AO工艺法也叫厌氧好氧工艺法
AO工艺
AO工艺,氧化沟工艺,SBR工艺的优缺点?AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。
A/O法脱氮工艺的特点:(a)流程简单,勿需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;(b)反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;(c)曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;(d)A段搅拌,只起使污泥悬浮,而避免DO的增加。
O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A 段的缺氧状态。
A/O法存在的问题:1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;2、若要提高脱氮效率,必须加大内循环比,因而加大运行费用。
从外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%3、影响因素水力停留时间(硝化>6h ,反硝化<2h )循环比MLSS(>3000mg/L)污泥龄(>30d )N/MLSS负荷率(<0.03 )进水总氮浓度(<30mg/L)氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。
它是活性污泥法的一种变型。
因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。
氧化沟的水力停留时间长,有机负荷低,其本质上属于延时曝气系统。
以下为一般氧化沟法的主要设计参数:水力停留时间:10-40小时;污泥龄:一般大于20天;有机负荷:0.05-0.15kgBOD5/(kgMLSS.d);容积负荷:0.2-0.4kgBOD5/(m3.d);活性污泥浓度:2000-6000mg/l;沟内平均流速:0.3-0.5m/s1.2 氧化沟的技术特点:氧化沟利用连续环式反应池(Cintinuous Loop Reator,简称CLR)作生物反应池,混合液在该反应池中一条闭合曝气渠道进行连续循环,氧化沟通常在延时曝气条件下使用。
污水处理AO工艺介绍
污水处理AO工艺介绍污水处理是一项重要的环境保护工作,有效处理污水可以减少对自然环境的污染,保护水资源。
在污水处理过程中,AO工艺是一种常用的处理方法。
本文将详细介绍AO工艺的原理、工艺流程和应用案例。
一、AO工艺原理AO工艺是指通过好氧和厌氧两个阶段的有机物降解来处理污水。
在好氧阶段,氨氧化细菌将污水中的氨氮氧化为亚硝酸盐,然后亚硝化细菌将亚硝酸盐氧化为硝酸盐。
在厌氧阶段,反硝化细菌将硝酸盐还原为氮气释放到大气中。
通过这两个阶段的处理,污水中的氨氮和有机物质得以有效去除。
二、AO工艺流程AO工艺一般包括预处理、好氧处理、厌氧处理和后处理四个步骤。
1. 预处理:污水经过格栅、砂池等设备去除大颗粒物质和沉淀物,以减少后续处理过程中的负担。
2. 好氧处理:将预处理后的污水引入好氧生物反应器,通过曝气装置向反应器中供氧,使氨氮被氨氧化细菌氧化为亚硝酸盐,然后亚硝化细菌将亚硝酸盐氧化为硝酸盐。
3. 厌氧处理:好氧处理后的污水进入厌氧生物反应器,反硝化细菌在无氧条件下将硝酸盐还原为氮气,释放到大气中。
4. 后处理:对厌氧处理后的污水进行沉淀、过滤等处理,去除残余的悬浮物和微生物,使处理后的水质符合排放标准。
三、AO工艺应用案例1. 某市污水处理厂采用AO工艺处理生活污水。
该工艺流程稳定可靠,处理效果优良。
经过处理后的水质达到国家一级A标准,可用于灌溉、景观水等非饮用用途。
2. 某工业园区的废水处理采用AO工艺。
通过对废水进行预处理、好氧处理和厌氧处理,成功去除了废水中的有机物质和氨氮,达到了国家排放标准,保护了周边环境。
3. 某化工企业的废水处理采用AO工艺。
经过工艺处理后,废水中的有机物质和氨氮得到有效去除,处理后的水质稳定可靠,符合国家排放标准,减少了对周边水体的污染。
综上所述,AO工艺是一种有效的污水处理方法,通过好氧和厌氧两个阶段的处理,可以将污水中的氨氮和有机物质去除。
该工艺流程稳定可靠,广泛应用于生活污水和工业废水处理中,为环境保护做出了重要贡献。
AO工艺流程及工艺原理
A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
工艺流程及工艺原理1、A2/O工艺流程A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称。
A2/O工艺于70年代由美国专家在厌氧—好氧磷工艺(A~/O)的基础上开发出来的,该工艺同时具有脱氮除磷的功能。
该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的目的。
A2/O工艺流程图如图4.4.1所示。
2.工艺原理首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N 含量没有变化。
在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N 和NO2-N还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。
在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显着下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。
A2/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NO3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。
AO工艺
AO工艺
AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。
基本原理
A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO(溶解氧)不大于0.2mg/L,O段DO=2~4mg/L。
在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为
有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转
化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧
处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将
蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作
用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
A/O工艺分为生物除磷工艺和生物脱氮工艺。
生物除磷工艺是由厌氧和好氧两部分反应组合而成的污水生物处理系统。
污水进入厌氧池后,污水中的磷以正磷酸盐的形式释放到混合液中。
混合液进入好氧池后,聚磷菌较快生长,同时聚磷菌大量吸收混合液中的正磷酸盐,在二沉池随污泥沉降,磷就进入污泥中,进而达到污水除磷目的。
生物除磷工艺是不能有污泥回流的,否则除磷效果将下降。
生物脱氮工艺是有缺氧和好氧两部分反应组成的污水处理系统。
污水进入缺氧池后,与回流污泥混合。
活性污泥中的反硝化菌在这一过程中的作用,将污水中的硝态氮释放到大气中,氨态氮在好氧状态下形成硝态氮,随着污泥回流在缺氧状态下转化为氮气释放出来,以此达到脱氮目的。
AO工艺介绍
AO工艺介绍AO法全称为厌氧-缺氧-好氧活性污泥法,指采取厌氧池、缺氧池和好氧池的各种组合以及不同的污泥回流方式,通过活性污泥的新陈代谢除去污水中有机污染物、氨氮和磷等的污水处理方法。
其中,厌氧池(anaerobiczone)指非充氧池,溶解氧浓度一般小于0.2mg/L,主要功能是进行磷的释放;缺氧池(anoxiczone)也是一个非充氧池,溶解氧浓度一般在0.2~0.5mg/L,主要功能是进行反硝化脱氮;好氧池(oxiczone)指充氧池,溶解氧浓度一般不小于2mg/L,主要功能是降解有机物和硝化氨氮及过量摄磷。
也就是说,在厌氧、缺氧和好氧3个生化反应环境中,污水中的有机物先由难分解的大分子转化成易分解的小分子,再转化成CO2排放;同时,污水中的氨氮先转化成亚硝态氮和硝态氮,再转化成N2排放,终实现污水的生化处理和达标排放。
AAO法污水处理工艺主要应用于大中型城镇污水厂或工业污水厂,由预处理、生化处理和污泥处理等3大工序构成。
其中,预处理工序主要包括格栅过滤、沉砂池、初沉池、气浮池、隔油池、纤维或毛发捕集器等;生化处理工序主要包括厌氧池、缺氧池、好氧池、二沉池和污泥回流池等;污泥处理工序主要包括脱水脱泥机、污泥输送机、污泥存储间等。
AO工艺生活污水处理装置(1)AAO工艺中要求设置预处理系统,而我公司的QWSTN工艺中未设置初沉池或泥砂沉淀池,这会给污水站带来如下几方面的危害:一是气化灰水和锅炉捞渣水中含有的无机污泥较多,容易在污水站提升井内淤积而堵塞污水提升泵,造成溢井现象,严重时甚至导致提升泵房被污水淹没(2016年我公司提升泵房曾两度被淹,其中1次造成污水站停运2d);二是当污水中携带的无机物太多时,容易在缺氧反应池内形成沉积,影响推流器、回流器的正常运行,从而增加设备的故障率;三是当运转设备故障时,缺氧池和厌氧池污水流通通道更易堵塞,如此形成恶性循环,影响污水站的正常运行;四是无机污泥未预先进行物化处理,其后果是会在各个生化反应池内占据有机污泥的空间,影响活性污泥的生长和新陈代谢。
污水处理AO工艺介绍
污水处理AO工艺介绍污水处理是保护环境和人类健康的重要工作,而AO工艺是一种常用的污水处理工艺。
本文将详细介绍AO工艺的原理、流程和应用。
一、AO工艺的原理AO工艺是指通过厌氧-好氧生物处理工艺,将污水中的有机物质和氨氮等污染物转化为无害物质的过程。
其原理主要包括两个阶段:厌氧阶段和好氧阶段。
1. 厌氧阶段:在厌氧条件下,厌氧细菌将有机物质分解为有机酸和氨氮。
这个过程称为厌氧消化,产生的有机酸和氨氮是后续好氧阶段的底物。
2. 好氧阶段:在好氧条件下,好氧细菌利用厌氧阶段产生的有机酸和氨氮进行氧化反应。
有机酸被氧化为二氧化碳和水,氨氮则被氧化为硝酸盐。
这个过程称为好氧氧化。
通过厌氧-好氧的处理过程,AO工艺能够有效去除污水中的有机物质和氨氮,达到净化水质的目的。
二、AO工艺的流程AO工艺的处理流程一般包括预处理、厌氧池、好氧池和沉淀池四个部分。
1. 预处理:预处理是为了去除污水中的大颗粒物质和沉积物,以保护后续处理设备的正常运行。
常用的预处理方法包括格栅、砂池和沉砂池等。
2. 厌氧池:在厌氧池中,通过控制好氧条件,利用厌氧细菌将有机物质分解为有机酸和氨氮。
厌氧池通常采用封闭式反应器,以避免氧气进入。
3. 好氧池:在好氧池中,通过提供充足的氧气,利用好氧细菌将厌氧阶段产生的有机酸和氨氮进行氧化反应。
好氧池通常采用曝气系统,以提供足够的氧气供好氧细菌使用。
4. 沉淀池:在沉淀池中,通过重力作用,使处理后的污水中的悬浮物沉淀到底部,形成污泥。
沉淀池通常采用圆形或矩形的结构,以便沉淀物的有效分离和收集。
三、AO工艺的应用AO工艺广泛应用于城市污水处理厂、工业废水处理厂和农村生活污水处理等领域。
其优点主要体现在以下几个方面:1. 处理效果好:AO工艺能够高效去除污水中的有机物质和氨氮,使处理后的水质达到国家排放标准。
2. 工艺稳定性高:AO工艺对进水水质的波动和负荷的变化具有较强的适应能力,能够保持稳定的处理效果。
AO工艺、A2O工艺
A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。
A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO(溶解氧)不大于0.2mg/L,O段DO=2~4mg/L。
