第12讲资本资产定价模型

合集下载

投资学中的资本资产定价模型

投资学中的资本资产定价模型

投资学中的资本资产定价模型资本资产定价模型(Capital Asset Pricing Model,CAPM)是投资学中的一种重要理论模型,用于估计某项资产的预期回报率。

它在投资决策、资产评估和风险管理等领域扮演着重要角色。

本文将对CAPM的基本概念、公式推导和应用进行阐述。

一、CAPM的基本概念资本资产定价模型是在一定假设条件下,以市场组合为基准,通过测量资产的风险和预期回报率之间的关系来解释资本市场的定价现象。

CAPM的核心思想是,投资者对于资产的风险厌恶程度决定了他们对于收益与风险的权衡。

CAPM的基本假设包括:1. 完全市场假设:假设市场上没有交易成本,所有的投资者都能以相同的无风险利率借贷。

2. 投资者效用最大化假设:投资者在进行投资决策时,总是试图最大化自己的效用。

3. 投资者无限分散化假设:认为投资者将其投资资金充分分散到各种不同的证券上,消除了个别资产的特异性风险。

二、CAPM的公式推导CAPM的核心公式如下:E(Ri) = Rf + βi(E(Rm) - Rf)其中,E(Ri)表示资产i的预期回报率,Rf表示无风险利率,βi表示资产i相对于市场组合的β系数,E(Rm)表示市场组合的预期回报率。

公式的含义是,资产i的预期回报率等于无风险利率加上市场风险溢价与资产i的β系数的乘积。

通过公式可以看出,β系数是CAPM模型的重要指标之一。

β系数衡量了资产相对于市场组合的系统性风险。

β系数大于1意味着资产具有高于市场平均水平的风险,而小于1则意味着资产具有低于市场平均水平的风险。

三、CAPM的应用CAPM在实际应用中有多种用途。

以下是其中的几个方面:1. 资产估值:CAPM可以用于估计资产的合理价值。

通过计算资产的预期回报率,可以与市场价格进行比较,判断该资产是否被低估或高估。

2. 投资组合管理:CAPM可以帮助投资者构建有效的投资组合。

通过选择具有不同β系数的资产,可以实现投资组合的风险与回报的平衡。

资本资产定价模型PPT课件

资本资产定价模型PPT课件

资产定价的随机过程
随机过程的基本概念
随机过程是描述一系列随机事件的数学模型,其中每个事件的发生都具有不确定性。在资产定价的上下文中,随 机过程通常用于描述资产价格的变动。
资本资产定价模型的随机过程
资本资产定价模型假设资产价格的变动遵循随机过程,并且这种变动与资产的预期回报和风险有关。通过建立适 当的随机过程模型,可以进一步研究资产价格的动态行为和风险特征。
发展历程
起源
资本资产定价模型起源于20世纪60年代,由经济学家威廉·夏普、 约翰·林特纳和简·莫辛共同发展。
发展
在随后的几十年中,CAPM经历了多次修订和完善,以适应金融市 场的变化。
应用
资本资产定价模型被广泛应用于投资组合管理、风险评估和资本预算 等领域。
发展历程
起源
资本资产定价模型起源于20世纪60年代,由经济学家威廉·夏普、 约翰·林特纳和简·莫辛共同发展。
发展
在随后的几十年中,CAPM经历了多次修订和完善,以适应金融市 场的变化。
应用
资本资产定价模型被广泛应用于投资组合管本资产定价模型用于确定投资 组合的风险和预期回报,帮助投 资者在风险和回报之间做出权衡。
风险评估
通过CAPM,投资者可以评估特 定资产或投资组合的风险,并与 其他资产或基准进行比较。
主要发现
是一种用于评估风险和预期回报之间关系的金融模型,主要用于投资组合管理 和风险评估。
CAPM的核心思想
资本的预期收益率由两部分组成,一部分是无风险利率,另一部分是风险溢价, 即风险超过无风险资产的部分。
目的和目标
目的
通过理解CAPM,投资者可以更准确 地评估投资的风险和预期回报,从而 做出更明智的投资决策。

资本资产定价模型概述(ppt42张)

资本资产定价模型概述(ppt42张)





6、可以在无风险折现率R的水平下无限制地借 入或贷出资金; 7、所有投资者对证券收益率概率分布的看法一 致,因此市场上的效率边界只有一条; 8、所有投资者具有相同的投资期限,而且只有 一期; 9、所有的证券投资可以无限制的细分,在任何 一个投资组合里可以含有非整数股份;


10、税收和交易费用可以忽略不计; 11、市场信息通畅且无成本; 12、不考虑通货膨胀,且折现率不变; 13、投资者具有相同预期,即他们对预期收益率、 标准差和证券之间的协方差具有相同的预期值。 上述假设表明:第一,投资者是理性的,而且严格 按照马科威茨模型的规则进行多样化的投资,并将 从有效边界的某处选择投资组合;第二,资本市场 是完全有效的市场,没有任何磨擦阻碍投资。

又由(7.3)
dv 1 dE ( r E ( r )E ( r c) M j)

于是
d d d v c c d Er ( c) d vd Er ( c)
2 2 [ ( 1 v ) ( 1 2)c v o v ( r , r ) v ]/ j j m M c Er ( M) Er ( j)

