,为锐角,所以(0, n .又因为cos()寻,所以sin()厂曲( )害,因此tan( ) 2.因为tan -,所以tan232ta n 242 , 1 tan 7因此,tan( ) tan[2 ( )];+;爲;:;(—5 2115•解:(1)连结PO并延长交MN于H,贝U PH丄MN , 所以OH=10.过O作OE丄BC于E,贝U OE// MN,所以/ COE书故OE=4Ocos0, EC=40sin B,则矩形ABCD 的面积为2X40cos((40sin 0 +10=800(4sin 0 cos 0 +cOs B △ CDP的面积为 1 x 2X 40co(40 - 40sin) 0=1600 (cos 0 - sin 0)cos 0过N作GN丄MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10 .令/GOK=0,则sin0=4 2(0, n)・当濮[0, n)时,才能作出满足条件的矩形所以sin(的取值范围是[〔,1).4答:矩形ABCD的面积为800 (4sin 0 cos 0 +cQs平方米,△ CDP的面积为1600 (cos 0 - sin 0)cos0n 的取值范围是[1 , 1).4(2)因为甲、乙两种蔬菜的单位面积年产值之比为 4 : 3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k (k>0).则年总产值为4k X 800(4sin 0 cos 0 +cbs+Bk x 1600( cos 0 - sin 0 cos 0=8000k (sin 0 cos 0 +)s [ 0, n)2设 f ( 0) =sin 0 cos 0 +cos 0€ [ 0, n),2则f'( ) cos2sin2 sin (2sin2 sin 1) (2sin 1)(sin 1).令 f'( )=0,得 B =,6当9€( (0, n 时,f '( )>0,所以f (0)为增函数;6当0€(J ,匸)时,f '( )<0 ,所以f (0)为减函数,6 2因此,当0=时,f ((取到最大值.6答:当吧时,能使甲、乙两种蔬菜的年总产值最大•[来源:学§科§网],]时,即2x(U)由角的终边过点 P( 3,得cos35 55由 sin() —得 cos( )121313由( )得coscos()cossin( )s in,5616所以cos或cos6565 .解:(1) f(x ; )asin 2x2 cos 2 x 1 1 =asi n2x cos2x 1 ,6. ( I)由角的终边过点P(4)得 sin 5所以sin( 冗)sin -5f ( x) a sin(当f (x)为偶函数时:f (x)f( x),则 a a,解得a 0 o2(2) f ( ) a sin 2 cos —,424由题意f (一)a 13 1 ,4、.3sin 2x 2cos 2 xa .3 , f (x) 3sin2x cos2x1 2sin(2x6)1,令 f (x) 1血,则2sin 2x1151319解得:x ,2424,24或x248. 解: (1) f(x)asin 2x c 22cos x 1 1 = asin2x cos2x 1 , f( x) a sin( 2x)cos(2x)1asin2x cos2x 1当f(x)为偶函数时:f(x)f( x),则a a,解得a 0。

2018年高考数学三角函数解三角形与平面向量25平面向量的概念及线性运算试题文

2018年高考数学三角函数解三角形与平面向量25平面向量的概念及线性运算试题文

考点测试25 平面向量的概念及线性运算一、基础小题1.关于平面向量,下列说法正确的是( )A.零向量是唯一没有方向的向量B.平面内的单位向量是唯一的C.方向相反的向量是共线向量,共线向量不一定是方向相反的向量D.共线向量就是相等向量答案 C解析对于A,零向量是有方向的,其方向是任意的,故A不正确;对于B,单位向量的模为1,其方向可以是任意方向,故B不正确;对于C,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C正确;对于D,由共线向量和相等向量的定义可知D 不正确.故选C.2.下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a-b=a +(-b).正确的个数是( )A.2 B.3C .4D .5答案 D解析 ①②③④⑤正确.3.若m ∥n ,n ∥k ,则向量m 与向量k ( ) A .共线 B .不共线 C .共线且同向 D .不一定共线答案 D解析 如m ∥0,0∥k ,但k 与m 可能共线也可能不共线,故选D. 4.D 是△ABC 的边AB 上的中点,则向量CD →等于( ) A .-BC →+12BA →B .-BC →-12BA →C .BC →-12BA →D .BC →+12BA →答案 A解析 如图,CD →=CB →+BD →=CB →+12BA →=-BC →+12BA →.5.已知平面上不共线的四点O ,A ,B ,C ,若OA →+2OC →=3OB →,则|BC →||AB →|的值为( )A .12B .13C .14D .16答案 A解析 由OA →+2OC →=3OB →,得OA →-OB →=2OB →-2OC →,即BA →=2CB →,所以|BC →||AB →|=12.故选A.6.已知在四边形ABCD 中,O 是四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,OD →=a -b +c ,则四边形ABCD 的形状为( )A .梯形B .正方形C .平行四边形D .菱形答案 C解析 因为OD →=a -b +c ,所以AD →=c -b ,又BC →=c -b ,所以AD →∥BC →且|AD →|=|BC →|,所以四边形ABCD 是平行四边形.7.已知A 、B 、C 三点不共线,且点O 满足OA →+OB →+OC →=0,则下列结论正确的是( ) A .OA →=13AB →+23BC →B .OA →=23AB →+13BC →C .OA →=13AB →-23BC →D .OA →=-23AB →-13BC →答案 D解析 ∵OA →+OB →+OC →=0,∴O 为△ABC 的重心,∴OA →=-23×12(AB →+AC →)=-13(AB →+AC →)=-13(AB →+AB →+BC →)=-13(2AB →+BC →)=-23AB →-13BC →,故选D.8.A 、B 、O 是平面内不共线的三个定点,且OA →=a ,OB →=b ,点P 关于点A 的对称点为Q ,点Q 关于点B 的对称点为R ,则PR →=( )A .a -bB .2(b -a )C .2(a -b )D .b -a答案 B解析 PR →=OR →-OP →=(OR →+OQ →)-(OP →+OQ →)=2OB →-2OA →=2(b -a ),故选B.9.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等;④若非零向量AB →与CD →是共线向量,则A ,B ,C ,D 四点共线.则所有正确命题的序号是( )A .①B .③C .①③D .①④ 答案 A解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误;由于方向相同或相反的向量为共线向量,故AB →与CD →也可能平行,即A ,B ,C ,D 四点不一定共线,故④错误.故选A.10.如图,已知AB 是圆O 的直径,点C 、D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( )A .a -12bB .12a -bC .a +12bD .12a +b答案 D解析 连接CD ,由点C 、D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC→+CD →=b +12a .11.△ABC 所在的平面内有一点P ,满足PA →+PB →+PC →=AB →,则△PBC 与△ABC 的面积之比是( )A .13B .12C .23D .34答案 C解析 因为PA →+PB →+PC →=AB →,所以PA →+PB →+PC →=PB →-PA →,所以PC →=-2PA →=2AP →,即P 是AC 边的一个三等分点,且PC =23AC ,由三角形的面积公式可知,S △PBC S △ABC =PC AC =23.12.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫12OA →+12OB →+2OC →,则点P 一定为三角形ABC 的( )A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点 答案 B解析 设AB 的中点为M ,则12OA →+12OB →=OM →,∴OP →=13⎝⎛⎭⎫OM →+2OC →=13OM →+23OC →,即3OP →=OM →+2OC →,也就是MP →=2PC →,∴P ,M ,C 三点共线,且P 是CM 上靠近C 点的一个三等分点.二、高考小题13.[2015·全国卷Ⅰ]设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD →=-13AB →+43AC →B .AD →=13AB →-43AC →C .AD →=43AB →+13AC →D .AD →=43AB →-13AC →答案 A解析 AD →=AB →+BD →=AB →+BC →+CD →=AB →+43BC →=AB →+43(AC →-AB →)=-13AB →+43AC →.故选A.14.[2014·福建高考]设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA →+OB →+OC →+OD →等于 ( )A .OM →B .2OM →C .3OM →D .4OM →答案 D解析 OA →+OB →+OC →+OD →=(OA →+OC →)+(OB →+OD →)=2OM →+2OM →=4OM →.故选D.15.[2014·全国卷Ⅰ]设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A .AD →B .12AD →C .BC →D .12BC → 答案 A解析 如图, EB →+FC →=-12(BA →+BC →)-12(CB →+CA →)=-12(BA →+CA →)=12(AB →+AC →)=AD →.16.[2015·安徽高考]△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC →答案 D解析 ∵AB →=2a ,AC →=2a +b ,∴a =12AB →,b =AC →-AB →=BC →,∵△ABC 是边长为2的等边三角形,∴|b |=2,a ·b =12AB →·BC →=-1,故a ,b 不垂直,4a +b =2AB →+BC →=AB →+AC →,故(4a +b )·BC →=(AB →+AC →)·BC →=-2+2=0,∴(4a +b )⊥BC →,故选D.17.[2015·北京高考]在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.答案 12 -16解析 如图在△ABC 中,MN →=MA →+AB →+BN →=-23AC →+AB →+12BC →=-23AC →+AB →+12(AC →-AB →)=12AB →-16AC →.∴x =12,y =-16.三、模拟小题18.[2016·山西监测]已知a ,b 是单位向量,且a·b =-12.若平面向量p 满足p·a =p·b =12,则|p |=( )A .2B . 2C .1D .12答案 C解析 设a ,b 的夹角为θ,θ∈[0,π],则a·b =cos θ=-12,θ=2π3,建立平面直角坐标系,使得a =(1,0),b =⎝ ⎛⎭⎪⎫-12,32,设p =(x ,y ),则由p·a =p·b =12可得x =-12x +32y =12,解得x =12,y =32,则|p |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1,故选C.19. [2017·河北张家口月考]如图,在正六边形ABCDEF 中,BA →+CD →+FB →=( )A .0B .BE →C .AD → D .CF →答案 A解析 在正六边形ABCDEF 中,CD ∥AF ,CD =AF ,所以BA →+CD →+FB →=BA →+AF →+FB →=BA →+AB →=0,故选A.20.[2016·山东师大附中模拟]已知平面内一点P 及△ABC ,若PA →+PB →+PC →=AB →,则点P 与△ABC 的位置关系是( )A .点P 在线段AB 上 B .点P 在线段BC 上 C .点P 在线段AC 上D .点P 在△ABC 外部 答案 C解析 由PA →+PB →+PC →=AB →,得PA →+PC →=AB →-PB →=AP →,即PC →=AP →-PA →=2AP →,所以点P 在线段AC 上,选C.21.[2016·陕西咸阳模拟]在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=( ) A .23b +13c B .53c -23b C .23b -13c D .13b +23c 答案 A解析 BC →=AC →-AB →=b -c ,BD →=23BC →=23(b -c ),∴AD →=AB →+BD →=c +23(b -c )=23b +13c .22. [2016·四川广元模拟]如图,已知AP →=43AB →,用OA →,OB →表示OP →,则OP →等于( )A .13OA →-43OB → B .13OA →+43OB →C .-13OA →+43OB →D .-13OA →-43OB →答案 C解析 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →,选C.23.[2016·河南中原名校联考]如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC →,F 为AE 的中点,则BF →=( )A .23AB →-13AD →B .13AB →-23AD →C .-23AB →+13AD →D .-13AB →+23AD →答案 C解析 解法一:如图,取AB 的中点G ,连接DG ,CG ,则易知四边形DCBG 为平行四边形,所以BC →=GD →=AD →-AG →=AD →-12AB →,∴AE →=AB →+BE →=AB →+23BC →=AB →+23⎝ ⎛⎭⎪⎫AD →-12AB →=23AB →+23AD →,于是BF →=AF →-AB →=12AE →-AB →=12⎝ ⎛⎭⎪⎫23AB →+23AD →-AB →=-23AB →+13AD →,故选C. 解法二:BF →=BA →+AF →=BA →+12AE →=-AB →+12⎝ ⎛⎭⎪⎫AD →+12AB →+CE →=-AB →+12⎝ ⎛⎭⎪⎫AD →+12AB →+13CB →=-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.24.[2016·安徽十校联考]已知A 、B 、C 三点不共线,且AD →=-13AB →+2AC →,则S △ABDS △ACD =( )A .23 B .32 C .6 D .16答案 C解析 如图,取AM →=-13AB →,AN →=2AC →,以AM ,AN 为邻边作平行四边形AMDN ,此时AD →=-13AB →+2AC →.由图可知S △ABD =3S △AMD ,S △ACD =12S △AND ,而S △AMD =S △AND , ∴S △ABDS △ACD=6,故选C. 25.[2017·大连模拟]在△ABC 中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若cAC →+aPA →+bPB →=0,则△ABC 的形状为( )A .等边三角形B .钝角三角形C .直角三角形D .等腰三角形但不是等边三角形 答案 A解析 如图,由cAC →+aPA →+bPB →=0,知c (PC →-PA →)+aPA →-bPC →=(a -c )PA →+(c -b )PC →=0,而PA →与PC →为不共线向量,∴a -c =c -b =0,∴a =b =c .26.[2016·湖南四地一模]如图,在△ABC 中,设AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +n b ,则m ,n 对应的值为( )A .27,47B .12,14 C .16,27 D .16,37答案 A解析 根据已知条件得,BQ →=AQ →-AB →=12AP →-AB →=12(m a +n b )-a =⎝ ⎛⎭⎪⎫m 2-1a +n2b ,CR →=BR →-BC →=12BQ →-AC →+AB →=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫m 2-1a +n 2b -b +a=⎝ ⎛⎭⎪⎫m 4+12a +⎝ ⎛⎭⎪⎫n 4-1b , ∴QP →=m 2a +n 2b ,RQ →=⎝ ⎛⎭⎪⎫m 4-12a +n 4b ,RP →=-⎝ ⎛⎭⎪⎫m 8+14a +⎝ ⎛⎭⎪⎫12-n 8b .∵RQ →+QP →=RP →, ∴⎝⎛⎭⎪⎫3m 4-12a +3n 4b =⎝ ⎛⎭⎪⎫-m 8-14a +⎝ ⎛⎭⎪⎫12-n 8b ,∴⎩⎪⎨⎪⎧3m 4-12=-m 8-14,3n 4=12-n 8,解得⎩⎪⎨⎪⎧m =27,n =47,故选A.27.[2016·天津模拟]在平行四边形ABCD 中,AE →=EB →,CF →=2FB →,连接CE ,DF 相交于点M ,若AM →=λAB →+μAD →,则实数λ与μ的乘积为( )A .14B .38C .34D .43答案 B解析 ∵E ,M ,C 三点共线,∴设AM →=xAE →+(1-x )AC →,则AM →=x 2AB →+(1-x )(AB →+AD →)=⎝ ⎛⎭⎪⎫1-x 2AB →+(1-x )AD →.同理D ,M ,F 三点共线,∴设AM →=yAF →+(1-y )AD →, 则AM →=yAB →+⎝⎛⎭⎪⎫1-2y 3AD →,∴⎩⎪⎨⎪⎧1-x2=y ,1-x =1-2y3,解得y =34,即AM →=34AB →+12AD →.∴λ=34,μ=12,即λμ=34×12=38.28.[2017·安徽马鞍山质检]已知△ABC 是边长为4的正三角形,D 、P 是△ABC 内的两点,且满足AD →=14(AB →+AC →),AP →=AD →+18BC →,则△APD 的面积为( )A .34B .32C . 3D .2 3答案 A解析 取BC 的中点E ,连接AE ,由于△ABC 是边长为4的正三角形,则AE ⊥BC ,AE →=12(AB→+AC →),又AD →=14(AB →+AC →),所以点D 是AE 的中点,AD = 3.取AF →=18BC →,以AD 、AF 为邻边作平行四边形,可知AP →=AD →+18BC →=AD →+AF →.而△APD 是直角三角形,AF =12,所以△APD 的面积为12×12×3=34.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.[2016·山东莱芜模拟] 如图,已知△OCB 中,B 、C 关于点A 对称,OD ∶DB =2∶1,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →、DC →;(2)若OE →=λOA →,求实数λ的值.解 (1)由题意知,A 是BC 的中点,且OD →=23OB →,由平行四边形法则,得OB →+OC →=2OA →. ∴OC →=2OA →-OB →=2a -b ,∴DC →=OC →-OD →=(2a -b )-23b =2a -53b .(2)∵EC →∥DC →,EC →=OC →-OE →=(2a -b )-λa =(2-λ)a -b , DC →=2a -53b ,∴2-λ2=-1-53,∴λ=45. 2.[2017·河南安阳周测]如图所示,在△ABC 中,在AC 上取一点N ,使得AN =13AC ,在AB 上取一点M ,使得AM =13AB ,在BN 的延长线上取点P ,使得NP =12BN ,在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又∵AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →,∴λ=12.。

