必修1第一章知识点总结

合集下载

化学必修一第一章知识点总结

化学必修一第一章知识点总结

化学必修一第一章知识点总结一、基本概念与定义1. 物质的组成- 元素:物质的基本组成单位,不可分割。

- 分子:由两个或多个原子通过化学键结合而成的稳定粒子。

- 原子:物质的基本单位,由原子核和电子组成。

2. 化学键- 离子键:正负离子之间的静电吸引力。

- 共价键:两个或多个原子共享电子对形成的化学键。

- 金属键:金属原子间的电子共享,形成“电子海”。

3. 物质的分类- 纯净物:由单一种类的分子或原子组成的物质。

- 混合物:由两种或两种以上不同物质混合而成的物质。

二、化学反应1. 反应类型- 合成反应:两种或多种物质结合形成新物质的反应。

- 分解反应:一种物质分解成两种或多种物质的反应。

- 置换反应:一种元素与一种化合物反应,取代该化合物中的另一种元素。

- 双置换反应:两种化合物交换成分,形成两种新的化合物。

2. 化学方程式- 表示化学反应的式子,包括反应物、生成物、反应条件和物质的量关系。

3. 守恒定律- 质量守恒:在没有外力作用下,化学反应前后物质的总质量不变。

- 能量守恒:能量既不会被创造也不会被消灭,只会从一种形式转换为另一种形式。

三、化学计量1. 摩尔概念- 摩尔:物质的量单位,1摩尔物质含有阿伏伽德罗常数($6.022 \times 10^{23}$)个粒子。

2. 物质的量与质量的关系- 通过物质的摩尔质量(molar mass)计算物质的量和质量之间的关系。

3. 气体定律- 波义耳定律:在恒温条件下,气体的压强与其体积成反比。

- 查理定律:在恒容条件下,气体的压强与其温度成正比。

- 盖-吕萨克定律:在恒压条件下,气体的体积与其温度成正比。

四、实验操作与安全1. 实验基本操作- 称量、量取、混合、加热、观察和记录实验现象。

2. 实验室安全- 穿戴适当的防护装备,如实验服、安全眼镜、手套等。

- 了解并遵守实验室安全规则。

- 熟悉化学品的安全使用和存储方法。

五、元素周期表1. 元素周期表的结构- 周期:水平排列,表示电子能级。

高一化学必修一第一章知识点归纳总结

高一化学必修一第一章知识点归纳总结

一、化学实验安全1. 遵守实验室规则进实验室前,应先预习实验,明确实验目的、步骤和注意事项。

实验时要听从老师的指导,严格按照实验操作规程进行操作。

2. 了解安全措施危险化学品的存放:易燃、易爆试剂应密封保存,并远离火源;有毒试剂应专柜存放,并有专人保管。

意外事故的处理:如酒精灯不慎打翻着火,用湿布盖灭;浓硫酸沾到皮肤上,先用大量水冲洗,再涂上 3% 5%的碳酸氢钠溶液。

3. 掌握正确的操作方法药品的取用:固体药品用镊子或药匙取用,液体药品用倾倒法或量筒量取。

物质的加热:给液体加热用试管、烧杯、烧瓶等,给固体加热用坩埚、试管等,加热时要用外焰,先预热再集中加热。

仪器的连接和洗涤:连接仪器时应从下到上,从左到右;洗涤仪器时,洗净的标准是内壁附着的水既不聚成水滴,也不成股流下。

二、混合物的分离和提纯1. 过滤适用范围:分离不溶性固体和液体混合物。

主要仪器:漏斗、玻璃棒、烧杯。

操作要点:一贴(滤纸紧贴漏斗内壁)、二低(滤纸边缘低于漏斗边缘,液面低于滤纸边缘)、三靠(烧杯紧靠玻璃棒,玻璃棒紧靠三层滤纸处,漏斗下端紧靠烧杯内壁)。

2. 蒸发适用范围:分离可溶性固体和液体混合物。

主要仪器:蒸发皿、玻璃棒、酒精灯、铁架台(带铁圈)。

操作要点:加热过程中要用玻璃棒不断搅拌,防止局部过热造成液滴飞溅;当有大量晶体析出时,停止加热,利用余热蒸干。

3. 蒸馏适用范围:分离沸点不同的液体混合物。

主要仪器:蒸馏烧瓶、冷凝管、温度计、锥形瓶、酒精灯、铁架台(带铁圈、铁夹)、石棉网。

操作要点:温度计水银球应位于蒸馏烧瓶支管口处;冷凝水下进上出;加沸石(或碎瓷片)防止暴沸。

4. 萃取和分液萃取:利用溶质在互不相溶的溶剂里溶解度的不同,用一种溶剂把溶质从它与另一种溶剂所组成的溶液里提取出来的方法。

分液:把两种互不相溶、密度也不相同的液体分离开的操作。

主要仪器:分液漏斗、烧杯。

操作要点:分液时,下层液体从下口放出,上层液体从上口倒出。

物理必修一第一章知识点总结5篇

物理必修一第一章知识点总结5篇

物理必修一第一章知识点总结5篇篇1一、引言物理必修一作为高中物理学习的开端,为我们打开了探索自然界奥秘的大门。

本章内容主要涉及物理学的基本概念、物体运动学以及力学的初步认识,为后续深入学习物理打下了坚实的基础。

以下是对本章知识点的详细总结。

