初中数学反比例函数易错题汇编附答案解析

合集下载

(易错题精选)初中数学反比例函数单元汇编及答案解析

(易错题精选)初中数学反比例函数单元汇编及答案解析

(易错题精选)初中数学反比例函数单元汇编及答案解析一、选择题1.函数21ayx--=(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y3<y1【答案】B【解析】【分析】【详解】解:当x=-4时,y1=214a---;当x=-1时,y2=211a---,当x=2时,y3=212a--,∵-a2-1<0,∴y3<y2<y1.故选B.【点睛】本题考查反比例函数图象上点的坐标特征,掌握反比例函数的性质数形结合思想解题是关键.2.在同一平面直角坐标系中,反比例函数ybx=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即b<0.所以反比例函数ybx=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.3.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【答案】B【解析】【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=12×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=12(BD+AC)•CD=12×(1+2)×2=3,从而得出S△AOB=3.【详解】∵A ,B 是反比例函数y=4x在第一象限内的图象上的两点, 且A ,B 两点的横坐标分别是2和4, ∴当x=2时,y=2,即A (2,2), 当x=4时,y=1,即B (4,1),如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =12×4=2, ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3, ∴S △AOB =3, 故选B .【点睛】本题考查了反比例函数()0ky k x=≠中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S=12|k|是解题的关键.4.在反比例函数y =93m x+图象上有两点A(x 1,y 1)、B(x 2,y 2),y 1<0<y 2,x 1>x 2,则有( )A .m >﹣13B .m <﹣13C .m≥﹣13D .m≤﹣13【答案】B 【解析】 【分析】先根据y 1<0<y 2,有x 1>x 2,判断出反比例函数的比例系数的正负,求出m 的取值范围即可. 【详解】∵在反比例函数y =93m x+图象上有两点A (x 1,y 1)、B (x 2,y 2),y 1<0<y 2,x 1>x 2, ∴反比例函数的图象在二、四象限,∴9m+3<0,解得m<﹣13.故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质5.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A.B.C.D.【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y轴于负半轴,y 随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y 随着x的增大而增减小,B. D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.6.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】 【分析】 由于23BF OA =,可以设F (m ,n )则OA=3m ,BF=2m ,由于S △BEF =4,则BE=4m ,然后即可求出E (3m ,n-4m ),依据mn=3m (n-4m)可求mn=6,即求出k 的值. 【详解】如图,过F 作FC ⊥OA 于C ,∵23BF OA =, ∴OA=3OC ,BF=2OC ∴若设F (m ,n ) 则OA=3m ,BF=2m ∵S △BEF =4 ∴BE=4m则E (3m ,n-4m) ∵E 在双曲线y=k x上 ∴mn=3m (n-4m) ∴mn=6 即k=6. 故选A . 【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E 点坐标是解题关键.7.如图,过反比例函数()0ky x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C 【解析】 【分析】根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号. 【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C 【点睛】本题考查了反比例函数系数k 的几何意义.8.下列各点中,在反比例函数3y x=图象上的是( ) A .(3,1) B .(-3,1) C .(3,13) D .(13,3) 【答案】A 【解析】 【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3. 【详解】解:A 、∵3×1=3,∴此点在反比例函数的图象上,故A 正确; B 、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B 错误; C 、∵13=133垂, ∴此点不在反比例函数的图象上,故C 错误; D 、∵13=133垂, ∴此点不在反比例函数的图象上,故D 错误;故选A.9.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C 【解析】 【分析】由反比例函数的系数k 的几何意义可知:2OA AD =g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积. 【详解】解:Q 反比例函数2y x=, 2OA AD ∴=g .D Q 是AB 的中点, 2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C . 【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.10.如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数y=kx(x>0)的图象与线段AB 相交于点C ,且C 是线段AB 的中点,若△OAB 的面积为3,则k 的值为 ( )A .13B .1C .2D .3【答案】D 【解析】 【分析】连接OC ,如图,利用三角形面积公式得到S △AOC =12S △OAB =32,再根据反比例函数系数k 的几何意义得到12|k|=32,然后利用反比例函数的性质确定k 的值. 【详解】 连接OC ,如图,∵BA ⊥x 轴于点A ,C 是线段AB 的中点, ∴S △AOC =12S △OAB =32, 而S △AOC =12|k|, ∴12|k|=32, 而k >0, ∴k=3. 故选:D . 【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=kx图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.11.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y = B .若12x x =-,则12y y =- C .若120x x <<,则12y y < D .若120x x <<,则12y y >【答案】D【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x=-,用y 1、y 2表示出x 1,x 2,据此进行判断. 【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x=-上, ∴111y x =-,221y x =-.A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确;B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确;D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误; 故选:D . 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.反比例函数ky x=的图象在第二、第四象限,点()()()1232,,4,,5,A y B y C y -是图象上的三点,则123,,y y y 的大小关系是( )A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >>【答案】B 【解析】 【分析】根据反比例函数图像在第二、四象限,反比例函数图像在第二、四象限,y 随x 的增大而增大,再根据三点横坐标的特点即可得出结论. 【详解】解:∵反比例函数ky x=图象在第二、四象限, ∴反比例函数图象在每个象限内y 随x 的增大而增大,∴点B 、C 在第四象限,点A 在第二象限, ∴23y y <<0,10y > , ∴132y y y >>. 故选B. 【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答本题的关键.13.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB V 的面积为( )A .6B .5C .3D .1.5【答案】C 【解析】 【分析】先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解. 【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3 ∴23y x =-- 则点B (0,-3) ∴AOB V 的面积为132=32⨯⨯ 故应选:C 【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.14.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S △AOD =2是解题关键.15.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-【答案】A【解析】 【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.16.当0x <时,反比例函数2y x =-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.17.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.18.若点A (﹣4,y 1)、B (﹣2,y 2)、C (2,y 3)都在反比例函数1y x =-的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 1>y 3>y 2 【答案】C【解析】【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】∵点A(﹣4,y 1)、B(﹣2,y 2)、C(2,y 3)都在反比例函数1y x =-的图象上, ∴11144y =-=-,21122y =-=-,312y =-, 又∵﹣12<14<12, ∴y 3<y 1<y 2,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.19.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0【答案】B【解析】【分析】根据反比例函数的性质,逐一进行判断即可得答案.【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.20.已知1122(,),,)A x y Bx y (均在反比例函数2y x =的图像上,若120x x <<,则12,y y 的大小关系是( )A .120y y <<B .210y y <<C .120y y <<D .210y y << 【答案】D【解析】【分析】先根据反比例函数的性质判断出函数图象所在的象限,再根据反比例函数的性质即可作出判断.【详解】 解:∵反比例函数2y x=中k=2>0, ∴此函数的图象在一、三象限,且在每一象限内y 随x 的增大而减小,∵0<x l <x 2,∴点A (x 1,y 1),B (x 2,y 2)均在第一象限,∴0<y 2<y l .故选:D .【点睛】此题考查反比例函数图象上点的坐标特点,熟知反比例函数图象的增减性是解题的关键.。

中考数学复习反比例函数专项易错题附详细答案

中考数学复习反比例函数专项易错题附详细答案

中考数学复习反比例函数专项易错题附详细答案一、反比例函数1.如图,点A在函数y= (x>0)图象上,过点A作x轴和y轴的平行线分别交函数y= 图象于点B,C,直线BC与坐标轴的交点为D,E.(1)当点C的横坐标为1时,求点B的坐标;(2)试问:当点A在函数y= (x>0)图象上运动时,△ABC的面积是否发生变化?若不变,请求出△ABC的面积,若变化,请说明理由.(3)试说明:当点A在函数y= (x>0)图象上运动时,线段BD与CE的长始终相等.【答案】(1)解:∵点C在y= 的图象上,且C点横坐标为1,∴C(1,1),∵AC∥y轴,AB∥x轴,∴A点横坐标为1,∵A点在函数y= (x>0)图象上,∴A(1,4),∴B点纵坐标为4,∵点B在y= 的图象上,∴B点坐标为(,4);(2)解:设A(a,),则C(a,),B(,),∴AB=a﹣ = a,AC= ﹣ = ,∴S△ABC= AB•AC= × × = ,即△ABC的面积不发生变化,其面积为;(3)解:如图,设AB的延长线交y轴于点G,AC的延长线交x轴于点F,∵AB∥x轴,∴△ABC∽△EFC,∴ = ,即 = ,∴EF= a,由(2)可知BG= a,∴BG=EF,∵AE∥y轴,∴∠BDG=∠FCE,在△DBG和△CFE中∴△DBG≌△CEF(AAS),∴BD=EF.【解析】【分析】(1)由条件可先求得A点坐标,从而可求得B点纵坐标,再代入y= 可求得B点坐标;(2)可设出A点坐标,从而可表示出C、B的坐标,则可表示出AB和AC的长,可求得△ABC的面积;(3)可证明△ABC∽△EFC,利用(2)中,AB和AC的长可表示出EF,可得到BG=EF,从而可证明△DBG≌△CFE,可得到DB=CF.2.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.3.给出如下规定:两个图形G1和G2,点P为G1上任一点,点Q为G2上任一点,如果线段PQ的长度存在最小值,就称该最小值为两个图形G1和G2之间的距离.在平面直角坐标系xOy中,O为坐标原点.(1)点A的坐标为A(1,0),则点B(2,3)和射线OA之间的距离为________,点C (﹣2,3)和射线OA之间的距离为________;(2)如果直线y=x+1和双曲线y= 之间的距离为,那么k=________;(可在图1中进行研究)(3)点E的坐标为(1,),将射线OE绕原点O顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE,OF之间的距离相等的点所组成的图形记为图形M.①请在图2中画出图形M,并描述图形M的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线OE,OF组成的图形记为图形W,直线y=﹣2x﹣4与图形M的公共部分记为图形N,请求出图形W和图形N之间的距离.【答案】(1)3;(2)﹣4(3)解:①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF 垂直),;②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),即图形W与图形N之间的距离为d,d===∴当x=﹣时,d的最小值为 = ,即图形W和图形N之间的距离.【解析】【解答】解:(1)点(2,3)和射线OA之间的距离为3,点(﹣2,3)和射线OA之间的距离为 = ,故答案分别为:3,;(2)直线y=x+1和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1和双曲线y= 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= 交于点E、F,过点E作EG⊥x轴,如图1,由得,即点F(﹣,),则OF= = ,∴OE=OF+EF=2 ,在Rt△OEG中,∠EOG=∠OEG=45°,OE=2 ,则有OG=EG= OE=2,∴点E的坐标为(﹣2,2),∴k=﹣2×2=﹣4,故答案为:﹣4;【分析】(1)由题意可得出点B(2,3)到射线OA之间的距离为B点纵坐标,根据新定义得点C(﹣2,3)和射线OA之间的距离;(2)根据题意即可得k<0(否则直线y=x+1和双曲线y= k x 相交,它们之间的距离为0).过点O作直线y=x+1的垂线y=﹣x,与双曲线y= k x 交于点E、F,过点E作EG⊥x 轴,如图1,将其联立即可得点F坐标,根据两点间距离公式可得OF长,再由OE=OF+EF 求出OE长,在Rt△OEG中,根据等腰直角三角形的性质可得点E的坐标为(﹣2,2),将E点代入反比例函数解析式即可得出k值.(3)①如图,x轴正半轴,∠GOH的边及其内部的所有点(OH、OG分别与OE、OF垂直);②由①知OH所在直线解析式为y=﹣ x,OG所在直线解析式为y= x,分别联立即可得出点M、N坐标,从而得出x取值范围,根据题意图形N(即线段MN)上点的坐标可设为(x,﹣2x﹣4),从而求出图形W与图形N之间的距离为d,由二次函数性质知d 最小值.4.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.5.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.6.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。