2018三角函数专题(理科)(2018高考真题)

2018三角函数专题(理科)(2018高考真题)

2018三角函数专题(理)1.已知集合22{(,)|3,,}A x y x y x y =+∈∈Z Z ≤,则A 中元素的个数为( ) A .9 B .8 C .5 D .42.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( ) A .4B .3C .2D .03.在ABC △中,cos 2C =1BC =,5AC =,则AB =( ) A.BCD.4.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π5.若,则( ) A .B .C .D . 6.的内角的对边分别为,,,若的面积为,则( ) A .B .C .D .7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +8.设R x ∈,则“11||22x -<”是“31x <”的 ( ) A. 充分而不必要条件 B. 必要而不重复条件 C.充要条件 D. 既不充分也不必要条件 9.已知a ∈R ,则“1a >”是“11a<”的( ) A. 充分非必要条件 B.必要非充分条件 C. 充要条件 D. 既非充分又非必要条件1sin 3α=cos 2α=897979-89-ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π610.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 ( ) A. a b c >> B. b a c >> C. c b a >> D. c a b >> 11.将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( ) A. 在区间35[,]44ππ上单调递增 B. 在区间3[,]4ππ上单调递减 C. 在区间53[,]42ππ上单调递增 D. 在区间3[,2]2ππ上单调递减 12.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则 的最小值为( ) A.2116 B. 32 C. 2516D. 313.设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件14.在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为( ) A. 1B. 2C. 3D. 415.设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则( ) A. 对任意实数a ,(2,1)A ∈B. 对任意实数a ,(2,1)A ∉C. 当且仅当a <0时,(2,1)A ∉D. 当且仅当32a ≤时,(2,1)A ∉ 16.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是()π3A−1B+1C.2D.217.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a ,b =2,A =60°,则sin B =___________,c =___________.18.已知向量,,.若,则________.19.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =,则AE BF ∙的最小值为_________.20.设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.21.若x ,y 满足x +1≤y ≤2x ,则2y –x 的最小值是__________. 22.已知函数)22)(2sin(πϕπϕ<<-+=x y 的图象关于直线3π=x 对称,则ϕ的值是______23.在平面直角坐标系xOy 中,A 为直线l :x y 2=上在第一象限内的点,B (5,0),以AB 为直径的圆C 与l 交于另一点D ,若0=⋅,则点A 的横坐标为_______24.在ABC ∆中角A ,B ,C 所对的边分别为a ,b ,c ,︒=∠120ABC ,ABC ∠的平分线交AC 与点D ,且BD =1,则4a +c 的最小值为_______25.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.26.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.27.已知圆2220x y x +-=的圆心为C ,直线1,23⎧=-+⎪⎪⎨⎪=⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为 . 28.已知,R a b ∈,且360a b -+=,则128ab+的最小值为 . ()=1,2a ()=2,2-b ()=1,λc ()2∥c a +b λ=29.在平面四边形ABCD 中,90ADC =︒∠,45A =︒∠,2AB =,5BD =. ⑴求cos ADB ∠;⑵若DC =,求BC .30.在△ABC 中,a =7,b =8,cos B =–17. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.31.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-.(I )求角B 的大小;(II )设a =2,c =3,求b 和sin(2)A B -的值.32.已知βα,为锐角,34tan =α,55)cos(-=+βα, (1)求α2cos 的值; (2)求)tan(βα-的值.33.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=,求cos β的值.34.设常数a ∈R ,函数2()sin 22cos f x a x x =+。

2018年高考数学专题12任意角和弧度制及任意角的三角函数热点题型和提分秘籍理

2018年高考数学专题12任意角和弧度制及任意角的三角函数热点题型和提分秘籍理

专题12 任意角和弧度制及任意角的三角函数1.了解任意角的概念2.了解弧度制的概念,能进行弧度与角度的互化 3.理解任意角的三角函数(正弦、余弦、正切)的定义热点题型一 象限角与终边相同的角例1、 (1)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________。

(2)如果α是第三象限的角,试确定-α,2α的终边所在位置。

【答案】(1)⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π(2)见解析解析:(1)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π。

(2)由α是第三象限的角得π+2k π<α<3π2+2k π(k ∈Z ),所以-3π2-2k π<-α<-π-2k π(k ∈Z ),即π2+2k π<-α<π+2k π (k ∈Z ), 所以角-α的终边在第二象限。

由π+2k π<α<3π2+2k π(k ∈Z ),得2π+4k π<2α<3π+4k π(k ∈Z )。

所以角2α的终边在第一、二象限及y 轴的非负半轴。

【提分秘籍】1.终边在某直线上角的求法步骤(1)数形结合,在平面直角坐标系中画出该直线。

(2)按逆时针方向写出[0,2π)内的角。

(3)再由终边相同角的表示方法写出满足条件角的集合。

(4)求并集化简集合。

2.确定k α,αk(k ∈N *)的终边位置的方法先用终边相同角的形式表示出角α的范围,再写出k α或αk的范围,然后根据k 的可能取值讨论确定k α或αk的终边所在位置。

【举一反三】设角α是第二象限的角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则角α2属于( )A .第一象限B .第二象限C .第三象限D .第四象限热点题型二 扇形的弧长及面积公式例2、 (1)已知扇形周长为10,面积是4,求扇形的圆心角。

2018年全国各地高考数学试题及解答分类大全(三角函数 三角恒等变换)

2018年全国各地高考数学试题及解答分类大全(三角函数  三角恒等变换)

2018年全国各地高考数学试题及解答分类大全 (三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .AB B .CD C .EF D .GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦, 则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由()022,4k x k k π+π≤+≤π+π∈Z 得()322,44k x k k ππ-+π≤≤+π∈Z ,因此[]π3π,,44a a ⎡⎤-⊂-⎢⎥⎣⎦,π,4a a a ∴-<-≥-,3π4a ≤,π04a ∴<≤,从而a 的最大值为π4,故选A .7.(2018全国新课标Ⅲ文、理)若1sin 3α=,则cos2α=( ) A .89B .79C .79-D .89-7.答案:B解答:227cos 212sin 199αα=-=-=.故选B.8.(2018全国新课标Ⅲ文)函数2tan ()1tan xf x x=+的最小正周期为( )A .4π B .2π C .πD .2π8.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C.二、填空1.(2018北京理)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.1.【答案】23【解析】()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,()ππ2π46k k ω∴-=∈Z ,()283k k ω∴=+∈Z ,0ω>,∴当0k =时,ω取最小值为23.2.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .2.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.3.(2018全国新课标Ⅰ文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15B C D .13.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan 5α=±;当tan 5α=时,可得15a =,25b =,即5a =,5b =,此时5a b -=;当tan 5α=-时,仍有此结果.4.(2018全国新课标Ⅰ理)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4.答案: 解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-.∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π=∴5()3f π=.()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为5.(2018全国新课标Ⅱ文)已知5π1tan()45α-=,则tan α=__________.5.【答案】32【解析】5tan tan5tan 114tan 541tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪π+⎝⎭+⋅,解方程得3tan 2α=.6.(2018全国新课标Ⅱ理)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.6.【答案】12-【解析】sin cos 1αβ+=,cos sin 0αβ+=,()()221sin cos 1αα∴-+-=,1sin 2α∴=,1cos 2β=,因此()22111111sin sin cos cos sin cos 1sin 1224442αβαβαβαα+=+=⨯-=-+=-+=-.7.(2018全国新课标Ⅲ理)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.7.答案:3解答:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.三、解答题1.(2018北京文)已知函数()2sin cos f x x x x =+. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.1.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.2. (2018上海)设常数a R ∈,函数f x ()22?asin x cos x =+(1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=,求方程12f x =()ππ-[,]上的解。

