材料结构与性能第三章作业回答
工程材料与热处置第3章作业题参考答案
1.置换固溶体中,被置换的溶剂原子哪里去了?答:溶质把溶剂原子置换后,溶剂原子从头加入晶体排列中,处于晶格的格点位置。
2.间隙固溶体和间隙化合物在晶体结构与性能上的区别安在?举例说明之。
答:间隙固溶体是溶质原子进入溶剂晶格的间隙中而形成的固溶体,间隙固溶体的晶体结构与溶剂组元的结构相同,形成间隙固溶体可以提高金属的强度和硬度,起到固溶强化的作用。
如:铁素体F是碳在α-Fe中的间隙固溶体,晶体结构与α-Fe相同,为体心立方,碳的溶入使铁素体F强度高于纯铁。
间隙化合物的晶体结构与组元的结构不同,间隙化合物是由H、B、C、N等原子半径较小的非金属元素(以X表示)与过渡族金属元素(以M表示)结合,且半径比r X/r M>0.59时形成的晶体结构很复杂的化合物,如Fe3C间隙化合物硬而脆,塑性差。
3.现有A、B两元素组成如图所示的二元匀晶相图,试分析以下几种说法是不是正确?为何?(1)形成二元匀晶相图的A与B两个相元的晶格类型可以不同,可是原子大小必然相等。
(2)K合金结晶进程中,由于固相成份随固相线转变,故已结晶出来的固溶体中含B量老是高于原液相中含B量.(3)固溶体合金按匀晶相图进行结晶时,由于不同温度下结晶出来的固溶体成份和剩余液相成份不相同,故在平衡态下固溶体的成份是不均匀的。
答:(1)错:Cu-Ni合金形成匀晶相图,但二者的原子大小相差不大。
(2)对:在同一温度下做温度线,别离与固相和液相线相交,过交点,做垂直线与成份线AB相交,可以看出与固相线交点处B含量高于另一点。
(3)错:虽然结晶出来成分不同,由于原子的扩散,平衡状态下固溶体的成份是均匀的。
4.共析部份的Mg-Cu相图如图所示:(1)填入各区域的组织组成物和相组成物。
在各区域中是不是会有纯Mg相存在?为何?答:Mg-Mg2Cu系的相组成物如下图:(α为Cu在Mg中的固溶体)Mg-Mg2Cu系的组织组成物如下图:(α为Cu在Mg中的固溶体,)在各区域中不会有纯Mg相存在,此时Mg以固溶体形式存在。
材料科学基础第三章典型晶体结构.答案
类似于NaCl型晶体结构的晶体较多,只是晶胞 参数不同而已。
常见的NaCl型晶体都是碱土金属氧化物和过渡 金属的二价氧化物。化学式可写为MO,其中M2+ 是二价金属离子,结构中M2+和O2-分别占据了 NaCl中钠离子和氯离子的位置。这些氧化物有很 高的熔点,尤其是MgO(矿物名称方镁石),其 熔点高达2800℃左右,是碱性耐火材料镁砖中的 主要晶相。
反萤石型结构 :在萤石型结构中正、负离子位置全部互换,并没 有改变结构形式,只是正、负离子位置对调。如Na2O
结构-性能关系:CaF2熔点较低,用作助熔剂/作晶核剂。 质点间 键力较NaCl强 硬度稍高(莫氏4级),熔点1410C,在水中 溶解度小。
表示方法:球体堆积法;坐标法;投影图;配位多面体
连接方式
0,100
50
0,100
75 50
25 0,100
25 0,100
50
75
50
0,100
与金刚石晶胞的对比 ,有什么不同?
同型结构的晶体β-SiC,GaAs,AlP 等
5、-ZnS(纤锌矿)型结构 (AB type)
六方晶系,简单六方格子
C
50
0,100
晶胞在(001)面的投影图
晶胞中由几套等同点?
在坐标为000和坐标为1/4 1/4 3/4 的 原 子 的 环 境 是 不 同 的 , 它们不能独立抽象为一类等同 点,这是两类等同点。最后, 它的布拉维格子仍为面心立方 格子。
这种结构可以看成是由2个面 心立方布拉维格子穿插而成: 这2个面心立方格子(图中的 灰色和红色点)沿体对角线相 对位移动a/4<111>。
材料结构与性能解答(全).doc
材料结构与性能解答(全)1、离子键及其形成的离子晶体陶瓷材料的特征。
答当一个原子放出最外层的一个或几个电子成为正离子,而另一个原子接受这些电子而成为负离子,结果正负离子由于库仑力的作用而相互靠近。
靠近到一定程度时两闭合壳层的电子云因发生重叠而产生斥力。
这种斥力与吸引力达到平衡的时候就形成了离子键。
此时原子的电中性得到维持,每一个原子都达到稳定的满壳层的电子结构,其总能量达到最低,系统处于最稳定状态。
因此,离子键是由正负离子间的库仑引力构成。
由离子键构成的晶体称为离子晶体。
离子晶体一般由电离能较小的金属原子和电子亲和力较大的非金属原子构成。
离子晶体的结构与特性由离子尺寸、离子间堆积方式、配位数及离子的极化等因素有关。
离子键、离子晶体及由具有离子键结构的陶瓷的特性有A、离子晶体具有较高的配位数,在离子尺寸因素合适的条件下可形成最密排的结构;B、离子键没有方向性C、离子键结合强度随电荷的增加而增大,且熔点升高,离子键型陶瓷高强度、高硬度、高熔点;D、离子晶体中很难产生自由运动的电子,低温下的电导率低,绝缘性能优良;E、在熔融状态或液态,阳离子、阴离子在电场的作用下可以运动,故高温下具有良好的离子导电性。
F、吸收红外波、透过可见波长的光,即可制得透明陶瓷。
2、共价键及其形成的陶瓷材料具有的特征。
答当两个或多个原子共享其公有电子,各自达到稳定的、满壳层的状态时就形成共价键。
由于共价电子的共享,原子形成共价键的数目就受到了电子结构的限制,因此共价键具有饱和性。
由于共价键的方向性,使共价晶体不密堆排列。
这对陶瓷的性能有很大影响,特别是密度和热膨胀性,典型的共价键陶瓷的热膨胀系数相当低,由于个别原子的热膨胀量被结构中的自由空间消化掉了。
共价键及共价晶体具有以下特点A、共价键具有高的方向性和饱和性;B、共价键为非密排结构;C、典型的共价键晶体具有高强度、高硬度、高熔点的特性。
D、具有较低的热膨胀系数;E、共价键由具有相似电负性的原子所形成。
《材料结构与性能》习题复习课程
《材料结构与性能》习题《材料结构与性能》习题第一章1、一25cm长的圆杆,直径2.5mm,承受的轴向拉力4500N。
如直径拉细成2.4mm,问:1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度;2)在此拉力下的真应力和真应变;3)在此拉力下的名义应力和名义应变。
比较以上计算结果并讨论之。
2、举一晶系,存在S14。
3、求图1.27所示一均一材料试样上的A点处的应力场和应变场。
4、一陶瓷含体积百分比为95%的Al2O3(E=380GPa)和5%的玻璃相(E=84GPa),计算上限及下限弹性模量。
如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。
5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的关系。
并注出:t=0,t=∞以及t=τε(或τσ)时的纵坐标。
6、一Al2O3晶体圆柱(图1.28),直径3mm,受轴向拉力F ,如临界抗剪强度τc=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。
同时计算在滑移面上的法向应力。
第二章1、求融熔石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm;弹性模量值从60到75GPa。
2、融熔石英玻璃的性能参数为:E=73GPa;γ=1.56J/m2;理论强度。
如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。
3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式:与是一回事。
4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图2.41所示。
如果E=380GPa,μ=0.24,求KⅠc值,设极限载荷达50㎏。
计算此材料的断裂表面能。
5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。
此钢材的屈服强度为1400MPa,计算塑性区尺寸r0及其与裂缝半长c的比值。
讨论用此试件来求KⅠc值的可能性。
材料物理与性能_耿桂宏_课后答案[1-10章]
σ b 并不
σ b 代表实际工件在静拉伸条件下的最大承载能力,所
σ b 是工程上金属材料的重要力学性能指标之一。加之 σ b 易于测定,重现性好,所以广泛
用作产品规格说明或质量控制指标。
第四章
1、试说明经典自由电子论、量子自由电子论和能带理论的区别?
