第8章 稳恒磁场
§8-4 稳恒磁场的高斯定理与安培环路定理.
§8-4 稳恒磁场的高斯定理与安培环路定理
一. 稳恒磁场的高斯定理
由磁感应线的闭合性可知,对任意闭合曲面, 穿入的磁感应线条数与穿出的磁感应线条数相同, 因此,通过任何闭合曲面的磁通量为零。
静电场的高斯定理说明静电场为有源场,环 路定理又说明静电场无旋;稳恒磁场的环路 定理反映稳恒磁场有旋,高斯定理又反映稳 恒磁场无源。
安培环路定理
几点注意:
任意形状稳恒电流,安培环路定理都成立。
环流虽然仅与所围电流有关,但磁场却是所 有电流在空间产生磁场的叠加。
安培环路定理仅仅适用于恒定电流产生的恒 定磁场,恒定电流本身总是闭合的,因此安 培环路定理仅仅适用于闭合的载流导线。
L B (d l d l// )
B
L I d
r
dl
P
B
L
cos
90
dl
B
L
cos
dl//
0 LBr d 2 0 I r d
0 2 r
0I
结果一样!
长直电流的磁场
如果沿同一路径但改变
绕行方向积分:
B dl B cos( ) d l
的所有电流的代数和
安培环路定理
几点注意:
任意形状稳恒电流,安培环路定理都成立。
环流虽然仅与所围电流有关,但磁场却是所 有电流在空间产生磁场的叠加。
安培环路定理仅仅适用于恒定电流产生的恒 定磁场,恒定电流本身总是闭合的,因此安 培环路定理仅仅适用于闭合的载流导线。
B
稳恒磁场
二、电流的磁效应 二、电流的磁效应
I
S N •磁针和磁针 •在磁场 中运动的 电荷受到 的磁力 •磁铁与载流导 线的相互作用 S N S N
•电流的磁效应
I I
•载流导 线与载流 导线的相 互作用
三、磁场 三、磁场
1、概念
在运动电荷(或电流)周围空间存在的一种特殊形式的物质。
2、磁场的特性
•磁场对磁体、运动电荷或载流导 线有磁场力的作用; •载流导线在磁场中运动时,磁场 力要作功——磁场具有能量。
∧
Idl
r
R Idl’ θ
dB ⊥
dB dB//
P dB’
μ0 Idl sin(d l r ) μ0 Idl dB = = sin 90° 4π r2 4π r 2
分解 dB
dB ⊥ = dB cos θ
dB// = dB sin θ
电流对称
2
∫ dB
⊥
=0
μ0 I B = ∫ dB // = 4π
第八章 第八章
稳恒磁场 稳恒磁场
核心内容 基本概念:磁感应强度 磁矩 磁通量 磁场强度 基本规律:毕奥-萨伐尔定律 磁场高斯定理和安培 环路定理 安培定律 洛仑兹力 •静止电荷——静电场 •运动电荷——电场、磁场 •稳恒电流产生的磁场不随时间变化——稳恒磁场
一、电流 一、电流
8.1 电流 current
线圈所包围的面积
I
en
pm
其中 e n 与电流环绕方向符合右手螺旋法则
μ 0 IπR μ 0 pm B = (1)当x=0时,有 BO = = = 3 3 2( R 2 + x 2 ) 3 2 2R 2πR 2πR
2
μ0 I
稳恒磁场
磁场 磁感应强度 基本磁现象1、通有电流的导线周围,小磁针会发生偏转。
2、磁铁附近的载流导线及载流线圈会受到力的作用。
3、载流导线之间或载流线圈之间有相互作用力。
4、电子射线束在磁场中路径发生偏转。
一切磁现象的根源是电流。
任何物质的分子中都存在有圆形电流,称为分子电流.分子电流相当于一个基元磁铁。
当物体不显示磁性时,各分子电流作无规则的排列, 它们对外界所产生的磁效应互相抵消。
在外磁场的作用下,与分子电流相当的基元磁铁将趋向于沿外磁场方向取向,从而使整个物体对外显示磁性。