中考数学反比例函数易错试卷练习(含答案)及答案

中考数学反比例函数易错试卷练习(含答案)及答案

备战中考数学反比例函数培优易错试卷练习(含答案)及答案一、反比例函数1.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(,2).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y=(k>0,x >0)的图象上时,求菱形ABCD平移的距离.【答案】(1)解:作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(∴DO=AD=3,∴A点坐标为:(∴k=5;,5),,2),(2)解:∵将菱形ABCD向右平移,使点D落在反比例函数y=(x>0)的图象上D′,∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2=,解得x=﹣,=,,∴FF′=OF′﹣OF=∴菱形ABCD平移的距离为同理,将菱形ABCD向右平移,使点B落在反比例函数y=(x>0)的图象上,菱形ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】(1)根据菱形的性质和D的坐标即可求出A的坐标,代入求出即可;(2)B和D可能落在反比例函数的图象上,根据平移求出即可.2.如图,平行于y轴的直尺(一部分)与双曲线y=(k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y=得3=,解得:k=6(2)解:OD=2+2=4,在y=中令x=4,解得y=.则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB=OB•AB= ×2×3=3;直角△ODC中,OD=4,CD=,则S△OCD=OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD=,则S.则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.=(AB+DC)•BD=(3+)×2=梯形ABDC3.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴∴,,∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.4.如图,点P( +1,﹣1)在双曲线y=(x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y=(x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.【答案】(1)解:点P(将x=k=2;,y=,)在双曲线上,代入解析式可得:(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,∵四边形ABCD是正方形,∴AB=AD=BC,∠CBA=90°,∴∠FBC+∠OBA=90°,∵∠CFB=∠BOA=90°,∴∠FCB+∠FBC=90°,∴∠FBC=∠OAB,在△CFB和△AOB中,,∴△CFB≌△AOB(AAS),同理可得:△BOA≌△AED≌△CFB,∴CF=OB=AE=b,BF=OA=DE=a,设A(a,0),B(0,b),则D(a+b,a)C(b,a+b),可得:b(a+b)=2,a(a+b)=2,解得:a=b=1.所以点C的坐标为:(1,2).【解析】【分析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.5.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【答案】(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO=∴CE=BE•tan∠ABO=6×=3,,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y=∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣的图象上,(2)解:∵点D在反比例函数y=﹣)(n>0).,第四象限的图象上,∴设点D的坐标为(n,﹣在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO=∴OA=OB•tan ∠ABO=4×∵S △BAF =AF•OB==2.(2+)×4=4+.(OA+OF )•OB=∵点D 在反比例函数y=﹣∴S△DFO=×|﹣6|=3.第四象限的图象上,∵S △BAF =4S △DFO ,∴4+=4×3,,=4×3的解,解得:n=经验证,n=是分式方程4+∴点D 的坐标为(,﹣4).【解析】【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C 的坐标,再根据点C 的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m ,由此即可得出结论;(2)由点D 在反比例函数在第四象限的图象上,设出点D 的坐标为(n ,﹣)(n >0).通过解直角三角形求出线段OA 的长度,再利用三角形的面积公式利用含n 的代数式表示出S △BAF ,根据点D 在反比例函数图形上利用反比例函数系数k 的几何意义即可得出S △DFO 的值,结合题意给出的两三角形的面积间的关系即可得出关于n 的分式方程,解方程,即可得出n 值,从而得出点D 的坐标.6.如图,过原点O 的直线与双曲线交于上A (m ,n )、B ,过点A 的直线交x 轴正于点P .半轴于点D ,交y 轴负半轴于点E ,交双曲线(1)当m=2时,求n的值;(2)当OD:OE=1:2,且m=3时,求点P的坐标;(3)若AD=DE,连接BE,BP,求△PBE的面积.【答案】(1)解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)解:由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点D在x轴坐标轴上,点E在y轴负半轴上,∴D(a,0),E(0,﹣2a),∴直线DE的解析式为y=2x﹣2a,∵点A(3,2)在直线y=2x﹣2a上,∴6﹣2a=2,∴a=2,∴直线DE的解析式为y=2x﹣4①,∵双曲线的解析式为y=②,联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣2,﹣3);(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),∴E(0,﹣n),D( m,0),∴直线DE的解析式为y= x﹣n,∵mn=6,∴m=,∴y= x﹣n③,∵双曲线的解析式为y=④,联立③④解得,∴(点A的横纵坐标,所以舍去)或,∴P(﹣2m,﹣2n),∵A(m,n),∴直线AB的解析式为y=x⑤.联立④⑤解得,∴B(﹣m,﹣n),∵E(0,﹣n),∴BE∥x轴,∴S△PBE = BE×|yE﹣yP|= ×m×|﹣n﹣(﹣2n)|= mn=3.【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE(点A的横纵坐标,所以舍去)或的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B(﹣m,﹣n),再根据S△PBE = BE×|yE﹣yP|= ×m×|﹣n﹣(﹣2n)|求出等于3.7.在平面直角坐标系xOy中,对于双曲线y=(m>0)和双曲线y=(n>0),如果m=2n,则称双曲线y=(m>0)和双曲线y=(n>0)为“倍半双曲线”,双曲线y=(m>0)是双曲线y=(n>0)的“倍双曲线”,双曲线y=(n>0)是双曲线y=(m>0)的“半双曲线”,(1)请你写出双曲线y=的“倍双曲线”是________;双曲线y=的“半双曲线”是________;(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y=在第一象限内任意一点,过点A与y轴平行的直线交双曲线y=的“半双曲线”于点B,求△AOB的面积;(3)如图2,已知点M是双曲线y=(k>0)在第一象限内任意一点,过点M与y轴平行的直线交双曲线y=的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y=的“半双曲线”于点P,若△MNP的面积记为S△MNP ,且1≤S△MNP≤2,求k的取值范围.【答案】(1)y=;y=(2)解:如图1,∵双曲线y=的“半双曲线”是y=,∴△AOD的面积为2,△BOD的面积为1,∴△AOB的面积为1(3)解:解法一:如图2,依题意可知双曲线的“半双曲线”为,设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴CM=,CN=.∴MN=﹣ =.同理PM=m﹣ =.∴S=MN•PM=△PMN∵1≤S≤2,△PMN∴1≤≤2.∴4≤k≤8,解法二:如图3,依题意可知双曲线的“半双曲线”为,设点M的横坐标为m,则点M坐标为(m,),点N坐标为(m,),∴点N为MC的中点,同理点P为MD的中点.连接OM,∵,∴△PMN∽△OCM..∴∵S=k,△OCM∴S=.△PMN∵1≤S≤2,△PMN∴1≤≤2.∴4≤k≤8.【解析】【解答】解:(1)由“倍双曲线”的定义∴双曲线y=,的“倍双曲线”是y=;双曲线y=的“半双曲线”是y=.故答案为y=,y=;【分析】(1)直接利用“倍双曲线”的定义即可;(2)利用双曲线的性质即可;(3)先利用双曲线上的点设出M的横坐标,进而表示出M,N的坐标;方法一、用三角形的面积公式建立不等式即可得出结论;方法二、利用相似三角形的性质得出△PMN的面积,进而建立不等式即可得出结论.8.如图1,在平面直角坐标系,O为坐标原点,点A(﹣2,0),点B(0,2). Array(1)直接写求∠BAO的度数;(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2, S1与S2有何关系?为什么?(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.【答案】(1)解:∵A(−2,0),B(0,∴OA=2,OB=,,),在Rt△AOB中,tan∠BAO=∴∠BAO=60°(2)解:S1=S2;理由:∵∠BAO=60°,∠AOB=90°,∴∠ABO=30°,∴OA'=OA= AB,△AOA'是等边三角形,∴OA'=AA'=AO=A'B,∵∠B'A'O=60°,∠A'OA=60°,∴B'A'∥AO,根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,即△AB′O中AO边上高和△BA′O中BA′边上的高相等,∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2(3)证明:S1=S2不发生变化;理由:如图,过点A'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,∵△A'B'O是由△ABO绕点O旋转得到,∴BO=OB',AO=OA',∵∠AON+∠BON=90°,∠A'OM+∠BON=90°,∴∠AON=∠A'OM,,在△AON和△A'OM中,∴△AON ≌△A'OM (AAS ),∴AN =A'M ,∴△BOA'的面积和△AB'O 的面积相等(等底等高的三角形的面积相等),即S 1=S 2.【解析】【分析】(1)先求出OA ,OB ,再用锐角三角函数即可得出结论;(2)根据旋转的性质和直角三角形的性质可证得OA'=AA'=AO =A'B ,然后根据等边△AOA'的边AO 、AA'上的高相等,即可得到S 1=S 2;(3)根据旋转的性质可得BO =OB',AA'=OA',再求出∠AON =∠A'OM ,然后利用“角角边”证明△AON 和△A'OM 全等,根据全等三角形对应边相等可得AN =A'M ,然后利用等底等高的三角形的面积相等证明.9.已知如图,二次函数的图象经过A (3,3),与x 轴正半轴交于B 点,与y 轴交于C 点,△ABC 的外接圆恰好经过原点O.(1)求B 点的坐标及二次函数的解析式;(2)抛物线上一点Q (m ,m+3),(m 为整数),点M 为△ABC 的外接圆上一动点,求线段QM 长度的范围;(3)将△AOC 绕平面内一点P 旋转180°至△A'O'C'(点O'与O 为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P 的坐标.【答案】(1)解:如图,过点A 作AD ⊥y 轴于点D ,AE ⊥x 轴于点E ,∴∠ADC=∠AEB=90°∵二次函数与y 轴交于点C ,点C 坐标为(0,2)∵点A 坐标(3,3)∴DA=AE=3∵∠DAC+∠CAE=90°∠EAB+∠CAE=90°∴∠DAC=∠EAB∴△ACD ≌△ABE∴EB=CD=3-2=1OB=3+1=4∴点B 的坐标为(4,0)将A (3,3)B (4,0)代入二次函数中得:解得:二次函数的解析式为:(2)解:将点Q (m ,m+3)代入二次函数解析式得:m 1=1;m 2=(舍)∴m=1∴点Q 坐标为(1,4)由勾股定理得:BC=2设圆的圆心为N∵圆经过点O ,且∠COB=90°∴BC 是圆N 的直径,∴圆N的半径为,N的坐标为(2,1)≤QM≤由勾股定理得,QN=半径r=,则(3)解:当点A的对称点,点O的对称点在抛物线上时,如图设点的横坐标为m,则点得:解得:)的横坐标为m-3∴的坐标为(∴旋转中心P的坐标为当点A的对称点,点C的对称点在抛物线上时,如图设点的横坐标为m,则点的横坐标为m-3得:解得:)或∴的坐标为(∴旋转中心P的坐标为综上所述,旋转中心P的坐标为【解析】【分析】(1)过点A作AD⊥y轴于点D,AE⊥x轴于点E,求证△ACD≌△ABE,进而求得点B坐标,再将A、B两点坐标代入二次函数解析式,即可解答;(2)将点Q (m,m+3)代入二次函数解析式,求得m的值,进而且得点Q坐标,根据圆的性质得到BC是圆N的直径,利用勾股定理即可求得BC,进而求得N的坐标,再利用勾股定理求得QN的长,确定取值范围即可;(3)分两种情况:当点A的对称点,点O的对称点在抛物线上时,利用旋转180°可知,标为m-3,利用∥,设点的横坐标为m,则点的横坐列出式子,即可求得m的值,利用旋转中心和线段中点的特点,即可求得旋转中心P的坐标;当点A的对称点,点C的对称点在抛物线上时,设点的横坐标为m,则点的横坐标为m-3,同理可求得m的值以及旋转中心P 的坐标.10.如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB 边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,(1)当t=2时,求△PBQ的面积;(2)当t=时,试说明△DPQ是直角三角形;(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.【答案】(1)解:当t=2时,AP=t=2,BQ=2t=4,∴BP=AB-AP=4,∴△PBQ的面积= ×4×4=8;(2)解:当t=时,AP=1.5,PB=4.5,BQ=3,CQ=9,∴DP2=AD2+AP2=2.25+144=146.25,PQ2=PB2+BQ2=29.25,DQ2=CD2+CQ2=117,∵PQ2+DQ2=DP2,∴∠DQP=90°,∴△DPQ是直角三角形.(3)解:设存在点Q在BC上,延长DQ与AB延长线交于点O.设QB的长度为x,则QC的长度为(12-x),∵DC∥BO,∴∠C=∠QBO,∠CDQ=∠O,∴△CDQ∽△BOQ,又CD=6,QB=x,QC=12-x,∴,即,,解得:BO=∴AO=AB+BO=6+∵∠ADP=∠ODP,∴12:DO=AP:PO,代入解得x=0.75,∴DP能平分∠ADQ,∵点Q的速度为2cm/s,∴P停止后Q往B走的路程为(6-0.75)=5.25cm.∴时间为2.625s,加上刚开始的3s,Q点的运动时间为5.625s.,【解析】【分析】(1)根据路程等于速度乘以时间得出AP=t=2,BQ=2t=4,所以BP=4,进而根据三角形的面积计算方法即可算出答案;(2)当t=时,根据路程等于速度乘以时间得出AP=1.5,BQ=3,故PB=4.5,CQ=9,根据勾股定理表示出DP2,PQ2,DQ2,从而根据勾股定理的逆定理判断出∠DQP=90°,△DPQ是直角三角形;(3)设存在点Q在BC上,延长DQ与AB延长线交于点O,设QB的长度为x,则QC 的长度为(12-x),判断出△CDQ∽△BOQ,根据全等三角形的对应边成比例得出,根据比例式可以用含x的式子表示出BO的长,根据角平分线的性质定理得出12:DO=AP:PO,根据比例式求出x的值,从而即可解决问题.11.如图,抛物线.与轴交于、两点,与轴交于点,且(1)求抛物线的解析式和顶点的坐标;(2)判断(3)点的形状,证明你的结论;是轴上的一个动点,当的周长最小时,求的值.【答案】(1)解:∵点在抛物线上,∴,解得,,,;为直角三角形,证明如下:中,令,且为,,,,,可得,,解得或,∴抛物线解析式为∵∴点坐标为(2)解:在∴为∴由勾股定理可求得又∴∴,,为直角三角形;(3)解:∵,,∴点关于轴的对称点为如图,连接,交轴于点,则即为满足条件的点,设直线解析式为,把、坐标代入可得∴直线解析式为∴.,解得,令,可得,,【解析】【分析】(1)把A点坐标代入可求得b的值,可求得抛物线的解析式,再求D 点坐标即可;(2)由解析式可求得A、B、C的坐标,可求得AB、BC、AC的长,由勾股定理的逆定理可判定△ABC为直角三角形;(3)先求得C点关于x轴的对称点E,连接DE,与轴交于点M,则M即为所求,可求得DE的解析式,令其y=0,可求得M点的坐标,可求得m.12.如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接 .(1)求证:(2)求证:(3)若∴∵,,求,.的值.是正方形,【答案】(1)解:∵是等腰三角形,∴∴∴∴,,,,(2)解:∵∴∵∴∵∵∴∴∴∴∴,,,,,,,,是正方形,,是等腰三角形,,(3)解:由(1)得∴由(2)∴∵∴在中,,∴,,,,,,,,,【解析】【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;(2)根据正方形的性质和全等三角形的性质得到∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到∠CBQ=∠CPQ即可求解.,由(2)可得,等量代换可得。