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题09三角函数1.【2022年全国甲卷】将函数op =sin B (>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则的最小值是()A .16B .14C .1D .122.【2022年全国甲卷】设函数op =sin B +(0,π)恰有三个极值点、两个零点,则的取值范围是()A B ,6C D 3.【2022年全国乙卷】函数=cos ++1sin +1在区间0,2π的最小值、最大值分别为()A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数op =sin(B +4)+o >0)的最小正周期为T .若23<<,且=op 的图象关于点(32,2)中心对称,则o2)=()A .1B .32C .52D .35.【2022年新高考2卷】若sin(+p +cos(+p =22cos +sin ,则()A .tan(−p =1B .tan(+p =1C .tan(−p =−1D .tan(+p =−16.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A 15B C .3D .37.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πcos cos 1212-=()A .12B C .2D 9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A B .23C .13D15.【2020年新课标2卷理科】若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()AB .C .D .19.【2019年新课标1卷理科】函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .20.【2019年新课标1卷理科】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③21.【2019年新课标1卷文科】tan255°=A .-2B .-C .2D .22.【2019年新课标2卷理科】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )=sin│x │23.【2019年新课标2卷理科】已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 24.【2019年新课标2卷文科】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .1225.【2019年新课标3卷理科】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④26.【2019年新课标3卷文科】函数()2sin sin2f x x x =-在[]0,2π的零点个数为A .2B .3C .4D .527.【2018年新课标1卷文科】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为428.【2018年新课标1卷文科】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B .5C .5D .129.【2018年新课标2卷理科】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2πC .34πD .π30.【2018年新课标3卷理科】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-31.【2018年新课标3卷文科】函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π32.【2022年新高考2卷】已知函数op =sin(2+p(0<<π)0中心对称,则()A .op 在区间0,12B .op 在区间−π12C .直线=7π是曲线=op 的对称轴D .直线=是曲线=op 的切线33.【2020年新高考1卷(山东卷)】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -34.【2022年全国乙卷】记函数op =cos(B +p(>0,0<<π)的最小正周期为T ,若op ==9为op 的零点,则的最小值为____________.35.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.36.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.37.【2020年新课标2卷文科】若2sin 3x =-,则cos 2x =__________.38.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.39.【2019年新课标1卷文科】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.40.【2018年新课标2卷理科】已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.41.【2018年新课标2卷文科】已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.42.【2018年新课标3卷理科】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.43.【2019年新课标1卷文科】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.。

2018年高考数学—三角函数(解答+答案)

2018年高考数学—三角函数(解答+答案)

2018年高考数学——三角函数解答1.(18北京理(15)(本小题13分))在△ABC 中,a =7,b =8,cos B =–17. (Ⅰ)求∠A ;(Ⅱ)求AC 边上的高.2.(18江苏16.(本小题满分14分))已知,αβ为锐角,4tan 3α=,cos()αβ+=. (1)求cos2α的值;(2)求tan()αβ-的值.3.(18全国一理17.(12分))在平面四边形ABCD 中,90ADC ∠=o ,45A ∠=o ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .4.(18天津理(15)(本小题满分13分))在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos()6b A a B π=-. (I )求角B 的大小;学科*网(II )设a =2,c =3,求b 和sin(2)A B -的值.5.(18浙江18.(本题满分14分))已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455-,-). (Ⅰ)求sin (α+π)的值;(Ⅱ)若角β满足sin (α+β)=513,求cos β的值.6.(18北京文(16)(本小题13分))已知函数2()sin cos f x x x x =+.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值.参考答案:1.解:(Ⅰ)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =2431cos B -=. 由正弦定理得sin sin a b A B =⇒7sin A =43,∴sin A =3. ∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3. (Ⅱ)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A =31143()72⨯-+⨯=33. 如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337⨯=, ∴AC 边上的高为33.2.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈.又因为5cos()αβ+=,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.3.解:(1)在ABD △中,由正弦定理得sin sin BD AB A ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,所以2sin ADB ∠=. 由题设知,90ADB ∠<︒,所以223cos 1255ADB ∠=-=.(2)由题设及(1)知,cos sin BDC ADB ∠=∠=在BCD △中,由余弦定理得 2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.4.(Ⅰ)解:在△ABC 中,由正弦定理sin sin a b A B=,可得sin sin b A a B =,又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0π)B ∈,,可得B =π3. (Ⅱ)解:在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b由πsin cos()6b A a B =-,可得sin A =.因为a <c ,故cos A .因此sin 22sin cos A A A =21cos22cos 17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=1127-=5.(Ⅰ)由角α的终边过点34(,)55P --得4sin 5α=-, 所以4sin(π)sin 5αα+=-=. (Ⅱ)由角α的终边过点34(,)55P --得3cos 5α=-, 由5sin()13αβ+=得12cos()13αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=-.6.【解析】(Ⅰ)1cos 211π1()22cos 2sin(2)22262x f x x x x x -=+=-+=-+, 所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由(Ⅰ)知π1()sin(2)62f x x =-+. 因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--. 要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1. 所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3.。

2018年高考必备训练-三角函数合一公式计算训练(含答案)

2018年高考必备训练-三角函数合一公式计算训练(含答案)

二、伟大的合一公式——活用变换公式是唯一出路!伟大的合一公式:)sin(cos sin 22ϕωωω+⋅+=+x B A x B x A ,0,||,tan ><=A B πϕϕ.三角函数合一变形是解三角函数的一个重要的方法。

合法公式将松散的三角函数的各项通过三角变换合在一起,实现了从繁到简的变换,使得题设的三角函数能被人研究分析下去。

活用它的技巧无非就是建立在熟练诱导公式和三角函数变换公式的基础上。

诱导公式和变换公式书本有写,这里就不浪费纸张了,反正无论怎样,你都要试着想个办法把它们记忆下来。

当然如果真的觉得有困难的话,为什么不咨询一下老师呢。

三角函数有一个常见的考题:通过某个“一堆一堆”的三角函数要求你求出它的最小正周期,单调递增区间,最值等等......接着又来一个第二问,更要烦的是又来了,还是要用上第一小问的结论。

例如:很显然,出卷老师就是要求你化简,把那个一堆一堆的三角函数整理成非常舒服的形式,例如b x a x f +=ωsin )(.是不是看着很舒服?哈哈,你心肯定压抑着“鄙视”好了,废话不讲多了,该开始练习了。

合一公式的运用程度跟你对三角变换公式和诱导公式的掌握程度息息相关。

(运算提高技巧:多做题吧!)基础组1(不限时,目标是懂怎样用公式)(1)=+=x x x f cos sin )((2)=-=x x x f cos sin )((3)=+=x x x f cos 3sin )((4)=-=x x x f cos 3sin )((5)=+=x x x f cos sin 3)((6)=-=x x x f cos sin 3)((7)=+=x x x f cos 3sin 3)((8)=-=x x x f cos 3sin 3)((9)=+=x x x f cos 3sin 3)((10)=-=x x x f cos 3sin 3)(基础组2(不限时,目标是懂怎样用公式)(1)=-=x x x f cos 3sin 3)((2)=--=x x x f cos 3sin 3)((3)=+=x x x f sin cos 3)((4)=+-=x x x f cos sin 3)((5)=+-=x x x f cos sin )((6)=--=x x x f cos 3sin )((7)=+=x x x f sin 3cos 3)((8)=+-=x x x f sin 3cos 3)((9)=-=x x x f cos sin )((10)=-=x x x f cos sin 3)(基础组3(不限时,目标是懂怎样用公式)(1)=--=x x x f 2cos 32sin )((2)=+=x x x f 3sin 33cos 3)((3)=+-=2sin 32cos3)(x x x f (4)=+-+=)cos()sin()(ϕϕx x x f (5)=-=x x x f 2cos 2sin 3)((6)=-=4cos 34sin3)(x x x f (7)=+--=a x x x f cos 3sin 3)((8)=+=x x x f ωωsin cos 3)((9)=+-=x x x f cos 2sin 32)((10)=+-=x x x f cos 4sin 4)(怎样?做了这3组基础题目,是否觉得自己已经记住了合一公式?那就赶快进入正式的练习吧,下面有10组题目,按照要求完成后,你会觉得,合一公式不但弄懂了,竟然连诱导公式和变换公式都全部弄懂了!不会这么神奇吧?就看你认不认真了......第1组(限时20分钟,目标:全对)例:(1)23cos 3sin cos )(2+-⋅=x x x x f )32sin(2cos 232sin 2123)212cos (32sin 21π-=-=++-=x xx x x (2)21)3cos(cos 2)(--⋅=πx x x f (3)x x x x f sin 2sin 22cos )(2++=(4)xx x x f 2cos )cos (sin )(2++=(5)13sin 322sin )(2++-=x x x f (6)2sin 32sin )(2x x x f -=(7)x x x f 2cos )322cos()(--=π(8)xx x x f 2cos 2cos sin 32)(+⋅=(9)x a x x f ωωsin cos 1)(+++=(10))sin()cos()(ϕωϕω+++=x x x f 就是这样分三步就够了!学会三步走,老师不敢乱扣分,因为你“专业”!记不起那些变换公式吗?算了,老师当好人给你默一遍,但是不一定老师的没有错哦!下面的公式一定要记住啊!书本上都有的了!βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-注意加减号的规律,记忆技巧:βαβαβαsin sin cos cos )cos(⋅-⋅=+sin 函数的和差法则是“嗮扣嗮扣”.都说了是一个βαβαβαsin sin cos cos )cos(⋅+⋅=-“嗮命”的函数,肯定连“扣子”都嗮出来了.cos 函数的和差法则是“扣扣嗮嗮”.没看见它的名字的规律吗?”c”扣了,最后再“s”嗮.因为αααααααααcos sin 2sin cos cos sin )sin(2sin ⋅=⋅+⋅=+=所以有αααcos sin 22sin ⋅=看到sin 二倍角的历史由来没有?它变形:αααααα2sin 21cos sin cos sin 22sin =⋅⇔⋅=因为ααααααααα22sin cos sin sin cos cos )cos(2cos -=⋅-⋅=+=所以有ααα22sin cos 2cos -=①看到cos 二倍角的历史由来没有?这是它的第一条变形,又因为αααααααα22222222sin 1cos 1cos sin cos 1sin 1cos sin -=⇒=+-=⇒=+,把它们代入①式,于是又有第二条和第三条:αααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=②1cos 2)cos 1(cos sin cos 2cos 22222-=--=-=αααααα③从②,③变形有:2cos 1sin 2αα-=④,2cos 1cos 2αα+=⑤最后我把上面说的再整理一次:αααcos sin 22sin ⋅=⑥⇐⑥用得也多,一定要牢记。

(完整版)2018年各地高考数学文科分类汇编——三角函数,推荐文档

(完整版)2018年各地高考数学文科分类汇编——三角函数,推荐文档

答案: (全国 3 卷 4)
答案:B (全国 3 卷 6)
答案:C
(北京卷 7)在平面坐标系中,
,
,
(如图),点 P 在其中一段上,角 以 O
,则 P 所在的圆弧是
(A)
(B)
(C)
(D) 答案:C
,
是圆
上的四段弧
(北京卷 16)已知函数
+
.
(Ⅰ)求
的最小正周期
(Ⅱ)若 答案:
在区间
上的最大值为 ,求 的最小值.
(全国 1 卷 8) 答案: (全国 1 卷 11) 答案:
(全国 2 卷 10)若 f (x) cos x sin x 在[0, a] 是减函数,则 a 的最大值是
A. π 4
答案:C
B. π 2
C. 3π
4
D. π
5π 1
(全国 2 卷 15)已知 tan α
4
,(2x
) 的图象向右平移 个单位长度,所得图象对
5
10
应的函数
(A)在区间[
上单调递增(B)在区间[
上单调递减
(C)在区间 4 , 4上] 单调递增(D)在区间
4
, 0] ] 上单调递减
[,] 4
[,
2
2
答案:A
解析: y sin(2x ) 向右移动 个单位长度得到
5
10
y sin[(2 )x - ,] 即 y sin 2x , 10 5
单增区间为: +2k 2x 2k (k Z )
+k x
2 k (kZ)
2
当4k 0 时,函4数 y sin(2x 在区间[
)
,]