在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。
A/O法脱氮工艺的特点:(a)流程简单,勿需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;(b)反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;(c)曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;(d)A段搅拌,只起使污泥悬浮,而避免DO的增加。
O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。
A/O法存在的问题:1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;2、若要提高脱氮效率,必须加大内循环比,因而加大运行费用。
从外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%3、影响因素水力停留时间(硝化>6h ,反硝化<2h )循环比MLSS(>3000mg/L)污泥龄(>30d )N/MLSS负荷率(<0.03 )进水总氮浓度(<30mg/L)2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。
污水处理工艺之AO缺氧好氧简介
2.2 AO工艺(缺氧好氧)2.2.1 AO工艺原理AO工艺也叫缺氧好氧工艺法,A(Anoxi的英文缩写)是缺氧段,主要用于脱氮;O(Oxic)是好氧段。
是国外20世纪七十年代末开发出来的一种污水处理新技术工艺,它不仅能去除污水中的BOD5、CODcr而且能有效的去除污水中的氮化合物。
工艺流程如下:缺氧好氧工艺组合法,它的优越性是使有机污染物得到降解之外,还具有一定的生物脱氮功能,是将缺氧状态下的反硝化技术应用于好氧活性污泥法之前,所以A/O工艺是改进的活性污泥法。
A段溶解氧一般不大于0.2mg/L,O段溶解氧2~4mg/L。
在完成O段回流的反硝化作用的同时,异养菌也将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,当污水中的有机污染物经过经缺氧水解后,产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在好氧池,充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环。
其生物脱氮的基本原理:脱氮过程一般包括三个过程,分别是氨化、硝化和反硝化:(1)氨化反应(Ammonification):污水中的蛋白质和脂肪等含氮有机物,在异养型微生物作用下分解为氨氮的过程;(2)硝化(Nitrification):污水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为硝态氮的过程;(3)反硝化(Denitrification):污水中的硝态氮在缺氧条件下载反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。
其中硝化反应分为两步进行,亚硝化和硝化:第一步,亚硝化反应:2NH4++3O2→2NO2-+2H2O+4H+第二步,硝化反应:2NO2-+O2→2NO3-总的硝化反应:NH4++2O2→NO3-+H2O+2H+其中反硝化反应过程分三步进行:第一步:3NO3-+CH3OH→3NO2-+2H2O+CO2第二步:2H++2NO2-+CH3OH→N2+3H2O+CO2第三步:6H++6NO3-+5CH3OH→3N2+13H2O+5CO22、系统脱氮原理缺氧好氧组合工艺,其运行过程中,同时具有短程硝化-反硝化反应,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2--N,但在A池NO2-同样被作为受氢体而进行脱氮;再者在A池中存在的NO2-同样也可和NH4+进行反应脱氮,即短程硝化-厌氧氨氧化:NH4++NO2-→N2+2H2O因此缺氧好氧组合工艺,在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。
污水处理AO工艺介绍
污水处理AO工艺介绍污水处理是指将含有各种污染物质的废水进行处理,使其达到排放标准或者可再利用的水质要求。
AO工艺是一种常用的污水处理工艺,本文将详细介绍AO工艺的原理、流程、优点和应用。
一、AO工艺原理AO工艺是指将污水处理分为两个阶段:好氧(Aerobic)和厌氧(Anaerobic)处理。
好氧阶段主要通过好氧微生物的作用,将有机物质氧化为无机物质,并释放出能量。
厌氧阶段则通过厌氧微生物的作用,将无机物质进一步转化为稳定的产物。
二、AO工艺流程1. 好氧阶段(A段):将污水引入好氧反应池中,添加好氧微生物和氧气。
好氧微生物利用有机物质进行呼吸作用,将有机物质氧化为无机物质,并释放出能量。
此阶段普通需要提供充足的氧气供应。
2. 厌氧阶段(O段):好氧阶段处理后的污水流入厌氧反应池中,添加厌氧微生物。
厌氧微生物利用好氧阶段产生的无机物质进行呼吸作用,将其转化为稳定的产物。
3. 沉淀池:厌氧阶段处理后的污水流入沉淀池,通过静置使悬浮物沉淀到底部,形成污泥。
4. 污泥处理:沉淀池中形成的污泥需要进行处理,常见的处理方式包括浓缩、脱水和消化等。
三、AO工艺优点1. 处理效果好:AO工艺能够有效去除废水中的有机物质和氮、磷等无机物质,使污水达到排放标准。
2. 能耗低:AO工艺相比传统的生化处理工艺,能耗较低,运行成本相对较少。
3. 占地面积小:AO工艺的处理单元紧凑,占地面积相对较小。
4. 适应性强:AO工艺适合于不同规模的污水处理厂,能够处理不同浓度和水质的废水。
四、AO工艺应用AO工艺广泛应用于城市污水处理厂、工业废水处理厂、农村生活污水处理等领域。
它能够有效处理各种类型的废水,包括生活污水、工业废水、农业废水等。