中考数学复习反比例函数专项易错题附答案解析.doc

中考数学复习反比例函数专项易错题附答案解析.doc

中考数学复习反比例函数专项易错题附答案解析一、反比例函数1.如图,直线y=﹣ x+b 与反比例函数y=的图象相交于A( 1, 4), B 两点,延长AO 交反比例函数图象于点C,连接 OB.(1)求 k 和 b 的值;(2)直接写出一次函数值小于反比例函数值的自变量x 的取值范围;(3)在 y 轴上是否存在一点P,使 S△PAC △AOBP 坐标,若不存在请说= S ?若存在请求出点明理由.【答案】(1)解:将A( 1, 4)分别代入y=﹣ x+b 和得:4=﹣1+b,4=,解得:b=5,k=4(2)解:一次函数值小于反比例函数值的自变量x 的取值范围为:x> 4 或 0< x<1(3)解:过 A 作 AN⊥ x 轴,过 B 作 BM⊥ x 轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣ x+5,反比例函数的表达式为:由,解得: x=4,或 x=1,∴B( 4,1),∴,∵,∴,过 A 作 AE⊥ y 轴,过 C 作 CD⊥y 轴,设 P( 0,t ),∴S△PAC=OP?CD+ OP?AE=OP( CD+AE)=|t|=3 ,解得: t=3, t=﹣ 3,∴P( 0, 3)或 P(0,﹣ 3).【解析】【分析】( 1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;( 3)过 A 作 AM⊥ x 轴,过 B 作 BN⊥ x 轴,由( 1)知, b=5, k=4,得到直线的表达式为: y=﹣ x+5,反比例函数的表达式为:列方程,求得B( 4 ,1),于是得到,由已知条件得到,过 A 作 AE⊥ y 轴,过 C 作 CD⊥ y 轴,设 P( 0,t ),根据三角形的面积公式列方程即可得到结论.2.如图,在平面直角坐标系中,菱形ABCD的顶点 C 与原点 O 重合,点 B 在 y 轴的正半轴上,点 A 在反比例函数y=(k>0,x>0)的图象上,点 D 的坐标为(,2).(1)求 k 的值;(2)若将菱形ABCD 沿 x 轴正方向平移,当菱形的一个顶点恰好落在函数y=(k>0,x >0)的图象上时,求菱形 ABCD平移的距离.【答案】(1)解:作 DE⊥BO, DF⊥ x 轴于点 F,∵点 D 的坐标为(,2),∴DO=AD=3,∴A 点坐标为:(, 5),∴k=5;(2)解:∵将菱形 ABCD向右平移,使点 D 落在反比例函数y=(x>0)的图象上D′,∴D F=D ′ F,′ =2∴D′点的纵坐标为2,设点 D′( x, 2)∴2=,解得x=,∴FF ′ =OF﹣OF=′﹣=,∴菱形 ABCD平移的距离为,同理,将菱形ABCD向右平移,使点 B 落在反比例函数y=(x>0)的图象上,菱形 ABCD平移的距离为,综上,当菱形 ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】( 1)根据菱形的性质和 D 的坐标即可求出 A 的坐标,代入求出即可;(2) B 和 D 可能落在反比例函数的图象上,根据平移求出即可.3.平行四边形 ABCD的两个顶点 A、 C 在反比例函数 y= ( k≠0)图象上,点 B、 D 在 x 轴上,且 B 、 D 两点关于原点对称, AD 交 y 轴于 P 点(1)已知点 A 的坐标是( 2, 3),求 k 的值及 C 点的坐标;(2)在( 1)的条件下,若△ APO 的面积为 2,求点 D 到直线 AC 的距离.【答案】(1)解:∵点 A 的坐标是( 2, 3),平行四边形ABCD 的两个顶点A、 C 在反比B、 D 在x 轴上,且B、 D 两点关于原点对称,∴3= ,例函数 y=(k≠0)图象上,点点 C 与点 A 关于原点 O 对称,∴k=6, C(﹣ 2,﹣ 3 ),即 k 的值是 6, C 点的坐标是(﹣2,﹣ 3);( 2 )解:过点A作AN⊥ y轴于点N ,过点D作DM ⊥ AC ,如图,∵点 A( 2, 3), k=6,∴A N=2,∵△ APO 的面积为2,∴,即,得 OP=2,∴点 P( 0, 2),设过点 A( 2, 3), P( 0, 2)的直线解析式为y=kx+b,,得,∴过点 A( 2, 3), P( 0, 2)的直线解析式为 y=0.5x+2,当 y=0 时, 0=0.5x+2,得 x=﹣ 4,∴点 D 的坐标为(﹣ 4, 0),设过点 A( 2, 3), B(﹣ 2,﹣ 3)的直线解析式为y=mx+b ,则∴过点,得,A( 2, 3), C(﹣ 2,﹣ 3)的直线解析式为y=1.5x,∴点 D 到直线 AC 的直线得距离为:【解析】【分析】( 1)根据点 A 的坐标是(= .2,3),平行四边形ABCD 的两个顶点A、 C在反比例函数y=(k≠0)图象上,点B、 D 在 x 轴上,且B、 D 两点关于原点对称,可以求得 k 的值和点 C 的坐标;( 2)根据△ APO 的面积为 2,可以求得 OP 的长,从而可以求得点P 的坐标,进而可以求得直线 AP 的解析式,从而可以求得点 D 的坐标,再根据点到直线的距离公式可以求得点 D 到直线 AC 的距离.4.如图,已知抛物线y=﹣ x2+9 的顶点为A,曲线 DE 是双曲线y=(3≤x≤)12的一部分,记作 G1,且 D( 3, m)、 E(12, m﹣3),将抛物线y=﹣ x2 +9 水平向右移动 a 个单位,得到抛物线 G2.(1)求双曲线的解析式;(2)设抛物线 y=﹣ x2+9 与 x 轴的交点为 B、 C,且 B 在 C 的左侧,则线段 BD 的长为________;(3)点( 6,n )为 G1与 G2的交点坐标,求 a 的值.(4)解:在移动过程中,若G1与 G2有两个交点,设G2的对称轴分别交线段DE 和G1于M、 N 两点,若MN <,直接写出 a 的取值范围.【答案】(1)把 D( 3, m)、 E( 12, m﹣ 3)代入 y=得,解得,所以双曲线的解析式为y=;(2) 2(3)解:把( 6, n)代入 y= 得 6n=12,解得 n=2,即交点坐标为(6, 2),抛物线 G2的解析式为 y=﹣( x﹣ a)2+9,把( 6, 2)代入 y=﹣( x﹣ a)2 +9 得﹣( 6﹣ a)2+9=2,解得 a=6 ±,即 a 的值为 6±;(4)抛物线 G2 的解析式为 y=﹣( x﹣ a)2+9,把 D( 3,4)代入 y=﹣( x﹣ a)2+9 得﹣( 3﹣a)2+9=4,解得 a=3﹣或 a=3+ ;把 E( 12, 1 )代入y=﹣( x﹣ a)2+9 得﹣( 12﹣ a)2+9=1,解得a=12﹣ 2 或 a=12+2 ;1 2∵G 与 G 有两个交点,∴3+ ≤ a ≤﹣12 ,设直线 DE 的解析式为y=px+q,把 D( 3,4), E(12, 1)代入得,解得,∴直线 DE 的解析式为 y=﹣x+5,∵G 的对称轴分别交线段DE 和 G 于 M、 N 两点,2 1∴M ( a,﹣a+5), N( a,),∵MN <,∴﹣a+5﹣<,整理得 a2﹣13a+36 >0,即( a﹣ 4)( a﹣ 9)> 0,∴a< 4 或 a> 9,∴a 的取值范围为9< a ≤ 12﹣ 2 .【解析】【解答】解:(2)当 y=0 时,﹣ x2+9=0,解得 x1=﹣ 3, x2=3,则 B(﹣ 3, 0),而 D( 3,4),所以 BE= =2 .故答案为 2 ;【分析】( 1)把 D( 3,m)、 E( 12, m﹣ 3)代入 y=得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、 E 点坐标;( 2)先解方程﹣x2+9=0 得到 B(﹣ 3, 0),而D(3, 4),然后利用两点间的距离公式计算DE 的长;( 3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6, 2),然后把( 6 , 2)代入y=﹣( x ﹣a)2+9 得 a 的值;( 4)分别把 D 点和 E 点坐标代入y=﹣( x﹣ a)2+9 得 a 的值,则利用图象和 G1与 G2有两个交点可得到3+≤ a≤﹣122 ,再利用待定系数法求出直线DE 的解析式为y=﹣ x+5,则 M( a,﹣a+5), N( a,),于是利用MN <得到﹣a+5 ﹣<,然后解此不等式得到a< 4 或 a> 9,最后确定满足条件的 a 的取值范围.5.如图 1,经过原点的抛物线y=ax2+bx+c 与 x 轴的另一个交点为点C;与双曲线y=相交于点 A, B;直线 AB 与分别与 x 轴、 y 轴交于点 D, E.已知点 A 的坐标为(﹣1, 4),点B 在第四象限内且到 x 轴、 y 轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ ABC 的面积;(3)如图 2,将抛物线平移至顶点在原点上时,直线半轴上是否存在点 P,使△PAB 的内切圆的圆心在AB 随之平移,试判断:在y 轴上?若存在,求出点Py 轴的负的坐标;若不存在,请说明理由.【答案】(1)解:把点 A 的坐标代入双曲线的解析式得:k=﹣ 1×4=﹣ 4.所以双曲线的解析式为y=﹣.设点 B 的坐标为( m,﹣ m).∵点 B 在双曲线上,2∴﹣ m =﹣ 4,解得 m=2 或 m=﹣ 2.∴m=2 .∴B( 2,﹣ 2).将点 A、 B、 C 的坐标代入得:,解得:.2(2)解:如图1,连接 AC、BC.令y=0,则 x2﹣3x=0,∴x=0 或 x=3,∴C(3 ,0),∵A(﹣ 1, 4), B( 2,﹣ 2),∴直线 AB 的解析式为 y=﹣ 2x+2,∵点 D 是直线 AB 与 x 轴的交点,∴D( 1, 0),∴S△ABC=S△ADC+S△BDC=× 2× 4+× 2× ;2=6(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣ 3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),个单位,∴抛物线向左平移个单位,再向上平移而平移前 A(﹣ 1, 4), B( 2,﹣ 2),∴平移后点A(﹣,),B(,),∴点 A 关于 y 轴的对称点A'(,),连接 A'B 并延长交y 轴于点 P,连接 AP,由对称性知,∠ APE=∠BPE,∴△ APB 的内切圆的圆心在y 轴上,∵B(,),A'(,),∴直线 A'B 的解析式为y=3x﹣,∴P( 0,﹣).【解析】【分析】( 1)首先将点 A 的坐标代入反比例函数的解析式求得k 的值,然后再求得 B 的值,最后根据点 A 的坐标求出双曲线的解析式,进而得出点 B 的坐标,最后,将点 A、 B、O 三点的坐标代入抛物线的解析式,求得a、 b、 c 的值即可;(2)由点 A 和点 B 的坐标可求得直线AB 的解析式,然后将y=0 可求得点 D 的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A, B 的坐标,进而求出点 A 关于 y 轴的对称点的坐标,求出直线BA'的解析式即可得出点P 的坐标.6.已知: O 是坐标原点, P( m,n )( m>0)是函数 y= ( k> 0)上的点,过点 P 作直线PA⊥ OP 于 P,直线 PA 与 x 轴的正半轴交于点 A(a, 0)( a> m).设△ OPA 的面积为s,且 s=1+.(1)当 n=1 时,求点 A 的坐标;(2)若 OP=AP,求 k 的值;(3)设 n 是小于 20 的整数,且 k≠,求 OP2的最小值.【答案】(1)解:过点 P 作 PQ⊥ x 轴于 Q,则 PQ=n, OQ=m,当 n=1 时, s=,∴a= = .(2)解:解法一:∵OP=AP, PA⊥OP,∴△ OPA是等腰直角三角形.∴m=n= .∴1+ = ?an.即 n4﹣ 4n2+4=0,∴k2﹣ 4k+4=0,∴k=2.解法二:∵OP=AP, PA⊥ OP,∴△ OPA是等腰直角三角形.∴m=n .设△ OPQ 的面积为s1则: s1=∴?mn=(1+),即: n4﹣4n2+4=0,∴k2﹣ 4k+4=0,∴k=2.(3)解:解法一:∵PA⊥ OP, PQ⊥ OA,∴△ OPQ∽ △ OAP.设:△ OPQ 的面积为s1,则=即:=化简得:化简得:2n 4+2k 2﹣kn 4﹣ 4k=0 ( k ﹣2)( 2k ﹣ n 4) =0,∴k=2 或 k=(舍去),∴当 n 是小于 20 的整数时, k=2.∵OP 2=n 2 +m 2=n 2+ 又 m > 0, k=2,∴ n 是大于 0 且小于 20 的整数.当 n=1 时, OP 2=5,当 n=2 时, OP 2=5,当 n=3 时, OP 2=32+ =9+ =,当 n 是大于 3 且小于 20 的整数时,即当 n=4、 5、 6 19时, OP 2 的值分别是:22、6 2+2,4 +、5 + 19+ ∵192+ > 182+> 32+ >5,∴OP 2 的最小值是 5.【解析】 【分析】( 1)利用 △ OPA 面积定义构建关于a 的方程,求出A 的坐标;( 2)由已知 OP=AP , PA ⊥ OP ,可得 △ OPA 是等腰直角三角形, 由其面积构建关于n 的方程,转化为 k 的方程,求出 k;(3)利用相似三角形的面积比等于相似比的平方构建关于k 的方程, 最值问题的基本解决方法就是函数思想,利用勾股定理用 m 、n 的代数式表达OP 2,,在 n 的范围内求出 OP 2 的最值 .7.如图,正比例函数和反比例函数的图象都经过点 A (3, 3),把直线 OA 向下平移后,与反比例函数的图象交于点B ( 6, m ),与 x 轴、 y 轴分别交于C 、D 两点.( 1)求 m 的值;( 2)求过 A 、 B 、 D 三点的抛物线的解析式;(3)若点 E 是抛物线上的一个动点,是否存在点E ,使四边形 OECD 的面积 S 1 , 是四边形 OACD 面积 S 的 ?若存在,求点 E 的坐标;若不存在,请说明理由.【答案】(1)解:∵反比例函数的图象都经过点A(3, 3),∴经过点 A 的反比例函数解析式为:y=,而直线 OA 向下平移后,与反比例函数的图象交于点B( 6, m),∴m=(2)解:∵直线 OA 向下平移后,与反比例函数的图象交于点B(6,),与x 轴、 y 轴分别交于 C、 D 两点,而这些 OA 的解析式为 y=x,设直线 CD 的解析式为 y=x+b代入 B 的坐标得:=6+b,∴b= ﹣4.5,∴直线 OC 的解析式为y=x﹣ 4.5,∴C、D 的坐标分别为( 4.5,0),( 0,﹣ 4.5),设过 A、 B、 D 三点的抛物线的解析式为y=ax2 +bx+c,分别把 A、 B、 D 的坐标代入其中得:解之得: a=﹣ 0.5,b=4 ,c=﹣ 4.5∴y=﹣ 0.5x2+4x﹣ 4.5(3)解:如图,设E 的横坐标为 x,∴其纵坐标为﹣ 0.5x2+4x﹣4.5,∴S1=(﹣0.5x2+4x﹣4.5+OD)× OC,=(﹣ 0.5x2+4x﹣4.5+4.5 )× 4.,5=(﹣ 0.5x2+4x)× 4.,5而 S=(3+OD)×OC=(3+4.5)×4.5=,∴(﹣ 0.5x2+4x)× 4.5=,解之得 x=4±,∴这样的 E 点存在,坐标为(4﹣,0.5),(4+,0.5).【解析】【分析】( 1)先根据点 A 的坐标求得反比例函数的解析式,又点 B 在反比例函数图像上,代入即可求得m 的值;( 2)先根据点 A 的坐标求得直线OA 的解析式,再结合点 B 的坐标求得直线CD 的解析式,从而可求得点C、 D 的坐标,利用待定系数法即可求得抛物线的解析式;(3)先设出抛物线上 E 点的坐标,从而表示出面积S1,再求得面积S 的值,令其相等可得到关于x 的二元一次方程,方程有解则点 E 存在,并可求得点 E 的坐标.8.如图,已知 A( 3 , m), B(﹣ 2 ,﹣ 3)是直线 AB 和某反比例函数的图象的两个交点.(1)求直线AB 和反比例函数的解析式;(2)观察图象,直接写出当x 满足什么范围时,直线AB 在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△ OBC 的面积等于△OAB 的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点 C 的坐标.【答案】(1)解:设反比例函数解析式为y=,把B(﹣ 2,﹣ 3)代入,可得 k=﹣ 2×(﹣ 3 )=6,∴反比例函数解析式为 y= ;把A( 3, m)代入 y= ,可得 3m=6,即m=2,∴A(3, 2),设直线 AB 的解析式为y=ax+b,把 A( 3, 2), B(﹣ 2,﹣ 3)代入,可得,解得,∴直线 AB 的解析式为y=x﹣1(2)解:由题可得,当 x 满足: x<﹣ 2 或 0< x< 3 时,直线 AB 在双曲线的下方(3)解:存在点 C.如图所示,延长AO 交双曲线于点C1,∵点 A 与点 C 关于原点对称,1∴AO=C O,1∴△ OBC 的面积等于△ OAB 的面积,1此时,点 C1的坐标为(﹣ 3 ,﹣ 2);如图,过点 C1作 BO 的平行线,交双曲线于点2 2 1的面积,C ,则△ OBC 的面积等于△ OBC∴△ OBC2的面积等于△ OAB 的面积,由B(﹣ 2,﹣ 3)可得 OB 的解析式为 y= x,可设直线 C1C2的解析式为 y= x+b',把 C1(﹣ 3,﹣ 2)代入,可得﹣2=×(﹣3)+b',解得 b'=,∴直线 C1C2的解析式为y= x+,解方程组,可得 C2();如图,过 A 作 OB 的平行线,交双曲线于点 C3 3的面积等于△ OBA 的面积,,则△ OBC设直线 AC3的解析式为y= x+,把 A( 3, 2)代入,可得2=×3+,解得=﹣,∴直线 AC3的解析式为y= x﹣,解方程组,可得 C3();综上所述,点 C 的坐标为(﹣ 3,﹣ 2),(()).【解析】【分析】( 1)用待定系数法求出反比例函数解析式,一次函数解析式,将已知的点A,B 的坐标代入设的函数解析式列出关于待定系数的方程(组)求出系数,再回代到解析式(2)结合图像判断直线 AB 在双曲线的交点坐标为 A,B, X 取值范围为双曲线所在象限交点的横坐标,第一象限为为小于横坐标大于零,第三象限为小于横坐标(3)结合已知条件根据同底等高、等底同高作出与原三角形面积相等的三角形,再结合已知条件用待定系数法求出与双曲线有交点的直线的解析式,得出点的坐标,注意要考虑满足条件的所有点 C 的坐标。

(易错题精选)初中数学反比例函数易错题汇编及答案解析

(易错题精选)初中数学反比例函数易错题汇编及答案解析
(易错题精选)初中数学反比例函数易错题汇编及答案解析 一、选择题
1.使关于 x 的分式方程 =2 的解为非负数,且使反比例函数 y= 限时满足条件的所有整数 k 的和为( ). A.0 B.1 C.2 D.3 【答案】B 【解析】
图象过第一、三象
试题分析:分别根据题意确定 k 的值,然后相加即可.∵关于 x 的分式方程 =2 的解为
y1 )

B(1,
y2
)

C(2,
y3 )
三个点,
1 y1 k , 1 y2 k , 2 y3 k ,
y1
k

y2
k

y3
1k 2

而k 0,
y1 y3 y2 . 故选: B . 【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数 y k ( k 为常数,且 k 0 ) x
∴反比例函数 y= a b 的图象过一、三象限, x
所以此选项正确; D. 由一次函数图象过二、四象限,得 a<0,交 y 轴负半轴,则 b<0, 满足 ab>0,与已知相矛盾 所以此选项不正确; 故选 C. 【点睛】 此题考查反比例函数的图象,一次函数的图象,解题关键在于确定 a、b 的大小
9.如图,点 P 是反比例函数 y k (x0)图象上一点,过 P 向 x 轴作垂线,垂足为 M,连 x
x
A. 3,1
B. 1, 3
C. 1,3
D. 3,1
【答案】A 【解析】 【分析】
先求出 k=-3,再依次判断各点的横纵坐标乘积,等于-3 即是在该双曲线上,否则不在. 【详解】
∵点 M 1,3 在双曲线 y k 上,
x ∴ k 13 3 ,

