第八章 刚体平面运动答案河南科技大学理论力学课后答案

合集下载

1-8章的习题答案理论力学.doc

1-8章的习题答案理论力学.doc

第一章静力学公理和物体的受力分析一、选择题与填空题1.C2.ACD3.A, B两处约束力的方向如图所示60°第二章平面力系一、选择题与填空题■1. B; D。

2. B。

3. F;向上。

4. B。

5. 4^M;方向与水平线成60角,指向 23L右下。

6. 10kN; 10kN ; 5kN; 5kN。

7. 100kN;水平向右。

二•计算题1. F B - -70 KN F AX =70 KN ,F Ay =120 KN , M A二-30KN m2. F AX - -qa F BX二 F qa F Ay =qa F F By 二 qa - F3. F= -5kN F Dy = 4.33kN F E-4.33kN F C =24.41kND xF B^ -17.08kN F AX=F BX = -5kN l^y = -14.08kN M A=T4.66kN mF AX =10N FAy =20N M A =15N mF CD =14.1N6F Ax=2.5kN F Ay=—2.16kN M A=」kN ,m F c =20.33kN7 F B=40kNF AX = —10kNFA ^-20kN M -50kN m F cx = 40kNF ey = 0F HX =300N F Hy =100N第三章空间力系少2(-8. F A ^ = -100N F Ay 二-300N F Ex 二-300N F Ey =100N F °y 二 200N整=一一A > X Y m 一:J E £c X一、选择题与填空题f—- - Fa 6 Fa 1.B。

2.B。

3. M x(F)=O ; M y(F) —H2 44.F x=-40.2N; F y=30-2N; M z=240.2 N m。

5.F z= F sin :;F y= F cos :cos :;M x(F)二 F(ccos'cos : bsin )。

理论力学习题解答(8-13章)

理论力学习题解答(8-13章)
力的平衡条件
对于一个物体,如果受到的合力为零,则该物体处于力的平衡状态。
力的平衡与运动状态
力的平衡状态下,物体的运动状态保持不变,即速度和方向都不发生变化。
力矩是力和力臂的乘积,表示力对物体转动作用的物理量。
力矩概念
力矩的方向
力矩的几何意义
力矩的方向按照右手定则确定,即右手四指从转动轴指向力的方向,大拇指指向转动方向。
动量定理,描述了物体加速度与其所受合外力之间的线性关系。
详细描述
牛顿第二定律,也被称为动量定理,表述为F=ma,其中F代表合外力,m代表质量,a代表加速度。该定律揭示了物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
牛顿第二定律
作用与反作用定律,描述了作用力和反作用力大小相等、方向相反的特性。
伯努利方程
层流与湍流,定常流动与非定常流动,一维、二维、三维流动。
流体流动的分类
流体质量守恒,流量连续,无质量亏损或增加。
连续性方程
流体动力学基础
03
拉格朗日法
追踪流体质点运动的方法,描述流场中质点位置随时间变化。
01
微元体分析法
对流场中微小体积元进行分析,列出流体运动和力的平衡方程。
02
欧拉法
描述流体运动随时间变化的方法,基于流体质点运动观点。
天体运动的计算方法
天体运动的计算方法通常涉及到对万有引力定律的应用,以及运用运动学和动力学原理。
总结词
在计算天体运动时,首先需要确定天体的质量、位置和速度等参数,然后根据万有引力定律计算出天体之间的相互作用力。接着,运用牛顿第二定律和运动学原理,可以求解出天体的加速度、速度和位移等参数。最后,通过比较理论计算结果和观测数据,可以对天体运动的规律进行验证和预测。

理论力学第8章习题解答

理论力学第8章习题解答

第八章 质点系动力学:矢量方法 习题解答8-1 一个质量为5 kg 弹头M 以水平速度v = 60 m/s 飞行,在D 处爆炸成位于同一水平面内如图示速度方向的两块碎片A 和B 。

已知碎片A 的速度大小v A = 90 m/s 。

试求:(1) 碎片A 的质量m A ;(2) 碎片B 的速度大小v B 。

解:取弹头M 为研究对象,弹头爆炸前后动量守恒 () 30cos B A v m M Mv -= () 30sin 0B A A A v m M v m --=解得M v vm A A 33=,AA B v v vv v 32--=, 代入数据得:kg 92.1=A m ,m/s 64.112=B v .8-2 一个质量为m 1的人手里拿着质量为m 2的物体,以仰角θ,速度v 0向前跳起。