二、知识点总结1. 物理学及其研究对象物理学是一门研究物质的基本性质、相互作用以及物质与能量之间转换的自然科学。

本章介绍了物理学的研究对象,包括力、运动、能量、电磁等。

2. 物体运动学基础知识(1)质点运动的基本概念:了解质点运动的基本概念,如位移、速度、加速度等。

(2)运动学公式:掌握基本的运动学公式,如速度公式、位移公式等。

(3)运动学图像:了解如何通过图像分析物体的运动状态,如速度图像、位移图像等。

3. 牛顿运动定律(1)牛顿第一定律:惯性定律,即物体在没有受到外力作用时,总保持匀速直线运动状态或静止状态。

(2)牛顿第二定律:揭示了力与物体运动状态之间的关系,即物体的加速度与所受合外力成正比,与物体质量成反比。

(3)牛顿第三定律:作用与反作用定律,即两个物体之间的作用力和反作用力总是大小相等、方向相反。

4. 力的分类与性质(1)重力:介绍重力的产生原因、方向以及重力加速度等。

(2)弹力:介绍弹力的产生条件、方向以及胡克定律等。

(3)摩擦力:介绍摩擦力的种类、产生条件以及滑动摩擦力的方向等。

5. 运动与力的关系通过牛顿运动定律,探讨物体的运动状态与所受力的关系,分析物体的加速、减速以及变速运动。

三、重点难点分析本章的重点在于掌握牛顿运动定律以及物体运动学的基础知识。

难点在于理解力的分类与性质,尤其是摩擦力的产生条件和方向判断。

在学习过程中,应注重理论与实际相结合,通过实例分析加深对知识点的理解。

四、学习建议1. 夯实基础:掌握本章的基本概念、公式和定理,为后续学习奠定基础。

2. 勤加练习:通过大量练习题,加深对知识点的理解和记忆。

3. 理解原理:理解物理现象背后的原理,培养物理思维。

必修一生物第一章知识点总结

必修一生物第一章知识点总结

必修一生物第一章知识点总结一、从生物圈到细胞1. 生命活动离不开细胞-细胞是生物体结构和功能的基本单位。

-单细胞生物依靠单个细胞就能完成各种生命活动。

例如,草履虫的运动和分裂。

-多细胞生物依赖各种分化的细胞密切合作,共同完成一系列复杂的生命活动。

例如,人的生殖和发育离不开生殖细胞(精子和卵细胞)的结合以及胚胎发育过程中众多细胞的协同作用;缩手反射的完成需要多种细胞的参与。

2. 生命系统的结构层次-从小到大依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统→生物圈。

-细胞是最基本的生命系统。

-种群是指在一定的区域内,同种生物的所有个体。

-群落是指在一定的区域内,所有的种群组成一个群落。

-生态系统是由生物群落与它的无机环境相互作用而形成的统一整体。

-生物圈是地球上最大的生态系统。

二、细胞的多样性和统一性1. 观察细胞-使用高倍显微镜观察细胞的方法:先在低倍镜下观察清楚,找到要观察的物像,移至视野中央,然后转动转换器,换上高倍物镜,调节细准焦螺旋使物像清晰。

-原核细胞和真核细胞的主要区别在于有无以核膜为界限的细胞核。

2. 原核细胞和真核细胞-原核细胞:没有由核膜包被的细胞核,没有染色体,但有一个环状的DNA 分子,位于细胞内特定的区域,这个区域叫做拟核。

原核生物主要包括细菌、蓝藻等。

例如,蓝藻细胞内含有藻蓝素和叶绿素,是能进行光合作用的自养生物。

-真核细胞:有以核膜为界限的细胞核,有染色体等结构。

真核生物包括动物、植物、真菌等。

3. 细胞学说-建立者:主要是施莱登和施旺。

-内容:-细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成。

-细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。

-新细胞可以从老细胞中产生。

-意义:揭示了细胞的统一性和生物体结构的统一性。

生物必修一第一章知识点总结

生物必修一第一章知识点总结

生物必修一第一章知识点总结第一章,细胞的结构和功能。

1. 细胞的基本结构。

细胞是生命的基本单位,由细胞膜、细胞质和细胞核组成。

细胞膜是细胞的保护屏障,控制物质的进出;细胞质包括细胞器和细胞液,是细胞内各种生化反应的场所;细胞核包含遗传物质DNA,控制细胞的生长和代谢。

2. 细胞的功能。

细胞具有营养摄取、呼吸、排泄、生长、分裂、运动和感应等功能。

其中,营养摄取是细胞获取生存所需物质的过程,呼吸是将有机物氧化释放能量的过程,排泄是将废物排出体外的过程,生长是细胞体积和物质的增加,分裂是细胞繁殖的过程,运动是细胞或细胞器的位置移动,感应是对外界刺激做出反应。

