PCB 耐温与无铅标准

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

RoHS & Lead Free对PCB之冲击

于2006年7月1日起欧盟开始实施之RoHS立法,虽然欧洲与j本PCB厂商已展开各项Lead Free制程与材料切换,并如火如荼的进行测试。但若干本土的PCB厂因主要订单在美商,基于成本的考量,仍采取观望的态度。但如果不正视此问题,一旦美系OEM、EMS大厂决定跟进,必将措手不及衍生出诸多问题,可能的冲击不可等闲视之。

▲FR-4树脂、铜箔、焊料与背动元件彼此存在热胀系数之差异,其中树脂Z方向的热胀系数高达60ppm/℃,与其它三者差异甚大。

由于锡铅焊接之组装方式已沿用40年以上,不但可靠度佳且上至材料下至制程参数与设备均十分成熟,且过去发生的信赖性问题与因应对策已建立完整的资料库,故发生客诉时,可迅速厘清责任归属。但进入Lead Free时代,从上游材料、PCB表面处理、组装之焊料、设备等与以往大相迳庭,且大家均无使用的经验值,一旦产生问题,除责任不易归属外,后续衍生丢失订单、天价索赔的问题可能层出不穷,故不可不慎。

Lead Free组装通用的焊料锡银铜合金(SAC),其熔点、熔焊(Reflow)温度、波焊(Wave Soldering)温度分别较锡铅合金高15℃35℃以上,几乎是目前 FR-4板材耐热的极限。再加上重工的考量,以现有板材因应无铅制程存在相当的风险。

有监于此,美国电路板协会(IPC)乃成立基板材料之委员会,针对无铅制程的要求订定新规范。然而,无铅时代面临产业上、下游供应链的重新洗牌,委员会各成员基于其所代表公司利益的考量,不得不作若干妥协。最后协调出的版本,似乎尽能达到最低标准。因此,即使通过 IPC规范,并不代表实务面不会发生问题,使用者仍需根据自身的需求仔细研判。

以新版IPC-4101B而言,有几个重要参数:

Tg(板材玻璃转化温度):可分一般Tg(110℃150℃),中等Tg(150℃170℃),High Tg(>170℃)以上三大类。

Td(裂解温度):乃以「热重分析法」(Thermal Gravity Analysis)将树脂加热中失重5%(Weight Loss)之温度点定义为Td。Td可判断板材之耐热性,作为是否可能产生爆板的间接指标。IPC新规范建议因应无铅焊接,一般Tg之Td >310℃,Mid Tg之Td>325℃,High Tg之Td>340℃。

▲在组装之波焊过程,无铅焊料因过于僵硬,容易产生局部龟裂或将铜环从板面拉起造成局部扯裂的状态。

■Z轴CTE,α1、α2

CTE为热膨胀系数(Coefficient of Thermal Expansion)的简称。PCB在X.Y.方向受到有玻纤布的钳制,以致CTE不大,约在1215ppm/℃左右。但板厚Z 方向在无拘束下将扩大为5560ppm/℃。Z轴CTE采「热机分析法」(Thermal Mechanical Analysis简称TMA)量测板材Tg以内的热膨胀系数(α1-CTE),及Tg以上的热膨胀系数(α2-CTE)。目前α1-CTE之上限为60ppm/℃,而α2-CTE之上限为300ppm/℃。其中α2-CTE更受重视。

因为PCB通孔及焊垫中铜的CTE约为1618ppm/℃,与α2-CTE的差距过大容易引起通孔中孔环的断裂(Crack)、铜环自板材拉起、局部扯裂或爆板分层(De-lamination)的情况。另外,50℃260℃之Z轴整体CTE亦很重要。以IPC 4101新规范,一般Tg之Z轴CTE上限为 4%、Mid Tg为3.5%、High Tg则为3%。

■耐热裂时间(T260、T288、T300)

乃是以TMA法将板材逐步加热到260℃、288℃,或300℃之定点温度,然后观察板材在此强热环境中,能够抵抗Z轴膨胀多久而不致裂开,此种忍耐时间即定义为「耐裂时间」。目前新版IPC暂定一般Tg:T260为30分钟、T288为5分钟,Mid Tg:T260为30分钟、T288为5分钟,High Tg:T260为30分钟、T288为15分钟、T300为2分钟。