当他到达最高点时将物体以相对速度u 水平地向后抛出。

如果不计空气阻力,问由于物体的抛出,跳远距离增加了多少?解:取m 1和m 2物体系统为研究对象,人跳至最高点时只有水平速度 ϑc o s 01v v =,所费时间 gv t ϑsin 0=。

抛物前后系统水平动量守恒,即 ()()u v m v m v m m -+=+1211021c o s ϑ,式中1v 为抛物后人的速度。

解得21201c o s m m um v v ++=ϑ,可见,人的速度增量为2121Δm m um v +=,从而跳远距离增加()gm m uv m v t s 21021sin ΔΔ+==ϑ.8-3质量为m 1的平台AB 放在水平面上,平台与水平面间的滑动摩擦因数为f 。

质量为m 2的小车D 由绞车拖动,相对平台的运动规律为221bt s =,其中b 为已知常数。

不计绞车质量,求平台的加速度。

解:1)设平台与水平面间的滑动摩擦因数比较小,当小车D 相对平台运动时,平台AB 的有速度1v (向左),小车D 的相对速度bt s v == r ,(向右),小车D 的绝对速度bt v v v v +-=+-=1r e a ,(向右), 滑动摩擦力为 N fF F =题8-3图题8-3受力图题8-1图由动量定理,()[]F v bt m v m t=-+-1211d d()021=++-N F g m m解得()212121m m g m m f b m a ++-=, ()g m m bm f 212+≤.当()gm m bm f 212+>时,01=a .8-4 质量为m 1的矩形板可在如图所示的光滑水平面上运动。

第八章刚体的平面运动习题解答

第八章刚体的平面运动习题解答
图8-36
基点法
瞬心法
8-10在瓦特行星机构中,杆O1A绕轴O1转动,并借连杆AB带动曲柄OB绕轴O转动(曲柄OB活动地装在O轴上),如图8-37所示。齿轮Ⅱ与连杆AB固连于一体,在轴O上还装有齿轮Ⅰ。已知 ;又杆O1A的角速度 。试求当 且 时,曲柄OB和齿轮Ⅰ的角速度。
图8-37
瞬心法
基点法
8-11图8-38所示的双曲柄连杆机构中,滑块B和E用杆BE连接,主动曲柄OA和从动曲柄OD都绕O轴转动。主动曲柄OA作匀速转动,角速度的大小为 。已知各部件的尺寸为: 。试求当曲柄OA垂直于滑块的导轨方向时,从动曲柄OD和连杆DE的角速度。
图8-59
以O为动点,杆AB为动系
(1)速度分析
(2)加速度分析
圆轮O
以O为基点,分析C点
向y
8-33图8-60所示机构中,已知曲柄OA以匀角速度 绕定轴O转动,OA=100mm,l=500mm。在图示位置, ,试确定杆BD的角速度和角加速度。
图8-60
以A为动点,杆AB为动系
(1)速度分析
(2)加速度分析
图8-43
速度分析
加速度分析
8-17边长l=400mm的等边三角板ABC在其所在平面内运动,如图8-44所示。已知某瞬时点A的速度 ,加速度 ,方向均沿AC;点B的速度大小为 ,加速度大小为 。试求该瞬时点C的速度和加速度。
图8-44

(1)
向图示x、y方向投影
(2)
向图示x、y方向投影
8-18图8-45所示机构中,曲柄OA长为 ,以匀角速度 绕轴O转动;滑块B可在水平滑槽内滑动。已知AB=AC=2l,在图示瞬时,OA铅直,试求此时点C的速度及加速度。
图8-62

《理论力学》第八章_刚体的平面运动习题解

《理论力学》第八章_刚体的平面运动习题解

vE

vO

v0
1 (157.05 52.35) 52.35(mm / s) (方向:向上。) 2
vD

[习题8-6] 两刚体M,N用铰C连结,作平面平行运动。已知AC=BC=600mm,在图 示位置,vA=200mm/s, vB=100mm/s,方向如图所示。试求C点的速度。 解:
y
x
'
O
'
B
vB