3. 细胞的多样性。

细胞根据结构和功能的不同,可分为原核细胞和真核细胞。

原核细胞是没有细胞核的细胞,真核细胞是有细胞核的细胞。

真核细胞又可分为植物细胞和动物细胞,其中植物细胞含有叶绿体和细胞壁,而动物细胞则没有。

4. 细胞的代谢。

细胞的代谢包括物质的合成代谢和能量的转化代谢。

物质的合成代谢是指细胞合成有机物的化学反应,能量的转化代谢是指细胞利用能量进行生化反应。

5. 细胞的生物膜。

细胞膜是细胞的外围膜结构,具有选择性通透性,能够控制物质的进出。

细胞膜由磷脂双层和蛋白质组成,磷脂双层为细胞膜提供了柔韧性和可渗透性,蛋白质则参与了物质的运输和传递。

6. 细胞的器官。

细胞内的器官包括内质网、高尔基体、溶酶体、线粒体、叶绿体等。

内质网是细胞内的蛋白质合成场所,高尔基体是细胞内物质的转运和包装场所,溶酶体是细胞内的消化器官,线粒体是细胞内的能量合成器官,叶绿体是植物细胞内的光合作用器官。

7. 细胞的生物信息。

细胞的生物信息包括DNA和RNA。

DNA是遗传物质,携带了细胞的遗传信息,RNA是DNA的复制和转录产物,参与了蛋白质的合成。

生物信息的传递和表达是细胞生命活动的基础。

总结,细胞是生命的基本单位,具有多样性的结构和功能。

细胞的结构和功能相互关联,共同维持着细胞的正常生活活动。

高中数学必修一第一章知识点

高中数学必修一第一章知识点
奇与偶
偶与偶
+加


—减










注:“性质法”中的结论只有在两个函数的公共定义域内才成立。
第一章集合与函数概念重要知识点
一、集合有关概念
1.集合的含义:把一些元素组成的总体叫做集合。
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
注意:常用数集及其记法:
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)判断函数奇偶性的步骤
首先确定函数的定义域,并判断其是否关于原点对称;
确定f(-x)与f(x)的关系;
作出相应结论:;若f(-x) =-f(x),则f(x)是奇函数;
若f(-x) = f(x),则f(x)是偶函数.
②对应法则
③值域: 的取值范围
如果两个函数的定义域相同,并且对应关系完全一致,
那么这两个函数相等
3.区间的概念
区间的分类:
开区间: ,
闭区间: ,
半开半闭区间: ,或 ,分别表示为 ,
五.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.