) 答: (1)经典电子理论 (自由电子论 (自由电子论) : 认为:连续能量分布的价电子在均匀势场中运动。 无法解释一价金属和二价金属的导电问题。 按照自由电子的概念, 二价金属的价电子比 一价金属的多,似乎二价金属的导电性比一价金属好,但是,实际情况却是一价金属的导电 性比二价金属好。 : 问题的根源 问题的根源: 忽略了电子之间的排斥作用和正离子点阵周期场的作用。 经典电子理论它 是立足于牛顿力学(宏观运动) ,而对微观粒子的运动问题应用量子力学的概念来解决。
会产生明显的蠕变变形及应力松弛。
3.8 断裂强度σc 与抗拉强度σb 有何区别?
答:断裂强度σc 是指材料断裂时所受力的大小,而抗拉强度为材料拉伸实验时所承载 的最大力。其中抗拉强度的实际意义如下:标志塑性金属材料的实际承载能力,但这种承载 能力也仅限于光滑试样单向拉伸的受载条件。如果材料承受更复杂的应力状态,则 代表材料的实际有用强度。正是由于 以
3.4 决定金属屈服强度的因素有哪些?
答:影响金属屈服强度的因素有很多,主要包括内因和外因两个部分。详见书中影响金 属材料屈服强度的因素部分。
3.5 试举出能显著强化金属而不降低其塑性的方法。
答:细化晶粒不仅能够提高金属材料的强度,而且还可以提高其塑性。详见书中屈服强 度以及塑性的影响因素部分。
3.6 试说明高温下金属蠕变变形的机理与常温下金属塑性变形的机理有何不 同?
材料结构与性能思考题
《材料结构与性能》思考题第一章金属及合金的晶体结构1.重要名词晶体非晶体单晶体多晶体晶粒晶界各向异性假等向性(伪各向同性)空间点阵阵点(结点)晶胞简单晶胞(初级晶胞)布拉菲点阵晶系晶面晶面指数晶向晶向指数密勒指数晶面族晶向族晶带晶带轴面间距配位数致密度点阵常数面心立方(A1)体心立方(A2) 密排六方(A3) 同素异构现象四面体间隙八面体间隙多晶型性(同素异构转变) 原子半径合金相固溶体间隙固溶体置换固溶体有限固溶体无限固溶体电子浓度无序分布偏聚短程有序短程有序参数维伽定律中间相金属间化合物正常价化合物电子化合物(Hume-Rothery相) 间隙相间隙化合物拓扑密堆相(TCP相) PHACOMP 方法超结构(有序固溶体,超点阵)长程有序度参数反相畴(有序畴)2.试述晶体的主要特征。
3.画出立方晶系中的下列晶面和晶向:(100), (111), (110), (123), (130)), (121), (225), [112], [312], 2]。
画出六方晶系中的下列晶面:(0001), (1120), (1011)。
[114.画出立方晶系(110)面上的[111]方向,(112)上的[111]方向。
在其(111)面上有几个<110>方向5.计算面心立方、体心立方、密排六方点阵晶胞的晶胞内原子数、致密度。
其中原子的配位数是多少6.面心立方和密排六方点阵的原子都是最密排的,为什么它们形成了两种点阵7.画图计算面心立方和体心立方点阵的四面体、八面体间隙的半径r B与原子半径r A之比。
8.铜的面心立方点阵常数为Å,计算其(122)晶面间距。
9.立方晶系中晶面指数和晶向指数有什么关系10.写出立方晶系{112}晶面组的全部晶面和<123>晶向族的全部晶向。
11.已知点阵常数a=2 Å,b=6 Å, c=3 Å, 并已知晶面与三坐标轴的截距都是6 Å,求该晶面的指数。
工程材料第三章答案
工程材料习题与辅导(第四版)朱张校姚可夫3.2 习题参考答案1. 解释名词热硬性、石墨化、孕育(变质)处理、球化处理、石墨化退火、固溶处理、时效答: 热硬性: 热硬性是指钢在高温下保持高硬度的能力(亦称红硬性)。
热硬性与钢的回火稳定性和特殊碳化物的弥散析出有关。
石墨化: 铸铁中碳原子析出并形成石墨的过程称为石墨化。
孕育(变质)处理: 在液体金属中加入孕育剂或变质剂,以细化晶粒和改善组织的处理工艺。
球化处理: 在铁水中加入球化剂,以获得球状石墨的处理工艺称为球化处理。
石墨化退火: 使白口铸铁中的渗碳体分解成为团絮状石墨的退火过程。
固溶处理: 把合金加热到单相固溶体区,进行保温使第二相充分溶解,然后快冷(通常用水冷却),得到单一的过饱和固溶体组织的热处理工艺。
固溶处理可以使奥氏体不锈钢获得单相奥氏体组织,提高奥氏体不锈钢的耐蚀性。
固溶处理也在有色金属合金中得到应用。
有色金属合金(如铝合金)先进行固溶处理获得过饱和固溶体,然后再进行时效处理,析出细小、均匀、弥散分布的第二相,提高合金的强度和硬度。
时效: 固溶处理后得到的过饱和固溶体在室温下或低温加热时析出细小、均匀、弥散分布的第二相,合金硬度和强度明显升高的现象称为时效或时效硬化。
2. 填空题(1) 20是(优质碳素结构)钢,可制造(冲压件、焊接件、渗碳零件,如齿轮、销) .(2) T12是(优质碳素工具)钢,可制造(锉刀、刮刀等刃具及量规、样套等量具) .(3) 按钢中合金元素含量,可将合金钢分为(低合金钢) 、(中合金钢)和(高合金钢)几类。
(4) Q345(16Mn)是(低合金结构)钢,可制造(桥梁、船舶、车辆、锅炉等工程结构) .(5) 20CrMnTi是(合金渗碳)钢,Cr、Mn的主要作用是(提高淬透性、提高经热处理后心部的强度和韧性) , Ti的主要作用是(阻止渗碳时奥氏体晶粒长大、增加渗碳层硬度、提高耐磨性) ,热处理工艺是(渗碳后直接淬火、再低温回火) .(6) 40Cr是(合金调质)钢,可制造(重要调质件如轴类件、连杆螺栓、进汽阀和重要齿轮等) .(7) 60Si2Mn是(合金弹簧)钢,可制造(汽车板簧) .(8) GCr15是(滚珠轴承)钢,1Cr17是(铁素体型不锈)钢,可制造(硝酸工厂设备以及食品工厂设备) .(9) 9SiCr是(低合金刃具)钢,可制造(板牙、丝锥、钻头、铰刀、齿轮铰刀、冷冲模、冷轧辊等) .(10) CrWMn是(冷作模具)钢,可制造(冷冲模、塑料模) .(11) Cr12MoV是(冷模具)钢,可制造(冷冲模、压印模、冷镦模等) .(12) 5CrMnMo是(热模具)钢,可制造(中型锻模) .(13) W18Cr4V是(高速)钢,碳质量分数是(0.70%以上) , W的主要作用是(保证高的热硬性) , Cr的主要作用是(提高淬透性) , V的主要作用是(形成颗粒细小、分布均匀的碳化物,提高钢的硬度和耐磨性,同时能阻止奥氏体晶粒长大,细化晶粒) 。
高等钢结构-第三章作业
ANSYS 中,悬臂梁长 2.5m,材料及截面参数同上,选用 Beam188 单元进行 模拟计算,材料参数采用理想的弹塑性模型 S1 截面计算
S2 截面计算
S3 截面计算
S4 截面计算
由上图可以看到,ANSYS 塑性分析,采用 beam188 单元,其屈曲的考虑是 通过屈曲特征分析,对原模型修正得到,但由于 ANSYS 屈曲分析并不区分整体 和局部失稳,所以很难得到纯粹的局部屈曲模型,故一般的修正都是伴随着整 体失稳的。对于塑性发展,可以明显的观察到:悬臂梁的塑型发展是不全面 的,总是存在一定弹性内核,而且塑性不是停留在一个面,而是和现实一样是 一段区域。而且在模拟是,尤其是 s4 截面,会发现腹板部分会有明显较大应力 区域,这是明显不合理的;不合理的单元划分、屈曲修正过度都可能导致。由 于个人时间有限以及 ANSYS 操作能力有限,不做调整。 个人还尝试用 shell63 模拟,但是也是由于个人能力有限,没有成功实现, 迫于学习时间紧迫,并未进行深入分析原因。
4.2a 钢支撑的滞回曲线有何特点?试采用梁单元来模拟钢 支撑的滞回性能,并阐述模拟的要点。
1、钢支撑的滞回曲线特点: 图 1 所示是钢支撑在轴力作用下的典型变形过程和单循环滞回曲线。由于 支撑存在初始缺陷,其两端施加的轴力会在跨中位置产生附加弯矩。在轴力到 达 A 点之前,支撑处于弹性压缩阶段,承担的轴力和跨中附加弯矩比例增加。 当跨中截面在压弯共同作用下屈服时( 图 2) ,支撑在跨中位置将形成塑性 铰,宏观上支撑开始发生屈曲现象(B 点) 。支撑屈曲后,塑性铰的转动导致支 撑侧向变形增大,轴力产生的附加弯矩迅速增加,杆件的受压承载力迅速下降 ( BC 段) 。从 C 点开始支撑进入卸载和反向拉伸阶段,支撑受压屈曲后的卸载 刚度明显低于初始弹性刚度。拉伸到 D 点时跨中截面在拉弯共同作用下再次屈 服并形成塑性铰,但此时塑性铰的转动方向与受压时相反,支撑的侧向变形不 断减小。随着拉伸变形的不断增加,支撑到达 E 点时接近全截面受拉屈服。EF 段支撑进入塑性拉伸变形阶段,而在 F 点后支撑开始弹性卸载并进入下一循 环。由于包辛格效应和残留的侧向变形,后一循环的支撑稳定承载力将会明显 低于前一循环的。随着循环次数的增加,塑性损伤逐渐累积,支撑的稳定承载 力、屈曲后软化刚度和屈曲后卸载刚度等都将不断降低。支撑典型的多循环滞 回曲线见图 3。