300
A
60
0
O
0 v A

解:
v A OA 0 200 3 600(rad / s)
v B v A v BA [v B ] AB [v A ] AB
v B cos 30 0 v A 600
vB 600 692.84(mm / s) 0.866
C3 0
A
Rr t 2 2r
故,动齿轮以中心A为基点的平面运动方程为:
x A ( R r ) cos y A ( R r ) sin
t 2
2
t 2
2
A
Rr t 2 2r
[习题8-3] 试证明:作平面运动的平面图形内任意两点的连线中点的速度等于该两点速度的矢 量和之一半。 已知:如图所示, AC CB , 求证: vC 证明:

300

v B v A v BA
ve
O
vBA AB 200 2 400(mm / s)
v B v A v BA 2v A v BA cos 150 0
2 2
5332 400 2 2 533 400 0.866

《理论力学》课后习题解答(赫桐生版)

《理论力学》课后习题解答(赫桐生版)

理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。

解:习题1-2.画出下列各物系中指定物体的受力图。

解:习题1-3.画出下列各物系中指定物体的受力图。

解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。

解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。

解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。

求撑杆BC所受的力。

解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。

解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。

(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。

习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。

解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。

解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。

08第八章习题解答

08第八章习题解答

第八章习题解答8-1匀质杆AB 长l ,重G ,沿光滑的圆弧轨道运动如图示。

设当OA 在水平位置时,3arcisn =θ,125gl v A =,求此时轨道对于杆AB 的约束力。

题8-1图解:以杆AB 为研究对象,受力分析A F N 、B F N、G 如图示,杆AB 作定轴转动。

∵53arcsin =θ 53sin =∴θ 54cos =θ 25242sin =θ 2572cos =θ ∵ l R 85=、125gl v A = l g R v A 1516==∴ω l OC 83=AB 杆的质心加速度为OC a ⋅=21ω,OC a ⋅=α2 惯性力主矢*F和主矩*M 方向如图所示,大小为mg l l g m a m F 528315161*1=⋅⋅=⋅=l m a m F 832*2⋅⋅=⋅=ααα222*19243])83(121[ml l m ml M =+=题8-1答案图列平衡方程式∑=0)(F m zO 01924353832=−⋅⋅αml l mg l g 215216=α 0=∑ixF 0sin cos 2cos N *1*2N =−++⋅A B F F F F θθθ 0=∑iyF0cos sin 2sin *1*2N =−−+⋅mg F F F B θθθ mg l g ml F 2158121521683*2=⋅=代入上式得:mg F B4349N =,mg F A 4337N =8-2 匀质杆AB 长l ,重G ,用两根软绳悬挂如图示。

求当其中一根软绳切断,杆AB 开始运动时,另一根软绳中的拉力。

题8-2图解:建立参考基e C−,连体基1e O −和2e B −设当AO 被切断时,BO 的角加速度为1α,AB 杆的角加速度为2α题8-2答案图以杆AB 为研究对象,受力分析如图示重力G ,绳中张力T F 。

杆AB 作平面运动,惯性力主矢*F 和主矩*M 方向如图所示,大小为:C ma F =*,2*αC J M =e C e C e tC C a a a a αω222 ++= , 02=eC a ω e B e B e tC a a a αω112 +=, 01=e B a ω , B e B a a=α1 e C e B C a a a αα21 +=, eC e B C a m a m a m αα21 += 11*122ααl m ma F e B ==∴ 22*22ααl m ma F e C == 22*121αml M =0)(=∑F m Dz0121442222=+⋅−⋅ααml lmg l ml lg 562=α0)(=∑F m Cz012122222T =−⋅⋅αml l Fmg F 52T =8-3 匀质杆AB 长2l ,重G ,一端A 用长l 的软绳OA 拉住,一端B 放在光滑地面上如图示。

理论力学课后习题及答案解析..

理论力学课后习题及答案解析..

第一章习题4-1.求图示平面力系的合成结果,长度单位为m。

解:(1) 取O点为简化中心,求平面力系的主矢:求平面力系对O点的主矩:(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。

习题4-3.求下列各图中平行分布力的合力和对于A点之矩。

解:(1) 平行力系对A点的矩是:取B点为简化中心,平行力系的主矢是:平行力系对B点的主矩是:向B点简化的结果是一个力R B和一个力偶M B,且:如图所示;将R B向下平移一段距离d,使满足:最后简化为一个力R,大小等于R B。