磁感应强度磁现象中,电流与电流之间,电流与磁铁之间以及磁铁与磁铁之间的相互作用是通过一种叫磁场的特殊物质来传递的。
磁场对外的重要表现:1、磁场对进入场中的运动电荷或载流导体有磁力的作用;2、载流导体在磁场中移动时,磁场的作用力将对载流导体作功,表明磁场具有能量。
引入磁感应强度矢量B 来描述磁场的强弱和方向。
试验线圈(线度必须小,其引入不影响原有磁场的性质)的面积为 S ∆,线圈中电流为0I ,则定义试验线圈的磁矩为 n S I P m ∆0= 磁矩是矢量,其方向与线圈的法线方向一致,n 表示沿法线方向的单位矢量,法线与电流流向成右螺旋系。
(附图)线圈受到磁场作用的力矩(称为磁力矩)使试验线圈转到一定的位置而稳定平衡。
此时,线圈所受的磁力矩为零,此时线圈正法线所指的方向,定义为线圈所在处的磁场方向。
如果转动试验线圈,只要线圈稍偏离平衡位置,线圈所受磁力矩就不为零。
当试验线圈从平衡位置转过090时,线圈所受磁力矩为最大。
在磁场中给定点处,比值m P M max 仅与试验线圈所在位置有关,即只与试验线圈所在处的磁场性质有关。
规定磁感应强度矢量B 大小为m P M B max =磁场中某点处磁感应强度的方向与该点处试验线圈在稳定平衡位置时的法线方向相同;磁感应强度的量值等于具有单位磁矩的试验线圈所受到的最大磁力矩。
单位:磁感应强度的国际单位为特斯拉,简称特。
机械工业出版社大学物理 第08章 稳恒磁场02-安培力、磁力矩
§8.6 磁介质对磁场的影响
能够对磁场有影响的物质称为磁介质。
一、磁导率
vv v B B0 B'
磁介质中的 总磁感强度
真空中的 磁感强度
介质磁化后的 附加磁感强度
实验表明: B r B0
相对磁导率
r
B B0
磁导率 r0
——表示磁介质磁化对磁场的影响
25
磁介质的分类
顺磁质 抗磁质 铁磁质
BIdl sin
因 dl rd
π
F BIr0 sin d
BI 2r
r
y
dF
rC
Idl
r
d
Bo
r
r
r
F BI 2r j BI AB j
B
I
Ax
17
例2 求如图不规则的平面载流导线
在均匀磁场中所受的力。
已知
r B
和
I。
y
dF
r B
r
解:
取一r 段电流r元
r
Idrl
dF Idl B
解 M NBISsin
得
π,
2
M Mmax
M NBIS 50 0.05 2 (0.2)2 N m
M 0.2N m
23
第八章 稳恒磁场
8.1 电流与电动势 8.2 磁场 磁感应强度 8.3 毕奥-萨伐尔定律 8.4 安培环路定理 8.5 磁场载流导体的作用 8.6 磁介质对磁场的影响 8.7 铁磁质
b
B
d vd+
+ +Fm +
+q
- - - - -
霍耳电压 UH
+
I UH
8-4 稳恒磁场的高斯定理与安培环路定理
B 0I 2r
由几何关系得:
B
o I d r
L
B r P dl
dl • cos rd
B • dl B cosdl Br d
L
L
L
2 0 0 2
I r d 0I
r
2
2
d
0
0I
上页 下页 返回 退出
如果沿同一路径但改变绕
行方向积分:
B • dl B cos( ) d l
上页 下页 返回 退出
三、安培环路定理的应用
应用安培环路定理的解题步骤: (1)分析磁场的对称性;
(分2)易过于场计点算选:择B适的当量的值路恒径定,,使B与得dlB的沿夹此角环处路处的积相
等,一般为900或00 ; (3)求出环路积分;
(4)用右手螺旋定则确定所选定的回路包围电流的 正负,最后由磁场的安培环路定理求出磁感应强
B
B
B
0 2
Ir R2
在圆柱形载流导线内部, 磁感应强度和离开轴线
的距离r成正比!