材料结构与性能(山东联盟)智慧树知到课后章节答案2023年下齐鲁工业大学
材料结构与性能(山东联盟)智慧树知到课后章节答案2023年下齐鲁工业大学齐鲁工业大学第一章测试1.塑性形变当外力去除后,材料恢复原状。
答案:错2.法向应力和剪应力的下标第一个字母代表应力作用面的法线应力,第二个字母表示应力作用的方向。
答案:对3.脆性材料的应力-应变的行为特点是应变与应力呈非线性关系.答案:错4.弹性模量与原子间结合力有关。
答案:对5.应变仅与应力有关。
错第二章测试1.材料的理论结合强度是材料的非本征性能。
答案:错2.材料的断裂强度取决于裂纹的数量。
答案:错3.材料的平面应变断裂韧性大约材料的应力场强度因子时,材料是安全的。
答案:错4.理论强度只与弹性模量、表面能和晶格参数等材料常数有关,是常数的组合,属于材料的本征性能。
答案:对5.高强度的固体具有弹性模量E大、断裂能大、晶格常数a大的特征。
错第三章测试1.通常结构紧密的晶体,膨胀系数都较小。
答案:错2.固体中的导热主要是由晶格振动的格波和自由电子的运动来实现的。
答案:对3.材料各种热学性能的物理本质,均与其晶格热振动有关。
答案:对4.晶格中不可能存在半波长比晶格常数a小的格波。
答案:对5.声频支可以看成是相邻原子具有不同的振动方向。
答案:错第四章测试1.自然界中存在磁单极子。
答案:错2.物质的抗磁性是电子的轨道磁矩产生的。
答案:错3.顺磁体磁化是磁场克服热运动的干扰,使磁矩排向磁场的结果。
答案:对4.抗磁性材料M与H为非线性关系,磁化率χ为很小的负数。
答案:错5.顺磁体的原子或离子含有未填满的电子壳层(,或具有奇数个电子的原子,具有永久磁矩。
答案:对第五章测试1.电阻率决定于材料的几何尺寸。
答案:错2.导体中所有的电子都参与导电。
答案:错3.当材料处于超导状态时,只要外加磁场不超过一定值,磁力线不能透入超导材料内。
答案:对4.太阳能电池材料的禁带不能太宽。
答案:对5.光电材料是通过光电效应将光能转换成电能。
答案:对第六章测试1.在材料的极化中,束缚电荷不能做定向移动。
材料力学第三章习题答案
第三章 轴向拉压变形
题号 页码 3-2 .........................................................................................................................................................1 3-4 .........................................................................................................................................................2 3-5 .........................................................................................................................................................2 3-7 .........................................................................................................................................................3 3-8 .........................................................................................................................................................5 3-10 .......................................................................................................................................................6 3-11 .......................................................................................................................................................7 3-13 .......................................................................................................................................................8 3-15 .....................................................................................................................................................10 3-16 .....................................................................................................................................................10 3-18 .....................................................................................................................................................11 3-19 .....................................................................................................................................................13 3-20 .....................................................................................................................................................14 3-24 .....................................................................................................................................................15 3-25 .....................................................................................................................................................16 3-27 .....................................................................................................................................................17 3-28 .....................................................................................................................................................18 3-29 .....................................................................................................................................................20 3-30 .....................................................................................................................................................21 3-32 .....................................................................................................................................................22
材料性能学课后习题与解答
绪论1、简答题什么是材料的性能包括哪些方面提示材料的性能定量地反映了材料在给定外界条件下的行为;解:材料的性能是指材料在给定外界条件下所表现出的可定量测量的行为表现;包括错误!力学性能拉、压、、扭、弯、硬、磨、韧、疲错误!物理性能热、光、电、磁错误!化学性能老化、腐蚀;第一章单向静载下力学性能1、名词解释:弹性变形塑性变形弹性极限弹性比功包申格效应弹性模量滞弹性内耗韧性超塑性韧窝解:弹性变形:材料受载后产生变形,卸载后这部分变形消逝,材料恢复到原来的状态的性质;塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象;弹性极限:弹性变形过度到弹-塑性变形屈服变形时的应力;弹性比功:弹性变形过程中吸收变形功的能力;包申格效应:材料预先加载产生少量塑性变形,卸载后再同向加载,规定残余应力弹性极限或屈服强度增加;反向加载,规定残余应力降低的现象;弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力;实质是产生100%弹性变形所需的应力;滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能;内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗;韧性:材料断裂前吸收塑性变形功和断裂功的能力;超塑性:在一定条件下,呈现非常大的伸长率约1000%而不发生缩颈和断裂的现象;韧窝:微孔聚集形断裂后的微观断口;2、简答1 材料的弹性模量有那些影响因素为什么说它是结构不敏感指标解:错误!键合方式和原子结构,共价键、金属键、离子键E高,分子键E低原子半径大,E小,反之亦然;错误!晶体结构,单晶材料在弹性模量在不同取向上呈各向异性,沿密排面E大,多晶材料为各晶粒的统计平均值;非晶材料各向E同性;错误!化学成分,错误!微观组织错误!温度,温度升高,E下降错误!加载条件、负载时间;对金属、陶瓷类材料的E没有影响;高聚物的E随负载时间延长而降低,发生松弛;2 金属材料应变硬化的概念和实际意义;解:材料进入塑性变形阶段后,随着变形量增大,形变应力不断提高的现象称为应变硬化;意义错误!加工方面,是金属进行均匀的塑性变形,保证冷变形工艺的顺利实施;错误!应用方面,是金属机件具有一定的抗偶然过载能力,保证机件使用安全;错误!对不能进行热处理强化的金属材料进行强化的重要手段;3 高分子材料的塑性变形机理;解:结晶高分子的塑性变形是由薄晶转变为沿应力方向排列的微纤维束的过程;非晶高分子材料则是在正应力下形成银纹或在切应力下无取向的分子链局部转变为排列的纤维束的过程;4 拉伸断裂包括几种类型什么是拉伸断口三要素如何具体分析实际构件的断裂提示:参考课件的具体分析实例简单作答解:按宏观塑性变形分为脆性断裂和韧性断裂;按裂纹扩展可分为穿晶断裂和沿晶断裂;按微观断裂机理分为解理断裂和剪切断裂;按作用力分为正断和切断;拉升断口的三要素:纤维区、放射区和剪切唇;对实际构件进行断裂分析首先进行错误!宏观检测:目测构件表面外观;低倍酸洗观察;宏观断面分析;错误!扫描电镜分析错误!X射线能谱分析错误!金相分析错误!硬度及有效硬化层测定; 3、计算: 1 已知钢的杨氏模量为210GPa,问直径,长度120mm 的线材承受450N 载荷时变形量是多少 若采用同样长度的铝材来承受同样的载荷,并且变形量要求也相同,问铝丝直径应为多少E Al =70GPa 若用WE=388 GPa 、钢化玻璃E=345MPa 和尼龙线E=呢解:已知:E=210GPa , d= , 1L =120mm , F=450N ;/F S σ=ε/L L ε∴=∆ 164.5L ∴∆=∴ 2.5Al d mm ==∴ 2.5W d mm =∴ 2.5d d mm ==钢化∴ 2.5d d mm ==尼龙 2 ,直径13mm,实验后将试样对接起来后测量标距81mm,伸长率多少若缩颈处最小直径, 断面收缩率是多少解:已知:050L mm = 013d mm = 81K L mm = 6.9K d mm =∴断后伸长率∴断面收缩率 第二章 其它静载下力学性能 1、名词解释: 应力状态软性系数 剪切弹性模量 抗弯强度 缺口敏感度 硬度解:应力状态软性系数:不同加载条件下材料中最大切应力与正应力的比值;剪切弹性模量:材料在扭转过程中,扭矩与切应变的比值;缺口敏感度:常用试样的抗拉强度与缺口试样的抗拉强度的比值;NSR硬度:表征材料软硬程度的一种性能;一般认为一定体积内材料表面抵抗变形或破裂的能力;2、简答 1 简述硬度测试的类型、原理和优缺点至少回答三种解:布氏硬度、洛氏硬度、维氏硬度、肖氏硬度;布氏硬度:原理是用一定大小的载荷,把直径为D的淬火钢球或硬质合金球压入试样表面,保持规定时间后卸载载荷,测量试样表面的残留压痕直径d,求压痕的表面积;将单位压痕面积承受的平均压力规定为布氏硬度;优点是压痕面积大反映较大区域内各组成相的平均性能,适合灰铸铁、轴承合金测量,实验数据稳定,重复性高;缺点是不宜在成品上直接检验,硬度不同要更换压头直径D和载荷F,压痕直径测量较麻烦;洛氏硬度:原理是通过测量压痕深度值来表示硬度;优点是采用不同的标尺,可以测量各种软硬不同和厚薄不一样的材料的硬度,压痕小,可对工件直接进行检验,操作简便迅速;缺点是压痕小,代表性差,重复性差、分散度大,不同标尺的硬度值不能直接进行比较,不能互换;不宜在极薄的工件上直接进行检验;肖氏硬度:原理是将具有一定质量的带有金刚石或合金钢球的重锤从一定高度落向试样表面,用重锤的回落高度来表征材料的硬度;优点是使用方便,便于携带,可测现场大型工件的硬度;缺点是实验结果受人为因素影响较大,测量精度低;2 简述扭转实验、弯曲实验的特点渗碳淬火钢、陶瓷玻璃试样研究其力学性能常用的方法是什么解:扭转实验的特点是错误!扭转实验的应力状态软性系数较拉伸的应力状态软性系数高;可对表面强化处理工艺进行研究和对机件的热处理表面质量进行检验; 错误!扭转实验时试样截面的应力分布为表面最大;错误!圆柱试样在扭转时,不产生缩颈现象,塑性变形始终均匀;可用来精确评定拉伸时出现缩颈的高塑性材料的形变能力和变形抗力;错误!扭转时正应力与切应力大致相等,可测定材料的切断强度;弯曲试验的特点是:错误!弯曲加载时受拉的一侧的应力状态基本与静拉伸相同,且不存在试样拉伸时试样偏斜造成对实验结果的影响;可以用来由于太硬而不好加工拉伸试样的脆性材料的断裂强度;错误!