2020-2021年高二数学排列二 人教版

合集下载

2021-2022年高二下学期第二次段考数学试卷(文科)含解析

2021-2022年高二下学期第二次段考数学试卷(文科)含解析

2021-2022年高二下学期第二次段考数学试卷(文科)含解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题纸相应位置上.A)∩B=.1.已知全集U={0,1,2,3},集合A={0,1},B={1,2,3},则(∁U2.已知幂函数f(x)=k•xα(k,α∈R)的图象过点(,),则k+α=.3.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一抽取的学生人数为名.4.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是.5.“α=”是“tanα=1”的条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)6.如图是一个算法流程图,则输出S的值是.7.函数f(x)=ln(x2﹣3x+2)的单调减区间为.8.由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是.9.定义在R上的函数f(x),对任意x∈R都有f(x)•f(x+1)=1,当x∈(﹣2,0)时,f(x)=4x,则f=x2﹣3x+a,若函数f(x)在区间(1,3)内有零点,则实数a的取值范围为.11.若f(x)=是R上的单调函数,则实数a的取值范围为.12.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f (x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为.13.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值范围是.14.已知f(x)=,a∈R,对任意非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数k的取值范围是.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:组号分组频数频率第一组[230,235)8 0.16第二组[235,240)①0.24第三组[240,245)15 ②第四组[245,250)10 0.20第五组[250,255] 5 0.10合计50 1.00(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.16.已知命题:“∃x∈[﹣1,1],使等式m=x2﹣x成立”是真命题.(1)求实数m的取值集合M;(2)设不等式(x﹣a)[x﹣(2﹣a)]<0的解集为N,若N⊆M,求a的取值范围.17.已知二次函数f(x)有两个零点0和﹣2,且f(x)最小值是﹣1,函数g(x)与f(x)的图象关于原点对称.(1)求f(x)和g(x)的解析式;(2)若h(x)=f(x)﹣λg(x)在区间[﹣1,1]上是增函数,求实数λ的取值范围.18.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.19.已知函数f(x)=|x﹣m|和函数g(x)=x|x﹣m|+m2﹣7m.(1)若方程f(x)=|m|在[﹣4,+∞)上有两个不同的解,求实数m的取值范围;(2)若对任意x1∈(﹣∞,4],均存在x2∈[3,+∞),使得f(x1)>g(x2)成立,求实数m的取值范围.20.对于函数f(x),若存在实数对(a,b),使得等式f(a+x)•f(a﹣x)=b对定义域中的每一个x都成立,则称函数f(x)是“(a,b)型函数”.(1)判断函数f(x)=4x是否为“(a,b)型函数”,并说明理由;(2)已知函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣m(x﹣1)+1(m>0),若当x∈[0,2]时,都有1≤g(x)≤3成立,试求m的取值范围.xx江苏省泰州市泰兴一中高二(下)第二次段考数学试卷(文科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题纸相应位置上.1.已知全集U={0,1,2,3},集合A={0,1},B={1,2,3},则(∁U A)∩B={2,3} .【考点】交、并、补集的混合运算.【分析】直接利用补集和交集的运算进行求解即可得到答案.【解答】解:由U={0,1,2,3},集合A={0,1},∴∁U A={2,3},又B={1,2,3},∴(∁U A)∩B={2,3}∩{1,2,3}={2,3}.故答案为:{2,3}.2.已知幂函数f(x)=k•xα(k,α∈R)的图象过点(,),则k+α=.【考点】幂函数的概念、解析式、定义域、值域.【分析】利用幂函数的定义求出k,利用函数的图象经过的点求出α,即可得到结果.【解答】解:因为幂函数f(x)=k•xα(k,α∈R)由幂函数的定义可知k=1,幂函数f(x)=k•xα(k,α∈R)的图象过点(,),所以,,∴k+α==.故答案为:.3.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一抽取的学生人数为32名.【考点】分层抽样方法.【分析】先求出高一学生在总体中所占的比例,再用样本容量乘以此比例,即得应从高一年级抽取的学生人数.【解答】解:高一学生在总体中所占的比例为=,故应从高一年级抽取的学生人数为80×=32,故答案为:32.4.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是.【考点】计数原理的应用.【分析】求出从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议的基本事件,甲被选中的基本事件,即可求出甲被选中的概率.【解答】解:从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,共有=6种方法,甲被选中,共有3种方法,∴甲被选中的概率是=.故答案为:.5.“α=”是“tanα=1”的充分不必要条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件、必要条件的概念,以及tanα=1时α的取值情况即可判断是tanα=1的什么条件.【解答】解:时,tanα=1;tanα=1时,,所以不一定得到;∴是tanα=1的充分不必要条件.故答案为:充分不必要.6.如图是一个算法流程图,则输出S的值是35.【考点】程序框图.【分析】执行算法流程,写出每次循环得到的S,k的值,当k=7时满足条件k>5,输出S 的值35.【解答】解:执行算法流程,有S=0,k=1不满足条件k>5,S=1,k=3,不满足条件k>5,S=10,k=5,不满足条件k>5,S=35,k=7,满足条件k>5,输出S的值35.故答案为:35.7.函数f(x)=ln(x2﹣3x+2)的单调减区间为(﹣∞,1).【考点】复合函数的单调性.【分析】求出函数的定义域,结合复合函数的单调性的关系进行求解即可.【解答】解:由x2﹣3x+2>0得x>2或x<1,设t=x2﹣3x+2,则y═lnt为增函数,要求函数f(x)=ln(x2﹣3x+2)的单调减区间,即求函数t=x2﹣3x+2的递减区间,∵t=x2﹣3x+2的递减区间为(﹣∞,1),∴函数f(x)=ln(x2﹣3x+2)的单调减区间为(﹣∞,1),故答案为:(﹣∞,1).8.由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是1.【考点】一元二次不等式的解法.【分析】由题意知“任意x∈R,使x2+2x+m>0”是真命题,由二次函数的性质得△<0,求出m的范围,结合题意求出a的值.【解答】解:∵“存在x∈R,使x2+2x+m≤0”是假命题,∴“任意x∈R,使x2+2x+m>0”是真命题,∴△=4﹣4m<0,解得m>1,故a的值是1.故答案为:1.9.定义在R上的函数f(x),对任意x∈R都有f(x)•f(x+1)=1,当x∈(﹣2,0)时,f(x)=4x,则f=f(x),利用函数的周期性,将条件进行转化即可得到结论.【解答】解:对任意x∈R都有f(x)•f(x+1)=1,可得f(x+2)==f(x),∴f(x+2)=f(x),函数f(x)是定义在R上是周期函数周期为2,当x∈(﹣2,0)时,f(x)=4x,则f=f(﹣1)=4﹣1=故答案为:.10.设f(x)=x2﹣3x+a,若函数f(x)在区间(1,3)内有零点,则实数a的取值范围为(0,] .【考点】函数零点的判定定理;函数奇偶性的性质.【分析】函数f(x)在区间(1,3)内有零点,即a=﹣x2+3x在x∈(1,3)上成立即可,转化出求函数的值域问题即可获得问题的解答.【解答】解:函数f(x)在区间(1,3)内有零点,即a=﹣x2+3x在x∈(1,3)上成立,∵a=﹣x2+3x=﹣(x﹣)2+,x∈(1,3)∴a∈(0,].故答案为:(0,].11.若f(x)=是R上的单调函数,则实数a的取值范围为[﹣,0).【考点】函数单调性的性质.【分析】分f(x)是R上的减函数、增函数两种情况,分别求得实数a的取值范围,再取并集,即得所求.【解答】解:若f(x)=是R上的单调减函数,则,求得﹣≤a<0.若f(x)=是R上的单调增函数,则,求得a∈∅,综上可得实数a的范围为[﹣,0),故答案为:[﹣,0).12.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为7.【考点】函数零点的判定定理.【分析】如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,结合图象即可得出零点个数.【解答】解:如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,利用偶函数的性质可得x ∈[﹣2,0)上的图象.x∈[0,2)时,g(0)=g(1)=0,x∈[2,4]时,g(2)=g(4)=g(0)=0,g(3)=g(1)=0.x∈[﹣2,0)时,g(﹣2)=g(2)=0,g(﹣1)=g(1)=0.指数可得:函数g(x)共有7个零点.故答案为:7.13.已知函数当t∈[0,1]时,f(f(t))∈[0,1],则实数t的取值范围是.【考点】函数与方程的综合运用.【分析】通过t的范围,求出f(t)的表达式,判断f(t)的范围,然后代入已知函数,通过函数的值域求出t的范围即可.【解答】解:因为t∈[0,1],所以f(t)=3t∈[1,3],又函数,所以f(f(t)=,因为f(f(t))∈[0,1],所以解得:,又t∈[0,1],所以实数t的取值范围.故答案为:.14.已知f(x)=,a∈R,对任意非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则实数k的取值范围是(﹣∞,0]∪[8,+∞).【考点】分段函数的应用.【分析】由题意结合函数图象可将问题转化为关于a的方程(3﹣a)2=k(1﹣a2)有实数解,解△≥0可得.【解答】解:∵f(x)=)=,∴当x=0时,f(x)=k(1﹣a2),∵对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立.∴函数必须为连续函数,∴(3﹣a)2=k(1﹣a2),问题转化为(k+1)a2﹣6a+9﹣k=0有实数解,∴△=62﹣4(k+1)(9﹣k)≥0,解得k≤0或k≥8.故答案为:(﹣∞,0]∪[8,+∞).二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:组号分组频数频率第一组[230,235)8 0.16第二组[235,240)①0.24第三组[240,245)15 ②第四组[245,250)10 0.20第五组[250,255] 5 0.10合计50 1.00(1)写出表中①②位置的数据;(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.【考点】等可能事件的概率;分层抽样方法;频率分布表.【分析】(1)由频率分布表,可得①位置的数据为50﹣8﹣15﹣10﹣5=12,②位置的数据为1﹣0.16﹣0.24﹣0.20﹣0.1=0.3,即可得答案;(2)读表可得,第三、四、五组分别有15、10、5人,共15+10+5=30人,要求从中用分层抽样法抽取6名学生,抽取比例为,由第三、四、五组的人数,计算可得答案;(3)设(2)中选取的6人为abcdef(其中第四组的两人分别为d,e),记“2人中至少有一名是第四组”为事件A,用列举法列举从6人中任取2人的所有情形,进而可得事件A所含的基本事件的种数,由等可能事件的概率,计算可得答案.【解答】解:(1)由频率分布表,可得①位置的数据为50﹣8﹣15﹣10﹣5=12,②位置的数据为1﹣0.16﹣0.24﹣0.20﹣0.1=0.3,故①②位置的数据分别为12、0.3;(2)读表可得,第三、四、五组分别有15、10、5人,共15+10+5=30人,要求从中用分层抽样法抽取6名学生,则第三组参加考核人数为15×=3,第四组参加考核人数为10×=2,第五组参加考核人数为5×=1,故第三、四、五组参加考核人数分别为3、2、1;(3)设(2)中选取的6人为a、b、c、d、e、f(其中第四组的两人分别为d,e),则从6人中任取2人的所有情形为:{ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef}共有15种;记“2人中至少有一名是第四组”为事件A,则事件A所含的基本事件的种数有9种.所以,故2人中至少有一名是第四组的概率为.16.已知命题:“∃x∈[﹣1,1],使等式m=x2﹣x成立”是真命题.(1)求实数m的取值集合M;(2)设不等式(x﹣a)[x﹣(2﹣a)]<0的解集为N,若N⊆M,求a的取值范围.【考点】集合的包含关系判断及应用;特称命题.【分析】(1)若方程m=x2﹣x在[﹣1,1]上有解,即m的取值范围为函数y=x2﹣x在[﹣1,1]上的值域,结合二次函数的图象和性质,要得M;(2)对a的取值进行分类讨论,求出不等式(x﹣a)[x﹣(2﹣a)]<0的解集为N,结合N⊆M,可得a的取值范围.【解答】解:(1)由题意知,方程m=x2﹣x在[﹣1,1]上有解,即m的取值范围为函数y=x2﹣x在[﹣1,1]上的值域,由函数y=x2﹣x的图象是开口朝上,且以直线x=为对称轴的抛物线,故当x=时,函数最小值为﹣,当x=﹣1时,函数最大值为2,故m=[﹣,2],(2)当a=1时,解集N为空集,满足题意;当a>1时,a>2﹣a,此时集合N={x|2﹣a<x<a},则1<a≤2当a<1时,a<2﹣a,此时集合N={x|a<x<2﹣a},则0≤a<1综上:0≤a≤217.已知二次函数f(x)有两个零点0和﹣2,且f(x)最小值是﹣1,函数g(x)与f(x)的图象关于原点对称.(1)求f(x)和g(x)的解析式;(2)若h(x)=f(x)﹣λg(x)在区间[﹣1,1]上是增函数,求实数λ的取值范围.【考点】函数的零点;函数解析式的求解及常用方法;函数单调性的判断与证明.【分析】(1)根据二次函数的零点,利用待定系数法即可求f(x)和g(x)的解析式;(2)根据h(x)=f(x)﹣λg(x)在区间[﹣1,1]上是增函数,确定对称轴和对应区间之间的关系,即可求实数λ的取值范围.【解答】解:(1)∵二次函数f(x)有两个零点0和﹣2,∴设f(x)=ax(x+2)=ax2+2ax(a>0).f(x)图象的对称轴是x=﹣1,∴f(﹣1)=﹣1,即a﹣2a=﹣1,∴a=1,∴f(x)=x2+2x.∵函数g(x)的图象与f(x)的图象关于原点对称,∴g(x)=﹣f(﹣x)=﹣x2+2x.(2)由(1)得h(x)=x2+2x﹣λ(﹣x2+2x)=(λ+1)x2+2(1﹣λ)x.①当λ=﹣1时,h(x)=4x满足在区间[﹣1,1]上是增函数;②当λ<﹣1时,h(x)图象对称轴是x=则≥1,又λ<﹣1,解得λ<﹣1;③当λ>﹣1时,同理需≤﹣1,又λ>﹣1,解得﹣1<λ≤0.综上,满足条件的实数λ的取值范围是(﹣∞,0].18.某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别用x表示y和S的函数关系式,并给出定义域;(2)怎样设计能使S取得最大值,并求出最大值.【考点】函数模型的选择与应用.【分析】(1)总面积为xy=3000,且2a+6=y,则y=,(其中6<x<500),从而运动场占地面积为S=(x﹣4)a+(x﹣6)a,代入整理即得;(2)由(1)知,占地面积S=3030﹣6x﹣=3030﹣(6x+),由基本不等式可得函数的最大值,以及对应的x的值.【解答】解:(1)由已知xy=3000,∴,其定义域是(6,500).S=(x﹣4)a+(x﹣6)a=(2x﹣10)a,∵2a+6=y,∴,∴,其定义域是(6,500).(2),当且仅当,即x=50∈(6,500)时,上述不等式等号成立,此时,x=50,y=60,S max=2430.答:设计x=50m,y=60m时,运动场地面积最大,最大值为2430平方米.19.已知函数f(x)=|x﹣m|和函数g(x)=x|x﹣m|+m2﹣7m.(1)若方程f(x)=|m|在[﹣4,+∞)上有两个不同的解,求实数m的取值范围;(2)若对任意x1∈(﹣∞,4],均存在x2∈[3,+∞),使得f(x1)>g(x2)成立,求实数m的取值范围.【考点】带绝对值的函数;函数的最值及其几何意义;根的存在性及根的个数判断.【分析】(1)解方程f(x)=|m|,解得x=0,或x=2m.由题意可得2m≥﹣4,且2m≠0,由此求得实数m的取值范围.(2)命题等价于任意x1∈(﹣∞,4],任意的x2∈[3,+∞),f min(x1)>g min(x2)成立,分m<3、3≤m<4、4≤m三种情况,分别求出实数m的取值范围再取并集,即得所求.【解答】解:(1)方程f(x)=|m|,即|x﹣m|=|m|,解得x=0,或x=2m.要使方程|x﹣m|=|m|在[﹣4,+∞)上有两个不同的解,需2m≥﹣4,且2m≠0.解得m≥﹣2 且m≠0.故实数m的取值范围为[﹣2,0)∪(0,+∞).(2)由于对任意x1∈(﹣∞,4],都存在x2∈[3,+∞),使f(x1)>g(x2)成立,故有f min(x1)>g min(x2)成立.又函数f(x)=|x﹣m|=,故f min(x1)=.又函数g(x)=x|x﹣m|+m2﹣7m=,故g min(x2)=.当m<3时,有0>m2﹣10m+9,解得1<m<3.当3≤m<4,有0>m2﹣7m,解得3≤m<4.当4≤m,有m﹣4>m2﹣7m,解得4≤m<4+2.综上可得,1<m<4+2,故实数m的取值范围为(1,4+2 ).20.对于函数f(x),若存在实数对(a,b),使得等式f(a+x)•f(a﹣x)=b对定义域中的每一个x都成立,则称函数f(x)是“(a,b)型函数”.(1)判断函数f(x)=4x是否为“(a,b)型函数”,并说明理由;(2)已知函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2﹣m(x﹣1)+1(m>0),若当x∈[0,2]时,都有1≤g(x)≤3成立,试求m的取值范围.【考点】函数与方程的综合运用;抽象函数及其应用.【分析】(1)利用定义,直接判断求解即可.(2)由题意得,g(1+x)g(1﹣x)=4,所以当x∈[1,2]时,,其中2﹣x∈[0,1],而x∈[0,1]时,g(x)=x2+m(1﹣x)+1=x2﹣mx+m+1>0,且其对称轴方程为,通过①当,②当,③当,求出函数的值域,然后推出所求m的取值范围.【解答】解:(1)函数f(x)=4x是“(a,b)型函数”…因为由f(a+x)•f(a﹣x)=b,得16a=b,所以存在这样的实数对,如a=1,b=16…(2)由题意得,g(1+x)g(1﹣x)=4,所以当x∈[1,2]时,,其中2﹣x∈[0,1],而x∈[0,1]时,g(x)=x2+m(1﹣x)+1=x2﹣mx+m+1>0,且其对称轴方程为,①当,即m>2时,g(x)在[0,1]上的值域为[g(1),g(0)],即[2,m+1],则g(x)在[0,2]上的值域为,由题意得,此时无解…②当,即1≤m≤2时,g(x)的值域为,即,所以则g(x)在[0,2]上的值域为,则由题意得且,解得1≤m≤2…③当,即0<m≤1时,g(x)的值域为,即,则g(x)在[0,2]上的值域为=,则,解得.综上所述,所求m的取值范围是…xx10月15日> 35055 88EF 裯`M25317 62E5 拥33269 81F5 臵y•(N35864 8C18 谘34971 889B 袛。