2018年高考数学黄金100题系列第33题三角函数的单调性、奇偶性、对称性与周期性文

2018年高考数学黄金100题系列第33题三角函数的单调性、奇偶性、对称性与周期性文

第 33题 三角函数的单调性、奇偶性、对称性与周期性例2.(求函数[]1sin ,2,223y x x πππ⎛⎫=+∈- ⎪⎝⎭的单调递增区间.【解析】设[]2,2A ππ=-,函数()1sin 23y x x R π⎛⎫=+∈ ⎪⎝⎭的单调递增区间为B .由1222232k x k πππππ-≤+≤+,得()5544,4,43333k x k B k k k Z ππππππππ⎡⎤-≤≤+∴=-+∈⎢⎥⎣⎦.易知5,33AB ππ⎡⎤=-⎢⎥⎣⎦.【试题来源】人教版A 版必修4第39页例5.【母题评析】本题考查三角函数单调区间的求法,是历年来高考的一个常考点. 【思路方法】限定区间上三角函数单调区间的求法:先用整体思想求()sin y A x B ωϕ=++()0,A x R >∈的单调区间,再与已知区间求交集即可.II .考场精彩·真题回放例.(2017课标3理6)设函数f (x )=cos (x +3π),则下列结论错误的是A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 【答案】D 【解析】【命题意图】本题考查两角和的正弦公式、周期公式、三角函数的单调性.考查学生分析问题解决问题能力、转化与化归能力. 【考试方向】这类试题在考查题型上,通常以选择题或填空题或解答题的形式出现,难度中等. 【难点中心】解答此类问题的关试题分析:函数的最小正周期为221T ππ== ,则函数的周期为()2T k k Z π=∈ ,取1k =- ,可得函数()f x 的一个周期为2π- ,选项A 正确;函数的对称轴为()3x k k Z ππ+=∈ ,即:()3x k k Z ππ=-∈ ,取3k = 可得y =f (x )的图像关于直线x =83π对称,选项B 正确; ()cos cos 33f x x x ππππ⎡⎤⎛⎫⎛⎫+=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,函数的零点满足()32x k k Z πππ+=+∈ ,即()6x k k Z ππ=+∈ ,取0k = 可得f (x +π)的一个零点为x =6π,选项C 正确; 当,2x ππ⎛⎫∈⎪⎝⎭时,54,363x πππ⎛⎫+∈ ⎪⎝⎭ ,函数在该区间内不单调,选项D 错误.故选D .例例.(2017天津,理7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 A .23ω=,12ϕπ= B .23ω=,12ϕ11π=- C .13ω=,24ϕ11π=- D .13ω=,24ϕ7π=【答案】A【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,键是能综合运用三角公式化为形式()sin y A x B ωϕ=++,再进一步讨论相关性质.(1)求最小正周期时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx +b的形式. (2)求f (x )=Asin (ωx +φ)(ω≠0)的对称轴,只需令()2x k k Z πωϕπ+=+∈,求x ;求f (x )的对称中心的横坐标,只需令ωx +φ=kπ(k ∈Z )即可.∴2142(2)33k k ω=--,又22T ππω=>,∴01ω<<,∴23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .例.(2017浙江)已知函数f (x )=sin 2x –cos 2x –23sin x cos x (x ∈R ).(Ⅰ)求)32(πf 的值. (Ⅱ)求)(x f 的最小正周期及单调递增区间. 【答案】(Ⅰ)2;(Ⅱ)最小正周期为π,单调递增区间为Z k k k ∈++]32,6[ππππ. 【解析】试题分析:(Ⅰ)由函数概念32cos 32sin 3232cos 32sin )32(22πππππ--=f ,分别计算可得;(Ⅱ)化简函数关系式得)sin(ϕω+=x A y ,结合ωπ2=T 可得周期,利用正弦函数的性质求函数的单调递增区间.试题解析:(Ⅰ)由2332sin=π,2132cos-=π,)21(2332)21()23()32(22-⨯⨯---=πf 得2)32(=πf(Ⅱ)由xx x 22sin cos 2cos -=与xx x cos sin 22sin =得)62sin(22sin 32cos )(π+-=--=x x x x f∴)(x f 的最小正周期是π 由正弦函数的性质得Z k k x k ∈+≤+≤+,2236222πππππ解得Z k k x k ∈+≤≤+,326ππππ∴)(x f 的单调递增区间是Z k k k ∈++]32,6[ππππ. 例3.(2016高考北京文数)已知函数)0(2cos cos sin 2)(>+=ωωωωx x x x f 的最小正周期为π.(1)求ω的值;(2)求)(x f 的单调递增区间. 【答案】(Ⅰ)1ω=;(Ⅱ)3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). 【分析】(Ⅰ)运用两角和的正弦公式对)(x f 化简整理,由周期公式求ω的值;(Ⅱ)根据函数x y sin =的单调递增区间对应求解即可.【解析】(I )∵()2sin cos cos2f x x x x ωωω=+sin 2cos2x x ωω=+224x πω⎛⎫=+⎪⎝⎭,∴()f x 的最小正周期22ππωωT ==.依题意,ππω=,解得1ω=. (II )由(I )知()2sin 24f x x π⎛⎫=+ ⎪⎝⎭.函数sin y x =的单调递增区间为2,222k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ).由222242k x k πππππ-≤+≤+,得388k x k ππππ-≤≤+. ∴()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). 例4.(2016高考浙江理数】设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关 【答案】B 【解析】 试题分析:21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B .例5.(2016高考山东理数】函数f (x )=x +cosx )(cos x –sin x )的最小正周期是( ) (A )2π(B )π (C )23π(D )2π 【答案】B 【解析】()2sin 2cos 2sin 2663f x x x x πππ⎛⎫⎛⎫⎛⎫=+⨯+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故最小正周期22T ππ==,故选B . III .理论基础·解题原理考点一 三角函数的单调性xy sin =在)(22,22Z k k k ∈⎥⎦⎤⎢⎣⎡++-ππππ上单调递增,在)(223,22Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ上单调递减,当Z k k x ∈+=,22ππ时,1max =y ;当Z k k x ∈+-=,22ππ时,1min -=y ;x y cos =在[])(2,2Z k k k ∈+-πππ上单调递增,在[])(2,2Z k k k ∈+πππ上单调递减,当Z k k x ∈=,2π时,1max =y ;当Z k k x ∈+=,2ππ时,1min -=y ;x y tan =在)(2,2Z k k k ∈⎪⎭⎫⎝⎛++-ππππ上单调递增.考点二 三角函数的周期性函数sin ,cos y x y x ==的最小正周期为2π,tan y x =的最小正周期为π. 考点三 三角函数的奇偶性对于函数()()sin 0,0y A x A ωϕω=+>>,当且仅当()k k Z ϕπ=∈时是奇函数,当且仅当()2k k Z πϕπ=+∈时是偶函数;对于函数()()cos 0,0y A x A ωϕω=+>>,当且仅当()2k k Z πϕπ=+∈时是奇函数,当且仅当()k k Z ϕπ=∈时是偶函数.考点四 三角函数的对称性sin y x =的图像既是轴对称图形,又是中心对称图形,其对称轴是直线()ππ2x k k =+∈Z ,其对称中心是()()π,0k k ∈Z ;cos y x =的图像既是轴对称图形,又是中心对称图形,其对称轴是直线()πx k k =∈Z ,其对称中心是()ππ,02k k ⎛⎫+∈ ⎪⎝⎭Z ;tan y x =的图像不是轴对称图形,是中心对称图形,其对称中心是()π,02k k ⎛⎫∈ ⎪⎝⎭Z .IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等. 【技能方法】(1)讨论()()()sin ,cos ,tan y A x B y A x B y A x B ωϕωϕωϕ=++=++=++的单调性可用整体思想:把()0x ωϕω+>视为一个整体,()00A A ><所列不等式的方向与sin ,cos ,tan y x y x y x ===的单调区间对应的不等式方向相同(反).(2)利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间内,若不属于,可先化至同一单调区间内;若不是同名三角函数,则应考虑化为同名三角函数或用差值法(例如与0比较、与1比较等)求解.(3)函数()()sin ,cos y A x B y A x B ωϕωϕ=++=++的最小正周期为2πω,()tan y A x B ωϕ=++的最小正周期为πω. (4)三角函数中奇函数一般可化为sin y A x ω=或tan y A x ω=,而偶函数一般可化为cos y A x B ω=+的形式.(5)()()()sin 0f x A x A ωϕω=+≠的图像既是轴对称图形,又是中心对称图形,()f x 图像关于直线0x x =对称的充要条件是()0f x A =±,()f x 图像关于点0(,0)x 对称的充要条件是()00f x =.【易错指导】(1)对于三角函数()()sin 0y A x A ωϕ=+>求其单调区间,要注意ω的正负,若ω为负,则需先化正,化为()sin y A x ωϕ=---的形式,若求其单调递增区间,应把x ωϕ--放在正弦函数的单调减区间内;若求其单调递减区间,应把x ωϕ--放在正弦函数的单调增区间内.(2)解答时不要遗漏“k Z ∈”,另外三角函数存在多个单调区间时不能用“”联结.(3)必须先将解析式化为()()()sin ,cos ,tan y A x B y A x B y A x B ωϕωϕωϕ=++=++=++的形式,再分别利用公式2,T T ππωω==求周期,注意ω一定要加绝对值. V .举一反三·触类旁通考向1 三角函数的单调性(单调区间)例1.(2018河南名校联考)已知,,,,则( )A .B .C .D .【答案】D例2.函数)42cos(2)(π+-=x x f 的单调增区间别为 .【答案】)(,8,83Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ. 【解析】函数()2cos(2)2cos(2)44f x x x ππ=-+=-,由222,4k x k k Z ππππ-+≤-≤∈,得:3,88k x k k Z ππππ-+≤≤+∈,∴函数)42cos(2)(π+-=x x f 的单调增区间别为:)(,8,83Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ.故答案应填:)(,8,83Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ. 例3.函数2sin 26y x π⎛⎫=-⎪⎝⎭([]0,x π∈)为增函数的区间是 . 【答案】5,36ππ⎡⎤⎢⎥⎣⎦【易错点晴】本题以函数2sin 26y x π⎛⎫=-⎪⎝⎭的表达式的单调区间为背景,考查的是三角函数中形如)sin()(ϕω+=x A x f 的正弦函数的图象和性质.解答时先从题设中的条件增函数入手,对函数2sin 26y x π⎛⎫=-⎪⎝⎭进行变形,将其变形为一般式)62sin(2π--=x y ,将其转化为求函数)62sin(2π-=x y 的减区间.最后将其转化为正弦函数的单调递减区间的求法.通过解不等式使得本题获解.例4.(2018河北石家庄)已知()2sin sin cos 2sin cos 44f x x x x x x x ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭. (Ⅰ)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;(Ⅱ)若函数()f x 的图象向右平移8π个单位后,所得图象恰与函数()g x 的图象关于直线6x π=,求函数()g x 的单调递增区间.【答案】(1) 210,2⎡⎤+⎢⎥⎣⎦;(2) ()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.试题解析:(Ⅰ)()2sin sin cos 2sin cos 44f x x x x x x ππ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭ ()1cos2111sin2sin 2sin2cos2cos222222x x x x x x π-⎛⎫=+++=+-+ ⎪⎝⎭()1121sin2cos2222242x x x π⎛⎫=++=++ ⎪⎝⎭,由,122x ππ⎡⎤∈⎢⎥⎣⎦,得5521244x πππ≤+≤,∴()221sin 21,0242x f x π⎛⎫-≤+≤≤≤⎪⎝⎭, 即()f x 在,122ππ⎡⎤⎢⎥⎣⎦上的值域是210,2⎡⎤⎢⎥⎣⎦.