弯曲试验时,截面上应力分布表面最大;可以比较和评定材料表面处理的质量;错误!塑性材料的F—fmax 曲线最后部分可任意伸长;渗碳淬火钢、陶瓷玻璃试样研究其力学性能常用的方法是扭转实验;3 有下述材料需要测量硬度,试说明选用何种硬度实验方法为什么a. 渗碳层的硬度分布,b. 淬火钢,c. 灰口铸铁,d. 硬质合金,e. 仪表小黄铜齿轮,f. 高速工具钢,g. 双相钢中的铁素体和马氏体,h. Ni基高温合金,i. Al合金中的析出强化相,j. 5吨重的大型铸件,k. 野外矿物解:a、e、g、i使用维氏硬度;b、c、d、f、h可使用洛氏硬度;b、c可使用布氏硬度;j使用肖氏硬度;k使用莫氏硬度;第三章冲击韧性和低温脆性1、名词解释:冲击韧度冲击吸收功低温脆性韧脆转变温度迟屈服解:冲击韧度:一次冲断时,冲击功与缺口处截面积的比值;冲击吸收功:冲击弯曲试验中,试样变形和断裂所吸收的功;低温脆性:当试验温度低于某一温度时,材料由韧性状态转变为脆性状态;韧脆转变温度:材料在某一温度t下由韧变脆,冲击功明显下降;该温度即韧脆转变温度;迟屈服:用高于材料屈服极限的载荷以高加载速度作用于体心立方结构材料时,瞬间并不屈服,需在该应力下保持一段时间后才屈服的现象;2、简答1 缺口冲击韧性实验能评定哪些材料的低温脆性哪些材料不能用此方法检验和评定提示:低中强度的体心立方金属、Zn等对温度敏感的材料,高强度钢、铝合金以及面心立方金属、陶瓷材料等不能解:缺口冲击韧性实验能评定中、低强度机构钢的低温脆性;面心立方金属及合金如氏体钢和铝合金不能用此方法检验和评定;2 影响材料低温脆性的因素有哪些解:错误!晶体结构,体心立方存在低温脆性,面心立方及其合金一般不存在低温脆性;错误!化学成分,间隙溶质原子含量增加,韧脆转变温度提高;错误!显微组织,细化晶粒课是材料韧性增加;金相组织也有影响,低强度水平时,组织不同的刚,索氏体最佳;错误!温度,在某一范围内碳钢和某些合金可能出现蓝脆;错误!加载速率,提高加载速率韧脆转变温度提高;错误!试样形状和尺寸,缺口曲率半径越小,韧脆转变温度越高; 3、计算: 某低碳钢的摆锤系列冲击实验列于下表,a. 绘制冲击功-温度关系曲线;b. 试确定韧脆转变温度; 解:有K A —t 图知,20NDT =-℃ FTP=40℃c. 要为汽车减震器选择一种钢,它在-10℃时所需的最小冲击功为10J,问此种钢适合此项应用么 解:c:此种钢不适合;第四章 断裂韧性1、名词解释: 应力场强度因子 断裂韧度 低应力脆断 解:应力场强度因子:反映裂纹尖端应力场强度的参量;断裂韧度:当应力场强度因子增大到一临界值,带裂纹的材料发生断裂,该临界值称为断裂韧性;低应力脆断:在材料存在宏观裂纹时,在应力水平不高,甚至低于屈服极限时材料发生脆性断裂的现象; 2、简答 a. 格里菲斯公式计算的断裂强度和理论断裂强度解:理论强度m σ=格里菲斯断裂强度g σ= b. Kl 和KlC 的异同解:I K 是力学度量,它不仅随外加应力和裂纹长度的变化而变化,也和裂纹的形状类型,以及加载方式有关,但它和材料本身的固有性能无关;而断裂韧性IC K 则是反映材料阻止裂纹扩展的能力,因此是材料本身的特性;c. 断裂韧性的影响因素有哪些如何提高材料的断裂韧性解:错误!外因,材料的厚度不同,厚度增大断裂韧性增大,当厚度增大到一定程度后断裂韧性稳定;温度下降断裂韧性下降,应变速率上升,断裂韧性下降;错误!内因;金属材料,能细化晶粒的元素提高断裂韧性;形成金属化合物和析出第二相降低断裂韧性;晶粒尺寸和相结构,面心立方断裂韧性高,奥氏体大于铁素体和马氏体钢;细化晶粒,断裂韧性提高;夹杂和第二相,脆性夹杂和第二相降低断裂韧性,韧性第二相提高断裂韧性;提高材料的断裂韧性可以通过错误!亚温淬火错误!超高温淬火错误!形变热处理等方法实现; 3、计算: a. 有一材料,模量E =200GPa, 单位面积的表面能γS =8 J/m 2, 试计算在70MPa 的拉应力作用下,该裂纹的临界裂纹长度若该材料裂纹尖端的变形塑性功γP =400 J/m 2,该裂纹的临界裂纹长度又为多少利用格里菲斯公式和奥罗万修正公式计算解:由格里菲斯公式得由奥罗万修正公式得 b. 已知α-Fe 的100晶面是解理面,其表面能是2 J/m 2,杨氏模量E =200 GPa,晶格常数a 0=,试计算其理解:m σ==c. 断裂韧度66MPa ·m 1/2,用这种材料制造飞机起落架,最大设计应力为屈服强度的70%,若可检测到的裂纹长度为,试计算其应力强度因子,判断材料的使用安全性;提示:假设存在的是小的边缘裂纹,采用有限宽板单边直裂纹模型,2b>>a; 若存在的是穿透裂纹,则应用无限大板穿透解:错误!^61/21.12 1.120.7210010145.9I K MPa m ==⨯⨯⨯=⋅第五章疲劳性能1、名词解释:循环应力贝纹线疲劳条带疲劳强度过载持久值热疲劳解:循环应力:周期性变化的应力;贝文线:疲劳裂纹扩展区留下的海滩状条纹;疲劳条带:略呈弯曲并相互平行的沟槽状花样,与裂纹扩展方向垂直,疲劳断裂时留下的微观痕迹;疲劳强度:指定疲劳寿命下,材料能够承受的上限循环应力;过载持久值:材料在高于疲劳强度的一定应力下工作,发生疲劳断裂的应力循环周次;热疲劳:机件在由温度循环变化产生的循环热应力及热应变作用下,发生的疲劳;2、简答a. 比较金属材料、陶瓷材料、高分子材料和复合材料疲劳断裂的特点解:金属材料的裂纹扩展分两个阶段错误!沿切应力最大方向向内扩展错误!沿垂直拉应力方向向前扩展;疲劳断口一般由疲劳源、疲劳区、瞬断区组成;有贝文线宏观和疲劳条带微观;陶瓷材料裂纹尖端不存在循环应力的疲劳效应,裂纹同样经历萌生、扩展和瞬断过程;对材料的表面缺陷十分敏感,强烈依赖于K、环境、成分、组织结构,不易观察到疲劳贝文线和条带, I没有明显的疲劳区和瞬断区;高分子材料在高循环应力作用下出现银纹,银纹转变为裂纹并扩展,导致疲劳破坏;低应力条件下,疲劳应变软化;分子链间剪切滑移产生微孔洞,随后产生宏观裂纹;循环应力作用下温度升高,产生热疲劳失效;复合材料有多种损伤形式,如界面脱落、分层、纤维断裂等,不会发生瞬时的疲劳破坏,较大应变会使纤维基体变形不协调引起开裂,形成疲劳源;疲劳性能和纤维取向有关;b. 疲劳断口宏观断口和微观断口分别有什么特征解:宏观断口有三个特征区:疲劳源、疲劳裂纹扩展区、瞬断区;错误!疲劳源是疲劳裂纹萌生的策源地,多在机件表面常和缺口、裂纹等缺陷及内部冶金缺陷有关,比较光亮,表面硬度有所提高,可以是一个也可以是多个;错误!疲劳裂纹扩展区断口较光滑并分布有贝文线,有时还有裂纹扩展台阶,断口光滑是疲劳源区的连续,程度随裂纹向前扩展而逐渐减弱,贝文线是最典型的特征;错误!瞬断区断口粗糙,脆性断口呈结晶状,韧性断裂在心部平面应变区呈放射状或人字纹,边缘应力区有剪切唇存在;一般在疲劳源对侧; c. 列出至少四条提高金属疲劳性能的措施解:错误!喷丸处理错误!表面热处理错误!复合强化错误!次载锻炼3、计算: a. 某材料的应力幅和失效循环周次如下:最少疲劳寿命105次,则许用的最大循环应力是多少 解:由图知,疲劳极限=250MPa设计寿命最少^510时,最大需用循环应力为275MPa; b. 某压力容器受到升压降压交变应力△σ=120MPa 作用,计算得知该容器允许的临界裂纹长度2ac =125mm,检查发现该容器有一长度2a =42mm 的周向穿透裂纹,假设疲劳裂纹扩展符合Paris 公式,假设疲劳扩展系数C =2×10-10,n =3,试计算该容器的疲劳寿命和循环10万次后的疲劳裂纹长度是多少 解:设裂纹为无线大板穿透裂纹,则由Paris 公式()nIda C K dN =∆得解得N=3016当N=10万次时2a=第六章磨损性能1、名词解释:磨损接触疲劳解:磨损:物体表面相互摩擦时,材料自表面逐渐减少时的过程;接触疲劳:两材料作滚动或滚动加滑动摩擦时,交变接触压应力长期作用使得材料表面疲劳磨损,局部区域出现小片或者小块材料剥落而产生的疲劳;2、简答a. 简述常见的磨损类型和特点如何提高材料的耐磨粒磨损抗力解:常见的磨损类型和特点有错误!粘着磨损,特点是机件表面有大小不等的结疤;错误!磨粒磨损,摩擦面上有擦伤或明显犁皱纹;错误!腐蚀磨损,氧化磨损,磨损产物为氧化物如红褐色的三氧化二铁;错误!