2020-2021学年高二数学人教B版必修第二册排列、组合与二项式定理小结精品课件

2020-2021学年高二数学人教B版必修第二册排列、组合与二项式定理小结精品课件


1 x
项的系数C97 (1)7
36
夯实基础
例4.已知 (x3 1 )n的展开式中,各项二项式系数和是512,
x
(4)系数最大的项是第几项?
解:
Tk 1
C9k
(
x3
)9k
(
1 x
)k
C9k (1)k x274k
T5 C94 (1)4 C94
故系数最大的项是第5项.
夯实基础
总结:二项式定理常见问题及解决策略: 1.某一项的问题——Tk1 Cnk ankbk 2.和的问题—— 恰当赋值
x
(2)求各项系数的和;
解:
(x3
1 x3
)9
C90 ( x3)9 (1)0 (
1 x3
)0
C91( x3)8(1)1(
1 x3
)1
C99
(
x
3
)0
(
1)9
(
1 x3
)0
夯实基础
(x3
1 x3
)9
C90
(
x
3
)9
(1)0
(
1 x3
)0
C91( x3)8(1)1(
1 x3
)1
C99
(
x3
)0
(1)9
2020-2021学年高二数学人教B版必修 第二册 第三章 排列、 组合与 二项式 定理小 结课件
2020-2021学年高二数学人教B版必修 第二册 第三章 排列、 组合与 二项式 定理小 结课件
夯实基础
例2.张李两位老师和甲乙丙丁四位同学排成一排准备照相: A44
(2)若两位老师不相邻,共有多少种不同的排法; 解:先排好4位学生,共有A44 种可能,4位学生共形成5个空, 再把两位老师排在5个空里,就可以保证老师不相邻,因此共 有 A44 A52 =480种不同的排法.

新教材2020-2021学年数学人教B版选择性必修第二册课件:3.1.2.1 排列与排列数

新教材2020-2021学年数学人教B版选择性必修第二册课件:3.1.2.1 排列与排列数

所以共有24种站法. 结论:排列的概念 1.从n个_不__同__对__象__中,任取m(m≤n)个对象,按照_一__定__的__顺__序__排成一列,叫 做从n个不同对象中取出m个对象的一个排列. 2.注意事项:(1)从n个不同对象中,任取m个对象;(2)把m个对象按照一定的 顺序排成一列. 3.两个排列相同的充要条件是_组__成__排__列__的__对__象__相同,并且_对__象__的__排__列__顺__序__ 也相同.
a2 b2
轴上的椭圆,则必有a>b,a,b的大小关系一定;在双曲线
x2 a2
y2 =1中,不管
b2
a>b还是a<b,方程
x2 a2
y2 b2
=1均表示焦点在x轴上的双曲线,且是不同的双曲
线,故是排列问题.
(3)第一问不是排列问题,第二问是排列问题.从5个数中取3个数,与顺序无
关;若这3个数字组成不同的三位数,则与顺序有关.
征,就能活用排列数公式.
【定向训练】
(1)设a∈N*,且a<27,则(27-a)(28-a)…(34-a)等于 ( )
A.A827a C.A374 a
B.A3247aa D.A834a
(2)计算:A84A142 =________.
结论: 1.排列数:从n个_不__同__对__象__中取出m(m≤n)个对象的_所__有__排__列__的个数,叫做 从n个不同对象中取出m个对象的排列数. 符号表示: Amn (m,n∈N*,m≤n). 2.排列数公式:_A_mn__=_n_(_n_-_1_)_(_n_-_2_)_…__(_n_-_m_+_1_)_(_n_,__m_∈__N_*,__m_≤__n_)__.
由此可知所有可能的站法为AMNB,ANMB,ABMN,ABNM,BMNA,BNMA,BAMN, BANM,共8种.

2021最新人教版高二数学选修2-1电子课本课件【全册】

2021最新人教版高二数学选修2-1电子课本课件【全册】
2021最新人教版高二数学选修2 -1电子课本课件【全册】目录
0002页 0084页 0120页 0193页 0308页 0360页 0396页 0398页 0418页 0488页 0514页 0541页 0567页
第一章 常用逻辑用语 1.2 充分条件与必要条件 1.4 全称量词与存在量词 复习参考题 2.1 曲线与方程 探究与发现 为什么截口曲线是椭圆 2.3 双曲线 2.4 抛物线 阅读与思考 复习参考题 3.1 空间向量及其运算 3.2 立体几何中的向量方法 复习参考题
2021最新人教版高二数学选修2-1 电子课本课件【全册】
1.3 简单的逻辑联结词
2021最新人教版高二数学选修2-1 电子课本课件【全册】
第一章 常用逻辑用语
2021最新人教版高二数学选修2-1 电子课本课件【全册】
1.1 命题及其关系
2021最新人教版高二数学选修2-1 电子课本课件【全册】
1.2 充分条件与必要条件