在城市污水处理厂中,AO工艺常被用于二级处理,即生化处理阶段。
它能够有效去除废水中的有机物质和氮、磷等无机物质,使污水达到排放标准。
在工业废水处理厂中,AO工艺可以根据不同的工业废水特点进行调整和优化,以达到处理效果和经济效益的最佳平衡。
活性污泥法之AO与A2O工艺
活性污泥法之AO与A2O工艺AO(Anoxic Oxic)工艺法:也叫厌氧好氧工艺法,A(Anaerobic)是厌氧段,用于脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。
它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以AO法是改进的活性污泥法。
A段DO:不大于0.2mg/LO段DO:2~4mg/L分解为:小分子有机物A/O法脱氮工艺的特点(a)流程简单,无需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;(b)反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;(c)曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。
(d)A段搅拌,只起使污泥悬浮,而避免DO的增加。
A/O法脱氮工艺的优点①系统简单,运行费低,占地小;②以原污水中的含碳有机物和内源代谢产物为碳源,节省了投加外碳源的费用;③好氧池在后,可进一步去除有机物;④缺氧池在先,由于反硝化消耗了部分碳源有机物,可减轻好氧池负荷;⑤反硝化产生的碱度可补偿硝化过程对碱度的消耗。
A/O法存在的问题1、由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;2、若要提高脱氮效率,必须加大内循环比,因而加大运行费用。
此外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%影响因素水力停留时间(硝化>6h,反硝化<2h)污泥浓度MLSS(>3000mg/L)污泥龄(>30d)N/MLSS负荷率(<0.03)进水总氮浓度(<30mg/L)。
背景知识常见污水处理工艺介绍:(1)按城市污水处理及污染防治技术政策推荐,日处理能力在20万立方米以上(不包括20万立方米/日)的污水处理设施,一般采用常规活性污泥法。
污水处理AO工艺介绍
污水处理AO工艺介绍污水处理是指将污水中的有害物质去除或者转化为无害物质的过程,以保护环境和人类健康。
而AO工艺(Anoxic-Oxic Process)是一种常用的生物处理污水的方法。
本文将详细介绍AO工艺的原理、工艺流程和应用。
一、AO工艺原理AO工艺是一种利用厌氧和好氧微生物共同作用的处理方法。
其原理基于厌氧微生物和好氧微生物在不同环境条件下的生物反应。
在AO工艺中,厌氧池和好氧池通过污泥回流系统相连。
厌氧池内的厌氧微生物可以利用有机物质进行无氧呼吸,将有机物质转化为有机酸和氨氮。
然后,污水流入好氧池,好氧微生物利用有机酸和氨氮进行氧化反应,将有机物质和氨氮转化为无害的二氧化碳、水和硝酸盐。
通过这种方式,AO工艺可以有效去除污水中的有机物质和氨氮。
二、AO工艺工艺流程AO工艺通常包括厌氧池、好氧池和沉淀池三个阶段。
下面是一个典型的AO工艺流程:1. 厌氧池:污水首先进入厌氧池,厌氧微生物在此处进行无氧呼吸,将有机物质转化为有机酸和氨氮。
2. 好氧池:厌氧池处理后的污水流入好氧池,好氧微生物在此处进行氧化反应,将有机酸和氨氮转化为无害的二氧化碳、水和硝酸盐。
3. 沉淀池:好氧池处理后的污水流入沉淀池,污泥在此处与污水分离,沉淀下来的污泥可以回流至厌氧池,继续参预处理过程。
三、AO工艺应用AO工艺在污水处理中具有广泛的应用。
以下是一些常见的应用领域:1. 市政污水处理厂:AO工艺可以用于处理城市生活污水,去除其中的有机物质和氨氮,以达到排放标准。
2. 工业废水处理:AO工艺也可用于处理工业废水,如纺织、制药、化工等行业的废水,去除其中的有机物质和氨氮,减少对环境的污染。
3. 农业污水处理:农田灌溉和养殖业产生的污水可以通过AO工艺进行处理,降低对土壤和水体的污染。
4. 农村污水处理:AO工艺可以用于农村地区的污水处理,改善农村环境卫生状况。
总结:AO工艺是一种常用的污水处理方法,通过厌氧和好氧微生物的共同作用,去除污水中的有机物质和氨氮。
AO工艺、A2O工艺
A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。
A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO(溶解氧)不大于0.2mg/L,O段DO=2~4mg/L。
在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。
A/O法脱氮工艺的特点:(a)流程简单,勿需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;(b)反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;(c)曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;(d)A段搅拌,只起使污泥悬浮,而避免DO的增加。
O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。
A/O法存在的问题:1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;2、若要提高脱氮效率,必须加大内循环比,因而加大运行费用。
从外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%3、影响因素水力停留时间(硝化>6h ,反硝化<2h )循环比MLSS(>3000mg/L)污泥龄(>30d )N/MLSS负荷率(<0.03 )进水总氮浓度(<30mg/L)2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。