o
R
r
上页 下页 返回 退出
2.载流长直螺线管内的磁场
设螺线管(密绕)长度为l,共有N匝。
管内中间部分的磁场可以看 成是无限长螺线管内的磁场,因 此是均匀磁场。
管内磁感应线是一系列与轴 线平行的直线。
I
管外磁场很弱,可以忽略不计。
B d l Bdl cos 0
B dl B 2r 0I
当r>R时
B 0 I 2 r
I I
I R r
B
上页 下页 返回 退出
1.长直圆柱形载流导线内外的磁场
I
设圆柱电流呈轴对称分布, 导线可看作是无限长的,磁场对 圆柱形轴线具有对称性。
第08章稳恒磁场00-电流与电动 比奥萨伐尔定律
cos sin R
dBx 4π r
3
o
r
2 2
x
0 IRdl
r R x
2
2
0 IR 2 π R Bx dl 3 0 4πr
0 I R 2 3 2 r
0 I R Bx 3 2 2 (x2 R2)
B Bxi
18
B Bxi
讨论:
(1)若
I
o
R
2
0 nI L B 0 nI cos 2 1/ 2 2 2 2 L / 4 R
(2)无限长的螺线管
L R
则:
即:1 π, 2 0
B 0nI
24
π (3)半无限长螺线管 1 , 2 0 2
1 B 0 nI 2
(4)磁感应强度的小的分布
dB
I
r r0 / sin y r0 ct g 2 dy r0d / sin 0 I dB sin d
4 π r0
o r0
y
*
dB
z
Id y
1
r
P
x
C
14
B dB
C
D
0 I
4 π r0
2
1
sin d
B 的方向沿 z 轴的负方向。
I
(2 )
R B x 0 I 0 o B0 2R
I
(4) I R
o
(5)
0 I B0 2 R 2
R1
R2
R
o
( 3)
B0
0 I
4R
I
I
稳恒磁场
安培定律
一、安培力
安培力:电流元在磁场中受到的磁力. 安培力:电流元在磁场中受到的磁力. 一个自由电子受的洛仑兹力为: 一个自由电子受的洛仑兹力为
f 洛 = qv × B = −ev × B
电流元所受磁力: 电流元所受磁力
方向: 方向:×
v
dl
B
I
设截面积为S,单位体积电子数为 设截面积为 单位体积电子数为n 单位体积电子数为
1 2 m = NISn = NI πR n 2
方向:与 B 成600夹角. 夹角. 方向: (2)此时线圈所受力矩的大小为: )此时线圈所受力矩的大小为:
)60
0
B
3 2 πR M = mB sin60 = NIB 4 方向: m× B 方向: ×
0
n
即垂直于 B向上,从上往下俯视,线圈是逆时针转动。 向上,从上往下俯视,线圈是逆时针转动。
1T = 1N ⋅ S ⋅ m−1 ⋅ C−1
磁通量
一、磁力(感)线 磁力( 直线电流的磁力线
磁场的高斯定理
圆电流的磁力线
通电螺线管的磁力线
I
I
I
I
通量(通过一定面积的磁力线数目) 二、磁通量(通过一定面积的磁力线数目)
v v dΦ = B ⋅ dS
v v Φ = ∫s B ⋅ dS
单位
1Wb= 1T ⋅ m
I
该式对任意形状的线圈都适用. 该式对任意形状的线圈都适用.