2020-2021学年高二数学人教A版选修2-2学案:2.3数学归纳法

2020-2021学年高二数学人教A版选修2-2学案:2.3数学归纳法

2.3数学归纳法[目标] 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.[重点] 数学归纳法及其应用.[难点] 对数学归纳法原理的理解.知识点数学归纳法[填一填]1.数学归纳法的证题步骤一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立.(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.2.用框图表示数学归纳法的步骤[答一答]1.在数学归纳法的第一步归纳奠基中,第一个值n0是否一定为1?提示:不一定,n0还可以取其他值,如证明“2n>n2”中,n0=5,而证明“凸n边形内角和为(n-2)·180°”中,n0=3.2.所有与正整数有关的命题都可以用数学归纳法证明吗?提示:数学归纳法是证明与正整数有关的命题的有力工具,但并不是所有与正整数n有关的命题都能用数学归纳法证明,一般当从n =k过渡到n=k+1时,问题中存在可利用的递推关系时才能应用.3.用数学归纳法证明问题时,归纳假设是否一定要用上?提示:数学归纳法的实质在于递推,所以从“k”到“k+1”的过程,必须把归纳假设“n=k”作为条件来导出“n=k+1”时的命题,在推导过程中,要把归纳假设用上一次或几次.类型一用数学归纳法证明等式【例1】用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n (n +1)2(2n +1). 【证明】 (1)当n =1时121×3=1×22×3成立.(2)假设当n =k 时等式成立,即有121×3+223×5+…+k 2(2k -1)(2k +1)=k (k +1)2(2k +1),则当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3)=k (k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3), 即当n =k +1时等式也成立.总之,由(1)(2)可得对于任意的n ∈N *等式都成立.应用数学归纳法时应注意的问题:(1)第一步的验证,对于有些问题验证的并不是n =1,有时需验证n =2,n =3,甚至需要验证n =10,如证明:对足够大的正整数n ,有2n >n 3,就需要验证n =10时不等式成立.(2)n =k +1时式子的项数,特别是寻找n =k 与n =k +1的关系时,项数发生什么变化容易被弄错.因此对n =k 与n =k +1这两个关系式的正确分析是应用数学归纳法成功证明问题的保障.(3)“假设n =k (k ≥1)时命题成立,利用这一假设证明n =k +1时命题成立”,这是应用数学归纳法证明问题的核心环节,因此在第二步的证明过程中一定要用上归纳假设,否则这样的证明就不再是数学归纳法了.另外在推导过程中要把步骤写完整,注意证明过程中的严谨性、规范性.(1)用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(n ∈N *,a ≠1),在验证n =1成立时,左边所得的项为( B )A .1B .1+a +a 2C .1+aD .1+a +a 2+a 3解析:左边应为1+a +a 2.故选B.(2)设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( B ) A .S k +12k +2B .S k +12k +1+12k +2-1k +1C .S k +12k +1+12k +2D .S k +12k +2-12k +1类型二 用数学归纳法证明不等式【例2】 已知{a n }为等比数列且a n =2n -1,记b n =2(log 2a n +1)(n ∈N +),用数学归纳法证明对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立. 【证明】 由已知条件可得b n =2n (n ∈N +),∴所证不等式为2+12·4+14·…·2n +12n >n +1.(1)当n =1时,左边=32,右边=2,左边>右边,∴不等式成立.(2)假设当n =k (k ∈N +)时,不等式成立.即2+12·4+14·…·2k +12k >k +1,则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1. 要证当n =k +1时,不等式成立,只需证2k +32k +1≥k +2,即证2k +32≥(k +1)(k +2),由基本不等式,得2k +32=(k +1)+(k +2)2≥(k +1)(k +2)成立,∴2k +32k +1≥k +2成立, ∴当n =k +1时,不等式成立.由(1)(2)可知,对一切n ∈N +,原不等式均成立.运用数学归纳法证明不等式时,在利用了归纳假设后,要注意根据欲证目标,灵活地运用比较法、放缩法等技巧来进行证明,如本例就是利用了比较法.用数学归纳法证明:122+132+142+…+1n 2<1-1n(n ≥2,n ∈N *). 证明:(1)当n =2时,左式=122=14,右式=1-12=12,∵14<12,∴不等式成立.(2)假设n =k (k ≥2,k ∈N *)时,不等式成立,即122+132+142+…+1k 2<1-1k ,则当n =k +1时,即122+132+142+…+1k 2+1(k +1)2<1-1k +1(k +1)2 =1-(k +1)2-k k (k +1)2=1-k 2+k +1k (k +1)2<1-k (k +1)k (k +1)2=1-1k +1, ∴当n =k +1时不等式也成立.综合(1)(2)得,对任意n ≥2的正整数,不等式均成立.类型三 用数学归纳法证明整除问题【例3】 用数学归纳法证明(3n +1)·7n -1(n ∈N *)能被9整除.【思路分析】 按照数学归纳法证明步骤:(1)先证n =1时命题成立;(2)假设n =k 时命题成立,证明n =k +1时命题也成立.【证明】(1)当n=1时,4×7-1=27能被9整除,命题成立.(2)假设n=k(k∈N*)时命题成立,即(3k+1)·7k-1能被9整除,那么当n=k+1时,[3(k+1)+1]·7k+1-1=[(3k+1)+3]·7·7k-1=7·(3k+1)·7k-1+21×7k=[(3k+1)·7k-1]+6(3k+1)·7k+21×7k=[(3k+1)·7k-1]+18k·7k+27×7k=[(3k+1)·7k-1]+(18k+27)·7k.由假设知(3k+1)·7k-1能被9整除,又因为(18k+27)·7k能被9整除,所以[(3k+1)·7k-1]+(18k+27)·7k能被9整除,即n=k+1时命题成立.综上由(1)(2)知,对所有正整数n,命题成立.当n=1时,原式等于27被9整除,因此要研究(3k+1)·7k-1与(3k +4)·7k+1-1之间的关系,以便利用归纳假设(3k+1)·7k-1能被9整除来推证(3k+4)·7k+1-1也能被9整除.利用数学归纳法证明:x2n-y2n(n∈N*)能被x+y整除.证明:(1)当n=1时,x2-y2=(x+y)(x-y),能被x+y整除,所以命题成立.(2)假设当n =k (k ∈N *)时命题成立,即x 2k -y 2k 能被x +y 整除, 那么,当n =k +1时,x 2k +2-y 2k +2=x 2·x 2k -y 2·y 2k -x 2·y 2k +x 2·y 2k=x 2(x 2k -y 2k )+y 2k (x 2-y 2),因为x 2k -y 2k 与x 2-y 2都能被x +y 整除,所以x 2k +2-y 2k +2能被x +y 整除,即当n =k +1时命题也成立.根据(1)和(2),可知命题对任意n ∈N *都成立.数学归纳法证明问题从n =k到n =k +1时弄错增加项【例4】 用数学归纳法证明1+12+13+…+12n >n +12(n ∈N *).【错解】 ①当n =1时,左边=1+12,右边=1+12=1,显然左边>右边,即n =1时不等式成立.②假设n =k (k ≥1,且k ∈N *)时不等式成立,即1+12+13+…+12k >k +12.那么当n =k +1时,1+12+13+…+12k +12k +1>k +12+12k +1>k +12+12=(k +1)+12,即n =k +1时,不等式成立. 由①②得1+12+13+…+12n >n +12(n ∈N *)成立.【错因分析】 以上用数学归纳法证明的过程是错误的,因为在从n =k 到n =k +1时增加的不止一项,应是12k +1+12k +2+…+12k +2k ,共有2k项,并且k +12+12k +1>k +12+12也是错误的. 【正解】 ①当n =1时,左边=1+12,右边=1+12=1,所以左边>右边,即n =1时不等式成立.②假设n =k (k ≥1,k ∈N *)时不等式成立,即1+12+13+…+12k >k +12,那么当n =k +1时,有1+12+13+…+12k +12k +1+12k +2+…+12k +2k=k +12+2k2k +2k=k +12+12=(k +1)+12. 所以n =k +1时,不等式成立,由①②可知,n ∈N *时1+12+13+…+12n >n +12.用数学归纳法证明1n +1+1n +2+1n +3+…+1n +n>1124(n ∈N *). 证明:(1)当n =1时,左边=12>1124,不等式成立.(2)假设当n =k (k ∈N *,k ≥1)时,不等式成立,即1k +1+1k +2+1k +3+…+1k +k>1124, 即当n =k +1时,1k +2+1k +3+…+12k +12k +1+12k +2=1k +1+1k +2+1k +3+…+12k +12k +1+12k +2-1k +1>1124+12k +1+12k +2-1k +1.因为12k +1+12k +2-1k +1=2(k +1)+(2k +1)-2(2k +1)2(k +1)(2k +1)=12(k +1)(2k +1)>0, 所以1k +1+1k +2+…+12k +12k +1+12k +2-1k +1>1124+12k +1+12k +2-1k +1>1124, 所以当n =k +1时,不等式成立.由(1)(2)可知,对于任意正整数n ,不等式成立.1.用数学归纳法证明1+2+…+2n +1=(n +1)(2n +1)时,在验证n =1成立时,左边所得的代数式是( C )A .1B .1+3C .1+2+3D .1+2+3+4 2.满足1×2+2×3+3×4+…+n (n +1)=3n 2-3n +2的自然数等于( C )A .1B .1或2C .1,2,3D .1,2,3,4解析:逐个代入验证.3.已知S n =11×3+13×5+15×7+…+1(2n -1)(2n +1),则S 1=13,S 2=25,S 3=37,S 4=49,猜想S n =n 2n +1. 解析:分别将1,2,3,4代入观察猜想S n =n 2n +1. 4.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *,且n >1),第二步证明从“k 到k +1”,左端增加的项数是2k .解析:当n =k 时左端为1+12+13+…+12k -1, 当n =k +1时左端为1+12+13+…+12k -1+12k +12k +1+…+12k +1-1,故增加的项数为2k 项. 5.用数学归纳法证明⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19⎝ ⎛⎭⎪⎫1-116…⎝ ⎛⎭⎪⎫1-1n 2 =n +12n (n ≥2,n ∈N *).证明:①当n =2时,左边=1-14=34,右边=2+12×2=34,∴左边=右边,∴n =2时等式成立.②假设n =k (k ≥2,n ∈N *)时等式成立,即⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19…⎝ ⎛⎭⎪⎫1-1k 2=k +12k , 那么n =k +1时,⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-19…⎝ ⎛⎭⎪⎫1-1k 2⎣⎢⎢⎡⎦⎥⎥⎤1-1(k +1)2 =k +12k ⎣⎢⎢⎡⎦⎥⎥⎤1-1(k +1)2 =k +12k ·k (k +2)(k +1)2=k +22(k +1)=(k +1)+12(k +1), 即n =k +1时等式成立.综合①②知,对任意n ≥2,n ∈N *等式恒成立.。

2020-2021年度高二数学参考答案(最终)

2020-2021年度高二数学参考答案(最终)

参考答案及评分标准1B 2C 3A 4A 5C 6B 7A 8B9CD10BC11AD12ACD13x +y -1=0.14x +2y -12=015若ll ⊥α,则m ∥α也可以若m∥α,l ⊥α,则l ⊥m (答案不唯一)16(-17解:(1)4=(3分)解得m=173或m=3-(5分)(2)直线l 1:ax -y -3=0与l 2:-3x+ay+6=0平行,则a =(7分)所以直线l 1与l 2之间的距离为;32d =-(10分)18解:(1)证明:如图①所示,连接B 1C 交BC 1于点O ,连接OD .∵O 为B 1C 的中点,D 为AC 的中点,∴OD ∥AB1.(3分)∵AB 1⊄平面BC 1D ,OD ⊂平面BC 1D ,∴AB 1∥平面BC 1D .(6分)①②(2)建立如图②所示的空间直角坐标系Bxyz .则B (0,0,0),A 1(0,2,2),C 1(2,0,2).D(1,1,0)∴BA 1→=(0,2,2),BC 1→=(2,0,2).BD →=(1,1,0)(8分)设平面BDC 1的一个法向量为n =(x,y,z)10BD BC ⎧=⎪⎨=⎪⎩ n n 即00x z x y +=⎧⎨+=⎩令1x =-则n =(-1,1,1)(10分)cos 〈n ,BA 1→BA =0+2+222×3=63.所以直线A 1B 与平面BDC 1所成的角的正弦值为63(12分)19解:(1)设圆心为C(a,b),(a>0,b>0),半径为r ,则圆的方程为222()()x a y b r -+-=….1分由题意可得221b r +=①…….2分222)2ra r +=②…….3分5=③…….4分由①②③可得22r =5分11a b =⎧⎨=⎩或5717a b ⎧=⎪⎪⎨⎪=-⎪⎩(舍去)……6分11a b =-⎧⎨=-⎩(舍去)或5717a b ⎧=-⎪⎪⎨⎪=⎪⎩(舍去)…….7分所求的圆的方程为22(1)(1)2x y -+-=…….8分说明:其它解法参照上述评分标准给分(2)当切线的斜率不存在时,切线方程为1x =分当切线的斜率存在时,切线方程为(13y k x =-++…….10分即(130kx y k ---+=而圆的方程为22(1)(1)2x y -+-==,解得4k =-…….11分所以圆的切方程为10x +-=…….12分20(1)没A(x 1,y 1),B(x 2,y 2),直线l 的方程为x=ny+2,与抛物线方程联立,并整理得y 2-2pny -4p=0,所以y l +y 2=2pn ,y l y 2=-4p ,…………………..2分所以OA →·OB →=x l x 2+y l y 2=22122y y 4p+y l y 2=4-4p=-4…………………..5分所以P=2.…………………………………………..6分(2)由(1)得y l +y 2=4n ,y l y 2=-8.x 1+x 2=n(y l +y 2)+4=4n 2+4,x l x 2=2212y y 16=4,…………………..7分所以EA →·EB →=(x 1+2)(x 2+2)+(y 1-1)(y 2-1)=x 1x 2+2(x 1+x 2)+4+y l y 2-(y 1+y 2)+1=4+8n 2+8+4-8-4n+1=8n 2-4n+9=8(n -14)2+172≥172,…………………..10分当且仅当n=14时,取最小值,此时直线l 的方程为x=14y+2,即4x -y -8=0.…………………………….12分21(1)证明:由翻折的性质可知,翻折后,SA ⊥AB ,AD ⊥AB .所以∠SAD 为二面角S—AB—C 的平面角,又因为二面角S—AB—C 为直二面角,所以∠SAD=90°,即SA ⊥AD .又AB∩AD=A 。