中考数学复习反比例函数专项易错题附答案.doc

中考数学复习反比例函数专项易错题附答案.doc

中考数学复习反比例函数专项易错题附答案一、反比例函数1.如图,一次函数y1=k1 x+b 与反比例函数y2=的图象交于点A(4, m)和 B(﹣ 8,﹣2),与 y 轴交于点C.(1) m=________, k1=________;(2)当 x 的取值是 ________时, k1 x+b>;(3)过点 A 作 AD⊥ x 轴于点 D,点 P 是反比例函数在第一象限的图象上一点.设直线OP 与线段 AD 交于点 E,当 S四边形ODAC: S△ODE=3: 1 时,求点 P 的坐标.【答案】(1) 4;(2)﹣ 8< x< 0 或 x>4(3)解:由( 1)知, y1= x+2 与反比例函数 y2= ,∴点 C 的坐标是( 0,2),点 A的坐标是( 4, 4).∴CO=2, AD=OD=4.∴S 梯形ODAC= ?OD= × 4=12,∵S 四边形ODAC: S△ODE=3: 1,∴S△ODE= S 梯形ODAC= × 12=4,即OD?DE=4,∴D E=2.∴点 E 的坐标为( 4,2).又点 E 在直线 OP 上,∴直线 OP 的解析式是y=x,∴直线 OP 与 y2=的图象在第一象限内的交点P 的坐标为( 4,2).【解析】【解答】解:(1)∵反比例函数y2=的图象过点B(﹣ 8,﹣ 2),∴ k2=(﹣8)×(﹣ 2) =16,即反比例函数解析式为y2=,将点 A( 4, m)代入 y2= ,得: m=4,即点 A( 4,4),将点 A( 4, 4)、 B(﹣ 8,﹣ 2)代入 y1=k1 x+b,得:,解得:,∴一次函数解析式为y1=x+2,故答案为:4,;( 2 )∵ 一次函数 y1=k1x+2 与反比例函数y2= 的图象交于点A( 4,4)和 B(﹣ 8,﹣ 2),∴当 y > y 时, x 的取值范围是﹣ 8< x<0 或 x> 4,1 2故答案为:﹣ 8< x< 0 或 x> 4;【分析】( 1)由 A 与 B 为一次函数与反比例函数的交点,将 B 坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将 A 的坐标代入反比例解析式中求出m 的值,确定出 A 的坐标,将 B 坐标代入一次函数解析式中即可求出k1的值;( 2)由 A 与 B 横坐标分别为4、﹣ 8,加上0,将 x 轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x 的范围即可;( 3 )先求出四边形ODAC 的面积,由S 四边形ODAC:S△ODE=3: 1 得到△ ODE 的面积,继而求得点 E 的坐标,从而得出直线 OP 的解析式,结合反比例函数解析式即可得.2.如图,平行于y 轴的直尺(一部分)与双曲线y=(k≠0)(x>0)相交于点A、 C,与x 轴相交于点 B、 D,连接 AC.已知点 A、 B 的刻度分别为 5, 2(单位: cm),直尺的宽度为2cm, OB=2cm.(1)求 k 的值;(2)求经过 A、 C 两点的直线的解析式;(3)连接 OA、 OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣ 2=3cm, OB=2cm,∴A 的坐标是( 2, 3),代入 y=得3=,解得: k=6(2)解: OD=2+2=4,在y= 中令 x=4,解得 y= .则C 的坐标是( 4,).设AC 的解析式是 y=mx+n,根据题意得:,解得:,则直线 AC 的解析式是y=﹣x+(3)解:直角△ AOB 中, OB=2, AB=3,则 S△AOB× 2×;3=3= OB?AB=直角△ ODC中, OD=4,CD= ,则 S△OCD× 4×=3.= OD?CD=在直角梯形ABDC 中, BD=2, AB=3,CD=,则S梯形ABDC=(AB+DC)?BD=(3+)×2= .则 S△OAC =S AOB+S ABDC﹣S OCD=3+ ﹣ 3= △梯形△【解析】【分析】( 1 )首先求得 A 的坐标,然后利用待定系数法求得函数的解析式;( 2 )首先求得 C 的坐标,然后利用待定系数法求得直线的解析式;( 3 )根据△OAC=S△AOB+S梯形ABDC﹣S△OCD 利用直角三角形和梯形的面积公式求解.S3.如图,已知一次函数y= x+b 的图象与反比例函数y=(x<0)的图象交于点A(﹣1,2)和点 B,点 C在 y 轴上.(1)当△ ABC 的周长最小时,求点 C 的坐标;(2)当x+b<时,请直接写出x 的取值范围.【答案】(1)解:作点 A 关于 y 轴的对称点 A′,连接 A′B交 y 轴于点 C,此时点 C 即是所求,如图所示.∵反比例函数y=(x<0)的图象过点A(﹣ 1, 2),∴k=﹣ 1 × 2=﹣2 ,∴反比例函数解析式为y=﹣(x<0);∵一次函数y= x+b 的图象过点A(﹣ 1,2),∴2=﹣ +b,解得: b= ,∴一次函数解析式为 y= x+ .联立一次函数解析式与反比例函数解析式成方程组:,解得:,或,∴点 A 的坐标为(﹣1, 2)、点 B 的坐标为(﹣4,).∵点 A′与点 A 关于 y 轴对称,∴点 A′的坐标为( 1, 2),设直线 A′B的解析式为y=mx+n,则有,解得:,∴直线 A′B的解析式为y=x+.令y= x+ 中 x=0,则 y= ,∴点 C 的坐标为( 0,)(2)解:观察函数图象,发现:当 x<﹣ 4 或﹣ 1< x<0 时,一次函数图象在反比例函数图象下方,∴当x+<﹣时,x的取值范围为x<﹣ 4 或﹣ 1< x< 0【解析】【分析】( 1)作点 A 关于 y 轴的对称点 A′,连接 A′B交 y 轴于点 C,此时点 C 即是所求.由点 A 为一次函数与反比例函数的交点,利用待定系数法和反比例函数图象点的坐标特征即可求出一次函数与反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点A、 B 的坐标,再根据点A′与点 A 关于 y 轴对称,求出点A′的坐标,设出直线A′B的解析式为y=mx+n,结合点的坐标利用待定系数法即可求出直线A′B的解析式,令直线 A′B解析式中 x 为 0,求出 y 的值,即可得出结论;( 2)根据两函数图象的上下关系结合点A、 B 的坐标,即可得出不等式的解集.4.给出如下规定:两个图形 G 和 G ,点 P 为 G 上任一点,点 Q 为 G 上任一点,如果1 2 1 2线段 PQ 的长度存在最小值,就称该最小值为两个图形G1 2和 G之间的距离.在平面直角坐标系 xOy 中, O 为坐标原点.(1)点 A 的坐标为A( 1, 0),则点B( 2, 3)和射线OA 之间的距离为 ________,点 C (﹣ 2, 3)和射线OA 之间的距离为________;(2)如果直线y=x+1 和双曲线y=之间的距离为,那么k=________;(可在图 1 中进行研究)(3)点 E 的坐标为( 1,),将射线OE 绕原点 O 顺时针旋转120°,得到射线OF,在坐标平面内所有和射线OE, OF 之间的距离相等的点所组成的图形记为图形M .①请在图 2 中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示).②将射线 OE, OF 组成的图形记为图形W,直线 y=﹣ 2x﹣ 4 与图形 M 的公共部分记为图形N,请求出图形W 和图形 N 之间的距离.【答案】(1) 3;(2)﹣ 4(3)解:①如图, x 轴正半轴,∠GOH 的边及其内部的所有点(OH、 OG 分别与OE、 OF 垂直),;②由① 知 OH 所在直线解析式为y=﹣x, OG 所在直线解析式为y=x,由得,即点M(﹣,),由得:,即点N(﹣,),则﹣≤x≤﹣,x,﹣ 2x﹣ 4),图形 N(即线段 MN )上点的坐标可设为(即图形 W 与图形 N 之间的距离为d,d===∴当 x=﹣时,d的最小值为=,即图形 W 和图形 N 之间的距离.【解析】【解答】解:(1)点( 2, 3)和射线OA 之间的距离为3,点(﹣2, 3)和射线OA 之间的距离为= ,故答案分别为:3,;(2)直线 y=x+1 和双曲线y= k x 之间的距离为,∴k<0(否则直线y=x+1 和双曲线y=相交,它们之间的距离为0).过点 O 作直线 y=x+1 的垂线 y=﹣ x,与双曲线 y= 交于点 E、 F,过点 E 作 EG⊥ x 轴,如图1,由得,即点F(﹣,),则 OF==,∴O E=OF+EF=2 ,在 Rt△ OEG中,∠ EOG=∠OEG=45°, OE=2,则有 OG=EG=OE=2,∴点 E 的坐标为(﹣ 2, 2),∴k=﹣ 2 × 2=﹣4 ,故答案为:﹣ 4;【分析】( 1)由题意可得出点B( 2, 3)到射线 OA 之间的距离为 B 点纵坐标,根据新定义得点 C(﹣ 2,3)和射线 OA 之间的距离;(2)根据题意即可得 k< 0(否则直线y=x+1 和双曲线 y= k x 相交,它们之间的距离为0).过点 O 作直线 y=x+1 的垂线 y=﹣ x,与双曲线 y= k x 交于点 E、 F,过点 E 作 EG⊥ x轴,如图 1,将其联立即可得点 F 坐标,根据两点间距离公式可得OF 长,再由 OE=OF+EF 求出 OE 长,在 Rt△ OEG 中,根据等腰直角三角形的性质可得点 E 的坐标为(﹣ 2,2),将 E 点代入反比例函数解析式即可得出k 值.(3)①如图, x 轴正半轴,∠ GOH 的边及其内部的所有点(OH、OG 分别与 OE、OF 垂直);②由① 知 OH 所在直线解析式为y=﹣x, OG 所在直线解析式为y=x,分别联立即可得出点M 、N 坐标,从而得出x 取值范围,根据题意图形N(即线段MN )上点的坐标可设为( x,﹣ 2x﹣4 ),从而求出图形W 与图形 N 之间的距离为d,由二次函数性质知 d最小值 .5.如图 1,已知一次函数 y=ax+2 与 x 轴、 y 轴分别交于点A, B,反比例函数y=经过点M.(1)若 M 是线段 AB 上的一个动点(不与点 A、 B 重合).当 a=﹣ 3 时,设点 M 的横坐标为m,求 k 与 m 之间的函数关系式.(2)当一次函数y=ax+2 的图象与反比例函数y= 的图象有唯一公共点M,且 OM= ,求a 的值.( 3)当 a= ﹣ 2 时,将 Rt△AOB 在第一象限内沿直线y=x 平移个单位长度得到Rt△ A′ O′,B如′图2, M 是 Rt△ A′ O′斜B边′上的一个动点,求k 的取值范围.【答案】(1)解:当 a=﹣3 时, y=﹣ 3x+2,当y=0 时,﹣ 3x+2=0,x=,∵点 M 的横坐标为m,且 M 是线段 AB 上的一个动点(不与点A、B 重合),∴0< m<,, DANG则,﹣3x+2= ,当x=m 时,﹣ 3m+2= ,∴k=﹣ 3m2+2m(0< m<)(2)解:由题意得:,ax+2=,ax2+2x﹣k=0,∵直线 y=ax+2( a ≠0)与双曲线 y=有唯一公共点M 时,∴△ =4+4ak=0,ak=﹣ 1,∴k=﹣,则,解得:,∵OM=,∴12+(﹣)2=()2,a=±(3)解:当 a=﹣2 时, y=﹣ 2x+2,∴点 A 的坐标为( 1, 0),点 B 的坐标为( 0 ,2),∵将 Rt△ AOB 在第一象限内沿直线y=x 平移个单位得到Rt△ A′ O′, B′∴A′( 2,1), B′( 1, 3),点 M 是 Rt△ A′O′斜B′上一动点,边当点 M′与 A′重合时, k=2,当点 M′与 B′重合时, k=3,∴k 的取值范围是 2 ≤ k ≤ 3【解析】【分析】( 1)当 a=﹣3 时,直线解析式为y=﹣3x+2,求出 A 点的横坐标,由于点 M 的横坐标为m,且 M 是线段 AB 上的一个动点(不与点A、 B 重合)从而得到m 的取值范围,由﹣ 3x+2= ,由 X=m 得 k=﹣ 3m 2+2m( 0< m<);(2)由ax+2= 得 ax2+2x﹣k=0,直线 y=ax+2( a≠0)与双曲线 y= 有唯一公共点 M 时,△ =4+4ak=0, ak=﹣ 1,由勾股定理即可;( 3 )当 a=﹣ 2 时, y=﹣2x+2,从而求出 A、 B 两点的坐标,由平移的知识知A′, B′点的坐标,从而得到k 的取值范围。

中考数学综合题专题复习【反比例函数】专题解析附答案

中考数学综合题专题复习【反比例函数】专题解析附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

(易错题精选)初中数学反比例函数易错题汇编及解析

(易错题精选)初中数学反比例函数易错题汇编及解析

(易错题精选)初中数学反比例函数易错题汇编及解析一、选择题1.已知反比例函数k y x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k=-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( )A .0B .1C .2D .3 【答案】D【解析】【分析】 根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案.【详解】 ∵反比例函数k y x =的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上,∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x , ∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足,∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k =-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=, ∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D.【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.2.如图,直线l与x轴、y轴分别交于A、B两点,与反比例函数y=kx的图象在第一象限相交于点C.若AB=BC,△AOB的面积为3,则k的值为()A.6 B.9 C.12 D.18【答案】C【解析】【分析】设OB=a,根据相似三角形性质即可表示出点C,把点C代入反比例函数即可求得k.【详解】作CD⊥x轴于D,设OB=a,(a>0)∵△AOB的面积为3,∴12OA•OB=3,∴OA=6a,∵CD∥OB,∴OD=OA=6a,CD=2OB=2a,∴C(6a,2a),∵反比例函数y=kx经过点C,∴k=6a×2a=12,故选C.【点睛】本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.3.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.4.在平面直角坐标系中,分别过点(),0A m ,()2,0B m﹢作x 轴的垂线1l 和2l ,探究直线1l 和2l 与双曲线 3y x= 的关系,下列结论中错误..的是 A .两直线中总有一条与双曲线相交B .当m =1时,两条直线与双曲线的交点到原点的距离相等C .当20m -﹤﹤ 时,两条直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2【答案】D【解析】【分析】根据题意给定m 特定值、非特定值分别进行讨论即可得.【详解】当m =0时,2l 与双曲线有交点,当m =-2时,1l 与双曲线有交点,当m 0m 2≠≠,﹣时,12l l 与和双曲线都有交点,所以A 正确,不符合题意;当m 1=时,两交点分别是(1,3),(3,1)10B 正确,不符合题意;当2m 0-﹤﹤ 时,1l 在y 轴的左侧,2l 在y 轴的右侧,所以C 正确,不符合题意;两交点分别是33m (m 2m m 2++,和,),两交点的距离是()2364m m 2+⎡⎤+⎣⎦,当m 无限大时,两交点的距离趋近于2,所以D 不正确,符合题意,故选D.【点睛】本题考查了垂直于x 轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.5.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.6.如图,点P 是反比例函数(0)k y k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M . 连接OP . 若POM ∆的面积等于2. 5,则k 的值等于 ( )A .5-B .5C . 2.5-D .2. 5【答案】A【解析】【分析】 利用反比例函数k 的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k 的值.【详解】解:∵△POM 的面积等于2.5,∴12|k|=2.5, 而k <0,∴k=-5,故选:A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.7.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.5【答案】B 【解析】【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.8.给出下列函数:①y=﹣3x+2:②y=3x;③y=﹣5x:④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是()A.①③B.③④C.②④D.②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;③y=﹣5x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B.【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.9.如图, 在同一坐标系中(水平方向是x轴),函数kyx=和3y kx=+的图象大致是()A.B.C.D.【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=kx的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=kx的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10.反比例函数kyx在第一象限的图象如图所示,则k的值可能是()A .3B .5C .6D .8【答案】B【解析】【分析】 根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k 的取值范围,即可得答案.【详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方, ∴3k <2,即k<6, ∴3<k<6,故选:B.【点睛】 本题考查了反比例函数的图象的性质,熟记k=xy 是解题关键.11.如图,直线y =k 和双曲线y =k x相交于点P ,过点P 作PA 0垂直于x 轴,垂足为A 0,x 轴上的点A 0,A 1,A 2,…A n 的横坐标是连续整数,过点A 1,A 2,…A n :分别作x 轴的垂线,与双曲线y =k x(k >0)及直线y =k 分别交于点B 1,B 2,…B n 和点C 1,C 2,…C n ,则n n n n A B C B 的值为( )A .11n +B .11n -C .1nD .11n- 【答案】C【解析】【分析】由x轴上的点A0,A1,A2,…,A n的横坐标是连续整数,则得到点An(n+1,0),再分别表示出∁n(n+1,k),B n(n+1,kn1+),根据坐标与图形性质计算出A n B n=kn1+,B n∁n =k﹣kn1+,然后计算n nn nA BB C.【详解】∵x轴上的点A0,A1,A2,…,A n的横坐标是连续整数,∴An(n+1,0),∵∁n A n⊥x轴,∴∁n(n+1,k),B n(n+1,kn1+),∴A n B n=kn1+,B n∁n=k﹣kn1+,∴n nn nA BB C=11knkkn+-+=1n.故选:C.【点睛】考查了反比例函数与一次函数的交点问题,解题关键是抓住了反比例函数与一次函数图象的交点坐标满足两函数解析式.12.如图,平行于x轴的直线与函数11ky(k0x0)x=>>,,22ky(k0x0)x=>>,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若ABCV的面积为4,则12k k-的值为()A.8 B.8-C.4 D.4-【答案】A【解析】【分析】设()A a,h,()B b,h,根据反比例函数图象上点的坐标特征得出1ah k=,2bh k.=根据三角形的面积公式得到()()()ABC A121111S AB y a b h ah bh k k42222=⋅=-=-=-=V,即可求出12k k8-=.【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.13.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.14.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确;故选B .【点睛】本题考查反比例函数的图像与性质.15.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >,∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.16.若点A (﹣4,y 1)、B (﹣2,y 2)、C (2,y 3)都在反比例函数1y x =-的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 1>y 3>y 2 【答案】C【解析】【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】∵点A(﹣4,y 1)、B(﹣2,y 2)、C(2,y 3)都在反比例函数1y x =-的图象上, ∴11144y =-=-,21122y =-=-,312y =-, 又∵﹣12<14<12, ∴y 3<y 1<y 2,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.17.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.18.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0【答案】B【解析】【分析】根据反比例函数的性质,逐一进行判断即可得答案.【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.19.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.20.如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数y=k x(x>0)的图象与线段AB 相交于点C ,且C 是线段AB 的中点,若△OAB 的面积为3,则k 的值为 ( )A .13B .1C .2D .3【答案】D【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k>0,∴k=3.故选:D.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.。