假定2:针对一个时期,所有投资者的预期 都是一致的。
这个假设是说,所有投资者在一个共同的时期内 计划他们的投资,他们对证券收益率的概率分布 的考虑是一致的,这样,他们将有着一致的证券预 期收益率﹑证券预期收益率方差和证券间的协方 差。同时,在证券组合中,选择了同样的证券和同 样的证券数目。 这个假设与下面的关于信息在整个资本市场中畅 行无阻的假设是一致的。


2 c o v ( r , r ) d j M M c d Er ( c)v Er ( M) Er ( j) ) c( 1

资本资产定价模型

资本资产定价模型

M
线变成了AM射线。
A
N
CML B
P
• M点是包括了所有证券的市场投资组合

AM是资本市场线:
RP
Rf
Rm R f
m
p
– 资本市场线描述的是市场投资组合与无风险资产所构
成的投资组合的收益率与风险之间的关系。
第五节、资本资产定价模型
• 威廉夏普对资本市场线进行了扩展,发现 个别证券或者证券组合的收益率和风险可
• 可行集:由n种证券所 RP
形成的所有可能的组合 的集合,如图ANBH所
N
示。
A
B H
P
• 有效集:满足两个条件的证券组合集合:
– 风险相同条件下,选择收益最高的组合
– 收益相同条件下,选择风险最低的组合
• 有效集的形状:NB曲线
第四节、无风险借贷与资本市场线
• 无风险资产:银行存贷款、国债、货币基金等。
2 A
xB2
2 B
2xA xB AB A B

多种证券组合:
证券i(Ri

, 2
i
xi

n
RP xi Ri i 1
nn
2 P
xi x j ih
i1 j1
风险的分散

多种证券组合的风险为:
2 P
n
n
xi x j ih
i1 j1
组合的风险
非系统性风险 系统性风险
证券的数量n
第三节、有效集与最优投资组合
CAPM模型的评价
• 资本资产定价模型在马科维茨的证券组合理论的基础上, 对金融资产和投资组合的风险衡量进行了更深入的研究, 并提出了单个金融资产预期收益率与其系统性风险的均衡 关系,从而导出了各种资产根据其系统性风险定价的资本 资产定价模型。应该说,夏普的研究是具有建设性的,他 把马科维茨的研究向前推进了一大步。

投资学第章资本资产定价模型剖析ppt课件

投资学第章资本资产定价模型剖析ppt课件
比较CAPM:E(ri ) rf i[E(rM ) rf ]
与指数模型的期望形式:
E(ri ) rf i i[E(rM ) rf ] 可知二者差别在于,CAPM认为所有的i都为0。 市场模型:rf E(ri ) i[rf E(rM )] ei
如果CAPM有效,则市场模型等同于指数模型。
E(Ri ) kE(Ci ) ( L1 L2 L3 )
其中,E(Ci )为期望流动性代价; k为所有资产的调整后的平均持有期
为平均市场流动性的市场风险溢价净值 为系统性市场风险敏感度, L1、 L 2、 L3为流动性 E(RM CM ),CM 表示市场平均流动性溢价。
37
流动性的三要素
25
9.3 CAPM符合实际吗?
CAPM的实用性取决于证券分析。 9.3.1 CAPM能否检验 ▪ 规范方法与实证方法 ▪ 实证检验的两类 错误(数据、统计方法) 9.3.2 实证检验质疑CAPM
26
9.3 CAPM符合实际吗?
9.3.3CAPM的经济性与有效性 ▪ CAPM在公平定价领域的广泛应用 ▪ CAPM被普遍接受的原因 9.3.4 投资行业与CAPM的有效性 投资公司更趋向于支持CAPM
39
27
9.4 计量经济学和期望收益-贝塔关系
▪ 计量经济方法可能是引起CAPM被错误拒 绝的原因
▪ 相关改进
➢ 用广义最小二乘法处理残差相关性 ➢ 时变方差模型ARCH
28
9.5 CAPM的拓展形式
两种思路: ▪ 假定的放宽 ▪ 投资者心理特征的应用
29
9.5.1 零模型
有效前沿的三大性质:
▪ 两种有效前沿上的资产组合组成的任意资产组合仍在有 效前沿上
23
9.2.2 指数模型和已实现收益

资本资产定价模型

资本资产定价模型

资本资产定价模型在金融领域,资本资产定价模型(Capital Asset Pricing Model,简称 CAPM)是一个具有重要地位的理论框架。

它为投资者理解资产风险与预期收益之间的关系提供了关键的指导。

要明白资本资产定价模型,首先得清楚什么是资产的风险和收益。

想象一下,你把钱投资到股票、债券或者其他金融资产上,你期望能从中获得回报,这就是收益。

但同时,投资也伴随着不确定性,可能赚得盆满钵满,也可能亏得血本无归,这种不确定性就是风险。

CAPM 认为,资产的预期收益率主要取决于两个因素:无风险利率和资产的系统性风险。

无风险利率就像是一个基准,通常可以用国债的收益率来代表。

因为国债被认为是几乎没有违约风险的。

那什么是系统性风险呢?简单来说,就是整个市场都面临的风险,比如经济衰退、通货膨胀、政策调整等。

这些因素会对所有的资产产生影响,不是单个投资者或者企业能够控制的。

在 CAPM 中,用贝塔系数(β)来衡量资产的系统性风险。

β值大于 1 表示该资产的风险高于市场平均水平,预期收益也会相应较高;β值小于 1 则表示风险低于市场平均水平,预期收益也较低;β值等于 1 意味着资产的风险与市场平均水平相当。