2020-2021学年河南省郑州市高二(下)期末数学试卷(理科)

2020-2021学年河南省郑州市高二(下)期末数学试卷(理科)

2020-2021学年河南省郑州市高二(下)期末数学试卷(理科)试题数:22,总分:1501.(单选题,5分)若复数z=2-i,则|z|=()A. $\sqrt{3}$B.3C. $\sqrt{5}$D.52.(单选题,5分)已知函数f(x)的导函数是f'(x),且满足f(x)=2lnx+x2f'(1),则f'(1)=()A.-2B.0C.1D.23.(单选题,5分)已知随机变量X的分布列如表.则实数a的值为()B. $\frac{1}{4}$C. $\frac{1}{3}$D. $\frac{1}{2}$4.(单选题,5分)下列四个命题:(1)两个变量相关性越强则相关系数r就越接近于1;(2)两个模型中,残差平方和越小的模型拟合的效果越好;(3)在回归模型中,相关指数R2表示解释变量x对于预报变量y的贡献率,R2越接近于1,表示回归效果越好;(4)在独立性检验中,随机变量K2的观测值k越小,判断“X与Y有关系”的把握程度越大.其中正确命题的个数是()A.1B.2C.3D.45.(单选题,5分)校园歌手大赛共有5名同学成功进人决赛,其中2名男同学,3名女同学.现在他们站成一排合影留念,要求2名男同学站在两端,则有()种不同的站法.A.2B.6C.12D.246.(单选题,5分)用反证法证明命题:若|x-1|+(y-1)2=0,则x=y=1,应提出的假设为()A.x,y至少有一个不等于1B.x,y至多有一个不等于1C.x,y都不等于1D.x,y只有一个不等于17.(单选题,5分)“关注夕阳,爱老敬老”,某商会从2016年开始向晚晴山庄养老院捐赠物资和现金.如表记录了第x年(2016年为第一年)捐赠现金y(万元)的数据情况.由表中数据得到了y关于x的线性回归方程为 $\hat{y}=\hat{b}x+2.95$ ,预测2021年该商会捐赠现金______万元()B.5.25C.5.65D.4.758.(单选题,5分)2021年5月11日和12日进行了郑州市第三次质量检测.对全市的理科数学成绩进行统计分析,发现数学成绩近似地服从正态分布N(96,52).据此估计:在全市抽取6名高三学生的数学成绩,恰有2名同学的成绩超过96分的概率为()A. $\frac{1}{32}$B. $\frac{15}{32}$C. $\frac{1}{64}$D. $\frac{15}{64}$9.(单选题,5分)九月是某集团校的学习交流活动月,来自兄弟学校的4名同学(甲校2名,乙校、丙校各1名)到总校交流学习.现在学校决定把他们分到1,2,3三个班,每个班至少分配1名同学.为了让他们能更好的融入新的班级,规定来自同一学校的同学不能分到同一个班,则不同的分配方案种数为()A.12B.18C.24D.3010.(单选题,5分)如图,第1个图形是由正三边形“扩展”而来,第2个图形是由正四边形“扩展”而来.以此类推,第n个图形是由正(n+2)边形“扩展”而来,其中n∈N*,那么第8个图形共有()个顶点A.72B.90C.110D.13211.(单选题,5分)若函数f(x)=x3-3x在区间(2a,3-a2)上有最大值,则实数a的取值范围是()A.(-3,1)B.(-2,1)C. $({-3,-\frac{1}{2}})$D.(-2,-1]12.(单选题,5分)已知函数f(x)= $\left\{\begin{array}{l}{8x-m,x≤\frac{1}{2}}\\{x{e}^{x}-2mx+m,x>\frac{1}{2}}\end{array}\right.$ (e是自然对数)在定义域R上有三个零点,则实数m的取值范围是()A.(e,+∞)B.(e,4)C.(e,4]D.[e,4]13.(填空题,5分)平面内一点P(x0,y0)到直线l:Ax+By+C=0的距离为:$d=\frac{|{A{x_0}+B{y_0}+C}|}{\sqrt{{A^2}+{B^2}}}$ .由此类比,空间中一点M(1,1,1)到平面a:x+y+z+3=0的距离为 ___ .14.(填空题,5分)已知m,n是不相等的两个实数,且m,n∈{-1,1,5,8}.在方程mx2+ny2=1所表示的曲线中任取一个,此曲线是焦点在x轴上的双曲线的概率为 ___ .15.(填空题,5分)2021年7月1日是中国共产党成立100周年纪念日,2021年也是“十四五”开局之年,必将在中国历史上留下浓墨重彩的标注.作为当代中学生,需要发奋图强,争做四有新人,首先需要学好文化课.现将标有数字2,0,2,1,7,1的六张卡片排成一排,组成一个六位数,则共可组成 ___ 个不同的六位数.16.(填空题,5分)已知关于x的方程${e^x}-\frac{2lnx+a}{x^2}=\frac{1}{x}$ 在(0,+∞)上有解,则实数a的取值范围是 ___ .17.(问答题,10分)已知复数 $z=3+i+\frac{6m}{1-i}$ (m∈R).(Ⅰ)当实数m取什么值时,复数z是纯虚数;(Ⅱ)当实数m取什么值时,复平面内表示复数z的点位于第一、三象限.18.(问答题,12分)在二项式 ${({{x^2}+\frac{2}{\sqrt{x}}})^m}$ (m∈N*)的展开式中,第三项系数是倒数第三项系数的 $\frac{1}{8}$ .(Ⅰ)求m的值;(Ⅱ)求展开式中所有的有理项.19.(问答题,12分)已知数列{a n}满足${a_1}=\frac{2}{5}$ ,a n+1a n+2a n+1=2a n,(n∈N*).(Ⅰ)计算a2,a3,a4的值;(Ⅱ)猜想数列{a n}的通项公式,并用数学归纳法证明.20.(问答题,12分)已知函数f(x)=x2-(a+4)x+2alnx.(Ⅰ)当a=1时,求函数y=f(x)的极值;(Ⅱ)讨论函数y=f(x)的单调性.21.(问答题,12分)2021年5月14日,郑州国际会展中心举办了关于“服务教育共筑梦想暨中小学书香校园发展论坛”的活动.某中学为进一步推进书香校园系列活动,增加学生对古典文学的学习兴趣,随机抽取160名学生做统计调查.统计显示,被调查的学生中,喜欢阅读古典文学的男生有40人,占男生调查人数的一半,不喜欢阅读古典文学的女生有20人.(Ⅰ)完成下面列联表,并判断能否在犯错误概率不超过0.005的情况下认为学生喜欢阅读古典文学与性别有关?项(每个人只获一项奖项每项只有一个人获奖,每个人等可能获奖)现从这160名同学中选出4名男生,6名女生参加活动,记ξ为参加活动的同学中获奖的女生人数,求ξ的分布列及数学期望E(ξ).附:22.(问答题,12分)已知函数f(x)=2x2+xlna,g(x)=ae2x lnx,其中a>0.(Ⅰ)若曲线y=f(x)在x=1处的切线斜率为0,求a的值;(Ⅱ)若对任意的x∈(0,1),不等式g(x)-f(x)<0恒成立,求实数a的取值范围.2020-2021学年河南省郑州市高二(下)期末数学试卷(理科)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)若复数z=2-i,则|z|=()A. $\sqrt{3}$B.3C. $\sqrt{5}$D.5【正确答案】:C【解析】:由复数模公式可解决此题.【解答】:解:由复数z=2-i,得|z|= $\sqrt{{2}^{2}+(-1)^{2}}$ = $\sqrt{5}$ .故选:C.【点评】:本题考查复数模的运算,考查数学运算能力,属于基础题.2.(单选题,5分)已知函数f(x)的导函数是f'(x),且满足f(x)=2lnx+x2f'(1),则f'(1)=()A.-2B.0C.1D.2【正确答案】:A【解析】:利用导数的公式求导即可.【解答】:解:$f'(x)=\frac{2}{x}+2x\bullet f'(1)$ ,所以f'(1)=2+2f'(1),解得f'(1)=-2.故选:A.【点评】:本题考查常见函数的导数公式,属于基础题.3.(单选题,5分)已知随机变量X的分布列如表.则实数a的值为()B. $\frac{1}{4}$C. $\frac{1}{3}$D. $\frac{1}{2}$【正确答案】:B【解析】:利用分布列的性质,列出方程求解即可.【解答】:解:由题意可知 $\frac{1}{6}+\frac{1}{3}+a+a$ =1,解得a= $\frac{1}{4}$ .故选:B.【点评】:本题考查离散型随机变量的分布列的性质的应用,是基础题.4.(单选题,5分)下列四个命题:(1)两个变量相关性越强则相关系数r就越接近于1;(2)两个模型中,残差平方和越小的模型拟合的效果越好;(3)在回归模型中,相关指数R2表示解释变量x对于预报变量y的贡献率,R2越接近于1,表示回归效果越好;(4)在独立性检验中,随机变量K2的观测值k越小,判断“X与Y有关系”的把握程度越大.其中正确命题的个数是()A.1B.2C.3D.4【正确答案】:B【解析】:直接利用相关系数的定义,残差平方和的定义,独立性检测的定义判断(1)(2)(3)(4)的结论.【解答】:解:对于(1),两个变量相关性越强则相关系数r就越接近于±1,故(1)错误;对于(2),两个模型中,残差平方和越小的模型拟合的效果越好,故(2)正确;对于(3),在回归模型中,相关指数R2表示解释变量x对于预报变量y的贡献率,R2越接近于1,表示回归效果越好,故(3)正确;对于(4),在独立性检验中,随机变量K2的观测值k越小,判断“X与Y有关系”的把握程度越小,故(4)错误.故选:B.【点评】:本题考查的知识要点:相关系数的定义,残差平方和的定义,独立性检测的定义,主要考查学生对基础知识的理解,属于基础题.5.(单选题,5分)校园歌手大赛共有5名同学成功进人决赛,其中2名男同学,3名女同学.现在他们站成一排合影留念,要求2名男同学站在两端,则有()种不同的站法.A.2B.6C.12D.24【正确答案】:C【解析】:根据题意,依次分析男生、女生的排法,由分步计数原理计算可得答案.【解答】:解:根据题意,分2步进行分析:① 将2名男生安排在两端,有A22=2种排法,② 将3名女生安排在中间三个位置,有A33=6种排法,则有2×6=12种排法;故选:C.【点评】:本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.6.(单选题,5分)用反证法证明命题:若|x-1|+(y-1)2=0,则x=y=1,应提出的假设为()A.x,y至少有一个不等于1B.x,y至多有一个不等于1C.x,y都不等于1D.x,y只有一个不等于1【正确答案】:A【解析】:反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解答】:解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“x,y∈R,若|x-1|+|y-1|=0,则x=y=1”,用反证法证明时应假设x≠1或y≠1,即x,y至少有一个不等于1.故选:A.【点评】:本题考查了反证法,反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.7.(单选题,5分)“关注夕阳,爱老敬老”,某商会从2016年开始向晚晴山庄养老院捐赠物资和现金.如表记录了第x年(2016年为第一年)捐赠现金y(万元)的数据情况.由表中数据得到了y关于x的线性回归方程为 $\hat{y}=\hat{b}x+2.95$ ,预测2021年该商会捐赠现金______万元()B.5.25C.5.65D.4.75【正确答案】:D【解析】:利用回归直线过样本中心点求出回归方程的斜率,再进行预测.