高中数学必修 第一册 知识点总结梳理

高中数学必修  第一册   知识点总结梳理

必修第一册知识点总结第一章集合与常用逻辑用语集合知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B 若全集为U,则集合A的补集为∁U A图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}4.(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[常用结论与微点提醒]1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n -2个.2.子集的传递性:A⊆B,B⊆C⇒A⊆C.3.注意空集:空集是任何集合的子集,是非空集合的真子集,应时刻关注对于空集的讨论.4.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.5.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).常用逻辑用语知识梳理1.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇒p2.(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示. (2)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题和特称命题(命题p 的否定记为﹁p ,读作“非p ”)[1.区别A 是B 的充分不必要条件(A ⇒B 且B ⇒ A ),与A 的充分不必要条件是B (B ⇒A 且A ⇒B )两者的不同. 2.A 是B 的充分不必要条件⇔﹁B 是﹁A 的充分不必要条件. 3.含有一个量词的命题的否定规律是“改量词,否结论”.第二章 一元二次函数、方程和不等式等式与不等式性质 知识梳理1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b . (2)作商法⎩⎪⎨⎪⎧ab>1(a ∈R ,b >0)⇔a >b (a ∈R ,b >0),ab =1⇔a =b (a ,b ≠0),a b <1(a ∈R ,b >0)⇔a <b (a ∈R ,b >0).2.等式的性质(1)对称性:若a =b ,则b =a . (2)传递性:若a =b ,b =c ,则a =c . (3)可加性:若a =b ,则a +c =b +c .(4)可乘性:若a =b ,则ac =bc ;若a =b ,c =d ,则ac =bd . 3.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ;(3)可加性:a >b ⇔a +c >b +c ;a >b ,c >d ⇒a +c >b +d ;(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥1);(6)可开方:a >b >0n ∈N ,n ≥2). [常用结论与微点提醒]1.在不等式的两边同乘以一个正数,不等号方向不变;同乘以一个负数,不等号方向改变.2.有关分式的性质(1)若a >b >0,m >0,则b a <b +m a +m ;b a >b -ma -m (b -m >0).(2)若ab >0,且a >b ⇔1a <1b.基本不等式及其应用 知识梳理1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).[常用结论与微点提醒]1.b a +ab≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22. 3.21a +1b ≤ab ≤a +b2≤a 2+b 22(a >0,b >0). 4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.一元二次方程和一元二次不等式 知识梳理1.一元二次不等式只含有一个未知数,并且未知数的最高次数为2的整式不等式叫作一元二次不等式.2.三个“二次”间的关系3.(x -a4.分式不等式与整式不等式(1)f (x )g (x )>0(<0)⇔f (x )·g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔f (x )·g (x )≥0(≤0)且g (x )≠0. [常用结论与微点提醒]1.绝对值不等式|x |>a (a >0)的解集为(-∞,-a )∪(a ,+∞);|x |<a (a >0)的解集为(-a ,a ). 记忆口诀:大于号取两边,小于号取中间.2.解不等式ax 2+bx +c >0(<0)时不要忘记当a =0时的情形.3.不等式ax 2+bx +c >0(<0)恒成立的条件要结合其对应的函数图象决定.(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c >0或⎩⎪⎨⎪⎧a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.第三章 函数的概念与性质函数的概念 知识梳理1.函数的概念设A ,B 都是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的定义域、值域(1)在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[常用结论与微点提醒]1.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.注意以下几个特殊函数的定义域(1)分式型函数,分母不为零的实数集合.(2)偶次方根型函数,被开方式非负的实数集合.(3)f(x)为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合.(4)若f(x)=x0,则定义域为{x|x≠0}.函数的单调性与最值知识梳理1.函数的单调性(1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做函数y=f(x)的单调区间.2.函数的最值[常用结论与微点提醒]1.若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数.2.函数y =f (x )(f (x )>0或f (x )<0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反.3.“对勾函数”y =x +ax(a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].函数的奇偶性与周期性 知识梳理1.函数的奇偶性2.(1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[常用结论与微点提醒]1.(1)如果一个奇函数f (x )在原点处有定义,即f (0)有意义,那么一定有f (0)=0. (2)如果函数f (x )是偶函数,那么f (x )=f (|x |).2.奇函数在两个关于原点对称的区间上具有相同的单调性;偶函数在两个关于原点对称的区间上具有相反的单调性.3.函数周期性常用结论对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0).(3)若f (x +a )=-1f (x ),则T =2a (a >0).(4)若f (x +a )+f (x )=c ,则T =2a (a >0,c 为常数). 4.对称性的三个常用结论(1)若函数y =f (x +a )是偶函数,则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称. (3)若函数y =f (x +b )是奇函数,则函数y =f (x )的图象关于点(b ,0)中心对称.第四章 指数函数与对数函数 指数与指数函数 知识梳理1.根式的概念及性质(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(na )n=a (a 使na 有意义);当n 为奇数时,na n=a ,当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.分数指数幂规定:正数的正分数指数幂的意义是a mn =a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义. 3.指数幂的运算性质实数指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈R . 4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质R [1.画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . 2.指数函数y =a x (a >0,且a ≠1)的图象和性质跟a 的取值有关,要特别注意应分a >1与0<a <1来研究. 3.在第一象限内,指数函数y =a x (a >0,且a ≠1)的图象越高,底数越大.对数与对数函数 知识梳理1.对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、运算性质与换底公式(1)对数的性质:①a log a N =N ; ②log a a b =b (a >0,且a ≠1). (2)对数的运算性质如果a >0且a ≠1,M >0,N >0,那么①log a (MN )=log a M +log a N ; ②log a MN=log a M -log a N ; ③log a M n =n log a M (n ∈R ).(3)换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1,N >0).3.对数函数及其性质(1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象与性质定义域:(0,+∞)4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称. [常用结论与微点提醒] 1.换底公式的两个重要结论(1)log a b =1log b a (a >0,且a ≠1;b >0,且b ≠1). (2)log a m b n =nm log a b (a >0,且a ≠1;b >0;m ,n ∈R ,且m ≠0).2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.3.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限. 幂函数与二次函数 知识梳理1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的五种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ).零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质R[1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关. 2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎪⎨⎪⎧a >0,Δ<0时恒有f (x )>0;当⎩⎪⎨⎪⎧a <0,Δ<0时,恒有f (x )<0.3.(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.函数与方程 知识梳理1.函数的零点 (1)函数零点的概念对于函数y =f (x ),把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)函数零点与方程根的关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)零点存在性定理如果函数y =f (x )满足:①在区间[a ,b ]上的图象是连续不断的一条曲线;②f (a )·f (b )<0;则函数y =f (x )在(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数 y =ax 2+bx +c (a >0)的图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数21[常用结论与微点提醒]1.若连续不断的函数f (x )在定义域上是单调函数,则f (x )至多有一个零点.函数的零点不是一个“点”,而是方程f (x )=0的实根.2.由函数y =f (x )(图象是连续不断的)在闭区间[a ,b ]上有零点不一定能推出f (a )·f (b )<0,如图所示,所以f (a )·f (b )<0是y =f (x )在闭区间[a ,b ]上有零点的充分不必要条件.3.周期函数如果有零点,则必有无穷多个零点.第五章 三角函数任意角和弧度制及任意角的三角函数 知识梳理1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.[常用结论与微点提醒]1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. 3.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制必须一致,不可混用. 4.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角. (2)不相等的角未必终边不相同,终边相同的角也未必相等.同角三角函数的基本关系式与诱导公式 知识梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式[1.同角三角函数关系式的常用变形(sin α±cos α)2=1±2sin αcos α; sin α=tan α·cos α. 2.诱导公式的记忆口诀“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.3.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.三角函数的图象与性质 知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0). (2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π[1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.正切曲线相邻两对称中心之间的距离是半个周期.2.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,偶函数一般可化为y =A cos ωx +b 的形式.3.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )内为增函数.简单的三角恒等变换 知识梳理1.两角和与差的正弦、余弦和正切公式sin(α±β)=sin α cos β ± cos α sin β. cos(α∓β)=cos α cos β ± sin α sin β. tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α. cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.3.函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=ba 或f (α)=a 2+b 2·cos(α-φ)⎝⎛⎭⎫其中tan φ=ab . [常用结论与微点提醒]1.tan α±tan β=tan(α±β)(1∓tan αtan β).2.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.3.1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4.函数y =A sin(ωx +φ)的图象及应用 知识梳理1.函数y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时振幅周期频率相位初相A T=2πωf=1T=ω2πωx+φφ2.用“五点法”画y=A sin(ωx+φ)(A>0,ω>0,|φ|<π2)一个周期内的简图时,要找五个关键点x -φω-φω+π2ωπ-φω3π2ω-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 03.函数y=sin x的图象经变换得到y=A sin(ωx+φ)的图象的两种途径[常用结论与微点提醒]1.函数y=A sin(ωx+φ)+k图象平移的规律:“左加右减,上加下减”.2.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.三角函数的图象与性质参考答案例1. 解:⑴. x应满足()122log0tan02xxxx k k Zππ⎧+≥⎪⎪≥⎪⎨>⎪⎪≠+∈⎪⎩,即为()042xk x k k Zπππ<≤⎧⎪⎨≤<+∈⎪⎩所以所求定义域为[]0,,42ππ⎛⎫⎪⎝⎭⑵. x应满足⎩⎨⎧≥->-cos212sin2xx,即2sin21cos2xx⎧>⎪⎪⎨⎪≤⎪⎩,利用单位圆中的三角函数线可得32234k x kππππ+≤<+,所以所求定义域为()32,234k k k zππππ⎡⎫++∈⎪⎢⎣⎭。