举个例子,假如市场的预期收益率是 10%,无风险利率是 3%,某只股票的β值是 15。

那么根据 CAPM 公式,这只股票的预期收益率就应该是 3% + 15×(10% 3%)= 135%。

资本资产定价模型的意义非常重大。

对于投资者来说,它帮助他们评估不同资产的合理价格和预期收益,从而做出更明智的投资决策。

如果一只股票的实际价格低于根据 CAPM 计算出的合理价格,那么投资者可能会认为这是一个买入的好机会;反之,如果实际价格高于合理价格,可能就需要考虑卖出了。

对于企业来说,CAPM 也有很大的作用。

企业在进行项目投资决策时,可以利用 CAPM 来计算项目的必要收益率,从而判断项目是否值得投资。

然而,资本资产定价模型也并非完美无缺。

资本资产定价模型

资本资产定价模型

资本资产定价模型
在金融领域,资本资产定价模型(Capital Asset Pricing Model,简称CAPM)是一种被广泛应用的理论模型,用于衡量资产的预期收益率。

资本资产定价模型基于市场有效性假设,即市场上的所有投资者都具有相同的信息和投资目标,在没有风险的市场中将做出相似的投资选择。

CAPM模型通过分析资产的系统性风险和风险溢价来确定资产的预期回报率。

资本资产定价模型的基本公式为:
\[ E(R_i) = R_f + \beta_i(E(R_m) - R_f) \]
其中,\( E(R_i) \) 表示资产的预期回报率,\( R_f \) 表示无风险利率,
\( \beta_i \) 表示资产的贝塔系数,\( E(R_m) \) 表示市场组合的预期回报率。

CAPM模型的核心概念是风险溢价,即投资者对承担风险所要求的回报。

贝塔系数代表了资产相对于市场组合的风险敞口,当贝塔系数大于1时,表示资产的风险大于市场平均水平;当贝塔系数小于1时,表示资产的风险低于市场平均水平。

资本资产定价模型的应用范围涵盖了各种金融资产,包括股票、债券、衍生品等。

投资者可以利用CAPM模型来评估资产的风险和回报之间的关系,从而制定有效的投资策略。

然而,CAPM模型也存在一些局限性,例如假设过于理想化、参数估计误差等问题,限制了其在实际投资中的应用。

总的来说,资本资产定价模型作为金融领域中重要的理论框架,为投资者提供了一种有效的资产定价方法。

通过对资产的风险和回报进行定量分析,CAPM模型帮助投资者更准确地评估资产的价值,优化投资组合,实现资产配置的最优化。

第12讲 C-CAPM及其讨论 (《金融经济学》PPT课件)

第12讲  C-CAPM及其讨论 (《金融经济学》PPT课件)

费平滑意愿) 13
12.5 对资产定价逻辑的再思考



经 济
关键问题

二 五
投资者为什么会买卖资产?

》 配 套
市场上为什么会存在对资产的交易?

件 误导的逻辑
对同一种资产有不同的观点不同才会形成交易——有买有卖才有交易
正确的观点挣钱,错误的观点亏钱
资产交易是个零和博弈
正确的逻辑
对同一种资产的不同观点可能都是对的——投资者的消费状况决定了
消费品不可储存假设与储蓄
微观层面的消费者总是可以储蓄的——签订金融契约把自己的消费品借给别人, 换取别人未来消费品的偿付
利率的变化保证了微观层面消费者(基于利率的最优)行为与宏观层面的物理 约束匹配
尽管在技术上没有储存消费品的可能,但可以用储蓄动机来分析利率的变化
8
12.3 风险溢价的决定
他对资产的评价
14
无风险利率表达式的推导



经 济

从无风险利率开始对资产期E[r%j望] r回f 报E[r%j率] r(f 资产价格)的研究



》 配
定义消费的增长率为
g% c%1 1
套 课
c0

定义͞g≡E[g͂]为消费增长率的期望值
var(g%) E[g% g ]2 E[g%2 ] 2gE[g%] g 2 E[g%2 ] g 2 E[g%2 ]
u(c0 )
u(c%1), r%j
资产的风险溢价由系统风险而非个体风险决定
完备市场中消费者只承担总消费(总禀赋)的波动,其他波动可被分散掉 总消费波动就是系统性风险,超出其波动的波动是个体风险 资产回报中那些与总消费波动相关的部分才是需要承担的“真正风险”,才会