例1如图,求圆心O点的 B . 如图,求圆心 点的 I O
• × R
B=
µ0 I
4R
I
O• •
R
B=
µ0 I
8R
R
• •O
大学物理第8章 磁场题库2(含答案)
第八章 磁场 填空题 (简单)1、将通有电流为I 的无限长直导线折成1/4圆环形状,已知半圆环的半径为R ,则圆心O 点的磁感应强度大小为08I Rμ 。
2、磁场的高斯定理表明磁场是 无源场 。
3、只要有运动电荷,其周围就有 磁场 产生;4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。
电 流I 1产生的磁场作用在I 2回路上的合力F 的大小为01201222()I I L I I La ab μμππ-+,F 的方向 水平向左 。
(综合)5、有一圆形线圈,通有电流I ,放在均匀磁场B 中,线圈平面与B 垂直,则线圈上P 点将受到 安培 力的作用,其方向为 指向圆心 ,线圈所受合力大小为 0 。
(综合)6、∑⎰==⋅n i i lI l d B 00μ是 磁场中的安培环路定理 ,它所反映的物理意义是 在真空的稳恒磁场中,磁感强度B 沿任一闭合路径的积分等于0μ乘以该闭合路径所包围的各电流的代数和。
7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 0 。
8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。
9、磁场最基本的性质是对 运动电荷、载流导线 有力的作用。
10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α。
求通过该半球面的磁通量为2cos B R πα-。
(综合) 12、一电荷以速度v 运动,它既 产生 电场,又 产生 磁场。
(填“产生”或“不产生”)13、一电荷为+q ,质量为m ,初速度为0υ的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 匀速圆周 运动,其回旋半径R=0m Bqυ,回旋周期T=2mBq π 。
14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O4题图 5题图的磁感应强度为___0__________; 图b 圆心O 的磁感应强度为04IRμ。
大学物理第八章恒定电流的磁场
Fe 2.磁性: 磁铁能吸引含有 Co 物质的性质。
Ni
3.磁极:磁铁上磁性最强的两端,分为
N S
北同 极,指向 方,
南异
斥 性相 。
吸
三.磁场
1.概念: 运动qυ电荷或电I流周围存在的物质,称为磁场。
2.对外表现
① qυ或 I 在磁场中受到力的作用。
②载流导线在磁场中移动,磁场力作功。
力的表现 功的表现
极。
然而,磁和电有很多相似之处。例如,同种电荷
互相推斥,异种电荷互相吸引;同名磁极也互相推
斥,异名磁极也互相吸引。用摩擦的方法能使物体带
上电;如果用磁铁的一极在一根钢棒上沿同一方向摩
擦几次,也能使钢棒磁化。但是,为什么正、负电荷 能够单独存在,而单个磁极却不能单独存在呢?多年 来,人们百思而不得其解。
dN B
dS
一些典型磁场的磁感线:
2.性质
①磁感线是无始无终的闭合曲线。
B
A
②任二条磁感线不相交。
B
③磁感线与电流是套合的,它们之间可用右手螺旋法 则来确定。
B
I
I
B
四.磁通量
1.定义:通过一给定曲面的磁感线的条数,称为通过该 曲面的磁通量。
电场强度通量:e S E dS
通过面元 dS的磁感线数: dN BdS BdS cos
3.电荷之间的磁相互作用与库仑相互作用的不同 ①电荷无论是静止还是运动的,它们之间都存在库仑 作用; ②只有运动的电荷之间才有磁相互作用。
四.磁感强度
电场 E 磁场 B
1.实验 在垂于电流的平面内放若干枚小磁针,发现:
①小磁针距电流远近不同,
N
受磁力大小不同。
②距电流等远处,小磁针受
电动力学第8讲23稳恒磁场的矢势
J(x
')
1 R
x '
1 R
1 x 'x ' : 2!
1 R
... dV
'
山东大学物理学院 宗福建
11
矢势的多级展开
❖ 展开式的第一项为
A(0) (x) 0 J(x ')dV ' 0
4 R
❖ 表示不存在磁单极子!