接触疲劳磨损,出现许多豆状、贝壳状或不规则形状的凹坑;提高磨粒磨损的抗力可以选用高硬度韧性好的材料或使用表面硬化的材料;b. 试从提高材料疲劳强度、接触疲劳、耐磨性观点出发,分析化学热处理时应注意的事项;解:化学热处理过程中采用球化退火处理和高温回火,减小碳化物粒度并使之分布均匀;采取适当的去应力退火工艺使材料在一定范围内保持残余应力,提高疲劳强度和耐磨性;c.述非金属材料陶瓷、高分子材料的磨损特点解:陶瓷材料对表面状态极为敏感,当气氛压力下降时,磨损率加大;高分子材料硬度虽然较低,但具有较大柔顺性,在不少场合下显示较高的抗划伤能力;对磨粒磨损具有良好的适应性、就范性和埋嵌性;第七章高温性能1、名词解释:蠕变蠕变极限持久强度应力松弛解:蠕变:金属在恒温、恒载荷下缓慢产生塑性变形的现象;蠕变极限:金属材料在高温长期载荷作用下对塑性变形抗力指标;持久强度:在规定温度下,达到规定实验时间而不发生断裂的应力值;应力松弛:在规定温度和初始应力条件下,金属材料中的应力随时间增加而减少的现象;2、简答a. 列出至少四个提高金属蠕变性能的措施解:错误!加入合金元素,形成固溶强化错误!采用正火加高温回火工艺进行热处理;错误!控制晶粒尺寸错误!控制应力水平b. 高温蠕变变形的机理有哪几种解:主要有位错滑移蠕变机理、扩散蠕变机理、晶界滑动蠕变机理、粘弹性机理;3、计算:稳态蠕变即蠕变第二阶段的本构方程ε=A·σn·exp-Q/RT,某耐热钢538℃下的蠕变系数A=×10-24,n=8,激活能Q=100kcal/mol,R为摩尔气体常数mol·K,试计算该钢在500℃时应力150MPa下的蠕变速率;解:由ε=A·σn·exp-Q/RT得=第八章耐腐蚀性能1、名词解释:电化学腐蚀缝隙腐蚀电偶腐蚀钝化解:电化学腐蚀:金属表面与电解质溶液发生电化学反应而引起的破坏;缝隙腐蚀:金属部件在腐蚀介质中,结合部位的缝隙内腐蚀加剧的现象;电偶腐蚀:异种金属在同一种介质中,由于腐蚀电位不同而产生电偶电流的流动使电极电位较低的金属溶解增加造成的局部腐蚀;钝化:电化学腐蚀的阳极过程在某些情况下受到强烈阻滞,使腐蚀速率急剧下降的现象;2、简答a. 为什么说材料的腐蚀是一个自发过程解:因为腐蚀是物质由高能态向低能态转变的过程,所以腐蚀是一个自发的过程;b. 原电池和腐蚀原电池的区别是什么解:原电池可以是化学能转化为电能,有电流通过并能对外做功;腐蚀原电池是能进行氧化还原反应,但并不能对外做功的短路原电池;c. 应力腐蚀断裂的条件和特征是什么解:应力腐蚀具有以下特点:错误!应力;必须有拉应力存在才能一起应力腐蚀,压应力一般不发生应力腐蚀;错误!介质;一定的材料必须和一定的介质的相互组合,才会发生腐蚀断裂;错误!速度;应力腐蚀断裂的速度远大于没有应力时的腐蚀速度;错误!腐蚀断裂形态;应力腐蚀断裂时仅在局部区域出现从表及里的裂纹;d. 简述材料氧化腐蚀的测量方法和仪器;解:测量方法有:错误!质量法错误!容量法测量仪器:质量法采用热重分析仪;容量法采用量气管及及其他装置;e. 列出至少四种防止金属材料腐蚀的措施;解:错误!金属电化学保护法错误!介质处理错误!缓蚀剂保护法错误!表面覆盖法错误!合理选材第九章电性能1、名词解释:电介质、极化强度、铁电体、压电效应、热释电效应、热电效应解:电介质:电场下能极化的材料;极化强度:电介质材料在电场作用下的极化程度,单位体积内的感生电偶极矩;铁电体:就有铁电性的晶体;热释电效应:晶体因温度均匀变化而发生极化强度改变的现象称为晶体的热释电效应;热电效应:温度作用改变材料的电性能参数;贝塞克效应、帕尔帖效应、汤姆逊效应;压电效应:没有电场作用,有机械应力作用而使电介质晶体产生极化并形成晶体表面电荷的现象;2、填空题a. 从极化的质点类型看,电介质的总极化一般包括三部分:__位移极化__、__松弛极化__、__转向极化__ ;从是否消耗能量的角度看,电介质的极化分为____弹性极化____和____非弹性极化____两类,其中___位移极化___是弹性的、瞬时完成的极化,不消耗能量;而___松弛极化___的完成需要一定的时间,是非弹性的,消耗一定的能量;b. 电介质在电场作用下产生损耗的形式主要有__电导损耗____和____电离损耗___两种;当外界条件一定时,介质损耗只与tg有关,而tg仅由___δ____决定,称为____介质损耗角____;c. 电介质材料在电场强度超过某一临界值时会发生介质的击穿,通常击穿类型可分为___电击穿____、__化学击穿___、___热击穿___三类;d. 铁电体具有__电滞回线__、居里点和__临界特性___三大特征;e. 测量电阻常用的方法有双电桥法、电位差计法、安培—伏特计法和直流四探针法;f. 金属的热电现象包括贝塞克效应、帕帖效应和汤姆逊效应三个基本热电效应;3、简答题:a. 简述电介质、压电体、热释电体、铁电体之间的关系;解:电解质包括压电体、热释电体、铁电体;压电体和热释电体都是不具有对称中心的晶体;热释电体和铁电体都能在一定的温度范围内自发极化;b. 为什么金属的电阻随温度升高而增大,半导体的电阻随温度升高减小解:金属属于电子到电机制,温度升高,电子运动自由程减小,散射几率增大导致电阻增大;半导体导电取决于电子-空穴对数量多少,温度升高,电子-空穴对数增多,导电阻减小;c. 表征超导体性能的三个主要指标是什么目前氧化物高温超导体应用的主要弱点是什么解:三个指标是:错误!临界转变温度T错误!临界磁场C H错误!临界C电流密度目前氧化物高温超导体应用的主要弱点是错误!超导体材料的氧化物制备困难错误!材料加工困难错误!临界温度难以维持e. 一般来说金属的电导率要高于陶瓷和聚合物,请举例说明这个规律并不绝对正确;解:PAN、第十章磁性能1、名词解释:磁化强度矫顽力饱和磁化强度磁导率和磁化率剩余磁感应强度磁畴趋肤效应解:磁化强度:物质在磁场中被磁化的程度,单位体积内磁矩的大小;矫顽力:去掉剩磁的临界外磁场;饱和磁化强度:磁化强度的饱和值;磁导率:表征磁介质磁性的物理量;磁化率:表征物质本身的磁化特性的物理量;剩余磁感应强度:去掉外加磁场后的磁感应强度;磁畴:磁矩方向相同的小区域;趋肤效应:交变磁化时产生感生电动势,使得磁感应强度和磁场强度沿样品界面严重不均匀,好像材料内部的磁感应强度被。
材料化学课后题答案第三章
第三章 材料的性能 1.用固体能带理论说明什么是导体,半导体,绝缘体? 答:固体的导电性能由其能带结构决定。
对一价金属(如Na ),价带是未满带,故能导电。
对二价金属(如Mg ),价带是满带,但禁带宽度为零,价带与较高的空带相交叠,满带中的电子能占据空带,因而也能导电。
绝缘体和半导体的能带结构相似,价带为满带,价带与空带间存在禁带。
禁带宽度较小时(0.1—3eV )呈现半导体性质,禁带宽度较大(>5eV )则为绝缘体。
答案或者是: 满带:充满电子的能带 空带:部分充满或全空的能带 价带:价电子填充的能带 禁带:导带及满带之间的空隙 (其中,空带和价带是 导带) 导体:价带未满,或价带全满但禁带宽度为零,此时,电子能够很容易的实现价带与导带之间的跃迁。
半导体:价带全满,禁带宽度在0.1-3eV 之间,此时,电子可以通过吸收能量而实现跃迁。
绝缘体:价带全满,禁带宽度大于5eV ,此时,电子很难通过吸收能量而实现跃迁 2、 有一根长为5 m ,直径为3mm 的铝线,已知铝的弹性模量为70Gpa ,求在200N 的拉力作用下,此线的总长度。
= 5.002 m 3.试解释为何铝材不易生锈,而铁则较易生锈? 答:锈蚀机理不同,前者为化学腐蚀,后者为电化学腐蚀铝是一种较活泼的金属,但因为在空气中能很快生成致密的氧化铝薄膜,所以在空气中是非常稳定的。
铁与空气中的水蒸气,酸性气体接触,与自身的氧化物之间形成了腐蚀电池,遭到了电化学腐蚀,所以容易生锈。
4.为什么碱式滴定管不采用玻璃活塞?答:因为普通的无机玻璃主要含二氧化硅,二氧化硅是一种酸性的氧化物,在碱液中将会被溶解或侵蚀,其反应为:SiO2+2NaOH →Na2SiO3+H2O5.何种结构的材料具有高硬度?如何提高金属材料的硬度?答:由共价键结合的材料具有很高的硬度,这是因为共价键的强度较高。