资本资产定价模型(CAPM模型)ppt课件

资本资产定价模型(CAPM模型)ppt课件
75%投资于福特汽车公司股票。假定两支股票的值
分别为1.2和1.6,投资组合的风险溢价为多少?
解: P 0.251.2 0.751.6 1.5
E(rP ) rf 1.5[E(rM ) rf ] 1.58% 12%
ppt课件
18
证券特征线(Characteristic Line)
证券特征线方程:E(ri ) rf i (E(rm ) rf )
ppt课件
10
资本市场线与证券市场线的内在关系
描述对象不同
CML描述有效组合的收益与风险之间的关系
SML描述的是单个证券或某个证券组合的收益与风险 之间的关系,既包括有效组合有包括非有效组合
风险指标不同
CML中采用标准差作为风险度量指标,是有效组合收 益率的标准差
SML中采用β系数作为风险度量指标,是单个证券或 某个证券组合的β系数
ppt课件
26
我们可以对 rp j 给出另一种解释。由于拥有股票j的风险
为 jm ,即 j乘上市场风险 m是j所带来的风险,而每
单位风险的价格为:
P rm rf m
所以,承担风险资产j的所需求的风险溢价应为:
j
mP
j
m
rm rf
m
j
rm rf
rpj
ppt课件
27
证券市场均衡条件 如证券市场如有N只股票,对于i,j 1,2, , N,在证券
E(zi ) r (z) cov(zi , z)
(1)
ppt课件
24
均方差资产定价原理
其中, (z) 是对投资中总的风险的度量,也就是对不 确定环境中某种状态的概率。 另一方面,由2可知,在市场均衡的条件下,资产 组合的收益E(Z)减去无风险利率r后所得的差,也 必须与证券收益的方差成比例,即有:

资本资产定价模型

资本资产定价模型

资本资产定价模型资本资产定价模型(Capital Asset Pricing Model, CAPM)是一种经济金融理论模型,它描述了投资者如何在市场上进行投资决策,并确定合理的资产定价。

CAPM的基本假设是市场是完全有效的,投资者都是理性的,并且希望在市场上获得最高的收益。

CAPM模型认为,投资者在做出投资决策时,会考虑两个方面的风险:系统性风险和非系统性风险。

系统性风险,也被称为β风险,是指与整个市场相关的风险。

它是指投资者无法通过分散投资来摆脱的风险。

β系数是衡量资产价格相对于市场整体波动的指标。

如果β系数大于1,表示该资产的价格波动比市场整体要大;如果β系数小于1,表示该资产的价格波动比市场整体要小。

非系统性风险是投资者可以通过分散投资来降低的风险。

它是指与特定资产相关的风险,例如公司破产、行业变化等。

在CAPM模型中,非系统性风险被视为可以通过投资组合的方式降低的。

CAPM模型的数学形式可以表示为:E(Ri) = Rf + βi(E(Rm) - Rf),其中E(Ri)表示资产i的预期收益率,Rf表示无风险利率,βi表示资产i的β系数,E(Rm)表示市场整体的预期收益率。

根据CAPM模型,投资者应该要求高β的资产具有较高的预期收益率,因为它们承担了更大的系统性风险。

相反,低β的资产应该具有较低的预期收益率。

CAPM模型在金融领域应用广泛。

它可以用于风险管理、资产组合管理和投资决策等方面。

然而,CAPM模型也存在一些局限性,例如它忽视了市场中的交易成本和税收等因素,以及投资者可能存在非理性行为。

总之,CAPM模型是一种有用的理论模型,可以帮助投资者确定合理的资产定价。

然而,在实际应用中,投资者需要考虑其他因素,并综合运用多种模型和方法来进行投资决策。

继续写相关内容:CAPM模型在资产定价中的应用提供了一种理论框架,用于确定投资组合中各种金融资产的预期收益率。

根据CAPM模型,投资者希望获取与市场整体风险相关的收益回报。

《资本资产定价模型》PPT课件

《资本资产定价模型》PPT课件
B 7 0 0 ( 1 2 0 0 7 0 0 ) 0 .9 1 1 .5 0 0 .
此例告诉我们,确实可用CAPM求单个资产的期 望收益率。除此之外,还可以用来发现股票的定 价是否合理。
这是因为,由CAPM可知,
r r ( )
VF
MFV
从而有
r
V
F
M
rF
V
说明当市场均衡时,所有股票每承担一单位风险 ,市场给予的期望回报都应该相等。如果不等, 那么意味着市场处于不均衡状态,存在某些股票 定价过高或过低的现象。
证券的特征线是围绕它的市场线上下波动 的,一种证券的特征线斜率等于此证券的 系数
,而此 也给出了该证券对市场投资组合M的
敏感度。一般而言,以下结论成立。
〔1〕进攻型股票( 1 ) 该股票 特点:当市场
投资组合M的回报率上升或下降时,这种股票的 回报率上升或下降得比M要快。
〔2〕防御型股票( 1 ) 该股票 特 点:当市场
在介绍了完善资本市场之后,我 们再介绍市场均衡和市场投资组合的概 念。
市场均衡:在完善的资本市场上,当证券的 价风格整时,对证券的需求和供给也相 应变动。如果随着证券价格的调整,对 证券的需求和供给相应调整为:每一种
证 无e 券风M 需险求证量券(正 ,M,好 存M等 贷). 于 款其 数供 目给 正量 好,相而等且的对状
6.1500,
S
r I
F
1000600 0.8
500
I
说明此时市场处于不均衡状态,假设S公司的股价被认
为是合理的,那么I公司的股价定价过高。这是因为:I公
司承担一单位风险得到的补偿不如S公司承担一单位风险
得到的补偿大。究其原因,是对0.8 I