【解答】:解: $\overline{x}=\frac{2+3+4+5}{4}=3.5,\overline{y}=\frac{3.5+4+4+4.5}{4}=4$ ,因为 $\overline{y}=\hat{b}\overline{x}+2.95,\;\\;即4=3.5\hat{b}+2.95$ 即:$4=3.5\hat{b}+2.95$ ,解得 $\hat{b}=0.3$ ,所以回归方程为 $\hat{y}=0.3x+2.95$ ,2021年为第6年,所以当x=6时, $\hat{y}=0.3×6+2.95=4.75$ .故选:D.【点评】:本题考查线性回归方程的求解及其预测功能,属于基础题.8.(单选题,5分)2021年5月11日和12日进行了郑州市第三次质量检测.对全市的理科数学成绩进行统计分析,发现数学成绩近似地服从正态分布N(96,52).据此估计:在全市抽取6名高三学生的数学成绩,恰有2名同学的成绩超过96分的概率为()A. $\frac{1}{32}$B. $\frac{15}{32}$C. $\frac{1}{64}$D. $\frac{15}{64}$【正确答案】:D【解析】:先利用正态分布对称性,求出抽取1名高三学生,数学成绩超过96分的概率为$\frac{1}{2}$ ,然后在利用二项分布的概率公式求解即可.【解答】:解:由题意可知,数学成绩近似地服从正态分布N(96,52),所以抽取1名高三学生,数学成绩超过96分的概率为 $\frac{1}{2}$ ,故所求概率为 ${C}_{6}^{2}×(\frac{1}{2})^{2}×(1-\frac{1}{2})^{4}=\frac{15}{64}$ .故选:D.【点评】:本题考查了正态分布的性质以及二次分布概率公式的应用,考查了逻辑推理能力与运算能力,属于基础题.9.(单选题,5分)九月是某集团校的学习交流活动月,来自兄弟学校的4名同学(甲校2名,乙校、丙校各1名)到总校交流学习.现在学校决定把他们分到1,2,3三个班,每个班至少分配1名同学.为了让他们能更好的融入新的班级,规定来自同一学校的同学不能分到同一个班,则不同的分配方案种数为()A.12B.18C.24D.30【正确答案】:D【解析】:根据题意,分2步进行分析:① 将4名同学分为3组,要求甲校2名不在同一组,② 将分好的3组安排到3个班级,由分步计数原理计算可得答案.【解答】:解:根据题意,分2步进行分析:① 将4名同学分为3组,要求甲校2名不在同一组,有C42-1=5种分组方法,② 将分好的3组安排到3个班级,有A33=6种安排方法,则有5×6=30种分配方法,故选:D.【点评】:本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.10.(单选题,5分)如图,第1个图形是由正三边形“扩展”而来,第2个图形是由正四边形“扩展”而来.以此类推,第n个图形是由正(n+2)边形“扩展”而来,其中n∈N*,那么第8个图形共有()个顶点A.72B.90C.110D.132【正确答案】:C【解析】:列出顶点数与多边形边数,分析归纳出变化规律,从而解得.【解答】:解:由题意可得第n个图形顶点数1 3+3×3=122 4+4×4=203 5+5×5=304 6+6×6=425 ……6 ……7 ……8 10+10×10=110【点评】:本题考查了数据的分析能力及归纳推理能力,属于中档题.11.(单选题,5分)若函数f(x)=x3-3x在区间(2a,3-a2)上有最大值,则实数a的取值范围是()A.(-3,1)B.(-2,1)C. $({-3,-\frac{1}{2}})$D.(-2,-1]【正确答案】:D【解析】:对f(x)求导得f′(x)=3x2-3,求得其最大值点,再根据f(x)在区间(2a,3-a2)上有最大值,求出a的取值范围.【解答】:解:因为函数f(x)=x3-3x,所以f′(x)=3x2-3,当x<-1时,f′(x)>0,f(x)单调递增,当-1<x<1时,f′(x)<0,f(x)单调递减,当x>1时,f′(x)>0,f(x)单调递增,所以当x=-1时,f(x)取得最大值,又f(-1)=f(2)=2,且f(x)在区间(2a,3-a2)上有最大值,所以2a<-1<3-a2≤2,解得-2<a≤-1,所以实数a的取值范围是(-2,-1].故选:D.【点评】:本题考查导数的综合应用,考查了转化思想,属于中档题.12.(单选题,5分)已知函数f(x)= $\left\{\begin{array}{l}{8x-m,x≤\frac{1}{2}}\\{x{e}^{x}-2mx+m,x>\frac{1}{2}}\end{array}\right.$ (e是自然对数)在定义域R上有三个零点,则实数m的取值范围是()A.(e,+∞)B.(e,4)C.(e,4]D.[e,4]【正确答案】:C【解析】:利用分段函数的解析式,当$x≤\frac{1}{2}$ 时, $x=\frac{m}{8}$ ,当 $x>\frac{1}{2}$ 时,令h(x)= $\frac{x{e}^{x}}{2x-1}$ ( $x>\frac{1}{2}$ ),由导数研究h (x)的性质,得到当m>e时,f(x)在区间 $(\frac{1}{2},+∞)$上有两个零点,结合题意可知, $\frac{m}{8}≤\frac{1}{2}$ ,求解即可得到m的取值范围.【解答】:解:函数f(x)= $\left\{\begin{array}{l}{8x-m,x≤\frac{1}{2}}\\{x{e}^{x}-2mx+m,x>\frac{1}{2}}\end{array}\right.$ ,当$x≤\frac{1}{2}$ 时,由8x-m=0,解得 $x=\frac{m}{8}$ ,当 $x>\frac{1}{2}$ 时,由xe x-2mx+m=0,解得 $m=\frac{x{e}^{x}}{2x-1}$ ,令h(x)= $\frac{x{e}^{x}}{2x-1}$ ( $x>\frac{1}{2}$ ),则 $h'(x)=\frac{(2x+1)(x-1)}{(2x-1)^{2}}\bullet {e}^{x}$ ,当 $\frac{1}{2}<x<1$ 时,h'(x)<0,则h(x)单调递减,当x>1时,h'(x)>0,则h(x)单调递增,又h(1)=e,所以当m>e时,f(x)在区间 $(\frac{1}{2},+∞)$上有两个零点,由于f(x)在R上有三个零点,所以 $\frac{m}{8}≤\frac{1}{2}$ ,解得m≤4,综上所述,m的取值范围为(e,4].故选:C.【点评】:本题考查了分段函数的理解与应用,函数与方程的应用,解题的关键是对分段函数分类讨论,考查了逻辑推理能力与化简运算能力,属于中档题.13.(填空题,5分)平面内一点P(x0,y0)到直线l:Ax+By+C=0的距离为:$d=\frac{|{A{x_0}+B{y_0}+C}|}{\sqrt{{A^2}+{B^2}}}$ .由此类比,空间中一点M(1,1,1)到平面a:x+y+z+3=0的距离为 ___ .【正确答案】:[1]2 $\sqrt{3}$【解析】:类比点P(x0,y0)到直线l:Ax+By+C=0的距离为:$d=\frac{|{A{x_0}+B{y_0}+C}|}{\sqrt{{A^2}+{B^2}}}$ ,可计算空间中一点M(1,1,1)到平面a:x+y+z+3=0的距离为.【解答】:解:类比点P(x0,y0)到直线l:Ax+By+C=0的距离为:$d=\frac{|{A{x_0}+B{y_0}+C}|}{\sqrt{{A^2}+{B^2}}}$ ,可计算空间中一点M(1,1,1)到平面a:x+y+z+3=0的距离为$\frac{|1+1+1+3|}{\sqrt{{1}^{2}+{1}^{2}+{1}^{2}}}$ =2 $\sqrt{3}$ .故答案为:2 $\sqrt{3}$ .【点评】:本题考查类比推理,考查数学运算能力,属于基础题.14.(填空题,5分)已知m,n是不相等的两个实数,且m,n∈{-1,1,5,8}.在方程mx2+ny2=1所表示的曲线中任取一个,此曲线是焦点在x轴上的双曲线的概率为 ___ .【正确答案】:[1] $\frac{1}{4}$【解析】:由题意m,n在所给的数值取的方法及满足条件的求法分别求出,进而求出其概率.【解答】:解:由题意,任取m,n的方法有A ${}_{4}^{2}$ =4×3=12,双曲线的焦点在x轴上的取法有:C ${}_{3}^{1}$ ×1=3,所以曲线是焦点在x轴上的双曲线的概率为: $\frac{3}{12}$ = $\frac{1}{4}$ ;故答案为: $\frac{1}{4}$ .【点评】:本题考查双曲线的性质及古典概率的求法,属于基础题.15.(填空题,5分)2021年7月1日是中国共产党成立100周年纪念日,2021年也是“十四五”开局之年,必将在中国历史上留下浓墨重彩的标注.作为当代中学生,需要发奋图强,争做四有新人,首先需要学好文化课.现将标有数字2,0,2,1,7,1的六张卡片排成一排,组成一个六位数,则共可组成 ___ 个不同的六位数.【正确答案】:[1]150【解析】:根据题意,用间接法分析:先计算“不考虑0不能在首位的限制”的六位数数目,再排除其中“0在首位”的六位数数目,分析可得答案.【解答】:解:根据题意,先不考虑0不能在首位的限制,用数字2,0,2,1,7,1组成六位数,有C62C42A22=180个六位数,其中0在首位的六位数,有C52C32=30个六位数,则有180-30=150个不同的六位数;故答案为:150.【点评】:本题考查排列、组合的应用,涉及分步、分类计数原理的应用,属于基础题.16.(填空题,5分)已知关于x的方程${e^x}-\frac{2lnx+a}{x^2}=\frac{1}{x}$ 在(0,+∞)上有解,则实数a的取值范围是 ___ .【正确答案】:[1][1,+∞)【解析】:将关于x的方程 ${e^x}-\frac{2lnx+a}{x^2}=\frac{1}{x}$ 在(0,+∞)上有解,转化为a=x2e x-2lnx-x(x>0)有解,构造函数f(x)=x2e x-2lnx-x(x>0),利用导数研究f (x)的取值范围,即可得到答案.【解答】:解:令f(x)=x2e x-2lnx-x(x>0),则f'(x)= $\frac{(x+2)({x}^{2}{e}^{x}-1)}{x}$ ,又y=x2e x在(0,+∞)上单调递增,设x0为方程x2e x-1=0的根,即x0满足 ${{x}_{0}}^{2}{e}^{{x}_{0}}=1$ ,所以 ${e}^{{x}_{0}}={{x}_{0}}^{-2}$ ,两边同时取对数,可得x0=-2lnx0,因为x>0,x+2>0,故当x∈(0,x0)时,f'(x)<0,则f(x)单调递减,当x∈(x0,+∞)时,f'(x)>0,则f(x)单调递增,且当x→0时,f(x)→+∞,又 $f({x}_{0})={{x}_{0}}^{2}{e}^{{x}_{0}}-2ln{x}_{0}-{x}_{0}=1-2ln{x}_{0}-{x}_{0}$ =1+x0-x0=1,所以当a≥1时,a=x2e x-2lnx-x(x>0)有解,即关于x的方程 ${e^x}-\frac{2lnx+a}{x^2}=\frac{1}{x}$ 在(0,+∞)上有解,故实数a的取值范围是[1,+∞).故答案为:[1,+∞).【点评】:本题考查了函数的零点与方程的根的综合应用,解决函数零点或方程根的问题,常用的方法有:(1)方程法(直接解方程得到函数的零点);(2)图象法(直接画出函数的图象分析得解);(3)方程+图象法(令函数为零,再重新构造两个函数,数形结合分析得解).属于中档题.17.(问答题,10分)已知复数 $z=3+i+\frac{6m}{1-i}$ (m∈R).(Ⅰ)当实数m取什么值时,复数z是纯虚数;(Ⅱ)当实数m取什么值时,复平面内表示复数z的点位于第一、三象限.【正确答案】:【解析】:首先把z化成a+bi的形式(Ⅰ)由a=0且b≠0可解决此问题;(Ⅱ)由ab>0可解决此问题.