AO法污水处理工艺
2021/6/20
4
A/O法脱氮工艺的优点
① 系统简单,运行费低,占地小;
② 以原污水中的含碳有机物和内源代谢产物
为碳源,节省了投加外碳源的费用;
③ 好氧池在后,可进一步去除有机物;
④ 缺氧池在先,由于反硝化消耗了部分碳源
典型污水处理工艺
A/O法污水处理工艺
2021/6/20
1
纲要
一.A/O工艺法艺优点 五.A/O法存在的问题
2021/6/20
2
A/O工艺法简介
• AO工艺法也叫厌氧好氧工艺法
A(Anaecrobic)是厌氧段,用于脱氮除磷; O(Oxic)是好氧段,用于除水中的有机物。
有机物,可减轻好氧池负荷;
⑤ 反硝化产生的碱度可补偿硝化过程对碱度
的消耗。
2021/6/20
5
A/O法存在的问题
a. 由于没有独立的污泥回流系统,从而不能培养出
具有独特功能的污泥,难降解物质的降解率较低;
b. 若要提高脱氮效率,必须加大内循环比,因而加
大运行费用。此外,内循环液来自曝气池,含有 一定的DO,使A段难以保持理想的缺氧状态,影 响反硝化效果,脱氮率很难达到90%
2021/6/20
3
A/O法脱氮工艺的特点
a) 流程简单,勿需外加碳源与后曝气池,以原污水
为碳源,建设和运行费用较低;
b) 反硝化在前,硝化在后,设内循环,以原污水中
的有机底物作为碳源,效果好,反硝化反应充分;
c) 曝气池在后,使反硝化残留物得以进一步去除,
提高了处理水水质;
d) A段搅拌,只起使污泥悬浮,而避免DO的增加。
污水处理中A2O、AO工艺的区别
污水处理中A2O、AO工艺的区别润和环保A2O工艺一、基本原理A2O法又称AAO法(厌氧-缺氧-好氧法),是一种常用的污水处理工艺,可用于二级污水处理或三级污水处理,以及中水回用,具有良好的脱氮除磷效果。
二、工艺流程进水--厌氧段--缺氧段--好氧段-→沉淀池---出水1、厌氧反应器,原污水与从沉淀池排出的含磷回流污泥同步进入,本反应器主要功能是释放磷,同时部分有机物进行氨化;2、缺氧反应器,首要功能是脱氮,硝态氮是通过内循环由好氧反应器送来的,循环的混合液量较大,一般为2Q(Q为原污水流量);3、好氧反应器——曝气池,这一反应单元是多功能的,去除BOD,硝化和吸收磷等均在此处进行。
流量为2Q的混合液从这里回流到缺氧反应器。
4、沉淀池,功能是泥水分离,污泥一部分回流至厌氧反应器,上清液作为处理水排放。
三、特点:1、本工艺在系统上可以称为最简单的同步脱氮除磷工艺,总水力停留时间少于其他类工艺;2、在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,不易发生污泥丝状膨胀,SVI值一般小于100;3、污泥含磷高,具有较高肥效;4、运行中勿需投药,两个A段只用轻轻搅拌,以不增加溶解氧为度,运行费用低;四、存在的问题:1、除磷效果难再提高,污泥增长有一定限度,不易提高,特别是P/BOD值高时更甚;2、脱氮效果也难再进一步提高,内循环量一般以2Q为限,不宜太高;3、进入沉淀池的处理水要保持一定浓度的溶解氧,减少停留时间,防止产生厌氧状态和污泥释放磷的现象出现,但溶解氧浓度也不宜过高,以防循环混合液对缺氧反应器的干扰。
AO工艺AO工艺法也叫厌氧好氧工艺法,A(Anaerobic)是厌氧段,用于脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。
特点:(a) 流程简单,无需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低; (b) 反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分; (c) 曝气池在后,使反硝化残留物得以进一步去增加。
污水处理AO工艺介绍
污水处理AO工艺介绍污水处理是指将含有污染物的废水经过一系列的处理工艺,使其达到国家排放标准,并可以安全地回收或者排放到环境中。
AO工艺是一种常用的污水处理工艺,本文将详细介绍AO工艺的原理、流程和优点。
一、AO工艺原理AO工艺是指将污水处理分为两个阶段,即厌氧处理和好氧处理。
在厌氧阶段,厌氧微生物通过分解有机物质产生氨氮,同时消耗氧气。
而在好氧阶段,好氧微生物利用氨氮和有机物质进行氧化反应,将氨氮转化为硝酸盐氮。
通过这两个阶段的处理,可以有效地去除污水中的有机物质和氨氮。
二、AO工艺流程1. 初级处理:将进入污水处理厂的原水进行初步处理,包括格栅和砂池处理。
格栅用于去除大颗粒的固体杂质,砂池则用于去除沉积的砂粒和石头等。
2. 厌氧处理:将初级处理后的水送入厌氧池中,通过厌氧微生物的作用,有机物质被分解产生氨氮,并消耗氧气。
3. 好氧处理:将厌氧处理后的水送入好氧池中,好氧微生物利用氨氮和有机物质进行氧化反应,将氨氮转化为硝酸盐氮。
4. 混凝沉淀:将好氧处理后的水送入沉淀池中,通过加入混凝剂,使污水中的悬浮物和胶体物质凝结成较大的颗粒,然后通过重力沉降将其分离。
5. 滤池处理:将混凝沉淀后的水送入滤池中,通过滤料的过滤作用,进一步去除水中的悬浮物和胶体物质。
6. 消毒处理:经过滤池处理后的水,如需回收利用或者排放到环境中,需要进行消毒处理,常用的消毒方法包括紫外线消毒和氯消毒。
7. 污泥处理:在整个处理过程中,产生的污泥通过污泥浓缩、脱水和干化等工艺进行处理,以减少体积并达到无害化处理的要求。
三、AO工艺优点1. 处理效果好:AO工艺能够有效去除污水中的有机物质和氨氮,使污水达到国家排放标准。
2. 能耗低:AO工艺采用厌氧和好氧两个阶段的处理,能够最大程度地利用微生物的作用,减少能耗。
3. 占地面积小:AO工艺相对于其他工艺来说,占地面积较小,适合于空间有限的场所。
4. 操作维护简单:AO工艺的操作和维护相对简单,不需要大量的人力和物力投入。
污水处理工艺之AO简介.doc
AO 工艺(缺氧好氧)AO 工艺原理AO工艺也叫缺氧好氧工艺法, A(Anoxi 的英文缩写 ) 是缺氧段,主要用于脱氮;O(Oxic) 是好氧段。