无机非金属材料由离子键和共价键构成,这两种键的强度均较高,所以一般都有较高硬度,特别是当含有价态较高而半径较小的离子时,所形成的离子键强度较0/F A σ= (H E σε=00()/l l lε=-()/l l l ε=-高(因静电引力较大),故材料的硬度较高。
湖南大学材料性能学作业习题答案
第一章一、解:1.滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象, 称为滞弹性。
2. 塑性:在给定载荷下,材料产生永久变形的特性。
3•解理台阶:解理裂纹与螺型位错相交形成解理台阶。
4. 河流状花样:解理裂纹与螺型位错相遇后,沿裂纹前端滑动二相互汇合,同号台阶相互汇合长大,当汇合台阶足够大时,便成为河流状花样。
5. 强度:材料在外力作用下抵抗永久变形和断裂的能力称为强度。
二、解:1.E :弹性模量。
2. d 0.2 :屈服强度3. b b :抗拉强度4. £ :条件应变或条件伸长率。
三、解:由d m= ( E Y s/ao)?得:丫s= d m2 • ao/E ①将代入d c= (2E • 丫s/ JI a)?=d m- ( 2*ao/刃*a)=504MPA.四、解:由题中所给式子知:⑴:材料的成分增多,会引起滑移系减少、孪生、位错钉插等,材料越容易断裂;⑵:杂质:聚集在晶界上的杂质越多,材料越容易断裂;⑶:温度:温度降低,位错摩擦阻力越大,所以材料越容易断裂;⑷、晶粒大小:晶粒越小,位错堆积越少,晶界面积越大,材料韧性越好,所以不容易断裂;⑸、应力状态:减小切应力与正应力比值的应力状态都会使材料越容易断裂;⑹、加载速率:加载速率越大,材料越容易断裂五、解:两者相比较,前者为短比例式样,后者为长比例式样,而对于韧性金属材料,比例试样尺寸越短,其断后伸长率越大,所以 d 5大于d 10.第二章作业题1应力状态软性系数:按“最大切应力理论”计算的最大切应力与按“相当最大正应力理论”计算的最大正应力的比值。
2缺口效应:截面的急剧变化产生缺口,在静载荷作用下,缺口截面上的应力状态将发生变化,产生缺口效应,影响金属材料的力学性能。
3布氏硬度:用一定直径的硬质合金球做压头,施以一定的试验力,将其压入试样表面,经规定保持时间后卸除,试样表面残留压痕。
HBW通过压痕平均直径求得。
材料性能作业2013.11
th
E a
第三章 作业
2.熔融石英玻璃的性能参数为:E=73GPa,γ=1.56J/m2,理论强 度σth=28GPa。如材料中存在最大长度为2μm的内裂,且此内裂 垂直于作用力的方向,计算由此而导致的强度折减系数。
解: E=73GPa,γ=1.56J/m2,C= 1 μm = 1×10-6m。
第三章 作业
4.一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口, 如图3-39所示。如果E=380GPa,μ=0.24,求KIC值,设极限荷载 达50kg。计算此材料的断裂表面能。
解:因为S/W=4,所以几何形状因子为:
Y 1.93 3.07C / W 14.5(C / W ) 2 25.07(C / W ) 3 25.8(C / W ) 4
P287
在这里,C=1mm,W=10mm,从而可求得K1C =1.63 MPa)
K IC 2 E 1 2
= (1- 2 )K21C / E=3.29J/m2
在这里,C=1mm=1×10-6m,σC=50×9.8/10/10=?MPa 再由来自K IC Y c C
2 E 1 2
K1C =0.676 MPa) = (1- 2 )K21C / E=0.0056J/m2
• 据Griffith微裂纹理论: σc= ( s E / 4c )1/2 =0.168Pa σc= ( 2s E / c )1/2 = 0.27GPa • 强度折减系数: k=σc/σth =0.168 /28 =0.6 % k=σc/σth =0.27 /28 =0.96 %
C
2 E π C
第三章 作业
8.含有一条贯穿厚度的表面裂纹的氧化钇稳定ZrO2的切口梁在 四点弯曲方式(型)下破坏。梁的高度为10mm。断裂应力为 100MPa。临界裂纹尺寸(c)为1mm。ZrO2的弹性模量和泊松比
材料结构与性能思考题
《材料结构与性能》思考题第一章金属及合金的晶体结构1.重要名词晶体非晶体单晶体多晶体晶粒晶界各向异性假等向性(伪各向同性)空间点阵阵点(结点)晶胞简单晶胞(初级晶胞)布拉菲点阵晶系晶面晶面指数晶向晶向指数密勒指数晶面族晶向族晶带晶带轴面间距配位数致密度点阵常数面心立方(A1)体心立方(A2) 密排六方(A3) 同素异构现象四面体间隙八面体间隙多晶型性(同素异构转变) 原子半径合金相固溶体间隙固溶体置换固溶体有限固溶体无限固溶体电子浓度无序分布偏聚短程有序短程有序参数维伽定律中间相金属间化合物正常价化合物电子化合物(Hume-Rothery相) 间隙相间隙化合物拓扑密堆相(TCP相) PHACOMP方法超结构(有序固溶体,超点阵)长程有序度参数反相畴(有序畴)2.试述晶体的主要特征。
3.画出立方晶系中的下列晶面和晶向:(100), (111), (110), (123), (130)), (121), (225), [112], [312], 2]。
画出六方晶系中的下列晶面:(0001), (1120), (1011)。
[114.画出立方晶系(110)面上的[111]方向,(112)上的[111]方向。
在其(111)面上有几个<110>方向?5.计算面心立方、体心立方、密排六方点阵晶胞的晶胞内原子数、致密度。
其中原子的配位数是多少?6.面心立方和密排六方点阵的原子都是最密排的,为什么它们形成了两种点阵?7.画图计算面心立方和体心立方点阵的四面体、八面体间隙的半径r B与原子半径r A之比。
8.铜的面心立方点阵常数为3.608Å,计算其(122)晶面间距。
9.立方晶系中晶面指数和晶向指数有什么关系?10.写出立方晶系{112}晶面组的全部晶面和<123>晶向族的全部晶向。
11.已知点阵常数a=2 Å,b=6 Å, c=3 Å, 并已知晶面与三坐标轴的截距都是6 Å,求该晶面的指数。
人教版高中化学选修3物质结构与性质课时规范练 第三章 第一节 晶体的常识
第三章晶体结构与性质第一节晶体的常识课后篇素养形成A组定向巩固定向巩固一、晶体与非晶体1.下列关于晶体的叙述不正确的是( )A.晶体有自范性B.晶体内部质点的排列高度有序C.晶体的某些物理性质常会表现出各向异性D.粉末状固体一定不是晶体当晶体晶粒很小时,即为粉末状,D项不对。
2.用烧热的钢针去接触涂有薄薄一层石蜡的云母片的反面,熔化了的石蜡成椭圆形,是因为( )A.云母具有各向异性,不同方向导热性能不同B.石蜡是热的不良导体,传热不均匀C.石蜡具有各向异性,不同方向导热性能不同D.云母是热的不良导体,传热不均匀,A项正确。
3.下列说法错误的是( )A.同一物质有时可以是晶体,有时可以是非晶体B.区分晶体和非晶体最可靠的科学方法是测定其有没有固定熔点C.雪花是水蒸气凝华得到的晶体D.溶质从溶液中析出可以得到晶体;区分晶体与非晶体最可靠的科学方法是2有晶体和非晶体两种X-射线衍射实验;气体凝华可以得到晶体;溶质从溶液中析出可得到晶体。
4.下列关于晶体的说法正确的是( )A.将饱和硫酸铜溶液降温,析出的固体不是晶体B.假宝石往往是玻璃仿造的,可以用划痕的方法鉴别宝石和玻璃制品C.石蜡和玻璃都是非晶体,但它们都有固定的熔点D.蓝宝石在不同方向上的硬度一定相同CuSO4溶液降温,可析出胆矾,胆矾属于晶体,A错误;一般宝石的硬度较大,玻璃制品的硬度较小,可以根据有无刻痕来鉴别,B正确;非晶体没有固定的熔点,C错误;由于晶体的各向异性导致蓝宝石在不同方向上的硬度有一些差异,D错误。
5.下列物质中,常温下属于晶体的是,没有固定熔点和几何外形的固体是。
①铝②氯化钾③氢氧化钠④二氧化碳⑤塑料⑥玻璃⑦硫酸⑧石蜡,且具有固定的熔点。
铝有固定的熔点;氢氧化钠和氯化钾都是离子化合物,都有固定的熔点;二氧化碳形成的干冰是晶体,但在常温下为气体;塑料、玻璃没有固定的熔点,都属于非晶体;硫酸有固定的熔点,能形成晶体,但室温下是液体;石蜡是多种烃类的混合物,当然不是晶体。
2020年材料化学第三章习题与答案