初中数学反比例函数易错题汇编含答案

初中数学反比例函数易错题汇编含答案
A.2B.3C.4D.6
【答案】C
【解析】
【分析】
过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为4,2,可得出横坐标,即可求得AE,BE的长,根据菱形的面积为2 ,求得AE的长,在Rt△AEB中,即可得出k的值.
【详解】
过点A作x轴的垂线,交CB的延长线于点E,
∵A,B两点在反比例函数y (x>0)的图象,且纵坐标分别为4,2,
同理△ANB≌△DGC(AAS),
∴AN=DG=1=AH,则点G(m, ﹣1),CG=DH,
AH=﹣1﹣m=1,解得:m=﹣2,
故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),
则点E(﹣ ,﹣5),GE= ,
CE=CG﹣GE=DH﹣GE=5﹣ = ,
故选:B.
【点睛】
本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.
故答案选C.
【点睛】
本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.
13.如图,已知点 , 分别在反比例函数 和 的图象上,若点 是线段 的中点,则 的值为().
A. B.8C. D.
【答案】A
【解析】
【分析】
设A(a,b),则B(2a,2b),将点A、B分别代入所在的双曲线解析式进行解答即可.
7.在反比例函数y= 图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,则有()
A.m>﹣ B.m<﹣ C.m≥﹣ D.m≤﹣
【答案】B
【解析】
【分析】
先根据y1<0<y2,有x1>x2,判断出反比例函数的比例系数的正负,求出m的取值范围即可.

人教版初中数学反比例函数易错题汇编含答案

人教版初中数学反比例函数易错题汇编含答案

人教版初中数学反比例函数易错题汇编含答案一、选择题1.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32 【答案】B【解析】【分析】 首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为32,列出方程,求解得出答案.【详解】把x=1代入1y x=得:y=1, ∴A(1,1),把x=2代入1y x =得:y=12, ∴B(2, 12), ∵AC//BD// y 轴, ∴C(1,K),D(2,k 2) ∴AC=k-1,BD=k 2-12, ∴S △OAC =12(k-1)×1,S △ABD =12 (k 2-12)×1, 又∵△OAC 与△ABD 的面积之和为32, ∴12(k-1)×1+12 (k 2-12)×1=32,解得:k=3; 故答案为B. 【点睛】:此题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.2.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD =g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x=, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.3.对于反比例函数2yx,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【答案】C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化4.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y =k x 中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.6.如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣5x(x<0)的图象交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF ⊥x轴于点F.下列说法正确的是()A.b=5B.BC=ADC.五边形CDFOE的面积为35D.当x<﹣2时,y1>y2【答案】B【解析】【分析】根据函数值与相应自变量的关系,可得C点坐标,根据待定系数法,可得一次函数解析式,可判断A选项;根据解方程组,可得C、D点的坐标,根据全等三角形的判定与性质,可判断B选项;根据图形的分割,可得梯形、矩形,根据面积的和差,可判断C选项;根据函数与不等式的关系:函数图象在上方的函数值大,可判断D选项.【详解】解:由反比例函数y 2=﹣5x (x <0)经过C ,点C 的横坐标为﹣1,得 y =﹣51-=5,即C (﹣1,5). 反比例函数与一次函数交于C 、D 点,5=﹣1+b ,解得b =6,故A 错误;CE ⊥y 轴于E 点,E (0,﹣5),BE =6﹣5=1.反比例函数与一次函数交于C 、D 点,联立65y x y x =+⎧⎪⎨=-⎪⎩, x 2+6x +5=0解得x 1=﹣5,x 2=﹣1,当x =﹣5时,y =﹣5+6=1,即D (﹣5,1),即DF =1,在△ADF 和△CBE 中,DAF BCE AFD CEB DF BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADF ≌△CBE (AAS ),AD =BC ,故B 正确;作CG ⊥x 轴,S △CDFOE =S 梯形DFGC +S 矩形CGOE=()(15)422DF CG FG OG CG ++⨯+g +1×5=17,故C 错误; 由一次函数图象在反比例函数图象上方的部分,得﹣5<x <﹣1,即当﹣5<x <﹣1时,y 1>y 2,故D 错误;故选:B .【点睛】本题考查了反比例函数综合题,利用了自变量与函数值的对应关系,点的坐标与函数解析式的关系,全等三角形的判定与性质,图形分割法求图形的面积,函数图象与不等式的关系.7.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.8.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号.【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.9.如图, 在同一坐标系中(水平方向是x 轴),函数k y x =和3y kx =+的图象大致是( ) A . B .C .D .【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A 、由函数y=k x 的图象可知k >0与y=kx+3的图象k >0一致,正确; B 、由函数y=k x 的图象可知k >0与y=kx+3的图象k >0,与3>0矛盾,错误; C 、由函数y=k x的图象可知k <0与y=kx+3的图象k <0矛盾,错误;D 、由函数y=k x 的图象可知k >0与y=kx+3的图象k <0矛盾,错误. 故选A .【点睛】 本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A【解析】【分析】 设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数12y x =-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x=的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .11.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.12.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x (x >0)的图象上,则经过点B 的反比例函数解析式为( )A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【答案】C 【解析】【分析】直接利用相似三角形的判定与性质得出13BCOAODSS=VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°3∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.13.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C.D.【答案】D【解析】【分析】先由反比例函数的图象得到k,b同号,然后分析各选项一次函数的图象即可.【详解】∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.14.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B【解析】【分析】 设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ),在mn y x = 中,令2y n =,解得:2m x =, ∵1CDE S =V ,∴111,12222m m n m n -=⨯=g 即 ∴4mn =∴4k =故选:B【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.15.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.16.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=k x 在同一坐标系内的大致图象是( ) A . B . C . D .【答案】D【解析】【分析】依据抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,即可得到k <0,进而得出一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=k x 的图象在第二四象限,据此即可作出判断.【详解】∵抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,∴△=4﹣4(k+1)>0,解得k <0,∴一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=k x的图象在第二四象限, 故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x 轴的交点情况确定出k 的取值范围是解本题的关键.17.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【答案】B【解析】【分析】 设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.18.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0【答案】B【解析】【分析】根据反比例函数的性质,逐一进行判断即可得答案.【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.19.已知点11(,)x y ,22(,)x y 均在双曲线1y x =-上,下列说法中错误的是( ) A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y >【答案】D【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线1yx=-,用y1、y2表示出x1,x2,据此进行判断.【详解】∵点(x1,y1),(x2,y2)均在双曲线1yx=-上,∴111yx=-,221yx=-.A、当x1=x2时,-11x=-21x,即y1=y2,故本选项说法正确;B、当x1=-x2时,-11x=21x,即y1=-y2,故本选项说法正确;C、因为双曲线1yx=-位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当0<x1<x2时,y1<y2,故本选项说法正确;D、因为双曲线1yx=-位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当x1<x2<0时,y1>y2,故本选项说法错误;故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y 轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S△AOD=12×OD×AD=12xy=1;S△COD=12×OC×OD=12xy=2;S△AOC= S△AOD+ S△COD=3,∴S△ABC= S△AOC+S△COB=6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.。

(易错题精选)初中数学反比例函数易错题汇编附答案解析

(易错题精选)初中数学反比例函数易错题汇编附答案解析

(易错题精选)初中数学反比例函数易错题汇编附答案解析一、选择题1.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.2.如图,反比例函数y=2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD =g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x=, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.3.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.4.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( ) A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.5.如图,点A 是反比例函数y =k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4【答案】B【解析】【分析】 作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|.【详解】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.5【答案】B 【解析】【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.7.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A .B .C .D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.8.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【解析】【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3∴点A 3a ,a )同理可得 点B 3,-3a )∴k 1332 , k 23a×(-3a )3a∴213333k a k a==-. 故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法.10.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.11.已知反比例函数y =﹣2x的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】B【解析】【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】 解:∵反比例函数y =﹣2x, ∴函数图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∵函数的图象上有三个点(x 1,y 1),(x 2,y 2)、(x 3,y 3),且x 1>x 2>0>x 3, ∴y 2<y 1<0,y 3>0∴. y 2<y 1<y 3故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.12.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论. 【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA ,∴251522BODOACSOBS OA⎛⎫==÷=⎪⎝⎭△△,∴5OBOA=,∴tan∠BAO=5OBOA=.故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.13.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数1(0)ky xx=>和2(0)ky xx=>的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B.12PMQMkk=C.这两个函数的图象一定关于x轴对称D.△POQ的面积是()1212k k+【答案】D【解析】【分析】【详解】解:根据反比例函数的性质逐一作出判断:A .∵当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据反比例函数的性质,由图形可得:1k >0,2k <0,而PM ,QM 为线段一定为正值,故12PM QM k k =,故此选项错误; C .根据1k ,2k 的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误;D .∵|1k |=PM•MO ,|2k |=MQ•MO ,∴△POQ 的面积=12MO•PQ=12MO (PM+MQ )=12MO•PM+12MO•MQ=()1212k k +. 故此选项正确.故选D .14.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.15.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD855=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴25424CD OD==,∴CD85=,OD45=,∴4585),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.16.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=, 1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.17.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( )A .B .C .D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a =+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.18.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【解析】【分析】设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a 根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.19.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【分析】过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V ∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.20.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E(3m,n-4m)∵E在双曲线y=kx上∴mn=3m(n-4m)∴mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.。

初中数学反比例函数易错题汇编含答案解析

初中数学反比例函数易错题汇编含答案解析

初中数学反比例函数易错题汇编含答案解析一、选择题1.如图,Rt △AOB 中,∠AOB=90°,AO=3BO ,OB 在x 轴上,将Rt △AOB 绕点O 顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=k x 的图象于点C ,且OC=2CA',则k 的值为( )A .4B .72C .8D .7【答案】C【解析】【详解】 解:设将Rt △AOB 绕点O 顺时针旋转至Rt △A'OB'的旋转角为α,OB=a ,则OA=3a , 由题意可得,点B′的坐标为(acosα,﹣asinα),点C 的坐标为(2asinα,2acosα), ∵点B'在反比例函数y=﹣2x 的图象上, ∴﹣asinα=﹣2acos α,得a 2sinαcosα=2, 又∵点C 在反比例函数y=k x 的图象上, ∴2acos α=k 2asin α,得k=4a 2sinαcosα=8. 故选C.【点睛】 本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C 的坐标,再通过反比例函数的性质求解即可.2.已知点()11,A y -、()22,B y -都在双曲线32m y x+=上,且12y y >,则m 的取值范围是( )A .0m <B .0m >C .32m >-D .32m <- 【答案】D【解析】【分析】 根据已知得3+2m <0,从而得出m 的取值范围.【详解】∵点()11,A y -、()22,B y -两点在双曲线32m y x+=上,且y 1>y 2, ∴3+2m <0, ∴32m <-, 故选:D .【点睛】 本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限.3.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【答案】B【解析】 【分析】先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3,从而得出S △AOB =3.【详解】∵A ,B 是反比例函数y=4x在第一象限内的图象上的两点, 且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2),当x=4时,y=1,即B (4,1),如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =12×4=2, ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3, ∴S △AOB =3,故选B .【点睛】本题考查了反比例函数()0k y k x=≠中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S=12|k|是解题的关键.4.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l 与底面半径r 之间的函数关系图象大致是( )A .B .C .D .【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180l π⋅⋅,整理得l=43r (r >0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180l π⋅⋅,所以l=43r (r >0), 即l 与r 为正比例函数关系,其图象在第一象限.故选A .【点睛】本题考查圆锥的计算;函数的图象.5.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.6.如图,在平面直角坐标系中,将△OAB (顶点为网格线交点)绕原点O 顺时针旋转90°,得到△OA ′B ′,若反比例函数y=k x的图象经过点A 的对应点A′,则k 的值为( )A.6 B.﹣3 C.3 D.6【答案】C【解析】【分析】直接利用旋转的性质得出A′点坐标,再利用反比例函数的性质得出答案.【详解】如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=kx的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=kx,解得:k=3.故选C.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出A′点坐标是解题关键.7.如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=kx上一点,k的值是()A.4 B.8 C.16 D.24【答案】C【解析】【分析】延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.8.反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是( )A .3B .5C .6D .8【答案】B【解析】【分析】 根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k 的取值范围,即可得答案.【详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方, ∴3k <2,即k<6, ∴3<k<6,故选:B.【点睛】 本题考查了反比例函数的图象的性质,熟记k=xy 是解题关键.9.如图,点P 是反比例函数(0)k y k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M . 连接OP . 若POM ∆的面积等于2. 5,则k 的值等于 ( )A .5-B .5C . 2.5-D .2. 5【答案】A【解析】【分析】 利用反比例函数k 的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k 的值.【详解】解:∵△POM 的面积等于2.5, ∴12|k|=2.5, 而k <0,∴k=-5,故选:A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.10.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论.【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数()1y xx=>与()5y xx=-<的图象上,∴S△BDO=52,S△AOC=12,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴251522BODOACS OBS OA⎛⎫==÷=⎪⎝⎭△△,∴5OBOA=,∴tan∠BAO=5OBOA=.故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.11.如图,A、C是函数1yx=的图象上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D.记Rt AOB∆的面积为1S,Rt COD∆的面积为2S,则1S和2S 的大小关系是()A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.12.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.13.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14- 【答案】B【解析】【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫- ⎪⎝⎭,然后由点的坐标即可求得答案.【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x =上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x=∵90AOB ∠=︒ ∴90AOD BOD ∠+∠=︒∴90BOE AOF ∠+∠=︒∵BE x ⊥,AF x ⊥∴90BEO OFA ∠=∠=︒∴90OAF AOF ∠+∠=︒∴BOE OAF ∠=∠∴BOE OAF V V ∽∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.14.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A.4 B.3 C.2 D.3 2【答案】B【解析】【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为32,列出方程,求解得出答案.【详解】把x=1代入1yx=得:y=1,∴A(1,1),把x=2代入1yx=得:y=12,∴B(2, 1 2 ),∵AC//BD// y轴,∴C(1,K),D(2,k 2 )∴AC=k-1,BD=k2-12,∴S△OAC=12(k-1)×1,S△ABD=12(k2-12)×1,又∵△OAC与△ABD的面积之和为32,∴12(k-1)×1+12(k2-12)×1=32,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.15.如图,点A,B是双曲线18yx=图象上的两点,连接AB,线段AB经过点O,点C为双曲线kyx=在第二象限的分支上一点,当ABCV满足AC BC=且:13:24AC AB=时,k的值为().A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴2()COF AOE S OC S OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12, ∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.16.点(2,﹣4)在反比例函数y=k x 的图象上,则下列各点在此函数图象上的是( ) A .(2,4)B .(﹣1,﹣8)C .(﹣2,﹣4)D .(4,﹣2) 【答案】D【解析】【详解】∵点(2,-4)在反比例函数y=k x 的图象上, ∴k =2×(-4)=-8.∵A 中2×4=8;B 中-1×(-8)=8;C 中-2×(-4)=8;D 中4×(-2)=-8,∴点(4,-2)在反比例函数y=k x 的图象上. 故选D .【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k ,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k 值是关键.17.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=, 1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.18.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确;故选B .【点睛】本题考查反比例函数的图像与性质.19.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C.D.【答案】D【解析】【分析】先由反比例函数的图象得到k,b同号,然后分析各选项一次函数的图象即可.【详解】∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.20.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S△AOD=12×OD×AD=12xy=1;S△COD=12×OC×OD=12xy=2;S△AOC= S△AOD+ S△COD=3,∴S△ABC= S△AOC+S△COB=6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.。