物理必修一第一章知识点总结8篇

物理必修一第一章知识点总结8篇

物理必修一第一章知识点总结8篇篇1一、质点运动的描述1. 质点概念:用于简化实际物体的理想化模型,忽略物体的大小和形状,只关注其位置和运动状态。

2. 参考系:选择作为参考的物体,用于描述其他物体的运动。

参考系可以是静止的,也可以是运动的。

3. 标量和矢量:标量描述物体运动的量值大小,如路程;矢量描述既有大小又有方向的物理量,如位移、速度等。

二、时间和位移1. 时间:描述物体运动过程中的持续性,分为时刻和时间间隔。

时刻对应质点运动过程中的某一瞬间,时间间隔对应两个时刻之间的时间段。

篇2一、质点、参考系、坐标系1. 质点:是物理学中一个理想化的模型,用来研究物体的机械运动。

质点没有大小和形状,只考虑它的质量。

2. 参考系:是用来判断物体运动状态的基准。

不同的参考系下,物体的运动状态可能不同。

常见的参考系有地面、惯性参照系等。

3. 坐标系:是用来描述物体位置的基准。

通常使用笛卡尔坐标系,通过三个互相垂直的坐标轴来描述空间中的位置。

二、时间和位移1. 时间:是描述物体运动的时间间隔。

在国际单位制中,时间的基本单位是秒(s)。

2. 位移:是描述物体位置变化的物理量。

位移等于末位置向量减初位置向量。

位移是矢量,有大小和方向。

三、运动学的基本公式1. 平均速度:等于位移除以时间,即v=s/t。

平均速度描述了物体在一段时间内的运动状态。

2. 瞬时速度:是物体在某一时刻的速度。

瞬时速度可以通过极限法求得,即当时间趋近于零时,位移与时间的比值就是瞬时速度。

瞬时速度描述了物体在某一时刻的运动状态。

3. 加速度:是描述物体速度变化快慢的物理量。

加速度等于速度变化量除以时间,即a=(v-u)/t。

加速度是矢量,有大小和方向。

四、抛体运动1. 抛体运动:是指物体以一定的初速度射出后,在重力作用下所做的运动。

抛体运动可以分为平抛、斜抛和竖直上抛三种类型。

2. 平抛运动:是指物体以一定的初速度水平射出后,在重力作用下所做的运动。

生物必修一第一章知识点总结(打印版)