其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。

(2) 取A点为简化中心,平行力系的主矢是:平行力系对A点的主矩是:向A点简化的结果是一个力R A和一个力偶M A,且:如图所示;将R A向右平移一段距离d,使满足:最后简化为一个力R,大小等于R A。

其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题4-4.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:反力的实际方向如图示。

校核:结果正确。

习题4-5.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

解:(1) 研究整体,受力分析(BC是二力杆),画受力图:列平衡方程:解方程组:反力的实际方向如图示。

习题4-8.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。

工程力学A 参考习题之刚体的平面运动习题及解答

工程力学A 参考习题之刚体的平面运动习题及解答

刚体的平面运动习题及解答已知:OA 的转速n=40r/min,OA=r=0.3 m求:图示瞬时,筛子BC 的速度。

解: A ,B 两点速度如图所示,图中ππω3460n 2==rad/s由速度投影定理得: 0B A cos60.v v = 解出筛子BC 平动的速度为:m/s513.2r 2 v 2v A B ===ω 254.0.==ωCD v D m/s已知:1m.0DE BD OA===,,m 31.0EF =s /rad 4OA =ω;求 EF 杆的角速度ω和滑块F 的速度F v 。

解: 各点速度分析如图所示, AB 杆为瞬时平动,故4.0.OA OA A B ===ωv v m/sBC 杆的速度瞬心为点D ,三角形DEC 绕D 点作定轴转动,得BB CE v B Dv .DE DC.DE v ===v由 FEE Fv v v +=解出462.0cos30v 0E F ==v m/s ,333.1EF FEEF ==v ω rad/s已知:滚子纯滚动,m12r R AB OA====,s /rad 2=ω求 图示瞬时点B 和点C 的速度与加速度。

解: 先作速度分析如图(a )所示, C2.R A B ===ωv vm/s42rB B ===ωωv rad/s2.828.r 22.C ===ωωB PC v m/s取A 为基点,对B 点作加速度分析如图(a )所示 有BAn BA A B n B a a a a a ++=+ττ大小:?r vB22R ω ? 0R BA 2=ω 方向: 如图所示向AB 轴投影得 0a B =τ,故B 点加速度为8rvaa B2Bn B === 2s /m最后取B 为基点,对C 点作加速度分析如图(b )所示,即CBCB n B C a a a a τ++=大小:?r vB2r B 2ωr rar BB ==τα方向: 如图所示 故C 点加速度为11.31aaa CB2n B2C =+=2s/m已知:r OA =,r 32AB = ,轨道半径2r B O 1=,OA 杆的角速度和角加速度为O ω和O α; 求: 图示瞬时滑块B 的加速度。

《理论力学》课后习题解答(赫桐生版)

《理论力学》课后习题解答(赫桐生版)

理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。

解:习题1-2.画出下列各物系中指定物体的受力图。

解:习题1-3.画出下列各物系中指定物体的受力图。

解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。

解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。

解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。

求撑杆BC所受的力。

解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。

解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。

(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。

习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。

解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。

解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。

理论力学课后答案08

理论力学课后答案08

第8章 刚体平面运动概述和运动分解三、选择题1.( D )2. ( B )。

3. ( B )4. ( D )5.( C )6. ( C )7.( C )。

8. ( B )。

四、计算题8-1 如图8.30所示的两齿条以1v 和2v 同方向运动。

在两齿条间夹一齿轮,其半径为r ,求齿轮的角速度及其中心O 的速度。

解:齿轮作平面运动,以B 为基点,分析A 点的速度。

由AB B A v v v +=作A 点的速度合成图如图所示。

由图可知21v v v v v B A AB -=-= 齿轮的角速度为rv v ABv AB O 221-==ω再以B 为基点,分析O 点的速度。

由OB B O v v v +=作O 点的速度合成图如图所示。

由图可知齿轮中心O 的速度2212v v r v v v v O OB B O +=+=+=ω8-2 曲柄OA = 17cm ,绕定轴O 转动的角速度1rads O A /ω=,已知AB = 12cm ,BD = 44cm ,BC = 15cm ,滑块C 、D 分别沿着铅垂与水平滑道运动,如图8.31所示瞬时OA 铅垂,求滑块C 与D 的速度。