《资本资产定价模型》课件

《资本资产定价模型》课件
推荐相关书籍和资料供进一步学 习。
答疑时间
提供学习者与讲师沟通和解答疑 问的机会。
了解股票市场的基本概念和特点。
2
风险与收益
认识股票投资的风险与回报。
3
定价方法
介绍股票定价的基本方法和策略。
债券定价
1
债券市场
理解债券市场的基本概念和运作机制。
2
收益与价格
掌握债券收益率与价格之间的关系。
3
定价方法
介绍债券定价的基本方法和计算公式。
风险和回报
1 投资风险
2 回报与风险
了解不同类型的投资风险及其特征。
理解投资回报与风险之间的关系和权衡。
3 风险管理
掌握投资风险管理的方法和策略。
资本资产定价模型
基本概念
理解资本资产定价模型的基本 原理和假设。
计算方法资产定价模型应用于实 际投资决策中。
总结
课程总结
回顾资本资产定价模型的重要概 念和应用。
建议阅读
《资本资产定价模型》 PPT课件
本课程将介绍资本资产定价模型,了解股票、债券、风险和回报之间的关系, 掌握其基本原理和应用。
课程介绍
关于本课程
了解资本资产定价模型的基 本原理和应用。
股票与债券
认识股票和债券市场,了解 风险与收益。
学习目标
掌握资本资产定价模型的相 关概念和计算方法。
股票定价
1
股票市场

资本资产定价模型PPT课件

资本资产定价模型PPT课件

7
+ 假设1:在一期时间模型里,投资者以期望 回报率和标准差作为评价证券组合的标准。
+ 假设2:所有的投资者都是非餍足的,或进 一步,给定风险,偏好高收益胜于低收益。
+ 假设3:所有的投资者都是风险厌恶者。
+ 假设4:每种证券都是无限可分的,即,投 资者可以购买到他想要的一份证券的任何 一部分。
+ 假设5:无税收和交易成本。
2020/1/11
16
+ 工行的当前价格是4.1元,期末的期望价格 是5.0元,其期望回报率为22%。假设工行 现在价格是4.8元而不是4.1元,其期望回报 率变为4%。与其他证券比较起来,工行的 期望回报率相对太小,而风险相对太大,
+ 每一种证券的相对市场价值等于这种证券 的总市场价值除以所有证券的总市场价值。
+ 市场证券组合记为M。
2020/1/11
14
均衡的定义
一个风险资产回报率向量 r r1,, rN T 和
无风险利率 rf (相应地,风险资产价
格向量 p p1,, pN T 和无风险债券价
格 p f )称为均衡回报率(相应地,均衡 价格),如果它们使得对资金的借贷量 相等且所有风险资产的供给等于需求。
2020/1/11
15
+ 当证券市场达到均衡时,最优风险证券组 合P就是市场证券组合M。
+ 在均衡时,每一种证券在市场证券组合的 构成比例都不为零。
– 这一特性是分离定理的结果:每个投资者都选择相同的 风险证券P 。所有的投资者都购买P,但如果P并不包括 某种风险证券,则没有人会购买P中不包含的风险证券, 那该证券的价格回下降,导致其期望回报率上升,而 这又会刺激投资者对这种证券的需求。这种调整一直 持续到证券组合P中包含每一种风险证券。

第12讲_资本资产定价模型

第12讲_资本资产定价模型

【考点七】资本资产定价模型(熟练掌握)☆考点精讲项目要点阐释含义资本资产定价模型反映股票的必要收益率与β值(系统性风险)的线性关系功能资本资产定价模型的主要内容是分析风险收益率的决定因素和度量方法计算公式R=R f+ β×( R m-R f)其中:( R m-R f)称为市场风险溢价,它反映的是市场作为整体对风险的平均“容忍”程度。

对风险的平均容忍程度越低,越厌恶风险,要求的收益率就越高,市场风险溢价就越大;反之,市场风险溢价则越小某项资产的风险收益率是该资产的β系数与市场风险溢价的乘积。

即:该项资产风险收益率=β×( R m-R f)【例题·单选题】有甲、乙两种证券,甲证券的必要收益率为 10%,乙证券要求的风险收益率是甲证券的 1.5倍,如果无风险收益率为 4%,则根据资本资产定价模型,乙证券的必要收益率为()。

( 2019年第Ⅰ套)A.12%B.16%C.15%D.13%【答案】 D【解析】必要收益率 =无风险收益率 +风险收益率,甲证券的必要收益率 =4%+甲证券的风险收益率 =10%,求得:甲证券的风险收益率 =6%。

乙证券的风险收益率=6%× 1.5=9%,乙证券的必要收益率 =4%+9%=13%。

【例题·单选题】关于系统风险和非系统风险,下列表述错误的是()。

( 2019年第Ⅰ 套)A.证券市场的系统风险不能通过证券组合予以消除B.若证券组合中各证券收益率之间负相关,则该组合能分散非系统风险C.在资本资产定价模型中,β系数衡量的是投资组合的非系统风险D. 某公司新产品开发失败的风险属于非系统风险【答案】 C【解析】在资本资产定价模型中,计算风险收益率时只考虑系统风险,不考虑非系统风险,β系数衡量的是系统风险。

所以,选项 C错误。

【例题·判断题】两项资产的收益率具有完全负相关关系时,则该两项资产的组合可以最大限度抵消非系统风险。

资本资产定价模型—搜狗百科

资本资产定价模型—搜狗百科

资本资产定价模型—搜狗百科当资本市场达到均衡时,风险的边际价格是不变的,任何改变市场组合的投资所带来的边际效果是相同的,即增加一个单位的风险所得到的补偿是相同的。