生物必修一第一章知识点总结(打印版)

生物必修一第一章走近细胞知识点总结第一节从生物圈到细胞1、细胞:是生物体结构和功能的基本单位。

除了病毒以外,所有生物都是由细胞构成的生命活动离不开细胞,细胞是地球上最基本的生命系统。

2→系统→个体→种群→群落→生态系统→生物圈(不是所有的鱼)植物没有(系统)层次,单细胞生物既可化做(个体)层次,又可化做(细胞)层次。

地球上最基本的生命系统是(细胞)。

最大的生命系统是生物圈以细胞代谢为基础的生物与环境之间的物质和能量的交换;以细胞增殖、分化为基础的生长与发育;以细胞内基因的传递和变化为基础的遗传与变异。

3、病毒的相关知识:(1)病毒(Virus)是一类没有细胞结构的生物体。

主要特征:①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见;②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒;③、专营细胞内寄生生活;必须依赖(活细胞)才能生存,不能用培养基直接培养。

④、结构简单,病毒无细胞结构,既不属于真核生物,也不属于原核生物,一般由核酸(DNA或RNA)和蛋白质外壳所构成。

(2)根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。

根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。

(3)常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。

第二节细胞的多样性和统一性一、显微镜使用1、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)→ 高倍物镜观察:①只能调节细准焦螺旋,不能动粗准焦螺旋;②调节大光圈、凹面镜2、显微镜使用常识(1)调亮视野的两种方法(放大光圈)、(使用凹面镜)。

(2)高倍镜下特点:物象(大),视野(暗),看到细胞数目(少)。

低倍镜下特点:物象(小),视野(亮),看到的细胞数目(多)。

(3)物镜:(有)螺纹,镜筒越(长),放大倍数越大。

高中数学必修一集合知识点总结

高中数学必修一集合知识点总结

必修一第一章 集合与函数概念一、集合知识点1:集合的含义1》元素的含义:我们把研究对象称为元素,把一些元素组成的总体叫做集合 2》集合的表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C …表示, 而元素用小写的拉丁字母a,b,c …表示。

列举法:A={a,b,c}3》集合相等:构成两个集合的元素完全一样。

知识点2:集合元素的特征以及集合与元素之间的关系 1》集合的元素特征:①确定性:给定一个集合,一个元素在不在这个集合中就确定了。

②互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}③无序性:即集合中的元素无顺序,可以任意排列、调换。

2》元素与集合的关系有“属于∈”及“不属于∉两种) ①若a 是集合A 中的元素,则称a 属于集合A a ∈A ; ②若a 不是集合A 的元素,则称a 不属于集合A ,记作a ∉A 。

注意:常见数集 ①非负整数集(或自然数集),记作N ; ②正整数集,记作N *或N +; ③整数集,记作Z ; ④有理数集,记作Q ; ⑤实数集,记作R ;典例分析题型1:判断是否形成集合例1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数; (2)我国的小河流; (3)非负奇数; (4)方程x 2+1=0的解; (5)某校2011级新生; (6)血压很高的人; 题型2:集合中元素的互异性的考察 例1:由实数-a, a,a,a2, -5a5为元素组成的集合中,最多有_______个元素,分别为__________。

题型3:集合与元素之间关系的考察 例1:用“∈”或“∉”符号填空:(1)8 N ; (2)0 N ; (3)-3 Z ; (4;(5)设A 为所有亚洲国家组成的集合,则中国 A ,美国 A ,印度 A ,英国 A 。

题型4:根据元素互异性确定参数的值: 例1:已知A={ 33,)1(,222+++-a a a a },若1∈A ,则实数a 的值为_________.知识点3:集合的表示方法【1】列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示集合的方法叫列举法。

高一必修一化学知识点第一章

高一必修一化学知识点第一章

高一必修一知识点第一章知识点一:原子结构1. 原子结构(C )⑴ 原子的组成 核电荷数(Z ) == 核内质子数(Z ) == 核外电子数 == 原子序数质量数(A )== 质子数(Z )+ 中子数(N )⑵ 区别概念:元素、核素、同位素元素:具有相同核电荷数(即质子数)的同一类原子的总称核素:具有一定数目的质子和一定数目的中子的一种原子同位素:质子数相同而中子数不同的同一元素的不同原子的互称;也就是说同一元素的不同核素之间互称为同位素。

20、从微粒符号中的数字位置推测各种量微粒符号:A Z X ±n ;质子数z 在微粒符号的左下角,质量数A 在微粒符号的左上角,电荷数“n ±”在微粒的右上角,中子数N 用左上角A 与左下角z 求差,电子数用左下角z 与右上角“n ±”求差。