图8.30 图8.31解:由A v 和D v 的速度方向,可知杆BD 作瞬时平动。

从而可知B v 方向水平向左。

C 点的速度方向垂直向下。

BD 作瞬时平动,可知滑块D 的速度为 )/(17171s cm OA v v OA A D =⨯=⋅==ω 杆BC 作平面运动,上速度投影定理,有)90cos(cos o ϕϕ-=C B v v根据图示的结构,经过数学计算,可知6778.040157cos ==ϕ,7352.0sin =ϕ,代入上式,可得)/(6.15sin cos sin cos s cm v v v A B C ===ϕϕϕϕ8-3 曲柄OA 绕定轴O 转动的角速度25rad s O A ./ω=,OA = 28cm ,AB = 75cm ,BC = 15cm ,r = 10cm ,轮子沿水平面滚动而不滑动。

第八章刚体的平面运动习题解答

第八章刚体的平面运动习题解答
圆盘



8-21图8-48所示机构中,圆轮A的半径R=0.2m,圆轮B的半径r=0.1m,两轮均在水平轨道上作纯滚动。在图示瞬时,A轮上C点在最高位置,轮心速度vA=2m/s,加速度aA=2m/s2,试求轮B滚动的角速度和角加速度。
图8-48
加速度分析
圆轮A
杆BC


8-22轮O在水平面上作纯滚动,如图8-49所示。轮缘上固定销钉B,此销钉可在摇杆O1A的槽内滑动,并带动摇杆绕轴O1转动。已知轮心O的速度是一常量,vO=0.2m/s,轮的半径R=0.5m,图示位置时,O1A是轮的切线,摇杆与水平面的夹角为 。试求该瞬时摇杆的角速度和角加速度。
图8-59
以O为动点,杆AB为动系
(1)速度分析
(2)加速度分析
圆轮O
以O为基点,分析C点
向y
8-33图8-60所示机构中,已知曲柄OA以匀角速度 绕定轴O转动,OA=100mm,l=500mm。在图示位置, ,试确定杆BD的角速度和角加速度。
图8-60
以A为动点,杆AB为动系
(1)速度分析
(2)加速度分析
图8-33
瞬心法
基点法
8-7在如图8-34所示的筛动机构中,筛子BC的摆动是由曲柄连杆机构所带动。已知曲柄长OA=0.3m,转速为n=40r/min。当筛子运动到与点O在同一水平线上时, ,试求此时筛子BC的速度。
图8-34
速度投影定理
8-8长为l=1.2m的直杆AB作平面运动,某瞬时其中点C的速度大小为vC=3m/s,方向与AB的夹角为 ,如图8-35所示。试求此时点A可能有的最小速度以及该瞬时杆AB的角速度。
8-20半径为r的圆盘可在半径为R的固定圆柱面上纯滚动,滑块B可在水平滑槽内滑动,如图8-47所示。已知r=125mm,R=375mm;杆AB长l=250mm。图示瞬时,vB=500mm/s,aB=750mm/s2;O、A、O1三点位于同一铅垂线上,试求此时圆盘的角加速度。