按照β的定义,代入均衡的资本市场条件下,得到资本资产定价模型:E(ri)=rf+βim(E(rm)-rf)资本资产定价模型的说明如下:1.单个证券的期望收益率由两个部分组成,无风险利率以及对所承担风险的补偿-风险溢价。

2.风险溢价的大小取决于β值的大小。

β值越高,表明单个证券的风险越高,所得到的补偿也就越高。

3. β度量的是单个证券的系统风险,非系统性风险没有风险补偿。

其中:均方差分析和资本资产定价模型 E(ri) 是资产i 的预期回报率rf是无风险利率βim是[[Beta系数]],即资产i 的系统性风险E(rm) 是市场m的预期市场回报率E(rm)-rf是市场风险溢价(market risk premium),即预期市场回报率与无风险回报率之差。

解释以资本形式(如股票)存在的资产的价格确定模型。

以股票市场为例。

假定投资者通过基金投资于整个股票市场,于是他的投资完全分散化(diversification)了,他将不承担任何可分散风险。

但是,由于经济与股票市场变化的一致性,投资者将承担不可分散风险。

于是投资者的预期回报高于无风险利率。

资本资产定价模型设股票市场的预期回报率为E(rm),无风险利率为 rf,那么,市场风险溢价就是E(rm) − rf,这是投资者由于承担了与股票市场相关的不可分散风险而预期得到的回报。

考虑某资产(比如某公司股票),设其预期回报率为Ri,由于市场的无风险利率为Rf,故该资产的风险溢价为E(ri)-rf。

资本资产定价模型描述了该资产的风险溢价与市场的风险溢价之间的关系E(ri)-rf =βim (E(rm) − rf) 式中,β系数是常数,称为资产β (asset beta)。

β系数表示了资产的回报率对市场变动的敏感程度(sensitivity),可以衡量该资产的不可分散风险。

投资学资本资产定价模型

投资学资本资产定价模型

市场有效性假设
资本资产定价模型假设市场是有效的,但市场并非 完全有效,因此模型可能无法捕捉到所有影响资产 价格的因素。
单一风险因素
资本资产定价模型通常采用单一的风险因素 (市场风险)来评估资产的风险,忽略了其 他可能影响资产价格的因素。
未来研究展望
探索多因素资本资产定价模型
未来研究可以探索采用多个风险因素来评估资产的风险和回报,以 提高模型的解释力和预测能力。
CAPM模型是现代投资组合理论的重要组成部分,为构 建有效的投资组合提供了理论支持。
它帮助投资者理解不同资产的风险水平,以及在相同风 险水平下不同资产的预期收益。
通过CAPM模型,投资者可以评估不同资产之间的相对 吸引力,以及在投资组合中配置资产的最佳方式。
02
资本资产定价模型的理论基础
有效市场假说
资本资产定价模型与其他模型的比较
01
与套利定价模型(APT)的比较
套利定价模型是一个多因子模型,与资本资产定价模型的单因子模型有
所不同。两者在解释和预测资产收益率方面各有优劣。
02
与随机游走模型的比较
随机游走模型认为资产价格是随机的,与资本资产定价模型的有序性观
点不同。两者在实证检验中各有成功之处。
03
与神经网络模型的比较
神经网络模型是一种非线性模型,在处理复杂数据和预测方面具有一定
的优势。然而,资本资产定价模型在解释性和简洁性方面具有优势。
05
资本资产定价模型的应用与局限
资本资产定价模型在投资决策中的应用
资产评估
资本资产定价模型用于评估资产 的预期回报率,帮助投资者比较 不同资产的潜在收益和风险。
参数估计的稳定性
研究发现,资本资产定价模型的参数估计具有一定的稳定性,有助于 提高模型的预测精度。

资本资产定价模型

资本资产定价模型

风险衡量指标:β系数
单项资产的系统风险,从市场组合的角度看,是对市
场组合变动的反映程度,用β系数度量。 β系数,用以度量一项资产系统风险的指针,是用 来衡量一种证券或一个投资组合相对总体市场的波动性的 一种风险评估工具,是一个标准化的度量单项资产对市场 组合方差贡献的指标;表示的是相对于市场收益率变动、 个别资产收益率同时发生变动的程度。
CAPM模型的应用:资产估值
资产估值
在资产估值方面,资本资产定价模型主要被用来判断 证券是否被市场错误定价。 根据资本资产定价模型,每一证券的期望收益率应等 于无风险利率加上该证券由β系数测定的风险溢价: E(ri)=rF+[E(rM)-rF]βi
CAPM模型的应用:资产估值
一方面,当我们获得市场组合的期望收益率的估计 和该证券的风险 βi的估计时,我们就能计算市场均衡状 态下证券i的期望收益率E(ri);另一方面,市场对证券 在未来所产生的收入流(股息加期末价格)有一个预期值, 这个预期值与证券i的期初市场价格及其预期收益率E(ri) 之间有如下关系:
当β值处于较高位置时,投资者便会因为股份的风险 高,而会相应提升股票的预期回报率。
(二)资本资产定价模型的意义和应用
意义:
CAPM给出了一个非常简单的结论:只有一种原因会使 投资者得到更高回报,那就是投资高风险的股票。不容怀 疑,这个模型在现代金融理论里占据着主导地位。
β系数在投资中的应用
投资者相信β值比较大的股票组合会比市场价格波动
资本资产定价模型
Capital Asset Pricing Model 简称CAPM 论述风险与报酬率的关系
目录
(一)资本资产定价模型的理论意义 (二)资本资产定价模型的意义与应用 (三)资本资产定价模型的假设与局限