是国外 20 世纪七十年代末开发出来的一种污水处理新技术工艺,它不仅能去除污水中的 BOD5、CODcr而且能有效的去除污水中的氮化合物。
工艺流程如下:缺氧好氧工艺组合法,它的优越性是使有机污染物得到降解之外,还具有一定的生物脱氮功能,是将缺氧状态下的反硝化技术应用于好氧活性污泥法之前,所以 A/O 工艺是改进的活性污泥法。
A 段溶解氧一般不大于 L,O段溶解氧 2~ 4mg/L。
在完成 O 段回流的反硝化作用的同时,异养菌也将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,当污水中的有机污染物经过经缺氧水解后,产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在好氧池,充足供氧3-条件下,自养菌的硝化作用将NH3-N( NH4+)氧化为 NO ,通过回流控制返回至 A 池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成 C、N、O在生态中的循环。
其生物脱氮的基本原理:脱氮过程一般包括三个过程,分别是氨化、硝化和反硝化:(1)氨化反应 (Ammonification) :污水中的蛋白质和脂肪等含氮有机物,在异养型微生物作用下分解为氨氮的过程;(2)硝化 (Nitrification):污水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为硝态氮的过程;(3)反硝化 (Denitrification):污水中的硝态氮在缺氧条件下载反硝化菌( 兼性异养型细菌 ) 的作用下被还原为N2的过程。
其中硝化反应分为两步进行,亚硝化和硝化:+ ? +第一步,亚硝化反应: 2NH4 +3O2→2NO +2HO+4H第二步,硝化反应:? 2 3 ?2NO +O→2NO+ ? +总的硝化反应: NH4 +2O→NO3 +H2O+2H其中反硝化反应过程分三步进行:第一步: 3NO? +CH3OH→3NO2?+2HO+CO2第二步: 2H++2NO?+CH3OH→N2+3H2O+CO2第三步: 6H++6NO3?+5CH3OH→3N2+13H2O+5CO22、系统脱氮原理缺氧好氧组合工艺,其运行过程中,同时具有短程硝化- 反硝化反应,即氨氮在 O池中未被完全硝化生成? ,而是生成了大量的? ?NO NO-N,但在 A 池 NO同3 2 2样被作为受氢体而进行脱氮;再者在? +A 池中存在的 NO2 同样也可和 NH4 进行反应脱氮,即短程硝化 - 厌氧氨氧化:+ ?NH +NO→N+2HO4 2 2因此缺氧好氧组合工艺,在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。
AO工艺流程及工艺原理
A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
工艺流程及工艺原理1、A2/O工艺流程A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称。
A2/O工艺于70年代由美国专家在厌氧—好氧磷工艺(A~/O)的基础上开发出来的,该工艺同时具有脱氮除磷的功能。
该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的目的。
A2/O工艺流程图如图4.4.1所示。
2.工艺原理首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N 因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。
在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N和NO2-N 还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。
在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。
A2/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NO3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。
污水处理工艺之AO(厌氧好氧)简介
2。
1 AO工艺(厌氧好氧)2。
1。
1 工艺原理AO工艺法也叫厌氧好氧工艺法,A(Anaerobic)是厌氧段,用于脱氮除磷;O (Oxic)是好氧段。
工艺流程如下:厌氧工艺段,废水处于厌氧条件下,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨等.在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统.对高分子有机物的厌氧过程的叙述,有助于我们了解这一过程的基本内容。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。
水解阶段:水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。
高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用.它们在第一阶段被细菌胞外酶分解为小分子。
这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。
发酵(或酸化)阶段:发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
产乙酸阶段:在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质.甲烷阶段:这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。