过去一般人的认知,材料的耐热性往往以Tg为指标,Tg愈高则耐热性愈佳。不少OEM、ODM的设计工程师亦陷入此迷思。事实上,此观念不尽正确。因为传统的FR-4基材乃以Dicy当硬化剂,而Dicy因含极性,其吸湿性高,虽然Tg高其耐热性未必良好。

▲由传统FR-4板材制作的多层板,因不耐高温热冲击,产生树脂与铜箔分离的现象,俗称分层或爆板。

而针对无铅制程开发的基材,因不使用Dicy作硬化剂,虽然一般或中等Tg 亦可达到甚佳的耐热效果。因此,研判耐热性的好坏,以Td及耐热裂时间

(T260、T288、T300)较Tg更为贴切。

除此之外,由于PCB及铜箔基板之绝缘层由树脂与玻璃布所构成,当在高电压状态,通孔与通孔、线路与线路、线路与通孔间形成一个电场。而PCB湿制程甚多,水分中或板面因清洁不良残留的电解质可能经由钻孔产生之微裂缝(Micro-crack)顺著玻璃纱(Filament)的方向迁移产生短路,造成绝缘失效,

此现像称为CAF(Conductive Anodic Filament)。如果板材的吸湿性低,可降低CAF发生的机率。

总之,在无铅焊组装的冲击下,PCB业面临严苛的挑战。使用传统FR-4基材,因已达材料特性的极限,非常可能发生板弯翘、爆板(De-lamination)、孔环断裂、孔壁树脂内缩、微短路、CAF等信赖性问题。宜慎选技术、质量与商誉佳的基材供应商,及早共同研拟Lead Free解决方案,才不致落入穷于应付的窘境。

▲以TGA法将树脂加热失重5%,测得之温度即为裂解温度 Td。Td为基材是否能通过无铅焊接之重要指标。

▲以TMA法将基材加热至特定温度,能抵抗Z轴热胀不致裂开的时间,亦为基材能否通过无铅焊接的重要指标。

▲基材在吸水后,产生CAF绝缘失效的现象。

▲通孔与通孔、通孔与线路、线路与线路三种典型CAF绝缘失效的现象。

无铅标准的进展

Thomas Newton, David Bergman, Jack Crawford - IPC

欧盟(EU)的RoHS指令(禁止在电子和电气设备中使用六种有害物质的指令)已经生效,然而故事远没有到结束的时候。铅金属是受 RoHS指令禁止的六种材料中最基本和研究最透彻的一种物质。在电子组装中,铅可能出现在器件的引脚表面,也可能出现在印制板的焊盘上,或者用于形成焊点的合金材料中。更改一种焊料合金成分往往需要对器件材料和工艺同时进行修改,以保证电子产品制造的可靠性。电子互连行业承认标准(规范)是实施RoHS的基础,其他相关材料限制规范也已经在世界各地广

为生效。

电子行业已经从他们的经历中学到了很多,这能够帮助带动面向巨大变革的标准化进程。即便是积累了

多年的经验,挑战依然存在。

有些挑战是来自立法上的。欧盟成员依然在对这个指令的实施进行不屈的抗争。在试图回答由法规引起的一系列问题,以及之后需要提供各种指导性文字(不同的语言)去回答这些问题方面,依然还存在着理解上的分歧……多轮豁免项目已经得到认可,相关的讨论也在继续中。欧盟RoHS指令对全球电子互连供应链的影响比预期的要大得多。可用性信息在继续增多,然而许多企业仍然不清楚法规对他们是否

有效。

帮助全行业了解标准化信息是IPC使命的一部分。以下提供了一些新的标准和修订的标准的信息,目的在于帮助行业达到RoHS的要求,更有效地在全球市场竞争中取得有利的地位。

器件标准

器件和工艺兼容性是一个首要的关注点,因为无铅合金往往需要更高的熔点温度。铅锡合金在183°C 就能熔化,典型工艺温度窗口在205-220°C;而通常无铅合金,如SnAgCu (SAC 305),需要在21

相关文档
最新文档