经济学资本资产定价模型

经济学资本资产定价模型
套利定价方法与均衡定价方法 ➢优势: •某种程度上讲,无套利假设只是“均衡定价论”的一个推论,即达到一 般均衡的价格体系一定是无套利的。但是,这种方法不需要对投资者的偏 好以及禀赋进行任何假设,也不需要考虑金融资产的供给和需求等问题。 ➢缺陷: •只能就事论事,由此无法建立全市场的理论框架。 •只有在非常理想的市场条件下才会成立。
• 夏普提出的证券市场线(Security market line, SML),界定了风险和回报率之间的关系,适用于 所有资产和证券,无论是有效的还是无效的。
结论三 : 单个资产的风险溢价与市场资产M的风险溢价是成 比例的,与相关市场资产组合中证券的系数也成比例。
• 用公式表示为:
E(ri ) rf i E(rM ) rf
• 其中,
i
cov(ri , rM
2 M
)
Beta系数定理
假设在资产组合中包括无风险资产,那么,当市
场达到买卖交易均衡时,任意风险资产的风险溢
价E(ri)-rf与全市场组合的风险溢价E(rm)-rf成正 比,该比例系数即Beta系数,它用来测度某一资
产与市场一起变动时证券收益变动的程度。
上述β系数定理可以表示为:
资产定价的两种基本方法
• 现代理论金融经济学的一个核心内容就是如何在不 确定市场环境下为金融资产进行定价。换句话说, 就是给定某种金融资产在未来所有可能状态下的价 值,如何确定这一资产在当前的价值。
两种主流的金融资产定价方法: ➢ 一般均衡定价模型 ➢ 套利定价模型
一、一般均衡模型
在一个经济体中有两类经济活动人员 ➢消费者:追求消费效用的最大化 ➢生成者:追求的是生产利润的最大化
(Equilibrium in a Capital Asset Market) 等的三篇经典论文发展起来的。

风险资产的定价资本资产定价模型课件

风险资产的定价资本资产定价模型课件
有助于投资者做出更明智的投资决策。
通过CAPM模型,投资者可以了解不同资产的风险水 平,并根据自己的风险承受能力和投资目标选择合适
的资产组合。
CAPM模型还为投资组合管理、资本预算和风险管理 等领域提供了重要的理论支持和实践指导。
发展历程与现状
CAPM模型自提出以来经历了多年的发展与完善,其理论和应用范围不断 扩大。
风险资产的预期回报率
预期回报率的计算
根据资本资产定价模型公式,通过输 入无风险利率、β系数和市场组合的 预期回报率,可以计算出风险资产的 预期回报率。
预期回报率的意义
预期回报率是投资者评估风险资产价 值的重要依据,投资者通常会选择预 期回报率较高的资产进行投资。
03
资本资产定价模型的参数
贝塔系数
03
市场组合的回报率是资本资产定价模型中的重要参 数之一。
无风险利率
无风险利率是指投资 者无需承担任何风险 即可获得的回报率。
在资本资产定价模型 中,无风险利率用于 计算风险溢价的起始 点。
无风险利率通常采用 国债利率或银行定期 存款利率等作为参考。
风险溢价的计算
风险溢价是指投资者因承担风险而获 得的额外回报。
计算过程
利用统计学方法,计算该股票 与市场指数的相关系数,并在 此基础上计算贝塔系数。
结果解读
贝塔系数越高,意味着该股票 的波动性越大,风险越高。
基于资本资产定价模型的股票估值
01
02
03
04
05
资本资产定价模 β值 型(CA…
无风险利率
市场风险溢价
股票估值
用于评估风险资产的预期 收益率。该模型基于风险 与收益的权衡,为投资者 提供了一个评估股票内在 价值的框架。

证券投资学12--证券投资组合理论

证券投资学12--证券投资组合理论
北京语言大学
四、证券特征线
1. α系数 处于均衡状态的资本资产定价模型中,每一种资产 都位于证券市场线上,即资产期望收益率与它的均 衡期望收益率完全一致。而事实上,总有一部分资 产或资产组合位于SML上下,这时,资产价格与期 望收益率处于不均衡状态,又称资产的错误定价。 资产的错误定价用α系数度量,其计算公式为:
北京语言大学
• CML给出每一个证券组合的风险水平应得的收益 回报。因而,不同投资者可根据自己的无差别曲 线在资本市场线上选择自己的资产组合。 (1)对于风险承受能力弱、偏爱低风险的投资者,可 在CML上的左下方选择自己的资产组合。一般可 将全部资金分为两部分,一部分投资于无风险资 产,一部分投资于风险资产。越是追求低风险, 在无风险资产上投资越大,所选择的资产组合上 越接近于纵轴上的Kf。
3. 套利定价模型
北京语言大学
证券组合的预期收益和方差可以表示:
且:
北京语言大学
二、套利定价理论
套利定价模型假设:每个投资者都想使用套 利组合在不增加风险的情况下增加组合的收 益率,但在一个有效率的均衡市场中是不存 在无风险的套利机会的 。 套利定价理论认为证券的收益率和单因素或 多因素模型情况相似,即证券的收益率取决 于影响所有证券的共同因素。但套利定价理 论本身并不严格地要求这些因素是什么,有 多少个因素,而只假定证券收益率和各因素 之间是线型关系。
北京语言大学
任意两个证券之间的协方差为:
• 协方差可以通过它们对每个因素的敏感性 以及各因素的方差和因素间的协方差计算 得到。 • 在计算出每个证券的预期收益率、方差、 协方差后就可以确定出最有利的证券投资 风险组合。
北京语言大学
在多因素模型下,证券的预期收益率可表示: 证券i的方差可以表示为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、资本资产定价模型
(一)资本资产定价模型的基本原理
1.资本资产定价模型的基本表达式
必要收益率=无风险收益率+风险收益率
R=R f+β×(R m-R f)
2.(R m-R f)含义及影响因素
反映市场作为整体对风险的平均容忍程度(或厌恶程度)。