21、同主族元素的原子序数间的可能差值是:2、8、18、32四个数值的加、减组合。

课堂练习1.某主族元素在周期表中的位置,取决于元素原子的( )A .相对原子质量和核电荷数B .电子层数和核内中子数C .电子层数和最外层电子数D .金属性和非金属性的强弱2. 下列关于40K 和40Ca 的叙述中正确的是A .40K 和40Ca 具有相同的中子数B .40K +和40Ca 2+具有相同的电子层结构 C .39K 和40K 互为同素异形体 D .39K 2O 的摩尔质量为94 原 子 核外电子 e = Z3.某元素的核外有三个电子层,其最外层电子数是次外层电子数的一半,这元素位于周期( )A .第4周期ⅢA 族B .第4周期ⅦA 族C .第3周期ⅣB 族D .第3周期ⅣA 族4.下列说法正确的是 ( )A .元素的种类由核外电子数决定B .原子的种类由原子核内质子数与中子数共同决定C .核外电子排布相同的两个微粒一定是同种原子D .某元素的原子核内有m 个质子,n 个中子,则该元素的相对原子质量为m + n5.甲、乙是周期表中同一主族的两种元素,若甲原子序数为x ,则乙的原子序数不可能是( )A .x +2B .x +4C .x +8D .x +186.某微粒用Z A R n+表示,下列关于该微粒叙述正确的是( )A .质量数=A-nB .所含中子数=A-ZC .所含电子数=Z+nD .所含质子数=A+Z7. 92235U 是重要的核工业原料,在自然界的储量很低。

化学必修一第一章知识点总结

化学必修一第一章知识点总结

化学必修一第一章知识点总结第一章:物质结构与性质1. 物质的分类物质可分为元素和化合物。

元素是由同类原子组成的,如金属铜、非金属氧等。

化合物由不同元素的原子组成,如水、二氧化碳等。

2. 原子结构原子由质子、中子和电子组成。

质子带正电荷,中子不带电荷,电子带负电荷。

原子的质子数等于其电子数时是稳定的。

3. 元素周期表元素周期表是由元素根据原子序数排列的表格,以及其化学性质的周期性变化。

周期表可以分为周期和族,周期表示元素原子价层的数量,族表示元素的化学性质相似。

4. 原子量和摩尔质量原子量是指一个元素原子的相对质量,在元素的原子量单位上标注。

摩尔质量是指一个物质样品里的质量,以摩尔为单位。

5. 化学符号和化学方程式化学符号用来表示化学元素和化合物。

化学方程式是化学反应的图示化表示,包括反应物、生成物和化学反应条件。

6. 化学反应的基本概念化学反应是指物质由一种形式转变为另一种形式的过程。

反应物是参与反应的物质,生成物是反应过程中形成的物质。

7. 量的关系化学反应中,化学计量法则可以描述反应物和生成物之间的物质量关系。

化学计量法则包括质量守恒定律、等量反应定律和瓦特定律。

8. 摩尔计算摩尔可以用来计算反应物和生成物之间的物质量关系。

摩尔比是指反应物和生成物处在化学方程式中的摩尔的比例关系。

9. 化学反应的能量变化化学反应中,能量可以转化为其他形式,如热能或化学能。

放出能量的反应被称为放热反应,吸收能量的反应被称为吸热反应。

10. 离子的形成和物质的分子结构离子是由失去或获得一个或多个电子的原子或原子团组成的,有正负电荷。

分子是由两个或更多的原子通过化学键连接而形成的。

11. 元素的周期性变化元素的周期性变化可以通过元素周期表来进行描述和理解。

周期性变化包括原子半径、电离能、电子亲和能、与氧化还原有关的性质等。

12. 元素的化合价化合价是指化合物中一个元素与其他元素结合时的电荷数目。

元素的化合价与元素的外层电子数有关。

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合知识点总结

高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。

2、空集的含义:不含任何元素的集合叫做空集,记为Ø。

3、集合中元素的三个特性:确定性、互异性、无序性。

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。

集合中的元素互不相同。

例如:集合A={1,a},则a不能等于1。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。

例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。

4、元素与集合之间只能用“∈”或“∉”符号连接。

5、集合的分类:(1)有限集:含有有限个元素的集合。

(2)无限集:含有无限个元素的集合。

(3)空集:不含任何元素的集合。

6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。

在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。

二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。

常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。

集合与元素之间的关系可以表示为a∈M或a∉M。

集合的表示法有自然语言法、列举法、描述法和图示法。

集合可以分为有限集、无限集和空集(∅)。

1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。

子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。

已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。

1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。

交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。

补集的性质为A∪A的补集=全集,A∩A的补集=空集。

2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。

一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。

1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。

2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。

3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。

(完整版)人教版高中数学必修一第一章知识点

(完整版)人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A {|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