(Ⅱ)函数()f x 的图象向右平移8π个单位后得到()h x 的图象, 则()2182h x f x x π⎛⎫=-=+ ⎪⎝⎭, 设点(),P x y 是()g x 图象上任意一点,则点P 关于直线6x π=对称的点,3Q x y π⎛⎫-⎪⎝⎭在()h x 的图象上, ∴()221sin 23232g x h x x ππ⎛⎫⎛⎫=-=-+ ⎪ ⎪⎝⎭⎝⎭ 21sin 2232x π⎛⎫=++ ⎪⎝⎭.∴当()222232k x k k Z πππππ-+≤+≤+∈,即()51212k x k k Z ππππ-+≤≤+∈时, ()g x 单调递增,∴()g x 的单调递增区间是()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式 ;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.例5.(2017吉林模拟)已知△ABC 内角A ,B ,C 的对边分别是a ,b ,c ,且满足222sin sin sin sin sin B C A B C +-=(1) 求角A 的大小;(2)已知函数()()sin ,0f x x A ωω=+>的最小正周期为π,求()f x 的单调减区间. 【答案】(1) A=3π;(2)[kπ+ 12π,kπ+712π ](k ∈Z )试题解析: (1)可得:A=3π(2)由题意,ω= 2,∴f (x )=sin (2x+3π),∴由2kπ+2π ≤2x+3π≤2kπ+32π,(k ∈Z ),可得:kπ+12π ≤x≤kπ+ 712π,(k ∈Z ),∴f (x )的减区间为:[kπ+ 12π,kπ+712π ](k ∈Z ) 考向2 三角函数的奇偶性例6.(2018浙江温州)已知函数,则下列命题错误的是( )A .函数是奇函数,且在上是减函数B .函数是奇函数,且在上是增函数C .函数是偶函数,且在上是减函数D .函数是偶函数,且在上是增函数【答案】A【解析】函数, ,在上递减,在上递增,在上递增,命题“函数是奇函数,且在上是减函数”错误,故选A .例7.已知函数b a x b x a x f ,(cos sin )(+=为常数,且R x a ∈≠,0),若函数)4(π+=x f y 是偶函数,则)4(π-f 的值为 .【命题意图】考查三角函数的图像和性质及数形结合的思想,以及分析问题解决问题的能力.【答案】0.考向3 三角函数的周期性例8.(2018辽宁鞍山)函数()2sin cos 3cos2f x x x x =+的周期为( ) A .2T π= B .2T π= C .T π= D .4T π=【答案】C【解析】由()2sin cos 3cos2sin23cos22sin 23f x x x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,∴函数的周期22T ππ==,故选C . 例9.(2018湖北武汉起点调研)函数的最小正周期为( )A .B .C .D .【答案】C 【解析】()sin(2)sin(2)sin2cos cos2sin sin2cos cos2sin sin2333333f x x x x x x x xππππππ=-++=-++=,∴最小正周期.本题选择C 选项.例10.(2018江苏淮安)已知()cos 24f x x π⎛⎫=- ⎪⎝⎭则函数()f x 的周期为________. 【答案】π例11.(2018上海模拟)设函数()()2sin ,f x x x R ωϕ=+∈,其中0,ωϕπ><,若5112,088f f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,且()f x 的最小正周期大于2π,则ϕ=__________.【答案】12π 【解析】 由()f x 的最小正周期大于2π,得42T π>, 又5112,088f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,得11534884T πππ=-=,∴3T π=,则2233w w ππ=⇒=, ∴()()22sin 2sin 3f x x x ωϕφ⎛⎫=+=+⎪⎝⎭, 由52552sin 2sin 183812f πππφφ⎛⎫⎛⎫⎛⎫=⨯+=⇒+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴52,122k k Z ππφπ+=+∈, 取0k =,得12πφπ=<,∴2,312w πφ==. 例12.(2017淮北一中后一卷)设函数()sin sin 2f x x x πωω⎛⎫=+- ⎪⎝⎭.(1)若12ω=,求()f x 的最大值及相应的x 的取值范围; (2)若8x π=是()f x 的一个零点,且010ω<<,求ω的值和()f x 的最小正周期.【答案】(1)()f x 的最大值为2,相应x 的取值集合为3{|4,}2x x k k Z ππ=+∈;(2)()2sin 24f x x π⎛⎫=- ⎪⎝⎭,最小正周期是π.(2)2sin 084ππω⎛⎫-= ⎪⎝⎭,从而84k ωπππ-=, k Z ∈,由()0,10ω∈可得结论.试题解析:()2sin 4f x x πω⎛⎫=- ⎪⎝⎭.(1)当12ω=时, ()12sin 24f x x π⎛⎫=- ⎪⎝⎭,∴()f x 的最大值为2,相应x 的取值集合为3{|4,}2x x k k Z ππ=+∈. (2)∵2sin 0884f πππ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,整理得84k πππ-=,又010ω<<,∴0, 2.k ω==()2sin 24f x x π⎛⎫=- ⎪⎝⎭,最小正周期是π.考向4 三角函数的对称性例13.(2018河南林州10月调研)将函数3sin 46y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标伸长为原来的2倍,再向右平移6π个单位,所得函数图象的一个对称中心为( ) A .7,048π⎛⎫⎪⎝⎭ B .,03π⎛⎫ ⎪⎝⎭ C .5,08π⎛⎫ ⎪⎝⎭ D .7,012π⎛⎫⎪⎝⎭【答案】D例14.(2018河南漯河)若把函数的图象向右平移个单位后所得图象关于坐标原点对称,则的最小值为( )A .B .C .D .【答案】A【解析】函数的图象向右平移个单位后所得函数为图象关于坐标原点对称,则,-∴的最小值为,故选A .例15.(2018辽宁凌源)将函数()2sin 43f x x π⎛⎫=-⎪⎝⎭的图象向平移6π个单位,再把所有点的横坐标伸长到原来的2倍,得到函数()y g x =的图象,则下列关于函数()y g x =的说法错误的是( )A .最小正周期为πB .初相为3πC .图象关于直线12x π=对称 D .图象关于点,012π⎛⎫⎪⎝⎭对称 【答案】D例16.(2018四川成都)已知函数()()2cos 1(0,0,0)2f x A x A πωϕωϕ=>><<++的最大值为3, ()f x 的图像与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则()()()()1232017f f f f ++++的值为( )A .4030B .4032C .4033D .4035【答案】C 【解析】()()()21cos 22cos 1?1(0,0,0)22x f x A x A A ωϕπωϕωϕ++=++=+>><< 的最大值为3 , 1322A A∴++= ,可求2A = ,∵函数图象相邻两条对称轴间的距离为2 ,可得函数的最小正周期为4 ,即242πω= ,∴解得4πω= ,又()f x 的图象与y 轴的交点坐标为()0,2 ,可得()cos 2112,cos20,22πϕϕϕ++=∴== ,解得4πϕ=,∴函数的解析式为()cos 22222f x x sin x πππ⎛⎫=++=-+ ⎪⎝⎭ ,()()()23201712...2017...220172222f f f sin sin sin sinππππ⎛⎫∴+++=-+++++⨯ ⎪⎝⎭20175040sin403440332π=⨯++= ,故选C . 例17.(2018江苏横林)若函数()()2cos f x x m ωθ=++对任意的实数f()99t t f t ππ⎛⎫+=- ⎪⎝⎭都有且3,9f π⎛⎫=- ⎪⎝⎭则m =_______ . 【答案】1- 或5-例18.(2018河南南阳)函数()sin 23f x x π⎛⎫=- ⎪⎝⎭的图像为C ,如下结论中正确的是__________(写出所有正确结论的编号).①图象C 关于直线1112x π=对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称;③()f x 在区间15,1212ππ⎡⎤-⎢⎥⎣⎦内是增函数; ④将sin2y x =的图象向右平移3π个单位可得到图像C . 【答案】①②③【解析】对于()sin 23f x x π⎛⎫=- ⎪⎝⎭, 令1112x π=,求得f (x )=−1,为函数的最小值,故它的图象C 关于直线1112x π=对称故①正确.令x =23π,求得f (x )=0,可得它的图象C 关于点(23π,0)对称,故②正确. 令51212xππ-,可得2232x πππ--,故函数f (x )在区间5,1212ππ⎡⎤-⎢⎥⎣⎦是增函数,故③正确,由sin2y x =的图象向右平移3π个单位长度可以得到22233y sin x sin x ππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭,故排除④, 故答案为:①②③.考向5 已知三角函数的单调性求参数的值或范围例19.(2018安徽安庆模拟)若函数()()sin 0f x x ωω=>在区间20,3π⎛⎫⎪⎝⎭上单调递增,且2536f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,则ω的一个可能值是( ) A .12 B .35 C .34 D .32【答案】C例20.设函数()()sin f x A x ωϕ=+(,,A ωϕ是常数, 0,0A ω>>).若()f x 在区间()1,3上具有单调性,且()()()135f f f =-=-,则ω=_______________.【答案】4π【解析】()()13,f f =-∴一个对称中心横坐标为1322+=, ()()35,f f =∴一条对称轴方程为354,42224T x +==∴=-=, 28,4T ππωω===,故答案为4π.考向6 已知三角函数的奇偶性、对称性或周期求参数的值例21.(2018四川成都)若函数()()sin 2f x x b ϕ=++,对任意实数x 都有()2,133f x f x f ππ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,则实数b 的值为( ) A .2-和0 B .0 和1 C .1± D .2± 【答案】A【解析】由()3f x f x π⎛⎫+=- ⎪⎝⎭得函数一条对称轴为π6x = ,因此()ππsin 1π36k k Z ϕϕ⎛⎫+=±⇒=+∈ ⎪⎝⎭,由213f π⎛⎫=- ⎪⎝⎭得4ππsin π1112036k b b b ⎛⎫+++=-⇒=-±⇒=- ⎪⎝⎭或 ,选A . 点睛:求函数解析式()sin (0,0)y A x B A ωϕω=++>>方法:(1) max min maxmin,22y y y y A B -+==. (2)由函数的周期T 求2,.T πωω=(3)利用“五点法”中相对应的特殊点求ϕ.(4)由 ()ππ2x k k Z ωϕ+=+∈求对称轴 例22.(2018河北衡水)已知函数()()2sin 1f x x ωϕ=++(1ω>, 2πϕ≤),其图像与直线1y =-相邻两个交点的距离为π,若()1f x >对于任意的,123x ππ⎛⎫∈- ⎪⎝⎭恒成立,则ϕ的取值范围是( )A .,123ππ⎡⎤⎢⎥⎣⎦ B .,122ππ⎡⎤⎢⎥⎣⎦C .,63ππ⎡⎤⎢⎥⎣⎦D .,62ππ⎛⎤ ⎥⎝⎦【答案】C由题意得“()1f x >对于任意的,123x ππ⎛⎫∈-⎪⎝⎭恒成立”等价于“()sin 20x ϕ+>对于任意的,123x ππ⎛⎫∈-⎪⎝⎭恒成立”.∵123x ππ-<<,∴2263x ππϕϕϕ-+<+<+, ∴()2,2,2,63k k k Z ππϕϕπππ⎛⎫-++⊆+∈ ⎪⎝⎭,∴22,63k k k Z πππϕπ+≤≤+∈.故结合所给选项可得C 正确.选C .点睛:本题难度较大,解题时根据题意得2ω=,可将问题转化成“函数()y sin 2x ϕ=+0>对于任意的,123x ππ⎛⎫∈-⎪⎝⎭恒成立”,然后可根据2x ϕ+在,123ππ⎛⎫- ⎪⎝⎭上的取值范围是()2,2,k k k Z πππ+∈的子集去处理,由此通过不等式可得ϕ的范围,结合选项得解.21 例23.(2017山东日照三模)已知函数()[)[)2017πcos ,0,,2log ,,,πx x f x x x ππ⎧⎛⎫-∈ ⎪⎪⎪⎝⎭=⎨⎪∈∞⎪⎩若存在三个不同的实数,,a b c ,使得()()()f a f b f c ==,则a b c ++的取值范围为______________.【答案】()2π,2018π令2017log 1πx =得2017πx =, ()f a = ()f b = ()f c ,a b ∴+= π, ()π,2017πc ∈,a b c ∴++= ()π2π,2018πc +∈,故答案为()2π,2018π.,故选答案为()2π,2018π. 【方法点睛】本题主要考查分段函数的解析式及图象、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点.充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.。