市场整体对风险越是厌恶和回避,市场风险溢酬的数值就越大。

市场的抗风险能力强,则对风险的厌恶和回避就不是很强烈,市场风险溢酬的数值就小。

【教材例2-21】假设平均风险的风险收益率为5%,平均风险的必要收益率为8%,计算[例2-20]中乙方案(β系数为1.01)的风险收益率和必要收益率。

【答案】
乙方案的风险收益率=1.01×5%=5.05%
乙方案的必要收益率=3%+5.05%=8.05%。

【例题•判断题】市场整体对风险越是厌恶和回避,市场风险溢酬的数值就越小。

()
【答案】×
【解析】市场整体对风险越是厌恶和回避,要求的补偿就越高,因此,市场风险溢酬的数值就越大。

【例题•多选题】关于资本资产定价模型,下列说法正确的有()。

(2018Ⅱ)
A.该模型反映资产的必要收益率而不是实际收益率
B.该模型中的资本资产主要指的是债券资产
C.该模型解释了风险收益率的决定因素和度量方法
D.该模型反映了系统性风险对资产必要收益率的影响
【答案】ACD
【解析】资本资产定价模型中,所谓资本资产主要指的是股票资产,选项B错误。

【例题•判断题】依据资本资产定价模型,资产的必要收益率不包括对公司特有风险的补偿。

()(2017年)
【答案】√
【解析】资本资产定价模型中,某资产的必要收益率是由无风险收益率和资产的风险收益率决定的。

而风险收益率中的β系数衡量的是证券资产的系统风险,公司特有风险作为非系统风险是可以分散掉的。

【例题•计算题】某公司拟进行股票投资,计划购买A、B、C三种股票,并分别设计了甲乙两种投资组合。

已知三种股票的β系数分别为1.5、1.0和0.5,它们在甲种投资组合下的投资比重为50%、30%和20%;乙种投资组合的风险收益率为3.4%。

同期市场上所有股票的平均收益率为12%,无风险收益率为8%。

要求:
(1)根据A、B、C股票的β系数,分别评价这三种股票相对于市场投资组合而言的投资风险大小。

(2)按照资本资产定价模型计算A股票的必要收益率。

(3)计算甲种投资组合的β系数和风险收益率。

(4)计算乙种投资组合的β系数和必要收益率。

(5)比较甲乙两种投资组合的β系数,评价它们的投资风险大小。

(2005年)
【解析】
(1)A股票的β>1,说明该股票所承担的系统风险大于市场投资组合的风险(或A股票所承担的系统风险等于市场投资组合风险的1.5倍)
B股票的β=1,说明该股票所承担的系统风险与市场投资组合的风险一致(或B股票所承担的系统风险等于市场投资组合的风险)
C股票的β<1,说明该股票所承担的系统风险小于市场投资组合的风险(或C股票所承担的系统风险等于市场投资组合风险的0.5倍)
(2)A股票的必要收益率=8%+1.5×(12%-8%)=14%
(3)甲种投资组合的β系数=1.5×50%+1.0×30%+0.5×20%=1.15
甲种投资组合的风险收益率=1.15×(12%-8%)=4.6%
(4)乙种投资组合的β系数=3.4%/(12%-8%)=0.85
乙种投资组合的必要收益率=8%+3.4%=11.4%
或者:
乙种投资组合的必要收益率=8%+0.85×(12%-8%)=11.4%
(5)甲种投资组合的β系数(1.15)大于乙种投资组合的β系数(0.85),说明甲投资组合的系统风险大于乙投资组合的系统风险。

(二)资本资产定价模型的有效性和局限性
有效性:
资本资产定价模型和证券市场线最大的贡献在于它提供了对风险和收益之间的一种实质性的表述,CAPM和SML首次将“高收益伴随着高风险”这样一种直观认识,用这样简单的关系式表达出来。

到目前为止,CAPM和SML是对现实中风险与收益关系最为贴切的表述。

局限性:
(1)某些资产或企业的β值难以估计,特别是对一些缺乏历史数据的新兴行业;
(2)由于经济环境的不确定性和不断变化,使得依据历史数据估算出来的β值对未来的指导作用必然要打折扣;
(3)CAPM是建立在一系列假设之上的,其中一些假设与实际情况有较大偏差,使得CAPM的有效性受到质疑。

这些假设包括:市场是均衡的,市场不存在摩擦,市场参与者都是理性的、不存在交易费用、税收不影响资产的选择和交易等。

相关文档
最新文档