【解答】:解: $z=3+i+\frac{6m}{1-i}=3+i+\frac{6m(1+i)}{(1-i)(1+i)}=(3+3m)+(1+3m)i$(Ⅰ)当复数z是纯虚数时,有 $\left\{\begin{array}{l}3+3m=0\\1+3m≠0\end{array}\right.$ ,解得m=-1.所以当实数m=-1时,复数z是纯虚数.(Ⅱ)当表示复数z的点位于第一、三象限时,有(3+3m)(1+3m)>0,解得m<-1或$m>-\frac{1}{3}$ ,所以当实数$m∈({-∞,-1})∪({-\frac{1}{3},+∞})$时,表示复数z的点位于第一、三象限.【点评】:本题考查复数的代数表示方法及几何意义,考查数学运算能力,属于中档题.18.(问答题,12分)在二项式 ${({{x^2}+\frac{2}{\sqrt{x}}})^m}$ (m∈N*)的展开式中,第三项系数是倒数第三项系数的 $\frac{1}{8}$ .(Ⅰ)求m的值;(Ⅱ)求展开式中所有的有理项.【正确答案】:【解析】:(Ⅰ)写出二项式的通项公式,根据题意可得关于m的方程,求解即可;(Ⅱ)根据二项式展开式的通项公式,求出展开式中所有的有理项.【解答】:解:(Ⅰ)展开式的通项为: ${T_{r+1}}=C_m^r{({x^2})^{m-r}}{({2{x^{-\frac{1}{2}}}})^r}=C_m^r⋅{2^r}⋅{x^{2m-\frac{5}{2}r}}$ ,依题可得:$C_m^2⋅{2^2}=C_m^{m-2}⋅{2^{m-2}}⋅\frac{1}{8}$ ,解得m=7.(Ⅱ)由(Ⅰ)知,展开式的通项为${T_{r+1}}=C_7^r⋅{2^r}⋅{x^{14-\frac{5}{2}r}}$ ,当r=0,2,4,6时,对应项是有理项,所以展开式中所有的有理项为:${T_1}=C_7^0⋅{2^0}⋅{x^{14}}={x^{14}}$,${T_3}=C_7^2⋅{2^2}⋅{x^{14-5}}=84{x^9}$ ,${T_5}=C_7^4⋅{2^4}⋅{x^{14-10}}=560{x^4}$ ,${T_7}=C_7^6⋅{2^6}⋅{x^{14-15}}=448{x^{-1}}$ .【点评】:本题考查了二项式定理,二项展开式的通项公式,也考查了利用通项公式求特定项的应用问题,属于中档题.19.(问答题,12分)已知数列{a n}满足${a_1}=\frac{2}{5}$ ,a n+1a n+2a n+1=2a n,(n∈N*).(Ⅰ)计算a2,a3,a4的值;(Ⅱ)猜想数列{a n}的通项公式,并用数学归纳法证明.【正确答案】:【解析】:(Ⅰ)利用数列的递推关系式,通过n的取值,求解数列的前几项即可.(Ⅱ)猜想数列的通项公式,然后利用数学归纳法的证明步骤,证明即可.【解答】:解:(Ⅰ)数列{a n}满足 ${a_1}=\frac{2}{5}$ ,a n+1a n+2a n+1=2a n,(n∈N*).n=1时, ${a_2}=\frac{1}{3}$ ,n=2时,解得 ${a_3}=\frac{2}{7}$ ,n=3时,解得${a_4}=\frac{1}{4}$ .(Ⅱ)猜想: ${a_n}=\frac{2}{n+4}$ .证明:① 当n=1时, ${a_1}=\frac{2}{5}=\frac{2}{1+4}$ ,猜想成立;② 假设当n=k(k∈N*)时猜想成立,即 ${a_k}=\frac{2}{k+4}$ .那么,依题可得${a_{k+1}}=\frac{2{a_k}}{{a_k}+2}=\frac{2⋅\frac{2}{k+4}}{\frac{2}{k+4}+2}=\frac{2}{k+5} =\frac{2}{(k+1)+4}$ .所以,当n=k+1时猜想成立.根① 和② ,可知猜想对任何n∈N*都成立.【点评】:本题考查数列的递推关系式的应用,数学归纳法的应用,是中档题.20.(问答题,12分)已知函数f(x)=x2-(a+4)x+2alnx.(Ⅰ)当a=1时,求函数y=f(x)的极值;(Ⅱ)讨论函数y=f(x)的单调性.【正确答案】:【解析】:(Ⅰ)代入a的值,求出函数的导数,解关于导函数的方程,求出函数的单调区间,求出函数的极值即可;(Ⅱ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可.【解答】:解:(Ⅰ)当a=1时,f(x)=x2-5x+2lnx,定义域为(0,+∞),$f'(x)=2x-5+\frac{2}{x}=\frac{2{x^2}-5x+2}{x}=\frac{(2x-1)(x-2)}{x}$ ,令f'(x)=0,解得 $x=\frac{1}{2}$ ,或x=2,当x变化时,f(x),f'(x)的变化情况如下表:当x=2时,f(x)有极小值,且极小值为f(2)=-6+2ln2.(Ⅱ)函数f(x)定义域为(0,+∞),$f'(x)=2x-(a+4)+\frac{2a}{x}=\frac{2{x^2}-(a+4)x+2a}{x}=\frac{(2x-a)(x-2)}{x}$ ,令f'(x)=0得 $x=\frac{a}{2}$ 或x=2,① 若a≤0,则当x∈(0,2)时,f'(x)<0,f(x)单调递减;当x∈(2,+∞)时,f'(x)>0,f(x)单调递增.② 若0<a<4,即 $0<\frac{a}{2}<2$ ,则当$x∈({0,\frac{a}{2}})$ 时,f'(x)>0,f(x)单调递增;当$x∈({\frac{a}{2},2})$ 时,f'(x)<0,f(x)单调递减;当x∈(2,+∞)时,f'(x)>0,f(x)单调递增,③ 若a=4,即 $\frac{a}{2}=2$ ,则当x∈(0,+∞)时,f'(x)≥0,f(x)单调递增,④ 若a>4,即 $\frac{a}{2}>2$ ,则当x∈(0,2)时,f'(x)>0,f(x)单调递增;当$x∈({2,\frac{a}{2}})$ 时,f'(x)<0,f(x)单调递减;当$x∈({\frac{a}{2},+∞})$时,f'(x)>0,f(x)单调递增.综上:当a≤0时,f(x)的单调递增区间是(2,+∞),单调递减区间是(0,2);当0<a<4时,f(x)的单调递增区间是 $({0,\frac{a}{2}})$ ,(2,+∞),递减区间是$({\frac{a}{2},2})$ ;当a=4时,f(x)的单调递增区间是(0,+∞),无单调递减区间;当a>4时,f(x)的单调递增区间是(0,2), $({\frac{a}{2},+∞})$,单调递减区间是$({2,\frac{a}{2}})$ .【点评】:本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是难题.21.(问答题,12分)2021年5月14日,郑州国际会展中心举办了关于“服务教育共筑梦想暨中小学书香校园发展论坛”的活动.某中学为进一步推进书香校园系列活动,增加学生对古典文学的学习兴趣,随机抽取160名学生做统计调查.统计显示,被调查的学生中,喜欢阅读古典文学的男生有40人,占男生调查人数的一半,不喜欢阅读古典文学的女生有20人.(Ⅰ)完成下面列联表,并判断能否在犯错误概率不超过0.005的情况下认为学生喜欢阅读古典文学与性别有关?项(每个人只获一项奖项每项只有一个人获奖,每个人等可能获奖)现从这160名同学中选出4名男生,6名女生参加活动,记ξ为参加活动的同学中获奖的女生人数,求ξ的分布列及数学期望E(ξ).附:【正确答案】:【解析】:(Ⅰ)利用已知条件完成列联表,求出K2,即可判断能在犯错误概率不超过0.005的情况下认为学生喜欢阅读古典文学与性别有关.(Ⅱ)ξ为参加活动的同学中获奖的女生人数:2,3,4,5,6,求出概率,得到分布列,然后求解期望.【解答】:解:(Ⅰ)由已知可得调查中男生共有80人,女生有80人,其中喜欢阅读古典文学的有60人故列联表为:40×60)}^2}}{100×60×80×80}=\frac{32}{3}=10.667>7.879$ .故能在犯错误概率不超过0.005的情况下认为学生喜欢阅读古典文学与性别有关.(Ⅱ)ξ为参加活动的同学中获奖的女生人数:2,3,4,5,6,$P(ξ=2)=\frac{C_6^2⋅C_4^4}{C_{10}^6}=\frac{15}{210}=\frac{1}{14}$ ,$P(ξ=3)=\frac{C_6^3⋅C_4^3}{C_{10}^6}=\frac{80}{210}=\frac{8}{21}$ ,$P(ξ=4)=\frac{C_6^4⋅C_4^2}{C_{10}^6}=\frac{90}{210}=\frac{3}{7}$ ,$P(ξ=5)=\frac{C_6^5⋅C_4^1}{C_{10}^6}=\frac{24}{210}=\frac{4}{35}$ ,$P(ξ=6)=\frac{C_6^6⋅C_4^0}{C_{10}^6}=\frac{1}{210}$ .∴ξ的分布列为$E(ξ)=2×\frac{1}{14}+3×\frac{8}{21}+4×\frac{3}{7}+5×\frac{8}{70}+6×\frac{1}{210}=3. 6$ .【点评】:本题考查独立检验思想的应用,离散型随机变量的分布列以及期望的求法,是中档题.22.(问答题,12分)已知函数f(x)=2x2+xlna,g(x)=ae2x lnx,其中a>0.(Ⅰ)若曲线y=f(x)在x=1处的切线斜率为0,求a的值;(Ⅱ)若对任意的x∈(0,1),不等式g(x)-f(x)<0恒成立,求实数a的取值范围.【正确答案】:【解析】:(Ⅰ)求导得f'(x)=4x+lna,由导数的几何意义可得k切=f'(1)=0,解得a即可.(Ⅱ)g(x)-f(x)<0恒成立,可转化为 $\frac{lnx}{x}<\frac{2x+lna}{a⋅{e^{2x}}}=\frac{ln{e^{2x}}+lna}{a⋅{e^{2x}}}=\frac{ln({a⋅{e^{2x}}})}{a⋅{e^{2 x}}}$ ,设 $h(x)=\frac{lnx}{x}$ ,则上式即为h(x)<h(ae2x),判断h(x)的单调性,进而求出a的取值范围.【解答】:解:(Ⅰ)依题可得f'(x)=4x+lna且f'(1)=0,∵曲线y=f(x)在x=1处的切线斜率为0,∴4+lna=0,∴ $a=\frac{1}{e^4}$ .(Ⅱ)由g(x)-f(x)<0,可得ae2x lnx-(2x2+xlna)<0,整理,得 $\frac{lnx}{x}<\frac{2x+lna}{a⋅{e^{2x}}}=\frac{ln{e^{2x}}+lna}{a⋅{e^{2x}}}=\frac{ln({a⋅{e^{2x}}})}{a⋅{e^{2 x}}}$ ,设 $h(x)=\frac{lnx}{x}$ ,则上式即为h(x)<h(ae2x),∵ $h'(x)=\frac{1-lnx}{x^2}$ ,令 $h'(x)=\frac{1-lnx}{x^2}=0$ ,得x=e,∴当x∈(0,e)时,h'(x)>0,函数h(x)单调递增;当x∈(e,+∞)时,h'(x)<0,函数h(x)单调递减.又当x∈(0,1)时, $h(x)=\frac{lnx}{x}<0$ ,∴h(x)<h(ae2x),∴只需x<ae2x,即 $a>\frac{x}{e^{2x}}$ ,设 $H(x)=\frac{x}{e^{2x}}$ ,则 $H'(x)=\frac{1-2x}{e^{2x}}$ ,令 $H'(x)=\frac{1-2x}{e^{2x}}=0$ ,得 $x=\frac{1}{2}$ ,∴当$x∈({0,\frac{1}{2}})$ 时,H'(x)>0,H(x)单调递增,当$x∈({\frac{1}{2},1})$ 时,H'(x)<0,H(x)单调递减.∴ $H(x)=\frac{x}{e^{2x}}≤\frac{1}{2e}$ ,∴ $a>\frac{1}{2e}$ ,∴a的取值范围为( $\frac{1}{2e}$ ,+∞).【点评】:本题考查导数的综合应用,不等式恒成立问题,解题中注意转化思想的应用,属于中档题.。