山东大学物理学院 宗福建
12
矢势的多级展开
❖ 展开式的第二项为
A(1)
静电场 E 0
E ( f p ) /0
静磁场 H 0
H m / 0
静电场
m 0 M
D
0
E
P
E
静磁场
p P
B
0 H
0
M
H m
2 ( f p ) /0 2m m / 0
磁标势的边值关系
n n
(H2 H1) (B2 B1)
0
α
f H2t H1t
n (H2 H1) α n (B2 B1) 0
n
(
A2
A1 )
0
n
(
1
2
A2
1
1
A1
)
α
❖ 磁场边值关系可以化为矢势A的边值关系。对于非
铁磁介质,矢势的边值关系为
A2 A1
n
(
1
2
A2
1
1
A1 )
α
山东大学物理学院 宗福建
9
矢势的多级展开
❖ 给定电流分布在空间中激发的磁场矢势为
A(x)
H
m
/
0
分方程
H 0
第八章 稳恒磁场03-安培力、磁力矩
o
P
L
x
Fy = ∫ dFy = BI ∫ dx = BIL
0
L
r r r F = Fy j = BIL j
例3 长为 L 载有电流 I 2 的导线与电流为 I 1 的长直导线 放在同 一平面内(如图), ),求 的载流导线上的磁场力。 一平面内(如图),求作用在长为 L 的载流导线上的磁场力。 解:
F = ∫ dFy = ∫ dF sin θ
= ∫ BIdl sin θ
因 dl = rdθ
r dF
r Idl
y
C
r B
Irθdθ源自F = BIr ∫ sin θ d θ
0
π
B
o
A
x
= BI 2 r
r r r F = BI 2 r j = BI AB j
例2 求如图不规则的平面载流导线 在均匀磁场中所受的力。 在均匀磁场中所受的力。
2
dθ
P
z
r r r r r 2 2 M = m × B = I π R Bk × i = I π R Bj
选讲
三、磁电式电流计原理
实验测定: 成正比。 实验测定:游丝的反抗力矩与线圈转过的角度 θ 成正比。 测定
N
S 磁铁
M ′ = aθ
BNIS = a θ
a I= θ = Kθ NBS
选讲
四、霍耳效应
r 已知 B 和 I 。
y
v dF θ
I
r B
r Idl
r 解: 取一段电流元 Idl
r r r dF = Idl × B
dF = IBdl
dFx = dF sin θ = BIdl sin θ = BIdy
第章稳恒磁场习题包含答案
练习八 磁感应强度 毕奥—萨伐尔定律(黄色阴影表示答案)一、选择题如图所示,边长为l 的正方形线圈中通有电流I: AlI πμ220.(C)lI πμ02(D) 以上均不对.1沿对角线AC 方向经A 点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 .(B) B = 0. 因为虽然B 1 ? 0, B 2 ? 0, B 1+B 2 = 0, B 3(C) B ? 0. 因为虽然B 3 = 0, 但 B 1+B 2 ? 0(D) B ? 0. 因为虽然B 1+B 2 = 0, 但 B 3 ? 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I 的磁感强度为:B(D) B =3?0I /(3?a ) . . 如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:C(A)R Iπμ20. (B) I 0μ.(D))11(40πμ+RI .二、填空题 如图所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,?aob =180?.则圆心O 点处的磁感强度的大小B = .0图图图图图练习九 毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为?,如图所示. 则通过半球面S 的磁通量为:(A) ?r 2B . (B) 2?r 2B . (C) ??r 2B sin ?. (D) ??r 2B cos ?.如图,载流圆线圈(半径为R )与正方形线圈(边长为a )通有相同电流I ,若两线圈中心O 1与O 2R : a 为(A) 1:1.(B) π2:1. π2 三、计算题1.在无限长直载流导线的右侧有面积为S 1和S2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. (此题作为悬赏题)练习十 安培环路定理图图 图图一、选择题2. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为B 1,圆柱体外(r >R )的磁感强度为B 2,则有:(A) B 1、B 2均与r 成正比. (B) B 1、B 2均与r 成反比.(C) B 1与r 成正比, B 2与r 成反比. (D) B 1与r 成反比, B 2与r 成正比.在图(a )和(b )中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 2和I 2,其分布相同,且均在真空中,但在图(b )中,L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) ⎰⋅1d L l B =⎰⋅2d Ll B , 21P P B B =.(B) ⎰⋅d L l B ?⎰⋅ d L l B , 21P P B B =.(D) ⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) ?0I . (B) ?0I/3. 0I /4. 2?0I /3 .如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,(B) 0 d =⋅⎰Ll B ,且环路上任意点B =0.(C) 0 d ≠⋅⎰Ll B ,且环路上任意点B ?0.(D) 0 d ≠⋅⎰Ll B ,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路对于环路a , =⋅⎰aL l B d ;图图P 1 (aI 2P 2 (b图对于环路b , =⋅⎰bL l B d ;对于环路c , =⋅⎰cL l B d . ?0I , 0, 2?0I .练习十一 安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量F m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D图(AB OBO(DB O(CB O(B)B O(E图边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . l I B πμ0222=l π1l I π02.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA ?轴转动,导线通电转过? 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即? 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D) 将磁场B 减少1/4,线框中电流强度减少1/4.图图l (d (。
大学物理-电子教案第8章 稳恒磁场
磁场和电场一样具有能量、动量和质量,是一种特殊的物质,叫场物质。
P是矢量,电流I 的方向m穿过磁场中某一曲面的磁力线总数,称为穿过该曲面的磁通量,用符号的磁通量为 d d m m S SB S ΦΦ==⋅⎰⎰ Wb ),1Wb =12m T ⋅。
SB dS ⋅=⎰在给定点P 所产生的磁感应强度称为真空的磁导率1-⋅m H )任意形状的载流导线在给定点P 产生的磁场的方向相同,则得LB dl ⋅⎰cos B dl θ=⎰0=⎰ 2002I d πμϕπ=⎰μ= 或电流方向反过来),则 ⎰⋅L l d B=-I 0μ0=l d0L B dl μ⋅=∑⎰的电流方向与回路L 的绕行方向符合右螺旋法则时,,则为0, 是所有电流产生.),sin(B l Id BIdl dF =B l Id F d ⨯=F =⎰F d =⎰⨯B l Id 真空中两条无限长的载流平行导线单位长度间相互作用力 a I I dl dF πμ2210=线圈磁矩的方向n与磁场B的方向成ϕ角(线圈平面与磁场的方向成θ角) 1F =θsin 1BIl 导线da 受力 1F '=)sin(1θπ-BIl = 2F =2BIl 导线cd 受力 2F '=2BIl载流导线电流保持不变,磁力所做的功等于电流强度乘以磁通量的增量.ΔP在外磁场作用下分子的附加磁矩mP的电子的进动轨道磁矩为m,e。