中考数学压轴题专题复习—反比例函数的综合含答案解析

中考数学压轴题专题复习—反比例函数的综合含答案解析

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线y=﹣x2+9的顶点为A,曲线DE是双曲线y= (3≤x≤12)的一部分,记作G1,且D(3,m)、E(12,m﹣3),将抛物线y=﹣x2+9水平向右移动a个单位,得到抛物线G2.(1)求双曲线的解析式;(2)设抛物线y=﹣x2+9与x轴的交点为B、C,且B在C的左侧,则线段BD的长为________;(3)点(6,n)为G1与G2的交点坐标,求a的值.(4)解:在移动过程中,若G1与G2有两个交点,设G2的对称轴分别交线段DE和G1于M、N两点,若MN<,直接写出a的取值范围.【答案】(1)把D(3,m)、E(12,m﹣3)代入y= 得,解得,所以双曲线的解析式为y= ;(2)2(3)解:把(6,n)代入y= 得6n=12,解得n=2,即交点坐标为(6,2),抛物线G2的解析式为y=﹣(x﹣a)2+9,把(6,2)代入y=﹣(x﹣a)2+9得﹣(6﹣a)2+9=2,解得a=6± ,即a的值为6± ;(4)抛物线G2的解析式为y=﹣(x﹣a)2+9,把D(3,4)代入y=﹣(x﹣a)2+9得﹣(3﹣a)2+9=4,解得a=3﹣或a=3+ ;把E(12,1)代入y=﹣(x﹣a)2+9得﹣(12﹣a)2+9=1,解得a=12﹣2 或a=12+2;∵G1与G2有两个交点,∴3+ ≤a≤12﹣2 ,设直线DE的解析式为y=px+q,把D(3,4),E(12,1)代入得,解得,∴直线DE的解析式为y=﹣ x+5,∵G2的对称轴分别交线段DE和G1于M、N两点,∴M(a,﹣ a+5),N(a,),∵MN<,∴﹣ a+5﹣<,整理得a2﹣13a+36>0,即(a﹣4)(a﹣9)>0,∴a<4或a>9,∴a的取值范围为9<a≤12﹣2 .【解析】【解答】解:(2)当y=0时,﹣x2+9=0,解得x1=﹣3,x2=3,则B(﹣3,0),而D(3,4),所以BE= =2 .故答案为2 ;【分析】(1)把D(3,m)、E(12,m﹣3)代入y= 得关于k、m的方程组,然后解方程组求出m、k,即可得到反比例函数解析式和D、E点坐标;(2)先解方程﹣x2+9=0得到B(﹣3,0),而D(3,4),然后利用两点间的距离公式计算DE的长;(3)先利用反比例函数图象上点的坐标特征确定交点坐标为(6,2),然后把(6,2)代入y=﹣(x ﹣a)2+9得a的值;(4)分别把D点和E点坐标代入y=﹣(x﹣a)2+9得a的值,则利用图象和G1与G2有两个交点可得到3+ ≤a≤12﹣2 ,再利用待定系数法求出直线DE的解析式为y=﹣ x+5,则M(a,﹣ a+5),N(a,),于是利用MN<得到﹣ a+5﹣<,然后解此不等式得到a<4或a>9,最后确定满足条件的a的取值范围.2.如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求△AOB的面积;(3)当k=1时,△OAB的面积记为S1,当k=2时,△OAB的面积记为S2,…,依此类推,当k=n时,△OAB的面积记为S n,若S1+S2+…+S n= ,求n的值.【答案】(1)解:当k=1时,直线y=x+k和双曲线y= 化为:y=x+1和y= ,解得,,∴A(1,2),B(﹣2,﹣1)(2)解:当k=2时,直线y=x+k和双曲线y= 化为:y=x+2和y= ,解得,,∴A(1,3),B(﹣3,﹣1)设直线AB的解析式为:y=mx+n,∴∴,∴直线AB的解析式为:y=x+2∴直线AB与y轴的交点(0,2),∴S△AOB= ×2×1+ ×2×3=4;(3)解:当k=1时,S1= ×1×(1+2)= ,当k=2时,S2= ×2×(1+3)=4,…当k=n时,S n= n(1+n+1)= n2+n,∵S1+S2+…+S n= ,∴ ×(…+n2)+(1+2+3+…n)= ,整理得:,解得:n=6.【解析】【分析】(1)两图像的交点就是求联立的方程组的解;(2)斜三角形△AOB的面积可转化为两水平(或竖直)三角形(有一条边为水平边或竖直边的三角形称为水平或竖直三角形)的面积和或差;(3)利用n个数的平方和公式和等差数列的和公式可求出.3.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.4.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.5.阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。

人教中考数学 反比例函数 培优易错试卷练习(含答案)及详细答案

人教中考数学 反比例函数 培优易错试卷练习(含答案)及详细答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。

人教版初三数学9年级下册 第26章(反比例函数)易错题型(附答案)

人教版初三数学9年级下册 第26章(反比例函数)易错题型(附答案)

A.y=- 4 x
B.y=- 8 x
C.y= 8 x
D.y= 16 x
2.如图,在平面直角坐标系中,矩形 OABC 的面积为 10,反比例函数 y= k (x>0)与 AB, x
BC 分别交于点 D,E,若 AD=2BD,则 k 的值为( )
5
10
20
5
A.
B.
C.
D.
3
3
3
2
易错点 2 反比例函数与一次函数的综合运用时易出错
A.当 x>0 时,y>0
B.图象在第二、四象限
C.y 随 x 的增大而减小
D.y 随 x 的增大而增大
5.在函数
y=
y
a2 x
1
(a
为常数)的图象上有三点(x1,y1),(x2,y2),(x3,y3),且
x1<
x2<0<x3,则函数 y1,y2,y3 的大小关系为( D )
A.y2<y3<y1
B.y3<y2<y1
x
4.直线 y=-x+2 与反比例函数 y= k (k≠0)相交于 A,B 两点,其中点 A 的横坐标为-1,则 k x
的值是( A )
A.-3
B.-1
C.1
D.3
26.2 实际问题与反比例函数
易错点 实际问题中,忽略反比例函数自变量的取值范围 1.已知圆柱的侧面积是 100 cm2,若圆柱底面半径为 r(单位:cm),高线长为 h(单位: cm),则 h 关于 r 的函数的图象大致是( B )
易错点 忽略反比例函数在不同象限内的增减性
1.若反比例函数 y= k (k<0)的图象如图所示,则 k 的值可以是( C ) x

A.-1

反比例函数易错题汇编及答案解析

反比例函数易错题汇编及答案解析

反比例函数易错题汇编及答案解析一、选择题1. 如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x 轴平行,A, B两点k的纵坐标分别为4, 2,反比例函数y (x>0)的图象经过A, B两点,若菱形ABCD的xA. 2B. 3C. 4D. 6【答案】C【解析】【分析】过点A作x轴的垂线,交CB的延长线于点E,根据A, B两点的纵坐标分别为4, 2,可得出横坐标,即可求得AE, BE的长,根据菱形的面积为2 5,求得AE的长,在Rt A AEB 中,即可得出k的值.【详解】k••• A, B两点在反比例函数y — ( x>0)的图象,且纵坐标分别为4, 2,xk k二A( , 4), B ( , 2),4 21 1 1二AE= 2, BE k k k,2 4 4•••菱形ABCD的面积为2話,••• BCX AE= 2即BC 話,• - AB= BC J5 ,在 RtMEB 中,BEAB 2 AE 2 11-k = 14故选:C. 【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题 的关键.k2. 如图,直线l 与x 轴、y 轴分别交于A 、B 两点,与反比例函数 y = 的图象在第一象限x【答案】C 【解析】 【分析】设0B = a ,根据相似三角形性质即可表示出点 C,把点C 代入反比例函数即可求得 k .【详解】作CD 丄x 轴于D, 设 0B = a , (a > 0) •••△ AOB 的面积为3,1•••严。