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷(含解析)

2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。

2020-2021学年高二数学人教A版(2019)

2020-2021学年高二数学人教A版(2019)
3.(1)正确.每道题猜对答案与否是相互独立的,且每道题 猜对答案的概率均为0.25,这是一个12重伯努利试验.
(2)错误,因为是不放回抽样,每次是否抽到次品不独 立,不满足二项分布的条件.
一般地,确定一个二项分布模型的步骤如下: (1)明确伯努利试验及事件A的意义,确定事件A发生的概率p; (2) 确定重复试验的次数n,并判断各次试验的独立性; (3)设X为n次独立重复试验中事件A发生的次数,
A1A2 A3
1
0.8
A3
A1 A2 A3
1
A2
0.2
A3
ቤተ መጻሕፍቲ ባይዱ
A1 A2 A3
0
由分步乘法计数原理,3次独立重复试验共有23=8种可能结果,它们两两互斥,
每个结果都是3个相互独立事件的积,由概率的加法公式和乘法公式得:
P(X 0) P(A1 A2 A3) 0.23 C30 0.80 0.23 P(X 1) P(A1 A2 A3 A1A2 A3 A1 A2 A3)
n重伯努利试验:我们将一个伯努利试验 独立地重复进 行n次所组成的随机试验称为n重伯努利试验.
特征: (1)同一个伯努力试验重复做n次. (2)各次试验的结果相互独立.
各次试验成功 的概率相同
(1)抛掷一枚质地均匀的硬币10次. (2)某飞碟运动员每次射击中靶的概率为0.8,连续射击3次. (3)一批产品的次品率为 5%,有放回地随机抽取20件. (4)某医院一天出生8个婴儿,其中男婴的个数. (5)假设每名学生一年内发生意外伤害事故的概率为0.001,那么1000名学 生一年内恰发生意外伤害事故的人数. (6)一个盒子中装有5个球(3个红球和2个黑球),从中不放回的依次摸四个 球,其中红球的个数;
1.(1) P( X

新教材2020-2021学年数学人教B版选择性必修第二册课件:3.1.2.2 排列数的应用

新教材2020-2021学年数学人教B版选择性必修第二册课件:3.1.2.2 排列数的应用

解排列应用问题的基本思路如图所示:
【对点练】
1.考生甲填报某高校专业意向,打算从5个专业中挑选3个,分别作为第一、第
二、第三志愿,则不同的填法有 ( )
A.10种
B.60种
C.125种
D.243种
【解析】选B.依题意,满足题意的不同的填法共有 A35 =60(种).
2.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果 分给同一人的2张参观券连号,那么不同的分法种数是________. 【解析】5张参观券全部分给4人,分给同一人的2张参观券连号的情况为1和 2,2和3,3和4,4和5,四种连号,其他号码各为一组,分给4人,共有4× A44 =96 答案:96
2.数字“2 016”中,各位数字相加和为9,称该数为“长久四位数”,则用
数字0,1,2,3,4,5,6组成的无重复数字且大于2 016的“长久四位数”

()
A.39个
B.40个
C.41个
D.42个
【解析】选C.0,1,2,6组成的无重复数字且大于2 016的“长久四位数”共
有5+ A33 =11个,0,1,3,5组成的无重复数字且大于2 016的“长久四位数” 共有2 A33 =12个;0,2,3,4组成的无重复数字且大于2 016的“长久四位 数”共有3 A33 =18个.故共11+12+18=41(个ห้องสมุดไป่ตู้.
【跟踪训练】 用0~9这10个数字,按下列不同要求,求可组成的三位数的个数. (1)组成没有重复数字的三位奇数. (2)组成大于300的三位无重复数字的偶数. 【解析】(1)先填个位有5种,再填首位有8种,再填十位有8种,共有 5×8×8=320(个). (2)分两类:第一类首位是3,5,7,9时,可组成 A14 A15=A118 60(个);第二类 首位是4,6,8时,可组成 A13 A14 =A918 6(个),故共有大于300的三位无重复数 字的偶数的个数为160+96=256(个).

新教材数学人教b版选择性必修第二册312排列与排列数第2课时排列数的应用课件_1

新教材数学人教b版选择性必修第二册312排列与排列数第2课时排列数的应用课件_1

【习练·破】 元旦晚会期间,高三二班的学生准备了6个参赛节目,其中有2个舞蹈节目,
2个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目 一定要排在一起,则这6个节目的不同编排种数为 ( )
【解析】选C.分3步进行: ①歌曲节目排在首尾,有 A=22 2种排法. ②将2个小品节目安排在歌曲节目的中间,有 A=22 2种排法. ③排好后,2个小品节目与2个歌曲节目之间有3个空位, 将2个舞蹈节目全排列,安排在中间的3个空位,有 A22=A136种排法. 则这6个节目出场的不同编排种数为2×2×6=24种
方法二:把位置作为研究对象. 第一步,从甲以外的6名同学中选1名排在首位,有 A种16 方法. 第二步,从占据首位以外的6名同学中选4名排在除首位以外的其他4个位置上, 有 A种64 方法. 由分步乘法计数原理,可得共有 ·A16 =A264 160(种)排法.
方法三(间接法):即先不考虑限制条件,从7名同学中选出5名进行排列,然后
【类题·通】 数字排列问题的解题原则
排列问题的本质是“对象”占“位子”问题,有限制条件的排列问题的限制条 件主要表现在某对象不排在某个位子上,或某个位子不排某些对象,解决该类排 列问题的方法主要是按“优先”原则,即优先排特殊对象或优先满足特殊位子,若 一个位子安排的对象影响到另一个位子的对象个数时,应分类讨论. 提醒:解决数字问题时,应注意题干中的限制条件,恰当地进行分类和分步,尤其 注意特殊对象“0”的处理.
【加练·固】
用0,1,2,3,4,5这六个数字可以组成多少个无重复数字的
(1)能被5整除的五位数.(2)能被3整除的五位数.
【解析】(1)个位上的数字必须是0或5.个位上是0,有 A个54 ;个位上是5,若

2020-2021学年数学第二册教案:第3章3.13.1.2第2课时 排列数的应用含解析

2020-2021学年数学第二册教案:第3章3.13.1.2第2课时 排列数的应用含解析

2020-2021学年新教材数学人教B版选择性必修第二册教案:第3章3.1 3.1.2 第2课时排列数的应用含解析第2课时排列数的应用学习目标核心素养1.进一步理解排列的概念,掌握一些排列问题的常用解题方法.(重点)2.能应用排列知识解决简单的实际问题.(难点)1.通过排列知识解决实际问题,提升逻辑推理的素养.2.借助排列数公式计算,提升数学运算的素养.无限制条件的排列问题每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?[思路点拨](1)从5本不同的书中选出3本分别送给3名同学,各人得到的书不同,属于求排列数问题;(2)给每人的书均可以从5种不同的书中任选1本,各人得到哪本书相互之间没有联系,要用分步乘法计数原理进行计算.[解](1)从5本不同的书中选出3本分别送给3名同学,对应于从5个不同元素中任取3个元素的一个排列,因此不同送法的种数是A错误!=5×4×3=60,所以共有60种不同的送法.(2)由于有5种不同的书,送给每个同学的每本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是5×5×5=125,所以共有125种不同的送法.1.没有限制的排列问题,即对所排列的元素或所排列的位置没有特别的限制,这一类问题相对简单,分清元素和位置即可.2.对于不属于排列的计数问题,注意利用计数原理求解.[跟进训练]1.(1)将3张电影票分给10人中的3人,每人1张,则共有________种不同的分法.(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,不同的选法共有________种.(1)720(2)60[(1)问题相当于从10张电影票中选出3张排列起来,这是一个排列问题.故不同分法的种数为A错误!=10×9×8=720。

(2)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,应有A错误!=5×4×3=60种选法.]排队问题【例2】3名男生、4名女生按照不同的要求排队,求不同的排队方法的种数.(1)全体站成一排,男、女各站在一起;(2)全体站成一排,男生必须站在一起;(3)全体站成一排,男生不能站在一起;(4)全体站成一排,男、女各不相邻.[解](1)男生必须站在一起是男生的全排列,有A错误!种排法;女生必须站在一起是女生的全排列,有A错误!种排法;全体男生、女生各视为一个元素,有A错误!种排法.由分步乘法计数原理知,共有A错误!·A错误!·A2,2=288种排队方法.(2)三个男生全排列有A错误!种方法,把所有男生视为一个元素,与4名女生组成5个元素全排列,有A55种排法.故有A 错误!·A错误!=720种排队方法.(3)先安排女生,共有A44种排法;男生在4个女生隔成的五个空中安排,共有A错误!种排法,故共有A4,4·A错误!=1 440种排法.(4)排好男生后让女生插空,共有A错误!·A错误!=144种排法.“相邻”与“不相邻"问题的解决方法处理元素“相邻”“不相邻"问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通"元素之间及两端插入不相邻元素.错误!2.5人站成一排,甲、乙两人之间恰有1人的不同站法的种数为()A.18 B.24C.36D.48C[5人站成一排,甲、乙两人之间恰有1人的不同站法有3A 错误!×A错误!=36(种).]角度二元素“在”与“不在”问题【例3】六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙站在两端;(3)甲不站左端,乙不站右端.[解](1)法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A错误!种站法,然后其余5人在另外5个位置上作全排列有A错误!种站法,根据分步乘法计数原理,共有站法A错误!·A 错误!=480种.法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A2,5种站法,然后其余4人有A错误!种站法,根据分步乘法计数原理,共有站法A2,5·A错误!=480种.法三:若对甲没有限制条件共有A6,6种站法,甲在两端共有2A55种站法,从总数中减去这两种情况的排列数,即得所求的站法数,共有A错误!-2A错误!=480种.(2)首先考虑特殊元素,甲、乙先站两端,有A错误!种,再让其他4人在中间位置作全排列,有A错误!种,根据分步乘法计数原理,共有A错误!·A错误!=48种站法.(3)法一:甲在左端的站法有A错误!种,乙在右端的站法有A错误!种,且甲在左端而乙在右端的站法有A错误!种,共有A错误!-2A错误!+A44=504种站法.法二:以元素甲分类可分为两类:a。

2021学年高二数学人教B版必修第二册排列与排列数(2)课件

2021学年高二数学人教B版必修第二册排列与排列数(2)课件

空位
A
B
空位
空位
根据分步乘法计数原理,共有 A 44
A
2 5
480
种排法.
2020-2021 学年高 二数学 人教B 版必修 第二册 排列与 排列数 (2)课 件
出现类似“不”的否定词语---反面思考:排除法 从“六人任意排列”的情况中去掉“A与B相邻”的情况:
A66 240 480 种.
解决“不相邻”问题的其他方法
第一步,将除A,B外的剩余4个对象全排列,共有
A
4 4空位
空位
第二步,从5个空位中任取2个空位分别排列A,B这2个对象,共有 A52 种排法;
【复习回顾】
2.排列数
从 n 个不同对象中,任取 m(m ≤ n)个对象的 所有排列的个数,称为从 n 个不同对象中取出m 个对
象的排列数.用符号
A
m n
表示.
连乘形式:A
m n
nn
1 n
m 1;
阶乘形式:A
m n
n! . (n m)!
其中 n! n n 1 21.
例1.(1)用0,1,2,…,9这十个数字,可以排成多少个 无重复数字的四位数?
BA
共 A55
A
2 2
240 种方法.
解决“相邻”问题的方法,称为捆绑法: 首先,将需要相邻的对象“捆绑”在一起,视 为“一个对象”.再将“所有”对象全排列.注 意最后还要“松绑”,不要忽略被捆绑的对象 之间的内部排列,即“先捆后松”.
A B 捆 AB 松 A B
(2)A、B两人不能相邻,有多少种不同的站法?
从1至9中取4个数字排列,排列数为 A94 .
第二类,这4个数字中包含0:(0不能在首位,应先排0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高二数学排列二人教版一、本讲进度第十章排列、组合和概率10.2 排列二、主要内容1、排列的概念、表示法、计算公式;2、与排列数有关的计算题、证明题等;3、排列应用题:没有附加条件,有附加条件的三、学习指导1、排列的定义:从n个不同元素中,任取m(m≤n)个,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素取出m个元素的排列数,用符号A n m表示。