材料化学第三章习题与答案1.用固体能带理论说明什么是导体、半导体和绝缘体?答:按固体能带理论,金属晶体中含有不同的能带(如下图所示):已充满电子的能带叫做满带,其中的电子无法自由流动、跃迁;价电子充满的能带称为价带(VB),对于一价金属,价带是未满带,对于二价金属,价带是满带;在此之上,是能量较高的能带,又称为空带,可以是部分充填电子或全空的;空带在获得电子后可参与导电过程,又称为导带(CB)。
对于半导体和绝缘体,在导带与禁带之间还隔有一段空隙,称为禁带。
据禁带宽度和能带中电子填充状况,可把物质分为导体、半导体和绝缘体:导体:价带是未满带,或价带与导带重叠,禁带宽度为0,因而可导电。
半导体:价带是满带,禁带宽度较小,为0.1~3eV之间.绝缘体:禁带宽度较大,>5eV;2.有一根长为5m,直径为3mm的铝线,已知铝的弹性模量为70GPa,求在200N的拉力作用下,此线的总长度。
解:设此时线的总长度为l,22-6-62据已知条件:l=5m,F=200N,A0=πR=3.14×3×10/4=7.1×10mE=70GPa;又据应力公式F/A0,应变公式(ll0)/l0和虎克定律:E,有: 1GPa=109Pa=1×109N/m2lxx7.1106701095=5.002m3.解释为何铝材不生锈,而铁则较易生锈。
答:铝在空气中可形成致密的氧化物膜,阻止了氧对铝金属的进一步氧化腐蚀。
铁在空气中会与空气中的氧在表面形成松散形的氧化物膜,不能阻止氧对铁金属的进一步腐蚀。
4为什么碱式滴定管不采用玻璃活塞?答:因为玻璃活塞的主要成份为酸式氧化物SiO2,其耐酸不耐碱。
同时玻璃活塞的腐蚀会导致接触部位粘结甚至损坏。
5何种结构的材料具有较高的硬度?如何提高金属材料的硬度?答:以共价键结合的材料硬度高,如金刚石;其次,无机非金属材料也有较高硬度。
金属材料形成固溶体或合金时,材料硬度会显著提高,因此可在金属材料中加入其它金属或非金属元素填形成固溶体,以提高金属材料的强度。
第三章高分子材料的结构与性能(二)
〔iv〕老化
3.3.2 高弹性
高弹态聚合物最重要的力学性能是其高弹性。
〔1〕高弹性的特点: 〔i〕弹性模量小,形变量很大;〔ii〕弹性模量与绝对温度成正比;
〔iii〕形变时有热效应; 〔iv〕在一定条件下,高弹性表现明显的松弛 现象。 〔2〕高弹性的本质
3.2.4 聚合物的熔体流动
当温度高于非晶态聚合物的Tf、晶态聚合物的Tm时,聚合物变 为可流动的粘流态或称熔融态。热塑性聚合物的加工成型大多是 利用其熔体的流动性能。
3.2.4.1 流动流谱
❖ 流谱:指质点在流动场中的运动速度分布。 ❖ 剪切流动:产生横向速度梯度场的流动 ❖ 拉伸流动:产生纵向速度梯度场的流动
材料在外力作用下发生形变的同时,在其内部还会产生对抗外 力的附加内力,以使材料保持原状,当外力消除后,内力就会使材 料回复原状并自行逐步消除。当外力与内力到达平衡时,内力与外 力大小相等,方向相反。单位面积上的内力定义为应力。
材料受力方式不同,发生形变的方式亦不同,材料受力方式主要有以下 三种根本类型:
自由体积是分子链进行构象转变和链段运动所需的活动空间。
当聚合物冷却时,自由体积逐渐减小,当到达某一温度时, 自由体积收缩到最低值,聚合物的链段运动因失去活动空间而被 冻结,聚合物进入玻璃态。因此自由体积理论认为玻璃化温度就 是使聚合物自由体积到达某一最低恒定临界值时的温度。
Tg的影响因素
〔i〕聚合物的结构:Tg是链段运动刚被冻结的温度,而链段运动 是通过主链单键的内旋转来实现,因此Tg与高分子链的柔顺性相关, 柔顺性好,Tg低,柔顺性差,Tg高。
P
冲击头,以一定速度对试样实 施冲击
材料结构组织与性能 带答案
一、什么是材料?三大材料材料是指具有满足指定工作条件下使用要求的形态和各种性能的物质,是人们生活及组成生产工具的物质基础。
金属材料、无机非金属材料和有机高分子材料二、材料的性能分类使用性能(物理性能、化学性能、力学性能),工艺性能(工艺性能是指材料在各种加工和处理中所应具备的性能,如铸造性能、锻造性能、切削性能、焊接性能和热处理性能等)三、材料的力学性能材料的力学性能是指材料在外加载荷作用下或载荷与环境因素(温度、介质和加载速度)联合作用下所表现出来的行为。
金属材料的力学性质决定与材料的化学成分、组织结构、冶金质量、残余应力及表面和内部缺陷等内在因素,也决定与载荷性质(静载荷、冲击载荷、交变载荷)、应力状态(拉、压、弯、扭、剪等)、温度和环境介质等外在因素.1。
强度指标弹性变形阶段的强度指标(弹性极限σe =F e/A0(MPa)式中:σe为e点对应的应力,F e为e点对应的载荷,A0为试样原始截面积。
弹性模量σ=Eε,其中比例系数E即是弹性模量)塑性变形阶段的强度指标(屈服极限σs=F s/A0(MPa)屈服强度σ0.2=F0。
2/A0(MPa)在S点附近,此时应力应变曲线上出现一个平台,表示材料开始产生塑性变形,其对应的应力叫屈服极限σs。
但对于大多数合金钢或淬火回火材料,应力应变曲线无屈服平台出现,此时,规定以产生试样原始长度0。
2%的塑性变形所对应的应力作为条件屈服极限,称为屈服强度σ0.2.抗拉强度σb=F b/A0(MPa))断裂阶段的强度指标(断裂强度σk)2.塑性指标延伸率(δ=ΔL/L0×100%=(Lf—L0)/L0×100%)断面收缩率ψ=(A0-A1)/A0×100%式中A0为试样原始横截面积A1为试样断裂后缩颈处的最小横截面积。
3。
韧性指标冲击韧度(a k=A k/A N (J/m2)式中A N为试样缺口根部的原始截面积。
)断裂韧度静力韧度4. 硬度指标布氏硬度(HB球压头测定试样表面的压痕直径d) 洛氏硬度(HR圆锥压头测深度)维氏硬度(HV四棱锥压头同布)肖氏硬度(HS从一定高度处自由落到试样表面,根据冲头的回弹高度来表征材料硬度的大小)四、应力应变曲线设试样单位面积的载荷为应力σ,试样单位原始长度的伸长为应变ε,则得到应力-应变曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章作业
1.结合Pauling规则,解释为何CsCl和NaCl是典型的离子晶体。
答:在AX型晶体结构中,一般阴离子X的半径较大,而阳离子A 的半径较小,所以X做紧密堆积,A填充在其空隙中。
大多数AX型化合物的r+/r-在0.414~0.732之间,应该填充在八面体空隙,即具有NaCl型结构;并且NaCl型晶体结构的对称性较高,所以CsCl和NaCl 是典型的离子晶体。
2.名词解释:
类质同晶:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。
同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象。
多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。
位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级
配位有所改变的一种多晶转变形式。
重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。
自发极化:对于理想的单晶体而言,如果不存在外电场时,单位晶胞中的正负电荷中心不重合,具有一定的固有偶极矩,称为
自发极化。
电畴:自发极化方向相同的晶胞组成的小区域称为电畴。
3.高温氧化锆传感器工作原理是什么??
4. 简述Al2O3有α、β、γ、δ、θ、η、κ、χ、ρ等晶型,他们分属哪个晶系?有哪些特性?
5.试解释绿宝石和透辉石中Si:O都为1:3,前者为组群状结构,后者为链状结构。
答:绿宝石和透辉石中Si:O都为1:3。
但是,绿宝石中的其它阳离子Be2+和Al3+的离子半径较小,配位数较小(4或6),相互间斥力较大,所以绿宝石通过[SiO4]4-顶角相连形成六节环,再通过Be2+和Al3+将六节环连接起来,离子堆积结合状态不太紧密,这样晶体结构较稳定。
透辉石中是Mg2+和Ca2+,离子半径较大,配位数较大(分别为6和8),相互间斥力较小,所以透辉石通过[SiO4]4-顶角相连形成单链,离子堆积结合状态比较紧密。
6.白云母、蒙脱石和高岭石层状结构。
说明它们的结构区别及由此引起的性质上的差异。