电子进动的方向是:0d (Lμ⋅=∑⎰B l 对于磁场,引入磁场强度矢量(辅助矢量),⎰(B μ即得有磁介质时的安培环路定理i LH dl I ⋅=∑⎰- H曲线与M - H曲线相似,可见B与H不成线性关系,即铁磁质的磁导率μ不再是常数、而是与H有关。
磁滞现象与磁滞回线时、磁介质反复磁化,分子振动加剧、温度升高,产生H的电流提供的热损曲线所围的面积等于反复磁化的一个周期中单位体积的。
大学物理第8章恒定磁场总结及练习题
第8章 恒定磁场一、基本要求掌握磁感强度矢量的概念;理解毕奥-萨伐尔定律、磁场的高斯定理、安培环路定理,能计算一些简单问题的磁感强度;理解洛伦兹力公式,能分析点电荷在均匀磁场中的受力和运动;理解安培定律,能计算简单几何形状载流导体在均匀磁场中所受的力(或力矩).了解介质的磁化现象及其微观解释,了解各向同性介质中磁场强度和磁感强度的关系与区别.二、基本内容1.基本概念运动电荷(电流)产生磁场;描述磁场的基本物理量:磁感强度,磁通量;磁场对电流的安培力、磁场对运动电荷的洛伦兹力.2.毕奥-萨伐尔定律20d π4d re l I B r⨯=μ ,它是求解磁场的基本规律,从该定律可以直接得到在直电流的延长线和反向延长线上各点的磁感应强度为零.从电流元的磁场出发,得到计算线电流产生磁场的方法:⎰⎰⨯==)(20)(d π4d L rL r e l I B Bμ 应用上式在教材中导出了一些电流产生磁场的计算公式,包括:一段直电流在空间任意一点的磁场,无限长载流直导线在空间任意一点的磁场,圆电流在圆心处的磁场,一段载流圆弧在圆心处的磁场,无限长螺线管内部和两端磁感强度.这些计算公式在求解问题时可以直接使用.3.磁场的叠加原理∑==+++=N i i B B B B B 1n 21该原理表明多个电流在空间某点产生的磁场,等于各电流单独存在时在该点处产生的磁场的矢量和.将磁场的计算公式和叠加原理结合使用,可以求解多个电流在空间某点产生的磁场.在计算中首先应该将复杂的电流分成计算公式已知的电流段,然后分段计算,最后求出矢量和.4.磁场中的高斯定理0d =⋅⎰SS B.该定理表明:磁场是无源场,磁感线是无头无尾的闭合曲线.应用该定理求解均匀磁场中非闭合曲面的通量时,可以作平面,使平面和曲面形成闭合曲面,由于闭合曲面的通量为零,即曲面的通量等于平面通量的负值,从而达到以平代曲的目的.5.安培环路定理⎰∑==⋅LN i i I μl B 10d该定理表明:磁场是有旋场,磁场是非保守场.应用该定理时,首先应该注意穿过以L 为边界的任意曲面的电流的正负;其次应该知道环流为零,环路上各点的磁感强度不一定为零.在应用定理求解具有轴对称电流分布的磁场和均匀磁场的磁感应强度时,要根据电流的对称性和磁场的性质选择合适的环路L .6.安培定律B l I F⨯=d d该定律是计算磁场对电流的作用的基本定律.一段载流导线在磁场中受到的安培力为⎰⎰⨯==)()(d d L L B l I F F]应用上式时,应该注意电流上各点的磁场是否均匀及磁场力的分布特点.如果电流上各点的磁场相等,并且是一段直电流,可以先求出导线所在处的磁场,然后用公式ϕsin IBL f =求出结果;如果电流上各点所受的磁场力的大小不同但方向相同,可以先在电流上取一小线段l d ,求出l d 段电流所受的磁力,然后通过标量积分得结果.7.洛伦兹力B q F⨯=v洛伦兹力方向始终与电荷运动方向垂直,对运动电荷不做功.质量为m ,电量为q 的粒子以速率v 垂直进入磁场B 时,粒子作匀速率圆周运动:运动半径:qB m R v =,运动周期:qBmT π2=.三、例题详解8-1、一半径cm 0.1=R 的无限长1/4圆柱形金属薄片,沿轴向通有电流A 0.10=I 的电流,设电流在金属片上均匀分布,试求圆柱轴线上任意一点P 的磁感强度.解:取l d 段,其中电流为 πd 2πd 2π21d d θI R θIR R l I I ===在P 点θμθμμd d 222d d 2000RII R R I B π=π⋅π=π=选坐标如图RI B 20x d sin d π-=θθμ,R I B 20y d cos d π-=θθμ RIR I B 202/π020x d sin π-=π-=⎰μθθμ R I R I B 202/π020y d cos π-=π-=⎰μθθμ【T 108.12)(4202/12y 2x -⨯=π=+=RIB B B μ/方向1/tan x y ==B B α,︒=225α,α为B与x 轴正向的夹角.8-2、电流均匀地流过无限大平面导体薄板,面电流密度为j ,设板的厚度可以忽略不计,试用毕奥-萨伐尔定律求板外任意一点的磁感强度.