高中数学人教A版必修一第一章知识点总结及题型

高中数学人教A版必修一第一章知识点总结及题型

高中数学人教A版必修一第一章知识点总结及题型高中数学必修一第一章知识点及题型一、第一章第一单元集合---知识点总结知识点一:集合的概念集合是研究对象的统称,用小写拉丁字母a,b,c等表示元素,一些元素的集合称为集合或集,用大写拉丁字母A,B,C等表示,不含任何元素的集合称为空集,记为∅。

知识点二:集合与元素的关系如果a是集合A的元素,就称a属于集合A,记作a∈A;如果a不是集合A中的元素,就称a不属于集合A,记作a∉A。

知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。

集合可分为有限集和无限集,有限集含有有限个元素,无限集含有无限个元素。

知识点四:集合的表示方法集合的表示方法有列举法和描述法。

列举法是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法;描述法是用集合所含元素的特征表示集合的方法。

知识点五:集合与集合的关系集合A中的所有元素都是集合B中的元素时,称集合A是集合B的子集,记作A⊆B;如果A是B的子集,但存在元素不属于B,则称A是B的真子集,记作A⊂B。

子集的性质包括空集是任意集合的子集、任何集合都是它本身的子集、如果A是B的子集,B是C的子集,则A是C的子集。

知识点六:集合的运算集合的运算包括交集和并集。

集合A与B的并集是由A 和B中所有元素组成的集合,记作A∪B;集合A与B的交集是A和B中共有的元素组成的集合,记作A∩B。

3.交集与并集的性质交集的运算性质:A∩B = B∩A (交换律)A∩A = A (恒等律)A∩∅ = ∅(零律)A⊆B ⇔ A∩B = A (吸收律)并集的运算性质:A∪B = B∪A (交换律)A∪A = A (恒等律)A∪∅ = A (零律)A⊆B ⇔ A∪B = B (吸收律)A∪B = B∪A = {x | x∈A或x∈B} (定义)符号语言、图形语言和自然语言都可以用来表示集合的交集和并集。

4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。

地理必修一第一章知识点总结

地理必修一第一章知识点总结

地理必修一第一章知识点总结第一章:地球与地图1. 地球的形状与大小:- 地球呈近似于椭球形,略带扁球状。

- 地球的直径大约是12742公里,赤道周长大约是40076公里。

2. 地球的运动:- 自转:地球在自西向东的轴线上旋转,周期约为24小时。

- 公转:地球绕太阳运动,呈椭圆轨道,延绕黄道平面公转,周期约为365.25天。

3. 地球的倾斜度和季节变化:- 地球地轴与地银道面夹角约为23.5°,称为地球的倾斜度。

- 地球的倾斜度导致了季节的变化,倾斜度越大的地方,季节变化越明显。

4. 地球的经纬度:- 经度:以本初子午线为起点,东西180°,分为东经和西经。

- 纬度:以赤道为基准,南北各90°。

5. 地球的分区:- 北半球、南半球:以赤道为分界线,北半球为赤道以北的区域,南半球为赤道以南的区域。

- 东半球、西半球:以本初子午线为分界线,东半球为本初子午线以东的区域,西半球为本初子午线以西的区域。

- 东、西、南、北方:以指北针的方向为准。

- 时区:为了统一标准时间,全球按经线每15°度划分为24个时区。

6. 地球的地理格局:- 大洲与洋:地球上的陆地分布成大洲,水域分布成洋。

- 大陆板块:地球上的陆地表面分散着若干个板块,这些板块是由地壳组成的大陆板块。

- 地壳结构:地壳由陆壳和海壳构成,陆壳主要由花岗岩和片麻岩组成,海壳主要由玄武岩构成。

7. 地球上的地理气候带:- 热带气候带:赤道附近,气温高,季节差异小,降水丰富。

- 温带气候带:赤道以外的中纬度地区,季节差异明显,四季分明,降水适中。

- 寒带气候带:极地以及高海拔地区,气温低,降水较少。

8. 地图的制作与使用:- 地图投影:将地球表面呈现在平面上,以便人们观察和使用。

- 地图比例尺:反映地球实际距离与地图上距离的比例关系。

- 地图符号:用以表示地图上各种地理要素的图形、颜色或字母等符号。

- 地图方向:用以表示地图上方位关系的指示箭头或指北针。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数概念第一节:集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B 或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

◆有n个元素的集合,含有2n个子集,2n-1个真子集例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值第二节:函数的有关概念一、函数的定义及概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

记作“f(对应关系):A(原象)→B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。

6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数最大(小)值(定义见课本p36页)○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); 例题:1.求下列函数的定义域:⑴y =⑵y2.设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _3.若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是4.函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x = 5.求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈(3)y x =y 6.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式 7.已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

8.设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为 9.求下列函数的单调区间:⑴ 223y x x =++⑵y ⑶ 261y x x =-- 10.判断函数13+-=x y 的单调性并证明你的结论.11.设函数2211)(xx x f -+=判断它的奇偶性并且求证:)()1(x f xf -=.。

相关文档
最新文档