2018年高考数学专题16三角函数的图像和性质问题黄金解题模板

2018年高考数学专题16三角函数的图像和性质问题黄金解题模板

专题16 三角函数的图像和性质问题【高考地位】近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是高考的重点和难点。

要充分运用数形结合的思想,把图象与性质结合起来,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。

在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题. 【方法点评】类型一 求三角函数的单调区间使用情景:一般三角函数类型解题模板:第一步 先将函数式化为基本三角函数的标准式,要特别注意参数,A ω的正负;第二步 利用三角函数的辅助角公式一般将其化为同名函数,且在同一单调区间; 第三步 运用三角函数的图像与性质确定其单调区间.例 1 【全国名校大联考2017-2018年度高三第二次联考数学(文)试题】 设向量cos ,cos2,sin2,sin 44a x b x ππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭, ()f x a b =⋅.(1)求()f x 的最小正周期;(2)求()f x 在区间[]0,π上的单调递减区间. 【答案】(1) π;(2) 37,88ππ⎡⎤⎢⎥⎣⎦.【变式演练1】函数cos(2)4y x π=-的单调递增区间是( )A .[k π+8π,k π+85π] B .[k π-83π,k π+8π] C .[2k π+8π,2k π+85π] D .[2k π-83π,2k π+8π](以上k ∈Z )【答案】B.考点:三角函数单调性.【变式演练2】已知函数()sin2(0)f x x ωω=->的图象关于点5,04M π⎛⎫ ⎪⎝⎭对称,且在区间0,2π⎡⎤⎢⎥⎣⎦上是单调函数,则ω的值为__________. 【答案】25【解析】函数()sin2(0)f x x ωω=->的图象关于点5,04M π⎛⎫⎪⎝⎭对称,故552sin0,22w w k k Z πππ-=⇒=∈ , 2,5w k =在区间0,2π⎡⎤⎢⎥⎣⎦上是单调函数,故得到: 1422w wππ≥⇒≤两者取交集得到 ω的值为25。

高考数学真题 三角函数的概念、同角三角函数的基本关系式和诱导公式

高考数学真题 三角函数的概念、同角三角函数的基本关系式和诱导公式

专题四 三角函数与解三角形4.1 三角函数的概念、同角三角函数的基本关系式和诱导公式考点 三角函数的概念、同角三角函数的基本关系式和诱导公式1.(2018北京文,7,5分)在平面直角坐标系中,AB⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB⏜ B.CD ⏜ C.EF ⏜ D.GH ⏜ 答案 C 本题主要考查三角函数的概念,同角三角函数的基本关系式.若点P 在AB⏜或CD ⏜(不包含端点A,D)上,则角α在第一象限,此时tan α-sin α=tan α(1-cos α)>0,与tan α<sin α矛盾,故排除A,B.若点P 在GH ⏜(不包含端点G)上,则角α在第三象限,此时tan α>0,cos α<0,与tan α<cos α矛盾,故排除D,故选C.2.(2014课标Ⅰ文,2,5分)若tan α>0,则( )A.sin α>0B.cos α>0C.sin 2α>0D.cos 2α>0答案 C 由tan α>0得α是第一或第三象限角,若α是第三象限角,则A,B 错;由sin 2α=2sin αcos α知sin 2α>0,C 正确;α取π3时,cos 2α=2cos 2α-1=2×(12)2-1=-12<0,D 错.故选C.评析 本题考查三角函数值的符号,判定时可运用基本知识、恒等变形及特殊值等多种方法,具有一定的灵活性.3.(2014大纲全国文,2,5分)已知角α的终边经过点(-4,3),则cos α=( ) A.45B.35C.-35D.-45答案 D 由三角函数的定义知cos α=√(-4)2+32=-45.故选D.4.(2011课标,理5,文7,5分)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=( )A.-45B.-35C.35D.45答案 B 解法一:由三角函数定义知,tan θ=2,则cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.解法二:由三角函数定义知,tan θ=2,即sin θ=2cos θ,则sin 2θ=4cos 2θ.从而有cos 2θ=15.故cos 2θ=2cos 2θ-1=-35.5.(2015福建文,6,5分)若sin α=-513,且α为第四象限角,则tan α的值等于( ) A.125 B.-125 C.512 D.-512答案 D ∵sin α=-513,α为第四象限角, ∴cos α=√1-sin 2α=1213,∴tan α=sinαcosα=-512.故选D. 6.(2014课标Ⅰ理,8,5分)设α∈(0,π2),β∈(0,π2),且tan α=1+sinβcosβ,则( ) A.3α-β=π2B.3α+β=π2C.2α-β=π2D.2α+β=π2答案 C 由tan α=1+sinβcosβ得sinαcosα=1+sinβcosβ,即sin αcos β=cos α+sin βcos α,所以sin(α-β)=cos α,又cos α=sin (π2-α),所以sin(α-β)=sin (π2-α),又因为α∈(0,π2),β∈(0,π2),所以-π2<α-β<π2,0<π2-α<π2,因此α-β=π2-α,所以2α-β=π2,故选C.7.(2014大纲全国理,3,5分)设a=sin 33°,b=cos 55°,c=tan 35°,则( )A.a>b>cB.b>c>aC.c>b>aD.c>a>b 答案 C ∵b=cos 55°=sin 35°>sin 33°=a,∴b>a. 又∵c=tan 35°=sin35°cos35°>sin 35°=cos 55°=b,∴c>b.∴c>b>a.故选C.8.(2013浙江理,6,5分)已知α∈R,sin α+2cos α=√102,则tan 2α=( )A.43B.34C.-34D.-43答案 C (sin α+2cos α)2=52,展开得3cos 2α+4sin αcos α=32,再由二倍角公式得32cos 2α+2sin 2α=0,故tan 2α=sin2αcos2α=-322=-34,选C.评析 本题考查同角三角函数的基本关系式和三角恒等变换,考查转化与化归思想,考查学生灵活应用公式的能力和运算求解能力.三角函数求值问题关键在于观察角与角之间的关系和三角函数名之间的关系. 9.(2013大纲全国文,2,5分)已知α是第二象限角,sin α=513,则cos α=( ) A.-1213 B.-513 C.513 D.1213答案 A ∵α是第二象限角,∴cos α<0. ∴cos α=-√1-sin 2α=-1213.故选A. 评析 本题考查三角函数值在各象限的符号,同角三角函数关系,属容易题. 10.(2013广东文,4,5分)已知sin (5π2+α)=15,那么cos α=( ) A.-25 B.-15 C.15 D.25答案 C ∵sin (5π2+α)=sin (π2+α)=cos α,∴cos α=15.故选C. 11.(2016课标Ⅲ,5,5分)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C.1 D.1625答案 A 当tan α=34时,原式=cos 2α+4sin αcos α=cos 2α+4sinαcosαsin 2α+cos 2α=1+4tanαtan 2α+1=1+4×34916+1=6425,故选A.思路分析 利用二倍角公式将所求式子展开,再将其看成分母为1的式子,并用sin 2α+cos 2α代替1,然后分子、分母同除以cos 2α,得到关于tan α的式子,由此即可代值求解.12.(2011江西文,14,5分)已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P(4,y)是角θ终边上一点,且sin θ=-2√55,则y= . 答案 -8解析 P(4,y)是角θ终边上一点,由三角函数的定义知sin θ=√,又sin θ=-2√55,∴√=-2√55,解得y=-8.评析 本题主要考查任意角三角函数的定义,考查运算求解能力,由题意得√=-2√55是本题求解的关键.13.(2016四川文,11,5分)sin 750°= . 答案12解析 sin 750°=sin(720°+30°)=sin 30°=12. 解后反思 利用诱导公式把大角化为小角. 评析 本题考查了三角函数的诱导公式.14.(2013课标Ⅱ理,15,5分)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ= . 答案 -√105解析 tan θ=tan [(θ+π4)-π4]=12-11+12=-13,∴sin θ=-13cos θ,将其代入sin 2θ+cos 2θ=1得109cos 2θ=1,∴cos 2θ=910,又易知cos θ<0,∴cos θ=-310√10,∴sin θ=√1010,故sin θ+cos θ=-√105.。

2018年全国1卷理科第16题(三角函数的最值问题)-2018年高考数学经典题分析及针对训练Word版含解析

2018年全国1卷理科第16题(三角函数的最值问题)-2018年高考数学经典题分析及针对训练Word版含解析

2018年全国1卷理科第16题(三角函数的最值问题) -2018年高考数学经典题分析及针对训练Word 版含解析一、典例分析,融合贯通典例【2018年全国1卷理科第16题】已知函数f(x)=2sinx+sin2x ,则f(x)的最小值是______. 解法一:引导:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.点评:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值. 解法二:()=2sin +sin2=2sin (1+cos )f x x x x x22222()=4sin (1+cos )4(1-cos )(1+cos )f x x x x x ∴=4(3-3cos )(1+cos )(1+cos )(1+cos )3x x x x =443-3cos +1+cos +1+cos +1+cos )34x x x x ⎛⎫≤ ⎪⎝⎭44327324⎛⎫=⨯=⎪⎝⎭ ()f x 易知是奇函数1cos = 2()sin =2x f x x ⎧⎪⎪∴≥⎨⎪-⎪⎩当,()f x ∴的最小值是 点评:另辟蹊径,联系均值不等式求最值(和定积最小)。

解法三:解法3:公式搭桥,函数领路,导数建功。

解法四:()=2sin +sin2f x x x ,tan 2xt R =∈令则2223418 2sin(1cos)(1)1112t ty x xt t t tt-=+=+=++++,31t2,t ttϕ=++令()4222221321t32,0t tt tt tϕμ+-'=+-==≥()令,原式得;(1)(31),μμμ+-=显然13μ=时,取tϕ()到极值经检验当t=tϕ()有最大值,则y有最小值得:min812(yϕ==-解法4:替换消元,导数建功。