理论力学(8.7)--刚体的平面运动-思考题答案

理论力学(8.7)--刚体的平面运动-思考题答案

第八章 刚体的平面运动答 案8-1均不可能。

利用速度投影定理考虑。

8-2不对。

,不是同一刚体的速度,不能这样确定速度瞬心。

8-3不对。

杆 和三角板ABC不是同一刚体,且两物体角速度不同,三角板的瞬心与干的转轴不重合。

8-4各点速度、加速度在该瞬时一定相等。

用求加速度的基点法可求出此时图形的角速度、角加速度均等于零。

8-5在图(a)中,=,= ,因为杆AB作平移;在图(b)中,=,≠,因为杆AB作瞬时平移。

8-6车轮的角加速度等于 。

可把曲面当作固定不动的曲线齿条,车轮作为齿轮,则齿轮与齿条接触处的速度和切向加速度应该相等,应有,然后取轮心点O为基点可得此结果和速度瞬心C的加速度大小和方向。

8-7由加速度的基点法公式开始,让 ω=0,则有 ,把此式沿着两点连线投影即可。

8-8可能:图b、e;不可能:图a、c、d、f、g、h、i、j、k和l。

主要依据是求加速度基点法公式,选一点为基点,求另一点的加速度,看看是否可能。

8-9(1)单取点A或B为基点求点C的速度和加速度均为三个未知量,所以应分别取A,B为基点,同时求点C的速度和加速度,转换为两个未知量求解(如图a)。

(2)取点B为基点求点C的速度和加速度,选点C为动点,动系建于杆,求点C的绝对速度与绝对加速度,由 ,转换为两个未知数求解(如图b)。

(3)分别取A,B为基点,同时求点D的速度和加速度,联立求得 ,再求 。

8-10(1)是。

把,沿AB方向与垂直于AB的方向分解,并选点B为基点,求点A的速度,可求得杆AB的角速度为 。

再以点B为基点,求点E的速度,同样把点E的速度沿AB方向与垂直于AB的方向分解,可求得杆AB的角速度为。

这样就有,然后利用线段比可得结果。

也可用一简捷方法得此结果。

选点A(或点B)为基点,则杆AB上任一点E的速度为= + ,垂直于杆AB,杆AB上各点相对于基点A的速度矢端形成一条直线,又=+ ,所以只需把此直线沿方向移动距离,就是任一点E的速度的矢端。

《理论力学》第八章-刚体平面运动试题及答案

《理论力学》第八章-刚体平面运动试题及答案

理论力学8章作业题解8-2 半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。

如曲柄OA 以匀角加速度a 绕O 轴转动,且当运动开始时,角速度00=w ,转角0=j 。

求动齿轮以中心A为基点的平面运动方程。

解:图示,A 轮平面运动的转角为=A j ∠C 3AC 2=j +∠CAC 2由于弧长CC 1=CC 2,故有 ∠CAC 2=r R /j ,所以22/t rr R r r R r R A a j j j j +=+=+=A 轮平面运动方程为ïïîïïíì+=+=+=+=+=22212212)sin()()sin()()cos()(cos )(tr r R t r R r R y t r R r R x A A A a j a j a j8-6两刚体M ,N 用铰C 连结,作平面平行运动。

已知AC=BC=600mm ,在题附图所示位置s mm v s mm v B A /100,/200==,方向如图所示。

试求C 点的速度。

解:由速度投影定理得()()0==BC C BC B v v 。

则v C 必垂直于BC 连线,v C 与AC 连线的夹角为30°。

由()()AC A AC C v v = 即得:s mm v v A C /200== ,方向如题4-6附图示。

解毕。

8-9 图所示为一曲柄机构,曲柄OA 可绕O 轴转动,带动杆AC 在套管B 内滑动,套管B 及与其刚连的BD 杆又可绕通过B 铰而与图示平面垂直的水平轴运动。

已知:OA =BD =300mm ,OB =400mm ,当OA 转至铅直位置时,其角速度ωo =2rad/s ,试求D 点的速度。

C 12Aj C解 (1)平面运动方法: 由题可知:BD AC w w =确定AC 杆平面运动的速度瞬心。

套筒中AC 杆上一点速度沿套筒(为什么?)s rad IAOA IA v A AC /72.00=´==w w , s mm BD BD v AC BD D /216=´=´=w w D 点加速度如何分析?关键求AC 杆角加速度(=BD 杆角速度) 基点法,分析AC 杆上在套筒内的点(B’):(1) tA B n A B A B a a a a ¢¢¢++=r r r r大小:× ∠ ∠ × 方位:× ∠ ∠ ∠ 再利用合成运动方法:动点:套筒内AC 杆上的点B’,动系:套筒。

第八章刚体平面运动河南科技大学理论力学课后

第八章刚体平面运动河南科技大学理论力学课后

如图 a 听示.在诵动机掏中. OA 制•■:-迎 H R = 40 r . min . OA = 03 mZBAO =90° 樓此斷时踊f BC 的速度,解離于UC 作平移.如圏 0所示的位置.巾与GBO 夹瀚沏3(r . n- OA-応卞"° xO30 - 0.40 n in.'sJ30由速度投靈定理仟/屈=(%)应潯订日应」Vj = v 3 co&60°\<=5启■中如=PA 毋屈由儿何光系PA = Q A + PO[ = O A + q 。

: co-t30D = 0.10 + 0 05^3 tnVj> - PD ■肉上=(亠4£) + PA)宓型 ~ (0.05 + 0.10 + 0.05-^) x 1 07 =0.253 m8-3一 -- 08^ = 2.51 mscos 60°8-4 W㈣连打机杓r 连杆曲卜嗣环1块 雷枫曲D 如阳 齐斤石-机椅由曲榊 蒂功。