甲烷细菌将乙酸、乙酸盐、二氧化碳和氢气等转化为甲烷的过程有两种生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3。
好氧工艺段,利用好氧微生物(包括兼性微生物)在有氧气存在的条件下进行生物代谢以降解有机物,使其稳定、无害化的处理方法。
微生物利用水中存在的有机污染物为底物进行好氧代谢,经过一系列的生化反应,逐级释放能量,最终以低能位的无机物稳定下来,达到无害化的要求,以便返回自然环境或进一步处理。
好氧生物处理过程的生化反应方程式:分解反应(又称氧化反应、异化代谢、分解代谢)CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42— +⋯+能量(有机物的组成元素)合成反应(也称合成代谢、同化作用)C 、H 、O 、N 、S + 能量 C 5H 7NO 2内源呼吸(也称细胞物质的自身氧化)C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 + SO 42— +⋯+能量 2.1.2 工艺特点1、AO 生物除磷工艺是由前段厌氧池和后段好氧池串联组成,工艺流程简单,构筑物较少;2、厌氧池设在好氧池之前,可起到生物选择器的作用,有利于抑制丝状菌的膨胀,改善活性污泥的沉降性能,并能减轻后续好氧池的负荷;3、反应池水力停留时间较短。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“低能耗高效城镇污水污泥同步处理技术4S-MBR”既可通过工程设施化方式应用于集中式污水处理厂建设,又可通过设备化集成应用于小水量、分散式污水处理与回用领域。
以处理规模为1 万吨/天的城市集中式污水处理厂为例,其主要技术、经济指标如下:处理规模:10000m3/d;吨水占地:<0.2m2/m3;吨水投资:采用工程设施化方式建设,吨水投资小于1800 元/m3;运行电耗:装机容量为188kW,吨水处理运行电耗0.36kW·h/m3;设计进水水质范围:常规城市生活污水水质,COD:100~400mg/L,BOD5:50~200mg/L,NH3-N:10~30 mg/L,SS:50~200 mg/L;设计出水水质范围:优于《城市污水李艺曾反复强调,虽然他推荐新建扩建项目采用MBR工艺,但这种技术对中国而言还在摸索。
“我不建议在大型(10万吨以上规模)污水处理厂全部使用这种工艺。
全部使用这种工艺有风险,运行不安全;能耗高,平均吨能耗达到0.8度电。
”A/O工艺分为生物除磷工艺和生物脱氮工艺两种。
生物除磷工艺是由厌氧和好氧两部分反应组成的污水生物处理系统。
污水进入厌氧池后,污水中的磷以正磷酸盐的形式释放到混合液中。
混合液进入好氧池后,聚磷菌较快生长,同时聚磷菌大量吸收混合液中的正磷酸盐,在二沉池随污泥沉降,磷就进入污泥中,进而达到污水除磷目的。
生物除磷工艺是不能有污泥回流的,否则除磷效果将下降。
生物脱氮工艺是由缺氧和好氧两部分反应组成的污水生物处理系统。
污水进入缺氧池后,与回流污泥混合。
活性污泥中的反消化菌在这一过程中的作用,将污水中的硝态氮转化为氮气释放到大气中,氨态氮在好样状态下形成硝态氮,随着污泥回流在缺氧状态下转化为氮气释放出来,以此达到脱氮目的。
AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。
A/O法脱氮工艺的特点:(a)流程简单,勿需外加碳源与后曝气池,以原污水为碳源,建设和运行费用较低;(b)反硝化在前,硝化在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分;(c)曝气池在后,使反硝化残留物得以进一步去除,提高了处理水水质;(d)A段搅拌,只起使污泥悬浮,而避免DO的增加。
O段的前段采用强曝气,后段减少气量,使内循环液的DO含量降低,以保证A段的缺氧状态。
A/O法存在的问题:1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;2、若要提高脱氮效率,必须加大内循环比,因而加大运行费用。
从外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%3、影响因素水力停留时间(硝化>6h ,反硝化<2h )循环比MLSS(>3000mg/L)污泥龄(>30d )N/MLSS负荷率(<0.03 )进水总氮浓度(<30mg/L)氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。
它是活性污泥法的一种变型。
因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。
氧化沟的水力停留时间长,有机负荷低,其本质上属于延时曝气系统。
以下为一般氧化沟法的主要设计参数:水力停留时间:10-40小时;污泥龄:一般大于20天;有机负荷:0.05-0.15kgBOD5/(kgMLSS.d);容积负荷:0.2-0.4kgBOD5/(m3.d);活性污泥浓度:2000-6000mg/l;沟内平均流速:0.3-0.5m/s1.2 氧化沟的技术特点:氧化沟利用连续环式反应池(Cintinuous Loop Reator,简称CLR)作生物反应池,混合液在该反应池中一条闭合曝气渠道进行连续循环,氧化沟通常在延时曝气条件下使用。
氧化沟使用一种带方向控制的曝气和搅动装置,向反应池中的物质传递水平速度,从而使被搅动的液体在闭合式渠道中循环。
氧化沟一般由沟体、曝气设备、进出水装置、导流和混合设备组成,沟体的平面形状一般呈环形,也可以是长方形、L形、圆形或其他形状,沟端面形状多为矩形和梯形。
氧化沟法由于具有较长的水力停留时间,较低的有机负荷和较长的污泥龄。
因此相比传统活性污泥法,可以省略调节池,初沉池,污泥消化池,有的还可以省略二沉池。
氧化沟能保证较好的处理效果,这主要是因为巧妙结合了CLR形式和曝气装置特定的定位布置,是式氧化沟具有独特水力学特征和工作特性:1) 氧化沟结合推流和完全混合的特点,有力于克服短流和提高缓冲能力,通常在氧化沟曝气区上游安排入流,在入流点的再上游点安排出流。