2018年高考数学黄金100题系列第31题三角函数的图像文

2018年高考数学黄金100题系列第31题三角函数的图像文

第31题 三角函数的图象I .题源探究·黄金母题例1.画出下列函数在长度为一个周期的闭区间上的简图:(1)1sin(3),23y x x R π=-∈; (2)2sin(+),4y x x R π=-∈; (3)1sin(2),5y x x R π=--∈;(4)3sin(),63xy x R π=-∈;【解析】 (1)(2)(3)(4)精彩解读【试题来源】人教版A 版必修4第70页复习总参考题A 组第16题)【母题评析】本考查了如何利用五点法去画函数sin()y A x b ωϕ=++的图象,同时培养了学生的作图、识图能力,对sin()y A x b ωϕ=++的性质有了进一步的了解,为以后解决由图定式问题奠定了基础.【思路方法】数形结合思想是高中数学中主要的解题思想之一,提别是在解决函数的问题中,函数图象是强有力的工具,这种思想是近几年高考试题常常采用的命题形式.例2.(1)用描点法画出函数sin ,[0,]2y x x π=∈的图象.(2)如何根据(1)题并运用正弦函数的性质,得出函数sin ,[0,2]y x x π=∈的图象;(3)如何根据(2)题并通过平行移动坐标轴,得出函数【试题来源】人教版A 版必修4第70页复习总参考题A 组第17题【母题评析】本题是一道综合性问题,考查了如何用五点法作图、如何利用对称性进行图象变换以及图象的平移变换.培养了学生的作图、识图能力,对sin()y A x b ωϕ=++的性质有了进一步的了解.【思路方法】数形结合思想是高中数学中主要的解题思想之一,提别是在解决函数的问题中,函数图象是强有力的工具,这种思想是近几年高考试题常常采用的命题形式.【试题来源】人教版A 版必修4第70页复习总参考题A 组第18题 【母题评析】本题是一道综合性问题,考查了函数图象的平移变换.加深了学生对周期变换、振幅变换、相位变换的进一步了解.【思路方法】使学生进一步认识到数形结合思想在解决函数的问题中的地位,以便引起学生对数形结合思想的重视.621sin ,sin ,612sin ,6y x x R y x x R y x x R =∈−−−−−−→=∈−−−−−−→=∈横坐标伸长到原来的倍,纵坐标不变纵坐标缩短到原来的倍,横坐标不变II .考场精彩·真题回放例1.(2017新课标1理9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 ( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2 D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D . 例2.(2016年高考北京理数)将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移s (0s >) 个单位长度得到点'P ,若'P 位于函数【命题意图】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换.根据图象求解析式问题的一般方法是:先根据函数图象的最高点、最低点确定,A h 的值,函数的周期确定ω的值,再根据函数图象上的一个特殊点确定ϕ值. 【考试方向】sin y x =的图象变换后得到sin()y A x ωϕ=+的图象,可通过“先平移后伸缩”和“先伸缩后平移”两种途径得到,顺序不同,平移的单位长度就不同,这成为高考中考查方向.考查题型一般为选择题,难度较低,为容易题.【难点中心】三角函数的图象与性质是三角函数的重要内容,高考中比较重视考查三角函数图象的平移和伸缩、周期、最值、奇偶性、sin 2y x =的图象上,则 ( ) A .12t =,s 的最小值为6π B.t = ,s 的最小值为6πC .12t =,s 的最小值为3π D.2t =,s 的最小值为3π【答案】A【解析】由题意得,1sin(2)432t ππ=⋅-=,故此时'P 所对应的点为1(,)122π,此时向左平移-4126πππ=个单位,故选A .单调性、对称性及角的取值范围,同时往往注重考查对三角函数“化一”恒等变换.高考中对三角函数考查时,注重考查方程思想、整体思想、数形结合思想在解题中运用.尤其注重两种“先平移后伸缩”和“先伸缩后平移”两种变换的差异:先相位变换再周期变换(伸缩变换),平移的量是ϕ个单位;而先周期变换(伸缩变换)再相位变换,平移的量是()0ϕωω>个单位.原因是相位变换和周期变换都是针对x 而言的.例3.(2016高考新课标2文数)函数=sin()y A x ωϕ+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(2+)6y x π=D .2sin(2+)3y x π=【答案】A【解析】由图知,2A =,周期2[()]36T πππ=--=,∴22πωπ==,∴2sin(2)y x ϕ=+,∵图象过点(,2)3π,∴22sin(2)3πϕ=⨯+,∴2sin()13πϕ+=,∴22(Z)32k k ππϕπ+=+∈,令0k =得,6πϕ=-,∴2sin(2)6y x π=-,故选A .例4.(2016高考新课标2理数)若将函数2sin 2y x =的图象向左平移12π个单位长度,则平移后图象的对称轴为 ( ) A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈ D .()212k x k Z ππ=+∈ 【答案】B【解析】由题意,将函数2sin 2y x =的图象向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B . 例5.(2016高考新课标1文数)若将函数y =2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为 ( )A .y =2sin(2x +π4)B .y =2sin(2x +π3)C .y =2sin(2x –π4)D .y =2sin(2x –π3)【解析】函数y 2sin(2x )6π=+的周期为π,将函数y 2sin(2x )6π=+的图象向右平移14个周期即4π个单位,所得函数为y 2sin[2(x ))]2sin(2x )463πππ=-+=-,选D .III .理论基础·解题原理考点一 图象变换与性质相结合图象变换与函数性质的综合问题可根据两种图象变换的规则,也可先通过图象变换求得变换后的函数解析式,再研究函数性质.常先通过三角恒等变换化简函数解析式,再来研究其性质.考点二 三角函数模型的应用三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. 考点三 由函数图象求解析式的方法(1)如果从图象可确定振幅和周期,则可直接确定函数表达式()sin y A x ωϕ=+中的参数A 和ω,再选取 “第一零点”(即五点作图法中的第一个点)的数据代入“0x ωϕ+=”(要注意正确判断哪一点是“第一零点”)求得ϕ.(2)通过若干特殊点代入函数式,可以求得相关待定系数,,A ωϕ,依据是五点法. (3)运用逆向思维的方法,根据图象变换可以确定相关的参数. IV .题型攻略·深度挖掘【考试方向】以考察函数()sin y A x ωϕ=+的图象变换,考查函数()sin y A x ωϕ=+解析式中参数ϕ的求法为主.sin y x =的图象变换后得到sin()y A x ωϕ=+的图象,可通过“先平移后伸缩”和“先伸缩后平移”两种途径得到,顺序不同,平移的单位长度就不同,这成为高考中考查方向.考查题型一般为选择题,难度较低,为容易题.【技能方法】确定()()sin 0,0y A x B A ωϕω=++>>的步骤和方法 (1)求,A B ,确定函数的最大值M 和最小值m ,则,22M m M mA B -+==; (2)求ω,确定函数的周期T ,则可得Tω2π=; (3)求ϕ,常用的方法有:①代入法:把图象上的一个已知点代入(此时,,A B ω已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定ϕ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下: “第一点”(即图象上升时与x 轴的交点)时0x ωϕ+=;“第二点”(即图象的“峰点”)时2x ωϕπ+=;“第三点”(即图象下降时与x 轴的交点)时x ωϕ+=π;“第四点”(即图象的“谷点”)时2x ωϕ3π+=;“第五点”时2x ωϕ+=π. 【易错指导】1.一个区别——两种图象变换的区别由sin y x =的图象变换到sin()y A x ωϕ=+的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是ϕ个单位长度;而先周期变换(伸缩变换)再相位变换,平移的量是()0ϕωω>个单位长度.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于x ω加减多少值.2.解答有关平移伸缩变换的题目时,向左(或右)平移m 个位时,用x m +(或x m -)代替x ,向下(或上)平移n 个单位时,用y n +(或y n -)代替y ,横(或纵)坐标伸长或缩短到原来的k 倍,用k x 代替x (或ky代替y ),即可获得解决. 3.解答三角函数性质(单调性、周期性、最值等)问题时,通常是利用三角函数的有关公式,通过将三角函数化为“只含”一个函数名称且角度唯一,最高次数为一次(一角一函)的形式,再依正(余)弦型函数依次对所求问题作出解答.求三角函数的最值的方法:(1)化为正弦(余弦)型函数 sin cos y a x b x ωω=+型引入辅助角化为一角一函;(2)化为关于sin x (或cos x )的二次函数;(3)利用数形结合法.V .举一反三·触类旁通考向1 “知式作图”或“知图求式”(由三角函数的图象求解析式) 例1.(2018湖南永州一模)函数的部分图像是( )A .B .C .D .【答案】A例2.(2017天津八校联考)函数()()sin f x A x ωϕ=+,(其中0A >, 0ω>,的2倍,得到的图象表示的函数可以为( )AC 【答案】A点睛:已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式(1) (2(3)利用“五点法”中相对应的特殊点求ϕ.例3.(2017山东日照三模)已知角θ始边与x 轴的非负半轴重合,与圆224x y +=相交于点A ,终边与圆224x y +=相交于点B ,点B 在x 轴上的射影为C , ABC ∆的面积为()S θ,则函数()S θ的图象大致是( )A .B .C .D .【答案】B 【解析】由题意()()202cos ,2sin A B θθ,,,所以()()1122cos 2sin 022S BC AC θθθ==-⋅≥,所以排除C ,D .又当3π4θ=时, ()12S θ=>,综上可知,B 选项是正确的.考向2 图象变换与辅助角公式相结合例4.(2018辽宁六校协作体联考)已知函数()的图象向右平移个单位后关于轴对称,则在区间上的最小值为( )A .B .C .D .【答案】C例5.(2016高考新课标3理数)函数sin y x x =的图象可由函数sin y x x =的图象至少向右平移_____________个单位长度得到.【答案】32π【解析】∵sin 2sin()3y x x x π==+,sin 2sin()3y x x x π=-=-=2sin[()]33x π2π+-,∴函数sin y x x =的图象可由函数sin y x x =的图象至少向右平移32π个单位长度得到. 考向3 图象变换与函数性质相结合例6.(2018河南林州10月调研)的图象向右平移(0)m n >个单位长度,所得函数图象关于y 轴对称,则m 的最小值为( )A 【答案】A的图象向右平移(0)m n >个单位长度,所得函数的解析式为:,又函数图象关于y 轴对称,则1, 0m > ,当1k =-时,A .例7.2018单位长度,则平移后图像的一个对称中心可以为( )A 【答案】A【点睛】把sin y x =的图象沿x 轴向左(或向右)平移ϕ(0ϕ>)个单位得到函数()sin y x ϕ=+(或()sin y x ϕ=-)的图象,简称“左加右减”;从解析式角度说,把函数sin y x =的图象沿x 轴向左平移ϕ(0ϕ>个单位,反映在解析式上就是把原解析式中的x 替换为x φ+.例8.(2018后,所得的图象关于y 轴对称,则ω的最小正值为( )A .1B .2C .3D .4 【答案】B【解析】因函数的图象向右平移个单位后可得,由题设1,故Z ,即()31k k Z ω=--∈,故()min 3112ω=-⨯--=,应选答案B .例9.将函数()sin 2f x x =的图象向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图象,若对满足12()()2f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( )A .512π B .3π C .4π D .6π【答案】D .【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以)sin()(ϕω+=x A x f 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等. 考向4 “五点法”、图象变换与函数性质相结合例10.(2018河北石家庄)已知函数()2sin y x ωϕ=+ (0,0)ωϕπ><<的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π【答案】B【解析】根据函数()()20,0y s i n x ωϕωϕπ=+><<的部分图象,可得125,2221212T πππωω=⋅=+∴=,再根据五点法作图可得2122ππϕ⋅+=, 0,3πϕπϕ<<∴=,故选C .【方法点睛】本题主要通过已知三角函数的图像求解析式考查三角函数的性质,属于中档题.利用利用图像先求出周期,用周期公式求出ω,利用特殊点求出ϕ,正确求ωϕ,使解题的关键.求解析时求参数ϕ是确定函数解析式的关键,由特殊点求ϕ时,一定要分清特殊点是“五点法”的第几个点, 用五点法求ϕ值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与x 轴的交点) 时0x ωϕ+=;“第二点”(即图象的“峰点”) 时2x πωϕ+=;“第三点”(即图象下降时与x 轴的交点) 时x ωϕπ+=;“第四点”(即图象的“谷点”) 时32x πωϕ+=;“第五点”时2x ωϕπ+=. 例11.某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:...........()x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图 象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 【答案】(Ⅰ)π()5sin(2)6f x x =-;(Ⅱ)π6.(Ⅱ)由(Ⅰ)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-.∵sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z .由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z .由0θ>可知,当1k =时,θ取得最小值π6.【考点定位】“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象,三角函数的平移变换,三角函数的性质.【名师点睛】“五点法”描图:(1)x y sin =的图象在[0,2π]上的五个关键点的坐标为:(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0). (2)x y cos =的图象在[0,2π]上的五个关键点的坐标为:(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1). 考向5 三角恒等变换、图象平移与函数性质相结合例12.(2018(0)t t >个单位,所得图象对应的函数为奇函数,则t 的最小值为( )A 【答案】D例13.(2016高考山东文数)设2()π)sin (sin cos )f x x x x x =--- . (I )求()f x 得单调递增区间;(II )把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值. 【答案】(I )()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈)(∏ 解析:(I )由()()()2sin sin cos f x x x x x π=---()212sin cos x x x =--)1cos 2sin 21x x =-+-sin 21x x =2sin 21,3x π⎛⎫=-+ ⎪⎝⎭由()222,232k x k k Z πππππ-≤-≤+∈得()5,1212k x k k Z ππππ-≤≤+∈ ∴()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(∏)由(I )知()f x 2sin 21,3x π⎛⎫=-⎪⎝⎭把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin 13x π⎛⎫=-+ ⎪⎝⎭的图象,再把得到的图象向左平移3π个单位,得到y 2sin 1x =的图象,即()2sin 1.g x x =∴2sin 166g ππ⎛⎫=+=⎪⎝⎭考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换. 【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.考向6 图象变换与诱导公式相结合例14.(2016云南一测)为得到cos 26y x π⎛⎫=- ⎪⎝⎭的图象,只需要将sin 2y x =的图象( )A .向右平移3π个单位B .向右平移6π个单位C .向左平移3π个单位 D .向左平移6π个单位 【答案】D考向7 三角函数图象与向量相结合例15.(2017江西南昌一模)已知函数()()sin f x A x ωϕ=+(的周期为π,若()1fα=,则 ) A .-2 B .-1 C .1 D .2 【答案】B 【解析】由题意得选B .例16.(2016江西赣中南五校联联)如图所示,点P 是函数2sin()(,0)y x x R ωϕω=+∈>图象的最高点,M 、N 是图象与x 轴的交点,若0PM PN ⋅=,则ω等于( )A . 8B .8π C . 4π D .2π【答案】B例17.(2018陕西西安模拟),且2AB BC π⋅=-(1)求函数()f x 的单调递增区间; (2)若将()f x 的图像向左平移个单位长度,得到函数()g x 的图像,求函数()g x【答案】(1)(2,最小值2-.【解析】试题分析:(1 11,2,,AB T BC T ⎛⎫⎛== ⎪ 则2T AB BC ⋅=-,所以T π=.故2ω=,利用正弦函数的单调性解不等式,从而可得结果;(2)根据平移变换可得, 0,2x π⎡∈⎢⎣(2)由题意将()f x 的图像向左平移个单位长度,得到函数()g x 的图像,0,2x π⎡∈⎢⎣,∴当时,22x π⎛⎫+⎪ ()g x 取得最大值 ()g x 取得最小值2-.。