己知曲稱的角=2rads : = 0,1m F 水O X O 2 = 0.05m - .lD=0.05m :蚩Q*船買时平行于11Q 与"5在同1直线上;曲卩=30J 求角&ABD 的角速度和点Q 的速度(a)0>)常 三桶板ABD f$平面运动.在图 所示应置的速度瞬心莊点P ,设三角柢箱速度为由題涯徊 ljAB U :沟0」0x2O .IO +.V?二 1 07 rals 疫】節子的IS 动是由曲柄杆机掏所带动.已知曲柄「BC ■, O I- ■ R 陀£ I:时. 把JM 值优入上式,得图 总所示机构申.己知;a4-3Z> = D£ = 01iu . £P = 0.1V3m :=4rad/s n 在图 g 所示位豐时.^9iOA UWI 哉阳 亚山 且丘D 川尸祀网1 枯鬥线卜-<岷自于更求杆肚的用恕煜Hl A F 的这燧n解 机构中,杆肿• 3C UI£F 作平面运动,曲柄①I 和「角块CDE {] 轴转动,而 滑块歩尸悴平務,此时杆a hv 2. 均沿水平方向M 图 4所示,所^AB 作■时 平移.v s = v i = =U.40m.5叫丄DC. v s ±DB.杆銘的速度・希莊点D 故DC v c = ------ v EDBv nri> =DE -^-= -------- v. =0 40 ms ■ h 向沿打羽就国 b)DC DB由逾度投庠定埋初“ -tos (p =: V £由几何关系知.在△血尸中・V5 .1COS 卩=—,Sill =—v F = —— - 0.462 ni'S ( t :3两H 空的:速麼瞬心在点P I8-7高理转动的製置如團-2折示・杆qq 境q 轴轴动,转速为% ° o 少用钗琏擅1 ■ ■ I ;■ X :丙洁动齿轮m转动时轮II 在半径为与的阖定内齿純上预动,并便半轻为厅的轮】绕a 轴转动•轮I 上装肓砂卷 随同轮1高速转动. MI —= 11. 旳=900 rAiun ■.耒讪垃的4述)<a) (b)8-6解 轮II 柞纯锻功.其速度瞬心在点只 如图 b 所示.* 二 QQg 4r 3)(y 4■=J P* Op = F&Gf]勺fi?2 = ' 二 GJJ' ■ ** r 2轮D ®轮I 的炖点Q 的速廈^c ~ -v Oi 二 2(耳 + )CJ 4码 =土= 2(斤+陀)防4 =十'>厠4 =(1+—)«4 =12fi)4n n八 f\场=12??4 = 10 800 r/'niin (i )口缶=rfi )j =r-(2®}3 = 4r<y 2a c = J{4r/F +=2忑心孑=ll.Slm^ Q = ^48-12 解“)越度分析 、」=R& 时曲瞬时平*矢11 =0 * 叫=1二=人少=2 m/s ・<y# = —^- = r 壮=G>s • y/lr = 2V2r (i?=、迂丘他=2.828 in s (2)加速虺甘析j 二 Re :)2加定轴转动.以討由基点・则=°aBa3 - a A + a £A方向 t4t曲衲CM 以恒定的角連度血=2rad 居境拙口釋动「并借勁连朴曲驱动T 诗为r 的轮子在半栓为R 的圆弧擠中作无滑动的渡动.设OA=AB=R^2r=l^ 求图 N 所示麟 时点丹和点亡的連婕与加連厦oAQA.(a) (b)(c)丸小悬?加卜.戌向曲9向投影.存8-13 8-13-出旦为哎斜屏时曲柄与水平鶴阖康仙.的连村腼写曲柄皿 逵直.滑块B 左圆 形19内滑蚩b 韭时半栓6B4HJ 杆腼 刑成孔"低 UiCM=r ・AB - 2^3r . O {B = 2r t .K 在该解时・■: m s 的i 卩向和法向加辻.度#取=也 <?PS 30O = 4^r&G将听=旳亠(I ; = AT : +玄]+临亠咗4分别向抽刃T 轴广投巒.得al =aicos3G°+占右 cos3(F-aL sin 30fl - a ; m 30°□; = a\ sm d0° + 灯二 sm3O°*f7^ cos30* + iij cos30a 心命6二处知孕% 代人式(lh ⑵.解得口; (2任o —羽述)因此滑块冷的加遽度为晒=2r^0~ ■ <J B =T ' (-a c 一 V5%‘)8-14解\-^\iOA 匕也卫抽峑嗫和加速愷为fm = rc^0 i a A 二 r (y 0 ・ a A = ra 0 以点/为基点分析杆屈上点R 的速度与加遠度,如图 燈为乩图 g 所示.则戌JJ 的逮H.⑴在图2所不机构屮,曲柄CM 长为F •绕轴。