根据排列的定义,它有两个要点:(1)从n个不同元素中任取m个;(2)按照一定顺序排成一列。

所谓“按照一定的顺序排成一列”应该理解成是将m个元素放在m个不同的位置上。

所以排列定义中的每个要点,可以简略地称之为一是元素,二是位置。

在确定排列的数目时,往往要借助于树图写出所有的排列。

2、排列数的计算公式:A n m=n(n-1)(n-2)…[n-(m-1)],等号右边是m个连续的正整数的积,第一项为n,成递减趋势。

排列数的化简公式:A n m=规定:0!=1,A n m=n!=n(n-1)(n-2)·…·2·1排列数公式的推导过程是分步计数原理的直接应用根据排列数的定义,可得到与排列数有关的变形公式:=…k·k!=(k+1)!-k!3、排列应用主要是解决与实际问题有关的应用题。

这类问题从条件出发,分两类:一类是没有附加条件的排列问题;二类是有附加条件的排列问题。

有附加条件的排列问题主要有两种:一是“在与不在”的问题,就是某一个或某几个元素在或不在某些特殊位置,一是“邻与不邻”问题,是指某些元素相邻或不相邻的问题,这类总是常用“捆绑法”或“插空法”。

解有附加条件排列问题的基本思路:从元素出发或从位置出发称为“元素分析法”、“位置分析法”。

解有附加条件的排列问题的基本方法:一是直接法,先从特殊元素或特殊位置出发,再考虑非特殊元素及非特殊位置,用分步计数原理;二是间接法,先不考虑条件限制,求出排列总数,再求出不满足条件的排列数,前者与后者的差即为问题结论,也可称这种方法的原理为减法原理。

四、典型例题例1、由a1,a2,…,a7七个元素组成的全排列中(1)a1在首位的有多少种?(2)前两个位置上是a1、a2(顺序固定)的有多少种?(3)前两个位置上是a1、a2(顺序不固定)的有多少种?解题思路分析:(1)先满足特殊元素(a1)与特殊位置(首位),把a1放在首位,有A11种方法;再让其余6个元素在其余6个位置上作全排列,有A66种方法。

这两个步骤完成以后,就得到所要求的排列。

根据分步计数原理,有:A11A66=A66种方法(2)先把a1、a2分别放在第一、二个位置上,满足a1、a2在前两个位置上(顺序固定),有A11A11种方法;再让其余5个元素排在其余5个位置上作全排列,有A55种方法∴共有A11A11A55=A55种方法(3)先把a1、a2放在前两个位置上,由于顺序不固定,所以有A22种方法,再让其余5个元素在其余5个位置上作全排列,有A55种方法。

∴共有A22A55种方法评注:计算A n m时,如果要求某一特殊元素必须放在某一特殊位置,那么先把这个元素放在这个特殊位置,这时元素少了1个,位置也少了1个,则问题转化为求的问题,这种情况可以推广到某r个元素必须分别在r个特殊位置上,其结果是。

如果特殊的r个元素在特殊的r个位置上,又可以变换位置,在这种情况下,完成这一步骤的方法有A r r种,在这一步完成后,完成第二步有种方法,因此解这类问题的公式是。

例2、由a1,a2,…,a7七个元素每次取出5个的排列中(1)a1不在首位的有多少种?(2)a1既不在首位,又不在末位的有多少种?(3)a1与a7既不在首位又不在末位的有多少种?(4)a1不在首位,同时a7不在末位的有多少种?解题思路分析:(1)首先满足特殊元素a1,a1不在首位的排列可以分为两类:①不含a1:此时只需从a1以外的其它6个元素中取出5个放在5个位置上,有A65种;②含有a1,a1不在首位的:先从4个位置中选出1个放在a1,再从a1以外的6个元素中选4个排在没有a1的位置上,共有A41A64种∴由分类计数原理,共有A65+A41A64种法二:把位置作为研究对象,第一步满足特殊位置(首位),从a1以外的6个元素中选1个排在首位,有A61种方法;第二步,从占据首位以外的6个元素中选4个排在除首位以外的其它4个位置上,有A64种方法,由分步计数原理,共有:A61A64种方法法三:间接法,用减法原理:从总的可能情况中减去不符合要求的情况。

不考虑a1在首位的要求,总的可能情况有A75种;a1在首位的,有A64种,所以,符合要求的A75-A64种。

(2)把位置作为研究对象,先满足特殊位置,从a1以外的6个元素中选两个排在首末两个位置上,有A62种方法;再从未排上的5个元素中选3个排在中间3个位置上,有A53种方法,由分步计数原理,有A62A53种方法。

(3)把位置作为研究对象。

先从a1、a7以外的5个元素中选两个排在首末两个位置,有A52种方法;再从末排上的5个元素选出3个排在中间3个位置上有A53种方法。

由分步计数原理,共有A52A53种方法。

(4)用间接法。

总的可能情况是A75种,减去a1在首位的A64种,再减去a7在末位的A64种。

注意到a1在首位同时a7在末位的情况被减去了两次,所以还需补回一次A53种,所以结果是A75-2A64+A53种方法。

评注:本题第(1)题给出的三种方法是最常用的,在具体题目中还应该选择适当的方法。

因为排列问题对思维的要求很高,所以用不同解法相互检验是防止错误结果的行之有效的方法。

例3、1,2,3,4,5五个数字做全排列组成的数中(1)1,3,5必须连在一起的有多少个?(2)2,4不相邻的有多少个?(3)2,4必须排在偶数位上的有多少个?解题思路分析:(1)元素连在一起,先把它们看成一个整体。

把1,3,5看成一个整体,加上2,4共3个元素,它们的全排列数是A33。

对于其中的每一个排列,让彼此相邻的1,3,5三个元素再做全排列,又有A33种可能,完成这两个步骤,就得符合要求的数,所以根据分步计数原理,只有A33A33个数。

(2)先让1,3,5作全排列,有A33种方法,对其中每一种排法,每两个数之间及第1个数字之前和第末个数字之后,共有4个位置,让2,4分别插入这4个位置中的任意两个,有A42种方法,所以根据分步计数原理,共有A33A42个数。

法二用间接法得A55-A22A44个(3)第一步把2,4排在偶数位上,有A22种排法;第二步把1,3,5排在奇数位上有A33种排法。

∴共有A22A33个数评注:第(1)小题的方法称为“捆绑法”,第(2)小题的方法称为“插空法”。

例4、在3000与8000之间不重复的奇数有多少个?解题思路分析:首先弄清结论要求的数字含义:(1)在3000与8000之间意思是千位数字只能取3,4,5,6,7的四位数;(2)奇数的意思是个位只能取1,3,5,7或9。

其次,根据首位和末位的要求分析元素之间的关系,借助于集合符号分类表示如下,其中首尾两集合集是{3,5,7}。

由图示,对所求的数分成两类:个位上是1或9的;个数上是3,5或7的。

对于第一类:第一步从1,9中选1个放在个位;第二步,从3,4,5,6或7中选1个放在千位,第三步从其余的8个数字(0,1,2,…,9中除去已放在个位、千位的2个后剩余的数字)中任选2个放在首位、十位,根据分步计数原理,第一类数共有A21A51A82个。

对于第二类数,第一步从3,5,7中选1个放在个数,第二步从3,5,7三个数字余下的两个再加上4,6共4个数字中选1个放在千位,第三步从未放在个位与千位上的其余8个数字中选2个放在百位和十位,根据分步计数原理,第二类数共有A31A82个。

∴根据分类计数原理,共有A21A51A82+A31A41A82个数。

评注:1、分类、分步的基础是对元素和位置的分析。

用集合的观点,借助于Veen图是常用的比较好的一种方法,这样做使得分类时不重不漏,思考时条理清楚。

2、对较复杂的排列问题,一般这样思考:①先看完成所要求的事件的方法可以不重不漏地分成几类,根据加法法则把各类的数目相加,就得到所要求事件的总数目;②在每一类中,把完成所要求事件的过程分成几步,根据分步计数原理把每步的可能数相乘,便得到这一类的数目。

③计算每一步的可能数。

例5、5名运动员参加100米决赛,如果各人到达终点的顺序各不相同,问甲比乙先到达终点的可能有几种?解题思路分析:法一:将甲到达终点的情况作为分类标准甲第一个到达:乙可以第二、三、四、五名到达,共有N1=A44种甲第二个到达:乙可以第三、四、五名到达,共有N2=A31A33种类似的,甲第三个到达,共有N3=A21A33种甲第四个到达,共有N4=A33种∴根据分类计数原理,共有N=N1+N2+N3+N4=A44+A31A33+A21A33+A33=60(种)法二:5名运动员到达终点的顺序有A55=120(种)而甲先于乙到达和乙先于甲到达的可能性均等∴ 60(种)评注:第二种方法称为“等可能事件法”。

例6、已知,求n解题思路分析:根据排列数的计算公式,原方程可以化简为(2n+1)(2n)(2n-1)(2n-2)=140n(n-1)(n-2)∵ n≥3∴ n(n-1)≠0∴ (2n+1)(2n-1)=35(n-2)∴ n=3或n=∵ n∈N+∴ n=3评注:解这类题目时,要注意排列数P n m中m、n的取值范围,如本题中,2n+1≥4且n≥4,n是自然数例7、求证:A11+2A22+3A33+…+nA n n=(n+1)!-1解题思路分析:本题左边可以看成是数列的求和问题,根据右边的要求,应消元化简分析通项:!k )!1k (A A )1k (A ]1)1k [(kA k k k k k k k k -+=-+=-+=1A 11=2!-! 2A 22=3!-2! 3A 33=4!-3! ……nA n n =(n+1)!-n!将这n 个等式左、右两边分别相加得:A 11+2A 22+3A 33+…+nA n n =(n+1)!-1评注:对数列的通项进行分析是处理数列问题的重要方法。

本题的关键是对n 的变形:n=(n+1)-1。

根据不同需要对某些式子作一定变形是解决数学问题的基本功。

同步练习(一)选择题1、若a ∈N +,且a <20,则(27-a)(28-a)(33-a)…(34-a)可表示为A 、B 、C 、D 、2、用1,2,3,…,9这9个数字组成数字不重复的三位数的个数是A 、 27B 、84C 、504D 、7293、8个同学排成一排的排列数为m ,8个同学排成前后两排(前排3个,后排5个)的排列数为n ,则m 、n 的大小关系是A 、m=nB 、m >nC 、m <nD 、n <m <2n4、6张同排连号的电影票,分给3名教师和3名学生,如果师生相间而坐,则不同的方法数为A 、A 33A 43B 、(A 33)2C 、2(A 33)2D 、A 66-(A 33)25、用0,2,4,6,9这五个数字可以组成数字不重复的五位偶数共有A 、72个B 、78个C 、84个D 、384个6、由数字1,2,3,4,5组成数字不重复的五位数中,小于50000的偶数有A 、 24个B 、36个C 、48个D 、60个7、由0,1,2,3,4,5这六个数字组成的数字不重复且大于345012的六位数的个数是A 、245B 、269C 、270D 、3608、已知集合M={a 1,a 2,a 3},P={b 1,b 2,…,b 6},若M 中的不同元素对应到P 中的像不同,则这样的的映射共有A 、3个B 、20个C 、64个D 、120个9、要排一张有5个独唱节目和3个合唱节目的演出节目表,如果合唱节目不排在节目表的第一个位置上,并且任何两个合唱节目不相邻,则不同的排法总数是A 、A 88B 、A 55A 33C 、A 55A 53D 、A 33A 5310、甲、乙、丙、丁、戊五人并排站在一排,如果乙必须站在甲的右边(甲、乙可以不相邻),那么不同的排法共有A 、24种B 、60种C 、90种D 、120种(二)填空题11、根据条件,求x的值(1)A x5=12A x3,则x=__________。

相关文档
最新文档