2018年高考数学分类汇编三角函数及答案详解

2018年高考数学分类汇编三角函数及答案详解

2018年高考数学分类汇编三角函数1、(2018年高考全国卷1理科)16.(5分)已知函数f(x)=2sinx+sin2x,则f (x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sinx+sin2x的一个周期,故只需考虑f(x)=2sinx+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cosx+2cos2x=2cosx+2(2cos2x﹣1)=2(2cosx﹣1)(cosx+1),令f′(x)=0可解得cosx=或cosx=﹣1,可得此时x=,π或;∴y=2sinx+sin2x的最小值只能在点x=,π或和边界点x=0中取到,计算可得f()=,f(π)=0,f()=﹣,f(0)=0,∴函数的最小值为﹣,故答案为:.2、(2018年高考全国卷1理科)17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.3、(2018年高考全国卷1文科)8.(5分)已知函数f(x)=2cos2x﹣sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为4【解答】解:函数f(x)=2cos2x﹣sin2x+2,=2cos2x﹣sin2x+2sin2x+2cos2x,=4cos2x+sin2x,=3cos2x+1,=,=,故函数的最小正周期为π,函数的最大值为,故选:B.4、(2018年高考全国卷1文科)11.(5分)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=()A.B.C.D.1【解答】解:∵角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,∴cos2α=2cos2α﹣1=,解得cos2α=,∴|cosα|=,∴|sinα|==,|tanα|=||=|a﹣b|===.故选:B.5、(2018年高考全国卷1文科)16.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知bsinC+csinB=4asinBsinC,b2+c2﹣a2=8,则△ABC的面积为.【解答】解:△ABC的内角A,B,C的对边分别为a,b,c.bsinC+csinB=4asinBsinC,利用正弦定理可得sinBsinC+sinCsinB=4sinAsinBsinC,由于sinBsinC≠0,所以sinA=,则A=由于b2+c2﹣a2=8,则:,①当A=时,,解得:bc=,所以:.②当A=时,,解得:bc=﹣(不合题意),舍去.故:.故答案为:.6、(2018年高考全国卷2理科)6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.7、(2018年高考全国卷2理科)10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故选:A.8、(2018年高考全国卷2理科)15.(5分)已知sinα+cosβ=l,cosα+sinβ=0,则sin(α+β)=.【解答】解:sinα+cosβ=l,两边平方可得:sin2α+2sinαcosβ+cos2β=1,①,cosα+sinβ=0,两边平方可得:cos2α+2cosαsinβ+sin2β=0,②,由①+②得:2+2(sinαcosβ+cosαsinβ)=1,即2+2sin(α+β)=1,∴2sin(α+β)=﹣1.∴sin(α+β)=.故答案为:.9、(2018年高考全国卷2文科)7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.10、(2018年高考全国卷2文科)10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=﹣sin(x﹣),由﹣+2kπ≤x﹣≤+2kπ,k∈Z,得﹣+2kπ≤x≤+2kπ,k∈Z,取k=0,得f(x)的一个减区间为[﹣,],由f(x)在[0,a]是减函数,得a≤.则a的最大值是.故选:C11、(2018年高考全国卷2文科)15.(5分)已知tan(α﹣)=,则tanα=.【解答】解:∵tan(α﹣)=,∴tan(α)=,则tanα=tan(α+)=====,故答案为:.12、(2018年高考全国卷3理科)4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣【解答】解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故选:B.13、(2018年高考全国卷3理科)9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.14、(2018年高考全国卷3理科)15.(5分)函数f(x)=cos(3x+)在[0,π]的零点个数为3.【解答】解:∵f(x)=cos(3x+)=0,∴3x+=+kπ,k∈Z,∴x=+kπ,k∈Z,当k=0时,x=,当k=1时,x=π,当k=2时,x=π,当k=3时,x=π,∵x∈[0,π],∴x=,或x=π,或x=π,故零点的个数为3,故答案为:315、(2018年高考全国卷3文科)4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣【解答】解:∵sinα=,∴cos2α=1﹣2sin2α=1﹣2×=.故选:B.16、(2018年高考全国卷3文科)6.(5分)函数f(x)=的最小正周期为()A.B.C.πD.2π【解答】解:函数f(x)===sin2x的最小正周期为=π,故选:C.17、(2018年高考全国卷3文科)11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,∴S==,△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.18、(2018年高考北京卷理科)15.(13分)在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.19、(2018年高考北京卷理科)7.(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.4【解答】解:由题意d==,tanα=﹣,∴当sin(θ+α)=﹣1时,d max=1+≤3.∴d的最大值为3.故选:C.20、(2018年高考北京卷理科)11.(5分)设函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,则ω的最小值为.【解答】解:函数f(x)=cos(ωx﹣)(ω>0),若f(x)≤f()对任意的实数x都成立,可得:,k∈Z,解得ω=,k∈Z,ω>0则ω的最小值为:.故答案为:.21、(2018年高考北京卷文科)7.(5分)在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP 为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C.D.【解答】解:A.在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B.在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C.在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D.在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.故选:C.22、(2018年高考北京卷文科)14.(5分)若△ABC的面积为(a2+c2﹣b2),且∠C为钝角,则∠B=;的取值范围是(2,+∞).【解答】解:△ABC的面积为(a2+c2﹣b2),可得:(a2+c2﹣b2)=acsinB,,可得:tanB=,所以B=,∠C为钝角,A∈(0,),cotA∈(,+∞).===cosB+cotAsinB=cotA∈(2,+∞).故答案为:;(2,+∞).23、(2018年高考北京卷文科)16.(13分)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.24、(2018年高考天津卷理科)6.(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.25、(2018年高考天津卷理科)15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.26、(2018年高考天津卷文科)6.(5分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[]上单调递增B.在区间[﹣,0]上单调递减C.在区间[]上单调递增D.在区间[,π]上单调递减【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数解析式为y=sin[2(x﹣)+]=sin2x.当x∈[]时,2x∈[,],函数单调递增;当x∈[,]时,2x∈[,π],函数单调递减;当x∈[﹣,0]时,2x∈[﹣,0],函数单调递增;当x∈[,π]时,2x∈[π,2π],函数先减后增.故选:A.27、(2018年高考天津卷文科)16.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.24、(2018年高考浙江卷)18.(14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.。

2018年高考试题分类汇编(三角函数)

2018年高考试题分类汇编(三角函数)

2018年高考试题分类汇编(三角函数) 2018年高考试题分类汇编(三角函数)考点1:任意角的三角函数考法1:三角函数的定义已知角$\alpha$的顶点与坐标原点重合,始边与$x$轴的非负半轴重合,终边上两点$A(1,a)$,$B(2,b)$,且$\cos2\alpha=\frac{1}{3}$,则$a-b=5\sqrt{3}$。

考法2:三角函数的图像与性质1.(2018·全国卷Ⅲ理)函数$f(x)=\cos(3x+\frac{\pi}{6})$在$[0,\pi]$的零点的个数为6.2.(2018·江苏)已知函数$y=\sin(2x+\varphi)$,($-\frac{\pi}{2}<\varphi<\frac{\pi}{2}$)关于直线$x=\frac{\pi}{4}$对称,则$\varphi$的值是$-\frac{\pi}{4}$。

3.(2018·天津文科)将函数$y=\sin(2x+\frac{\pi}{3})$的图象向右平移$\frac{1}{2}$个单位长度,所得图象关于直线$x=\frac{\pi}{3}$对称的图象对应的函数为$y=\sin(2x+\frac{5\pi}{6})$。

4.(2018·天津理科)将函数$y=\sin(2x+\frac{\pi}{3})$的图象向右平移$\frac{1}{2}$个单位长度,所得图象对应的函数在区间$[\frac{3\pi}{4},2\pi]$上单调递减。

5.(2018·北京理科)设函数$f(x)=\cos(\omega x-\frac{\pi}{4})$,若$f(x)\leq f(\frac{\pi}{4})$对任意的实数$x$都成立,则$\omega$的最小值为$\frac{2}{\pi}$。

6.(2018·全国卷Ⅱ文科)若函数$f(x)=\cos x-\sin x$在$[0,a]$是减函数,则$a$的最大值为$\frac{3\pi}{4}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018三角函数、向量专题(文)
1.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .31
44
AB AC - B .
13
44
AB AC - C .
3144AB AC +
D .13
44AB AC +
2.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( )
A .4
B .3
C .2
D .0
3.在ABC △
中,cos 2C =1BC =,5AC =,则AB =( )
A
.B
C
D
.4.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( ) A .
π4
B .
π2
C .
3π4
D .π
5.若1
sin 3
α=,则cos 2α=( ) A .
89
B .7
9
C .79
-
D .89-
6.已知a ∈R ,则“1a >”是“
1
1a
<”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件
7.已知13313
711
log ,(),log 245a b c ===,则,,a b c 的大小关系为( )
(A )a b c >> (B )b a c >> (C )c b a >>
(D )c a b >>
8.将函数sin(2)5y x π=+
的图象向右平移10
π
个单位长度,所得图象对应的函数( ) A.在区间[,]44ππ- 上单调递增 B.在区间[,0]4π
上单调递减
C.在区间[,]42ππ 上单调递增
D.在区间[,]2
π
π 上单调递减
9.已知函数()2
2
2cos sin 2f x x x =-+,则( )
A .()f x 的最小正周期为π,最大值为3
B .()f x 的最小正周期为π,最大值为4
C .()f x 的最小正周期为2π,最大值为3
D .()f x 的最小正周期为2π,最大值为4
10.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,
()2,B b ,且2
cos 23
α=
,则a b -=( )
A .15
B C D .1
11.在平面坐标系中, 是圆221x y +=上的四段弧(如图),点P 在其中一段
上,角α以O 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是( )
A.
B. C. D. 12.在如图的平面图形中,已知 1.2,120OM ON MON ==∠=,2,2,
BM MA CN NA ==则·
BC OM 的值为( )
A.15-
B.9-
C.6-
D.0
13.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且
2EF =,则AE BF ∙的最小值为_________.
14.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22
221x y +=,12121
2
x x y y +=
,则
的最大值为_________.
15.
在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.
16.已知a ,b ∈R ,且a –3b +6=0,则2a +1
8b
的最小值为__________. 17.已知函数)2
2
)(2sin(π
ϕπ
ϕ<
<-+=x y 的图象关于直线3
π
=
x
对称,则ϕ的值是______
18.在平面直角坐标系xOy 中,A 为直线l :x y 2=上在第一象限内的点,B (5,0),以
AB 为直径的圆C 与l 交于另一点D ,若0=⋅,则点A 的横坐标为_______ 19.在ABC ∆中角A ,B ,C 所对的边分别为a ,b ,c ,︒=∠120ABC ,ABC ∠的平分线
交AC 与点D ,且BD =1,则4a +c 的最小值为_______ 20.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a
b =2,A =60°,则sin B =___________,
c =___________.
21.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.
22.已知51tan 45πα⎛
⎫-= ⎪⎝
⎭,则tan α=__________.
23.若ABC △的面积为
222
)
4
a c
b +-,且∠C 为钝角,则∠B =_________;
c a 的取值范围是_________.
24.已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若()f x 在区间[,]3m π-上的最大值为3
2
,求m 的最小值.
25.在△ABC 中,内角A ,B ,C 所对的边分别为a,b,c .已知b sin A =a cos(B –π6
). (Ⅰ)求教B 的大小;
(Ⅱ)设a =2,c =3,求b 和sin(2A –B )的值.
26.已知βα,为锐角,34tan =
α,5
5)cos(-=+βα, (1)求α2cos 的值;(2)求)tan(βα-的值.
27.设常数a ∈R ,函数2
()sin 22cos f x a x x =+。

(1)若()f x 为偶函数,求a 的值;
(2)若()14
f π
=
,求方程()1f x =[,]ππ-上的解。

28.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ().
(Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=,求cos β的值.
29.某农场有一块农田,如图所示,宽、它的边界由圆O 的一段弧MPN(P 为圆弧的中点)
和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米,先规划在此 农田上修建两个温室大棚,大棚Ⅰ内的地形为矩形ABCD ,大棚Ⅱ内的地块形状为
CDP ∆,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP ∆的面积,并确定θsin 的取值范围;
(2)若大棚Ⅰ内种值甲种蔬菜,大棚Ⅱ内种值乙种蔬菜,甲、乙两种蔬菜的单位两种 年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜折总产值最大.
34
55
-,-5
13。

相关文档
最新文档