理论力学第7版第八章刚体的平面运动

理论力学第7版第八章刚体的平面运动
根据 va ve vr 做速度平行四边形
ve va cos r1 sin( ),
2
ve O2 A
sin( )sin cos
1
vr va sin r1 cos( )
ac
2 2 v r
si
n
(2 cos
2
)
1
2
r
方向:与 v e相23同。
aa ae ar aC
——点的加速度合成定理 a a an
[例2] 曲柄滑杆机构
已知: OA=l, =45o 时,,;
求:小车的速度与加速度.
解:动点:OA杆上 A点;
动系:固结在滑杆上;
绝对运动:圆周运动, 相对运动:直线运动,
牵连运动:平动;
va ve vr
大小 l ? ?
方向 √ √ √
ve va cos l cos45
2 l()
2
小车的速度: v ve
为牵连点。若二者不重合,动
系应扩大到参考体之外。此时
桥式吊车
,牵连点就不是动参考体上的
点,而是动系上的点。
动点: 物块A
相对运动: 直线
动系: 固结于小车 牵连运动: 平动
牵连点:A’
绝对运动: 曲线
8
绝对速度 :va ——绝对运动中,动点的速度 相对速度 :vr ——相对运动中,动点的速度
牵连速度 :ve ——牵连运动中,牵连点的速度
4
动点:AB杆上A点 动系:固结于凸轮O'上
定系:固结在地面上 绝对运动: 沿AB的直线运动 相对运动: 曲线(圆弧) 牵连运动: 直线平动
5
分析动点、动系改变,对运动分析的影响:
动点:A(在AB杆上) 动系:偏心轮 静系:地面

刚体的平面运动动力学课后答案

刚体的平面运动动力学课后答案

1页刚体的平面运动刚体的平面运动是刚体运动的一种特殊形式,可视为刚体的平移与转动的合成。

本章研究的主要内容是如何描述刚体的平面运动,以及如何计算刚体上点的速度和加速度。

一、 刚体的平移(平动) 刚体在运动过程中,如果其上任一直线始终保持与初始的方向平行,则称该刚体作平移或平动。

平移刚体上各点的速度相同,加速度相同,运动轨迹的形状也相同。

因此研究刚体的平移问题可简化成一个质点的运动问题来研究。

二、 刚体的定轴转动刚体在运动过程中,若其上(或刚体的延展体上)有一直线保持不动,且刚体绕此直线转动,则称该刚体作定轴转动。

(1)定轴转动刚体的运动方程: )(t f =ϕ(2)定轴转动刚体的角速度: )(t f ==ϕω (3)定轴转动刚体的角加速度: )(t f===ϕωα (4)定轴转动刚体上一点P 的速度和加速度用矢量表示 速度: r v ⨯=ω (7-1)加速度:v r a a a ⨯+⨯=+=ωαn t (7-2)其中:ωα,为定轴转动刚体的角速度和角加速度矢量,r点的矢径。

三、刚体的平面运动 刚体在运动过程中,若其上任一点到某一固定平面的距离保持不变,则称该刚体作平面运动。

研究刚体的平面运动可简化为研究一个平面图形在其所在平面内的运动。

1、 刚体平面运动的角速度和角加速度 在平面图形上任取两点A 、B ,过这两点的连线某一基准线的夹角为θ(如图7-2)。

当刚体运动时这个夹角将随时间变化)(t θ,刚体平面运动的角速度和角加速度分别定义为:θω =, (7-3) θωα == (7-4) 2、 刚体平面运动的运动方程平面运动刚体有三个自由度,其运动方程为:)(),(),(321t f t f y t f x A A ===ϕ (7-5)其中:A 点称为基点(如图7-3所示)。

因此刚体的平面运动可视为刚体随基点的平移和绕基点转动的合成,而刚体的平面平移(c ≡ϕ,其中c 为常量)和定轴转动(,,21c y c x A A ==其中21,c c 为常量)又是刚体平面运动的特殊情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档