入流通过曝气区在循环中很好的被混合和分散,混合液再次围绕CLR继续循环。
这样,氧化沟在短期内(如一个循环)呈推流状态,而在长期内(如多次循环)又呈混合状态。
这两者的结合,即使入流至少经历一个循环而基本杜绝短流,又可以提供很大的稀释倍数而提高了缓冲能力。
同时为了防止污泥沉积,必须保证沟内足够的流速(一般平均流速大于0.3m/s),而污水在沟内的停留时间又较长,这就要求沟内由较大的循环流量(一般是污水进水流量的数倍乃至数十倍),进入沟内污水立即被大量的循环液所混合稀释,因此氧化沟系统具有很强的耐冲击负荷能力,对不易降解的有机物也有较好的处理能力。
2) 氧化沟具有明显的溶解氧浓度梯度,特别适用于硝化-反硝化生物处理工艺。
氧化沟从整体上说又是完全混合的,而液体流动却保持着推流前进,其曝气装置是定位的,因此,混合液在曝气区内溶解氧浓度是上游高,然后沿沟长逐步下降,出现明显的浓度梯度,到下游区溶解氧浓度就很低,基本上处于缺氧状态。
氧化沟设计可按要求安排好氧区和缺氧区实现硝化-反硝化工艺,不仅可以利用硝酸盐中的氧满足一定的需氧量,而且可以通过反硝化补充硝化过程中消耗的碱度。
这些有利于节省能耗和减少甚至免去硝化过程中需要投加的化学药品数量。
3) 氧化沟沟内功率密度的不均匀配备,有利于氧的传质,液体混合和污泥絮凝。
传统曝气的功率密度一般仅为20-30瓦/米3,平均速度梯度G大于100秒-1。
这不仅有利于氧的传递和液体混合,而且有利于充分切割絮凝的污泥颗粒。
当混合液经平稳的输送区到达好氧区后期,平均速度梯度G小于30秒-1,污泥仍有再絮凝的机会,因而也能改善污泥的絮凝性能。
4) 氧化沟的整体功率密度较低,可节约能源。
氧化沟的混合液一旦被加速到沟中的平均流速,对于维持循环仅需克服沿程和弯道的水头损失,因而氧化沟可比其他系统以低得多的整体功率密度来维持混合液流动和活性污泥悬浮状态。
据国外的一些报道,氧化沟比常规的活性污泥法能耗降低20%-30%。
另外,据国内外统计资料显示,与其他污水生物处理方法相比,氧化沟具有处理流程简单,超作管理方便;出水水质好,工艺可靠性强;基建投资省,运行费用低等特点。
传统氧化沟的脱氮,主要是利用沟内溶解氧分布的不均匀性,通过合理的设计,使沟中产生交替循环的好氧区和缺氧区,从而达到脱氮的目的。
其最大的优点是在不外加碳源的情况下在同一沟中实现有机物和总氮的去除,因此是非常经济的。
但在同一沟中好氧区与缺氧区各自的体积和溶解氧浓度很难准确地加以控制,因此对除氮的效果是有限的,而对除磷几乎不起作用。
另外,在传统的单沟式氧化沟中,微生物在好氧-缺氧-好氧短暂的经常性的环境变化中使硝化菌和反硝化菌群并非总是处于最佳的生长代谢环境中,由此也影响单位体积构筑物的处理能力。
氧化沟缺点尽管氧化沟具有出水水质好、抗冲击负荷能力强、除磷脱氮效率高、污泥易稳定、能耗省、便于自动化控制等优点。
但是,在实际的运行过程中,仍存在一系列的问题。
4.1 污泥膨胀问题当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生在废水水温较低而污泥负荷较高时。
微生物的负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度较慢,积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值很高,形成污泥膨胀。
针对污泥膨胀的起因,可采取不同对策:由缺氧、水温高造成的,可加大曝气量或降低进水量以减轻负荷,或适当降低MLSS(控制污泥回流量),使需氧量减少;如污泥负荷过高,可提高MLSS,以调整负荷,必要时可停止进水,闷曝一段时间;可通过投加氮肥、磷肥,调整混合液中的营养物质平衡(BOD5:N:P=100:5:1);pH值过低,可投加石灰调节;漂白粉和液氯(按干污泥的0.3%~0.6%投加),能抑制丝状菌繁殖,控制结合水性污泥膨胀[11]。
4.2 泡沫问题由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫。
用表面喷淋水或除沫剂去除泡沫,常用除沫剂有机油、煤油、硅油,投量为0.5~1.5mg/L。
通过增加曝气池污泥浓度或适当减小曝气量,也能有效控制泡沫产生。
当废水中含表面活性物质较多时,易预先用泡沫分离法或其他方法去除。
另外也可考虑增设一套除油装置。
但最重要的是要加强水源管理,减少含油过高废水及其它有毒废水的进入4.3 污泥上浮问题当废水中含油量过大,整个系统泥质变轻,在操作过程中不能很好控制其在二沉池的停留时间,易造成缺氧,产生腐化污泥上浮;当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在二沉池易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。
发生污泥上浮后应暂停进水,打碎或清除污泥,判明原因,调整操作。
污泥沉降性差,可投加混凝剂或惰性物质,改善沉淀性;如进水负荷大应减小进水量或加大回流量;如污泥颗粒细小可降低曝气机转速;如发现反硝化,应减小曝气量,增大回流或排泥量;如发现污泥腐化,应加大曝气量,清除积泥,并设法改善池内水力条件4.4 流速不均及污泥沉积问题在氧化沟中,为了获得其独特的混合和处理效果,混合液必须以一定的流速在沟内循环流动。
一般认为,最低流速应为0.15m/s,不发生沉积的平均流速应达到0.3~0.5m/s。
氧化沟的曝气设备一般为曝气转刷和曝气转盘,转刷的浸没深度为250~300mm,转盘的浸没深度为480~ 530mm。
与氧化沟水深(3.0~3.6m)相比,转刷只占了水深的1/10~1/12,转盘也只占了1/6~1/7,因此造成氧化沟上部流速较大(约为0.8~1.2m,甚至更大),而底部流速很小(特别是在水深的2/3或3/4以下,混合液几乎没有流速),致使沟底大量积泥(有时积泥厚度达1.0m),大大减少了氧化沟的有效容积,降低了处理效果,影响了出水水质。
加装上、下游导流板是改善流速分布、提高充氧能力的有效方法和最方便的措施。