B = 3,6 0A = a•「CD // OB , .•.0D = 0A = 6 , CD = 20B = 2a ,a6.C (— , 2a ),ak「•反比例函数y = 经过点C ,xC. 12D . 183,则k 的值为(••• k = 6x 2殳12,ah丿X 0【点睛】本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.3. 如图,菱形OABC的顶点C的坐标为(3, 4),顶点A在x轴的正半轴上.反比例函数【答案】D【解析】【分析】【详解】如图,过点C作CD丄x轴于点D,•••点C 的坐标为(3, 4),二OD=3, CD=4.•根据勾股定理,得:OC=5.•••四边形OABC是菱形,•点B的坐标为(8, 4)D. 32C. 24•••点B 在反比例函数・(x>0)的图象上,•••四边形ABCD 为平行四边形,••• AD // x 轴,•••四边形ADOE 为矩形,•- S 平行四边形ABCD =S 矩形ADOE, 而S 矩形 ADOE =|k| ,•|k|=8 , 而k v 0 二 k=-8. 故选:B . 【点睛】kk本题考查了反比例函数 y=— ( k ^0系数k 的几何意义:从反比例函数y=— (20图象xx故选D.4.如图,点A 是反比例函数 ky = k(x v 0)的图象上的一点,过点 A 作平行四边形xABCD,使点B C 在x 轴上, 点D 在y 轴上•已知平行四边形 ABCD 的面积为8,则k 的值C. D .- 4【答案】B 【解析】 【分析】作AE 丄BC 于E ,由四边形 ABCD 为平行四边形得 形,所以S 平行四边形ABCD =S 矩形ADOE,根据反比例函数【详解】AD / x 轴,则可判断四边形 ADOE 为矩 k 的几何意义得到 S 矩形ADoE =|k|.8上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为 |k| .5.如图直线y = mx 与双曲线y=k 交于点xA 、B ,过A 作AM 丄x 轴于M 点,连接BM ,若C. 3 D .【解析】 【分析】此题可根据反比例函数图象的对称性得到 结合反比例函数系数 k 的几何意义得到 【详解】A 、B 两点关于原点对称,再由 k 的值.S A ABM =2S A AOM 并o 1S ZABM = 2S AOM = 2 , S/AOM = — | k|2则k =±2又由于反比例函数图象位于一三象限, k >0,所以k = 2.故选B . 【点睛】根据双曲线的对称性可得:OA=OB 则 1,k本题主要考查了反比例函数y = 中k 的几何意义,即过双曲线上任意x线,所得矩形面积为|k|,是经常考查的一个知识点.x 轴、y 轴垂OABF 中,/ OAB =Z B = 90 °点 A 在x 轴上,双曲线k y —过点F ,交xD . 166.如图,四边形A . 6B . 8 C. 12【答案】A【解析】【分析】由于BF 2,可以设F (m, n)贝U 0A=3m, BF=2m,由于S\BE(=4,贝U BE二4,然后即可OA 3 m4 4求出E (3m, n-),依据mn=3m (n-)可求mn=6,即求出k的值. m m【详解】如图,过F作FC丄OA于C,BF 2OA 3•••OA=3OC, BF=2OC •••若设F ( m, n) 则OA=3m, BF=2m■/ S^BEF=4BE= —则E (3m , n- 4)mk■/ E在双曲线y= 上x4•mn=3m (n-_m•mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出坐标是解题关键.7.如图,在x轴的上方,直角/B O A绕原点O按顺时针方向旋转•若/B O A的两边分别与1函数y 、yx -的图象交于B、A两点,则/ OAB大小的变化趋势为() xA.逐渐变小【答案】D【解析】B.逐渐变大C.时大时小D.保持不变【分析】如图,作辅助线;首先证明ABEO^^ OFA,,得到更OF OE;设B为(a,丄),A为AF a2 1 (b, b),得到OE=-a,EB=;,2OF=b, AF=-,进而得到a2b22,此为解决问题的关b键性结论;运用三角函数的定义证明知tan / OAB=_12为定值,即可解决问题.2【详解】解:分别过B和A作BE丄x轴于点^△BEC^^ OFAAF丄x轴于点F,BE OEOF AF,设点B为(a, -),A 为(b, f )a b则OE=-a, EB=1, OF=b, AF=2, a b可代入比例式求得a2b22,即a2根据勾股定理可得:OB/• tan / OAB= -----OA•••/ OAB大小是一个定值,因此/ OAB的大小保持不变故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.k-1 3-k&使关于x的分式方程X- 1=2的解为非负数,且使反比例函数y=尤图象过第一、三象限时满足条件的所有整数k的和为().A. 0B. 1C. 2D. 3【答案】B【解析】试题分析:分别根据题意确定k的值,然后相加即可.•••关于x的分式方程I =2的解为it + 1 3-k非负数,••• x= 2 >0解得:心1 ,••反比例函数y=女图象过第一、三象限,••• 3- k>0,解得:k v 3 ,• -1 <k< 3,整数为-1,0,1, 2, • x旳或1,•和为-1+2=1,故选,B.考点:反比例函数的性质.9.如图,YABDC的顶点A,B的坐标分别是A (0, 3),B 1, 0 ,顶点C,D在双曲线ky 上,边BD交y轴于点E,且四边形ACDE的面积是ABE面积的3倍,贝U k的值x为:()【答案】A【解析】【分析】过D作DF//y轴,过C作CF//X轴,交点为F,利用平行四边形的性质证明DCF ABO,利用平移写好C,D的坐标,由四边形ACDE的面积是ABE面积的3倍,得到DB 2BE,利用中点坐标公式求横坐标,再利用反比例函数写D的坐标,列方程求解k .【详解】解:过D作DF// y轴,过C作CF //X轴,交点为F ,则CF DF ,QY ABDC ,CDF , BAO的两边互相平行,AB DC,CDF BAO,Q DFC BOA 90 ,DCF ABO,CF BO, DF AO,k设C(m,—),mk由A(0, 3),B 1, 0结合平移可得:D(m 1,- 3),mQ四边形ACDE的面积是ABE面积的3倍,1—(DE CA)h BD13 — h BE BE ,2Q h BD h BE , AC BD,DE AC 3BEDE BD BE4BE,C. 3D. 12DB 2BE,k QD(m 1,3), B(1,0),X E 0,m一m 1 1小由中点坐标公式知:0,2m 2 ,k Q D(m 1,), m 1k k 3 ,2 1 2k 6.故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式, 掌握以上知识点是解题关键.2 110.方程x 23x 1 0的根可视为函数 y=x+3的图象与函数y —的图象交点的横坐 x 标,则方程x 3 2x 1 0的实根x o 所在的范围是( )据四个选项中X 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例 函数的图象在抛物线的上方两个点即可判定推断方程 x 3+2x-1=o 的实根x 所在范围.【详解】1 解:依题意得方程 x 3 2x 1 0的实根是函数y x2 2与y的图象交点的横坐标,xA . 0<x o < —4【答案】C 【解析】 【分析】1 1B . — <x o <4 3 1 1C. 一 <x o <3 2D . 1<X o <12首先根据题意推断方程 x 3+2x-仁0的实根是函数 y=x 2+2与y-的图象交点的横坐标,再根x这两个函数的图象如图所示,它们的交点在第一象限.当x=!时, y 2 x22-1, y14,此时抛物线的图象在反比例函数下方;416x1 当x=—时, y 2 x22舟,y13,此时抛物线的图象在反比例函数下方;3x1 当x=—时, y 2 x221, y12,此时抛物线的图象在反比例函数上方;2x当x=1时,y 2 x23, y -x1,此时抛物线的图象在反比例函数上方.1 1二方程x3 2x 1 0的实根x o所在范围为:—vx°v •3 2故选C.【点睛】此题考查了学生从图象中读取信息的数形结合能力•解决此类识图题,同学们要注意分析其中的关键点”,还要善于分析各图象的变化趋势.1-k11. 函数y= 与y=2x的图象没有交点,则k的取值范围是()xA. k<0B. k<1C. k>0D. k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k的取值范围.【详解】1-k 1-k 1-k令=2x,化简得:x2= ;由于两函数无交点,因此v 0,即卩k> 1.x 2 2故选D.【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12. 如图,过点C 1,2分别作x轴、y轴的平行线,交直线y x 5于A、B两点,k若反比例函数y (x 0)的图象与VABC有公共点,贝U k的取值范围是()xQc . 25 A. 2 k —4、XB. 2 k 6C. 2 k 4D. 4 k 6【答案】A【解析】【分析】由点C的坐标结合直线AB的解析式可得出点A、B的坐标,求出反比例函数图象过点C时的k值,将直线AB的解析式代入反比例函数解析式中,令其根的判别式△为可求出k的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB上,综上即可得出结论.【详解】解:令y = -X+ 5 中x= 1,贝y y = 4,二B (1 , 4);令y= -x+ 5 中y= 2,则x= 3,•- A (3, 2),当反比例函数y kxk (x> 0)的图象过点C时,有2 =1解得:k= 2,将y= - x+ 5代入y k 2中,整理得:X2-5X+ k= 0 , x•••△=( -5) 2-4k >025 5当k= 时,解得:x =4 25•/ 1 v v 3,2k 25•••若反比例函数y (x> 0)的图象与A ABC有公共点,则k的取值范围是2< k<x 4故选:A .【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A 、C 时的k 值以及直线与双曲线有一个交点时 k 的值.13. 如图,在平面直角坐标系中,点 ky= (x>0)的图象与线段 AB 相交于点x13连接OC,如图,利用三角形面积公式得到S AAOC = S AOAB =,再根据反比例函数系数k 的2 一1 3 几何意义得到—|k|=,然后利用反比例函数的性质确定22••• BA 丄x 轴于点A , C 是线段AB 的中点,o 13…S A AOC = — S OAB =—,2 2 而 S ZAOC = — |k| ,21 3 二 2|k|= 3,B 在第一象限,BA 丄x 轴于点A ,反比例函数C ,且C 是线段AB 的中点,若△OAB 的面积为3,则kB . 1C. 2 D . 3k 的值.A.-3【答案】D 【解析】 【分析】【详解】而 k >0,k=3.故选:D . 【点睛】k此题考查反比例函数系数 k 的几何意义,解题关键在于掌握在反比例函数 y= 图象中任取x一点,过这一个点向 x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k| .k 在第一象限的图象如图所示,则k 的值可能是()xA . 3B . 5 C. 6 D . 8【答案】B 【解析】 【分析】根据点(1, 3)在反比例函数图象下方,点( 3, 2)在反比例函数图象上方可得出 k 的取值范围,即可得答案• 【详解】•••点(1, 3)在反比例函数图象下方,••• k>3,•••点(3, 2)在反比例函数图象上方, • —<2,即 k<6,33<k<6,故选:B. 【点睛】本题考查了反比例函数的图象的性质,熟记k=xy 是解题关键.2 一15.如图,在平面直角坐标系中,函数y kx 与y的图象交于 A 、B 两点,过A 作yx4轴的垂线,交函数 y的图象于点 C,连接BC,则△ABC 的面积为()x14.反比例函数yA . 2【答案】C 【解析】 【分析】连接0C,根据图象先证明 △AOC 与A COB 的面积相等,再根据题意分别计算出 A AOD 与△ODC 的面积即可得 A ABC 的面积. 【详解】连接0C,设AC 丄y 轴交y 轴为点D , 如图,2 •••反比例函数y 二 为对称图形,x•••0为AB 的中点,二 S A AOC F S COB ,24 •.•由题意得A 点在y=-上,B 点在y= 上,xxC1 1…S A AOD = X OC K AD= xy=1 ;2 211S^OD =X OC X 0D=xy=2: 2 2S ZA OC = S^AOD + S A .COD =3 ,•- S A ABC = S^AOC +S A COB =6. 故答案选C. 【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌 握一次函数与反比例函数的交点问题与三角形面积运算C. 6 D .816.如图,点A , B 是双曲线y 18图象上的两点,连接 AB ,线段AB 经过点O ,点xkC 为双曲线y在第二象限的分支上一点,当 VABC 满足AC BC 且x和1 丿“ .r •/ AC BC, OA OB •••OC 丄 AB , •••/ CFO=Z COA =Z AEO = 90° °•••/ COF ^Z AOE = 90°, / AOE +Z EAO= 90° ° •••/ COF =Z OAE, • △ CF3A OEA,SCOF (OC )2 s^OE (O A ),AC: AB 13:24 时,k 的值为()•25 A.-16【答案】B 【解析】 B .25C.25D . 25【分析】 如图作AE 丄x 轴于E, CF 丄x 轴于F .连接OC .首先证明△CF3A OEA,推出S COF S AOE OC 2(OA ),因为CA : AB = 13:24, AO = OB ,推出 CA : OA = 13: 12,推出 CO OA =5: 12,S COF 可得出S — SAOE(OC )2 __25 OA 14425,因为S" 9,可得沁=-,再根据反比例函数的几何意义即可解决问题. 【详解】CF 丄x 轴于F .连接OC.•/ CA: AB= 13: 24, AO= OB,••• CA:OA= 13 : 12,••• CO: OA= 5: 12,S COF ,OC\2 25()=-SAOE 144• ' Sm oE= 9,• - S A COF= 2516• |k| 25 "2 16•/ k v 0,258故选:B.【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.217.若反比例函数y 2m 1 x m 2的图象在第二、四象限,贝U m的值是()1A. -1或1B.小于一的任意实数C. -1D.不能确定2【答案】C【解析】【分析】根据反比例函数的定义列出方程m221且2m 1 0求解即可.【详解】解: Q y2(2m 1)x m 2是反比例函数,2 m2 1 , 2m 10, 解之得m1.又因为图象在第二,四象限,所以2m 1 0 ,1解得m ,即m的值是1.2故选:C .【点睛】k对于反比例函数y — k 0 .( 1) k 0,反比例函数图像分布在一、三象限;(2)xk 0,反比例函数图像分布在第二、四象限内.18.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx - k 与反比例函数ky=—在同一坐标系内的大致图象是()【解析】【分析】依据抛物线 y=x 2+2x+k+1与x 轴有两个不同的交点,即可得到k v 0,进而得出k次函数y=kx - k 的图象经过第一二四象限,反比例函数 y=的图象在第二四象限,据此即x可作出判断•【详解】•••抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,=4- 4 (k+1) > 0,解得k v 0,.一次函数y=kx - k 的图象经过第一二四象限,k反比例函数y=k 的图象在第二四象限,x故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与 x 轴的交点情况确定出 k 的取值范围是解本题的关键•k19. 如图,矩形 ABCD 的顶点A , B 在x 轴的正半轴上,反比例函数 y —在第一象限x内的图象经过点D,交BC 于点E .卄 m , CE 右 AB 4 ,BE2 AD,OA3 4,则线段BC 的长度为())f ||\ocXf jdA . 13 B.-2C. 2D. 2虫【答案】B【解析】【分析】设OA 为4a ,则根据题干中的比例关系,可得 AD=3a , CE=2q BE=a,从而得出点 D 和点E 的坐标(用a 表示),代入反比例函数可求得 a 的值,进而得出 BC 长.【详解】 设 OA=4a ••• D(4a , 3a), E(4a+4, a)将这两点代入解析得;k 4a 41解得:a=-2 3 ••• BC=AD=-2故选:B 【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点 D 、E 的坐标,然后代入解析式求解•20. 若函数y m ^的图象在其象限内y 的值随x 值的增大而增大,贝U m 的取值范围是x( )A . m > - 2B . m v - 2 C. m >2D . m v 2【答案】B 【解析】 【分析】根据反比例函数的性质,可得 m+2v 0,从而得出m 的取值范围.【详解】•••函数y m -2的图象在其象限内y 的值随x 值的增大而增大,x•. m+2 v 0, 解得m v -2. 故选B .根据BE4 得:A D =3a ,CE =2a BE =a3ak 4a。

中考数学反比例函数(大题培优 易错 难题)含答案解析

中考数学反比例函数(大题培优 易错 难题)含答案解析

中考数学反比例函数(大题培优易错难题)含答案解析一、反比例函数1.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.2.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.3.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.4.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.5.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.6.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.7.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.【答案】(1)解:∵双曲线y= (m≠0)经过点A(2,﹣3),∴m=﹣6.∴双曲线的表达式为y=﹣.∵点B(n,2)在双曲线y=﹣上,∴点B的坐标为(﹣3,2).∵直线y=kx+b经过点A(2,﹣3)和点B(﹣3,2),∴解得,∴直线的表达式为y=﹣x﹣1(2)解:符合条件的点P的坐标是(1,﹣6)或(6,﹣1).【解析】【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)根据图象和函数解析式得出即可.8.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB= =5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,∴4= ,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y= ,得y= ,∴M点的纵坐标为:﹣4= ,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.9.如图,已知二次函数的图象与y轴交于点A(0,4),与x 轴交于点B,C,点C坐标为(8,0),连接AB,AC.(1)请直接写出二次函数的解析式.(2)判断△ABC的形状,并说明理由.(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.【答案】(1)解:∵二次函数的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标(8,0),∴解得∴抛物线表达式:(2)解:△ABC是直角三角形.令y=0,则解得x1=8,x2=-2,∴点B的坐标为(-2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∴BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形(3)解:∵A(0,4),C(8,0),AC= =4 ,①以A为圆心,以AC长为半径作圆,交轴于N,此时N的坐标为(-8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为( ,0)或( ,0)③作AC的垂直平分线,交g轴于N,此时N的坐标为(3,0),综上,若点N在轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(-8,0)、( ,0)、(3,0)、 ,0)【解析】【分析】(1)根据待定系数法即可求得;(2)根据拋物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC=10然后根据勾股定理的逆定理即可证得△ABC是直角三角形(3)分别以A.C两点为圆心,AC长为半径画弧,与m轴交于三个点,由AC的垂直平分线与c轴交于一个点,即可求得点N的坐标10.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.11.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.【答案】(1)解:∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP(2)解:∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴DB=DP(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ∵∠ACB=90°,AC=BC=4,∴AB=4 ,AC-AH=BC-BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ= +2∴AM=2 时,BQ有最大值为2.【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

反比例函数易错题汇编及答案解析

反比例函数易错题汇编及答案解析

其中的“关键点”,还要善于分析各图象的变化趋势.
11.函数 y= 1-k 与 y=2x 的图象没有交点,则 k 的取值范围是( x
A.k<0
B.k<1
C.k>0
【答案】D
【解析】
) D.k>1
【分析】
由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出 k 的取值范 围.
【详解】
令 1-k =2x,化简得:x2= 1-k ;由于两函数无交点,因此 1-k <0,即 k>1.
【详解】
解:过 D 作 DF// y 轴,过 C 作 CF / / x 轴,交点为 F ,
则 CF DF,
ABDC , CDF,BAO 的两边互相平行, AB DC,
CDF BAO, DFC BOA 90,
DCF ABO,
CF BO, DF AO,
设 C(m, k ), m
由 A (0, 3), B 1, 0结合平移可得: D(m 1, k 3) ,
x
2
2
故选 D.
3பைடு நூலகம்
9
x
当 x= 1 时, y x2 2 2 1 , y 1 2 ,此时抛物线的图象在反比例函数上方;
2
4
x
当 x=1 时, y x2 2 3 , y 1 1 ,此时抛物线的图象在反比例函数上方. x
∴方程
x3
2x
1
0
的实根
x0
所在范围为:
1 3
<x0
<
1 2

故选 C.
【点睛】
此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析

(易错题精选)初中数学反比例函数难题汇编及解析

(易错题精选)初中数学反比例函数难题汇编及解析

(易错题精选)初中数学反比例函数难题汇编及解析一、选择题1.下列函数:①y=-x;②y=2x;③1yx=-;④y=x2.当x<0时,y随x的增大而减小的函数有()A.1 个B.2 个C.3 个D.4 个【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y=-x中k<0,∴y随x的增大而减小,故本选项正确;∵正比例函数y=2x中,k=2,∴当x<0时,y随x的增大而增大,故本选项错误;∵反比例函数1yx-=中,k=-1<0,∴当x<0时函数的图像在第二象限,此时y随x的增大而增大,故本选项错误;∵二次函数y=x2,中a=1>0,∴此抛物线开口向上,当x<0时,y随x的增大而减小,故本选项正确.故选B.【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.2.如图,是反比例函数3yx=和7yx=-在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点,A B,点P在x轴上.则点P从左到右的运动过程中,APB△的面积是()A.10 B.4 C.5 D.从小变大再变小【答案】C【解析】【分析】连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5.故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.3.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD =g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x=, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.4.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A【解析】【分析】 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S V COF S =V 12=,则四边形OFAE 的面积为定值1k -.【详解】∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S V COF S =V 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.5.ABC ∆的面积为2,边BC 的长为x ,边BC 上的高为y ,则y 与x 的变化规律用图象表示大致是( )A .B .C .D .【答案】A【解析】【分析】根据三角形面积公式得出y 与x 的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得 122xy = ∴4y x=∵00x y >>,∴y 与x 的变化规律用图象表示大致是故答案为:A .【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.6.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( ) A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确;故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.7.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.8.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23BF OA =, ∴OA=3OC ,BF=2OC∴若设F (m ,n )则OA=3m ,BF=2m∵S △BEF =4∴BE=4m则E (3m ,n-4m ) ∵E 在双曲线y=k x 上 ∴mn=3m (n-4m) ∴mn=6即k=6.故选A .【点睛】 此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E 点坐标是解题关键.9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.如图,在平面直角坐标系中,将△OAB (顶点为网格线交点)绕原点O 顺时针旋转90°,得到△OA ′B ′,若反比例函数y=k x的图象经过点A 的对应点A′,则k 的值为( )A .6B .﹣3C .3D .6【答案】C【解析】【分析】直接利用旋转的性质得出A′点坐标,再利用反比例函数的性质得出答案.【详解】如图所示:∵将△OAB (顶点为网格线交点)绕原点O 顺时针旋转90°,得到△OA ′B ′,反比例函数y=k x 的图象经过点A 的对应点A′, ∴A ′(3,1), 则把A′代入y=k x , 解得:k=3.故选C .【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出A′点坐标是解题关键.11.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】本题主要考查了反比例函数y =k x中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.12.如图,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数y=k x(x>0)的图象与线段AB 相交于点C ,且C 是线段AB 的中点,若△OAB 的面积为3,则k 的值为 ( )A .13B .1C .2D .3【答案】D【解析】【分析】连接OC ,如图,利用三角形面积公式得到S △AOC =12S △OAB =32,再根据反比例函数系数k 的几何意义得到12|k|=32,然后利用反比例函数的性质确定k 的值. 【详解】连接OC ,如图,∵BA ⊥x 轴于点A ,C 是线段AB 的中点,∴S △AOC =12S △OAB =32, 而S △AOC =12|k|, ∴12|k|=32, 而k >0,∴k=3.故选:D .【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.13.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积(mL)V 与气体对气缸壁产生的压强(kPa)P 的关系可以用如图所示的函数图象进行表示,下列说法正确的是( )A .气压P 与体积V 的关系式为(0)P kV k =>B .当气压70P =时,体积V 的取值范围为70<V<80C .当体积V 变为原来的一半时,对应的气压P 也变为原来的一半D .当60100V 剟时,气压P 随着体积V 的增大而减小 【答案】D【解析】【分析】A.气压P与体积V表达式为P= kV,k>0,即可求解;B.当P=70时,600070V ,即可求解;C.当体积V变为原来的一半时,对应的气压P变为原来的两倍,即可求解;D.当60≤V≤100时,气压P随着体积V的增大而减小,即可求解.【详解】解:当V=60时,P=100,则PV=6000,A.气压P与体积V表达式为P= kV,k>0,故本选项不符合题意;B.当P=70时,V=600070>80,故本选项不符合题意;C.当体积V变为原来的一半时,对应的气压P变为原来的两倍,本选项不符合题意;D.当60≤V≤100时,气压P随着体积V的增大而减小,本选项符合题意;故选:D.【点睛】本题考查的是反比例函数综合运用.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,进而根据字母代表的意思求解.14.若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y=kx(k>0)的图象上,则y1、y2、y3的大小关系是()A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3【答案】B【解析】【分析】反比例函数y=kx(k>0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y随x的增大而减小,而A(-3,y1)、B(-1,y2)在第三象限双曲线上的点,可得y2<y1<0,C(1,y3)在第一象限双曲线上的点y3>0,于是对y1、y2、y3的大小关系做出判断.【详解】∵反比例函数y=kx(k>0)的图象在一、三象限,∴在每个象限内y随x的增大而减小,∵A(-3,y1)、B(-1,y2)在第三象限双曲线上,∴y2<y1<0,∵C(1,y3)在第一象限双曲线上,∴y3>0,∴y3>y1>y2,故选:B.【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.15.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=V . 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.16.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数C .-1D .不能确定 【答案】C【解析】【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-Q 是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C . 【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.17.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.18.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .33【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA =【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴2OB OA = 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解19.如图,平行于x 轴的直线与函数y =1k x(k 1>0,x >0),y =2k x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为6,则k 1﹣k 2的值为( )A .12B .﹣12C .6D .﹣6【答案】A【解析】【分析】 △ABC 的面积=12•AB•y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】 解:设:A 、B 点的坐标分别是A (1k m ,m )、B (2k m ,m ), 则:△ABC 的面积=12•AB•y A =12•(1k m ﹣2k m )•m =6, 则k 1﹣k 2=12.故选:A .【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.20.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.。

(易错题精选)初中数学反比例函数难题汇编含解析

(易错题精选)初中数学反比例函数难题汇编含解析

(易错题精选)初中数学反比例函数难题汇编含解析一、选择题1.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.2.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x =的图象上,且﹣2<a <0,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 【答案】D【解析】【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可.【详解】∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,∵-2<a <0,∴0>y 1>y 2,∵C (3,y 3)在第一象限,∴y 3>0,∴213y y y <<,故选D .【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.3.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A【解析】【分析】 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S V COF S =V 12=,则四边形OFAE 的面积为定值1k -.【详解】 ∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S V COF S =V 12=, ∴四边形OFAE 的面积11122k k =--=-,故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.4.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.5.已知点()11,A y -、()22,B y -都在双曲线32m y x +=上,且12y y >,则m 的取值范围是( )A .0m <B .0m >C .32m >-D .32m <- 【答案】D【解析】【分析】根据已知得3+2m <0,从而得出m 的取值范围.【详解】∵点()11,A y -、()22,B y -两点在双曲线32m y x+=上,且y 1>y 2, ∴3+2m <0, ∴32m <-, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限.6.如图,点A 、B 在函数k y x=(0x >,0k >且k 是常数)的图像上,且点A 在点B 的左侧过点A 作AM x ⊥轴,垂足为M ,过点B 作BN y ⊥轴,垂足为N ,AM 与BN 的交点为C ,连结AB 、MN .若CMN ∆和ABC ∆的面积分别为1和4,则k 的值为( )A .4B .2C 522D .6【答案】D【解析】 【分析】 设点M (a ,0),N (0,b ),然后可表示出点A 、B 、C 的坐标,根据CMN ∆的面积为1可求出ab =2,根据ABC ∆的面积为4列方程整理,可求出k .【详解】解:设点M (a ,0),N (0,b ),∵AM ⊥x 轴,且点A 在反比例函数k y x =的图象上, ∴点A 的坐标为(a ,k a ), ∵BN ⊥y 轴,同理可得:B (k b ,b ),则点C (a ,b ), ∵S △CMN =12NC•MC =12ab =1, ∴ab =2,∵AC =k a −b ,BC =k b−a , ∴S △ABC =12AC•BC =12(k a −b)•(k b −a)=4,即8k ab k ab a b--⋅=, ∴()2216k -=,解得:k =6或k =−2(舍去),故选:D .【点睛】本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.7.如图,反比例函数11k y x=的图象与正比例函数22y k x =的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( )A .0<x <2B .x >2C .x >2或-2<x <0D .x <-2或0<x <2【答案】D【解析】【分析】 先根据反比例函数与正比例函数的性质求出B 点坐标,由函数图象即可得出结论.【详解】∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称.∵A (2,1),∴B (-2,-1).∵由函数图象可知,当0<x <2或x <-2时函数y 1的图象在y 2的上方,∴使y 1>y 2的x 的取值范围是x <-2或0<x <2.故选D.8.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】 ∵()20y x x =<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b -≤≤-时图形W 增大过程中,图形内没有整点, 故选:D.【点睛】 此题考查函数图象,根据函数解析式正确画出图象是解题的关键.9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.函数k y x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.11.函数y =1-k x 与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0B .k<1C .k>0D .k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围.【详解】 令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k <0,即k >1. 故选D .【点睛】 函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.13.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形, ∴O 为AB 的中点,∴S △AOC =S △COB , ∵由题意得A 点在y=-2x 上,B 点在y=4x 上, ∴S △AOD =12×OD×AD=12xy=1; S △COD =12×OC×OD=12xy=2; S △AOC = S △AOD + S △COD =3,∴S △ABC = S △AOC +S △COB =6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.14.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数C .-1D .不能确定 【答案】C【解析】【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-Q 是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<,解得12m <,即m 的值是1-. 故选:C . 【点睛】对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.15.如图,点A 在反比例函数3(0)y x x =-<的图象上,点B 在反比例函数3(0)y x x=>的图象上,点C 在x 轴的正半轴上,则平行四边形ABCO 的面积是( )A .6B .5C .4D .3【答案】A【解析】【分析】 因为四边形ABCO 是平行四边形,所以点A 、B 纵坐标相等,即可求得A 、B 横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解.【详解】解:∵四边形ABCO 是平行四边形∴点A 、B 纵坐标相等设纵坐标为b ,将y=b 带入3(0)y x x =-<和3(0)y x x=>中, 则A 点横坐标为3b -,B 点横坐标为3b ∴AB=336()b b b--= ∴66ABCO S b b=⨯=Y 故选:A .【点睛】 本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.16.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)k y k x=≠的图象过D 点和边BC的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6 【答案】B 【解析】【分析】 设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ),在mn y x = 中,令2y n =,解得:2m x =, ∵1CDE S =V ,∴111,12222m m n m n -=⨯=g 即 ∴4mn =∴4k =故选:B【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.17.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.18.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0, ∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.19.若点A (﹣4,y 1)、B (﹣2,y 2)、C (2,y 3)都在反比例函数1y x =-的图象上,则y 1、y 2、y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 1>y 3>y 2 【答案】C【解析】【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论.【详解】∵点A(﹣4,y 1)、B(﹣2,y 2)、C(2,y 3)都在反比例函数1y x =-的图象上, ∴11144y =-=-,21122y =-=-,312y =-, 又∵﹣12<14<12, ∴y 3<y 1<y 2,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.20.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学反比例函数易错题汇编附答案解析一、选择题1.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.2.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x =≠上,AB x 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.3.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A .y =x 2B .y =xC .y =x+1D .1y x = 【答案】D【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.5.如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣5x(x<0)的图象交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF ⊥x轴于点F.下列说法正确的是()A.b=5B.BC=ADC .五边形CDFOE 的面积为35D .当x <﹣2时,y 1>y 2【答案】B【解析】【分析】根据函数值与相应自变量的关系,可得C 点坐标,根据待定系数法,可得一次函数解析式,可判断A 选项;根据解方程组,可得C 、D 点的坐标,根据全等三角形的判定与性质,可判断B 选项; 根据图形的分割,可得梯形、矩形,根据面积的和差,可判断C 选项;根据函数与不等式的关系:函数图象在上方的函数值大,可判断D 选项.【详解】解:由反比例函数y 2=﹣5x (x <0)经过C ,点C 的横坐标为﹣1,得 y =﹣51-=5,即C (﹣1,5). 反比例函数与一次函数交于C 、D 点,5=﹣1+b ,解得b =6,故A 错误;CE ⊥y 轴于E 点,E (0,﹣5),BE =6﹣5=1.反比例函数与一次函数交于C 、D 点,联立65y x y x =+⎧⎪⎨=-⎪⎩, x 2+6x +5=0解得x 1=﹣5,x 2=﹣1,当x =﹣5时,y =﹣5+6=1,即D (﹣5,1),即DF =1,在△ADF 和△CBE 中,DAF BCE AFD CEB DF BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADF ≌△CBE (AAS ),AD =BC ,故B 正确;作CG ⊥x 轴,S△CDFOE=S梯形DFGC+S矩形CGOE=()(15)422DF CG FGOG CG++⨯++1×5=17,故C错误;由一次函数图象在反比例函数图象上方的部分,得﹣5<x<﹣1,即当﹣5<x<﹣1时,y1>y2,故D错误;故选:B.【点睛】本题考查了反比例函数综合题,利用了自变量与函数值的对应关系,点的坐标与函数解析式的关系,全等三角形的判定与性质,图形分割法求图形的面积,函数图象与不等式的关系.6.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E(3m,n-4m)∵E在双曲线y=kx上∴mn=3m(n-4m)∴mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.7.使关于x的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k的和为().A.0 B.1 C.2 D.3【答案】B【解析】试题分析:分别根据题意确定k的值,然后相加即可.∵关于x的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k>0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0或1,∴和为-1+2=1,故选,B.考点:反比例函数的性质.8.下列函数:①y=-x;②y=2x;③1yx=-;④y=x2.当x<0时,y随x的增大而减小的函数有()A.1 个B.2 个C.3 个D.4 个【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y=-x中k<0,∴y随x的增大而减小,故本选项正确;∵正比例函数y=2x中,k=2,∴当x<0时,y随x的增大而增大,故本选项错误;∵反比例函数1yx-=中,k=-1<0,∴当x<0时函数的图像在第二象限,此时y随x的增大而增大,故本选项错误;∵二次函数y=x2,中a=1>0,∴此抛物线开口向上,当x<0时,y随x的增大而减小,故本选项正确.故选B.【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.9.如图,反比例函数y=2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.1 B.2 C.4 D.8【答案】C【解析】【分析】由反比例函数的系数k 的几何意义可知:2OA AD =,然后可求得OA AB 的值,从而可求得矩形OABC 的面积.【详解】 解:反比例函数2y x=, 2OA AD ∴=.D 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=.故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.10.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号.【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.11.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】由题意得:S 1=S 2=12|k|=12. 故选:C .【点睛】本题主要考查了反比例函数y =k x 中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.12.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=kx(k>0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y随x的增大而减小,而A(-3,y1)、B(-1,y2)在第三象限双曲线上的点,可得y2<y1<0,C(1,y3)在第一象限双曲线上的点y3>0,于是对y1、y2、y3的大小关系做出判断.【详解】∵反比例函数y=kx(k>0)的图象在一、三象限,∴在每个象限内y随x的增大而减小,∵A(-3,y1)、B(-1,y2)在第三象限双曲线上,∴y2<y1<0,∵C(1,y3)在第一象限双曲线上,∴y3>0,∴y3>y1>y2,故选:B.【点睛】此题考查反比例函数的图象和性质,解题关键在于当k>0,时,在每个象限内y随x的增大而减小;当k<0时,y随x的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.13.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD85=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴25424CD OD==,∴CD855=,OD455=,∴C(455,855),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.14.如图,点A,B是双曲线18yx=图象上的两点,连接AB,线段AB经过点O,点C为双曲线kyx=在第二象限的分支上一点,当ABC满足AC BC=且:13:24AC AB=时,k的值为().A .2516-B .258-C .254-D .25-【答案】B 【解析】 【分析】如图作AE ⊥x 轴于E ,CF ⊥x 轴于F .连接OC .首先证明△CFO ∽△OEA ,推出2()COF AOE S OC S OA ∆∆=,因为CA :AB =13:24,AO =OB ,推出CA :OA =13:12,推出CO :OA =5:12,可得出2()COF AOE S OC S OA ∆∆==25144,因为S △AOE =9,可得S △COF =2516,再根据反比例函数的几何意义即可解决问题. 【详解】解:如图作AE ⊥x 轴于E ,CF ⊥x 轴于F .连接OC .∵A 、B 关于原点对称, ∴OA =OB , ∵AC =BC ,OA =OB , ∴OC ⊥AB ,∴∠CFO =∠COA =∠AEO =90°,∴∠COF +∠AOE =90°,∠AOE +∠EAO =90°, ∴∠COF =∠OAE , ∴△CFO ∽△OEA , ∴2()COF AOE S OC S OA∆∆=, ∵CA :AB =13:24,AO =OB , ∴CA :OA =13:12, ∴CO :OA =5:12, ∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9, ∴S △COF =2516, ∴||25216k =,∵k <0, ∴258k =-故选:B . 【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.15.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大 C .在第三象限,y 随x 的增大而减小 D .在第四象限,y 随x 的增大而减小【答案】B 【解析】 【分析】 反比例函数2y x=-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】 解:反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <,∴图象在第二象限且y 随x 的增大而增大.故选:B . 【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0ky k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.16.反比例函数y=的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A.B.C.D.【答案】D【解析】【分析】先由反比例函数的图象得到k,b同号,然后分析各选项一次函数的图象即可.【详解】∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.17.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=kx在同一坐标系内的大致图象是()A.B.C.D.【答案】D【解析】【分析】依据抛物线y=x2+2x+k+1与x轴有两个不同的交点,即可得到k<0,进而得出一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=kx的图象在第二四象限,据此即可作出判断.【详解】∵抛物线y=x 2+2x+k+1与x 轴有两个不同的交点, ∴△=4﹣4(k+1)>0, 解得k <0,∴一次函数y=kx ﹣k 的图象经过第一二四象限, 反比例函数y=kx的图象在第二四象限, 故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x 轴的交点情况确定出k 的取值范围是解本题的关键.18.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A 2B .12C .14D 3【答案】A 【解析】 【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA =【详解】∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°, ∠CAO =∠BOD , ∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴22OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解19.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0 【答案】B 【解析】 【分析】根据反比例函数的性质,逐一进行判断即可得答案. 【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4); ②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B . 【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.20.方程2x 3x 10+-=的根可视为函数3yx 的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( )A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.。

相关文档
最新文档