解:如图,从上向下看,在垂直于j 的l d 长度内流过电流为I d ,I d 在P 点产生的磁场: r)I/(μB π2d d 0=,l j I d d =)2/(d d 0r l j B π=μ`由对称性的分析可知0d //=⎰B θμθcos π2d cos d d 0rlj B B ==⊥∵22x l r +=;22/cos x l x +=θ ∴j xl l jxB B 022021d π2d μμ=+==⎰⎰+∞∞-⊥8-3、将通有电流A 0.5=I 的无限长导线折成如图形状,已知半圆环的半径为m 10.0=R .求圆心O 点的磁感强度.(H/m 10π470-⨯=μ)解:O 处总cd bc ab B B B B ++=,方向垂直指向纸里 而)sin (sin 4120ab ββμ-π=aIB∵02=β,π-=211β,R a =∴)4/(0ab R I B π=μ 又)4/(0bc R I B μ=因O 在cd 延长线上0cd =B ,所以 )4/()4/(00cd bc ab R I R I B B B B μμ+π=++=8-4、如图所示为两条穿过y 轴且垂直于x-y 平面的平行长直导线的正视图,两条导线皆通有电流I ,但方向相反,它们到x 轴的距离皆为a .(1)推导出x 轴上P 点处的磁感强度)(x B的表达式.(2)求P 点在x 轴上何处时,该点的B 取得最大值.解:(1)利用安培环路定理可求得1导线在P 点产生的磁感强度的大小为: 2/122001)(122x a Ir I B +⋅π=π=μμ 2导线在P 点产生的磁感强度的大小为:):2/122002)(122x a IrIB +⋅π=π=μμ …1B 、2B的方向如图所示.P 点总磁感强度θθcos cos 212x 1x x B B B B B +=+= 02y 1y y =+=B B B)()(220x a Ia x B +π=μ,i x a Ia x B )()(220+π=μ (2)当0d )(d =xx B ,0d )(d 22≤x x B 时,)(x B 最大.由此可得:0=x 处,)(x B 有最大值.8-5、已知空间各处的磁感强度B都沿x 轴正方向,而且磁场是均匀的,T 1=B .求下列三种情形中,穿过一面积为2m 2的平面的磁通量.(1)平面与yz 平面平行;~(2)平面与xz 平面平行;(3)平面与y 轴平行,又与x 轴成︒45角.解:(1)平面法线与x 轴平行,有Wb 2±==⋅S Bm Φ(2)平面与xz 坐标面平行,则其法线与B垂直,有0==⋅S B m Φ(3)与x 轴夹角为︒45的平面,其法线与B的夹角为︒45或︒135故有Wb 41.145cos =︒==⋅BS S B m Φ或Wb 41.1135cos -=︒==⋅BS S Bm Φ8-6、一无限长圆柱形铜导体(磁导率0μ),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1m ,宽为2R ),位置如右图中阴影部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得: )(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通1Φ为 π=π===⎰⎰⎰⋅4d 2d d 00201I r r R I S B S B R μμΦ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通2Φ为%2ln 2d 2d 0202π=π==⎰⎰⋅Ir rIS B RRμμΦ穿过整个矩形平面的磁通量2ln 240021π+π=+=IIμμΦΦΦ.·8-7、如图所示,一个带有正电荷q 的粒子,以速度v平行于一均匀带电的长直导线运动,该导线的线电荷密度为λ,并载有传导电流I .试问粒子要以多大的速度运动,才能使其保持在一条与导线距离为r 的平行直线上解:依据无限长带电和载流导线的电场和磁场知: r r E 0π2)(ελ=(方向沿径向向外) rIr B π2)(0μ=(方向垂直纸面向里)运动电荷受力F (大小)为:v rIq r q F π2π200μελ-=此力方向为沿径向(或向里,或向外)为使粒子继续沿着原方向平行导线运动,径向力应为零, 0π2π200=-=v rIq r q F μελ则有I 00μελ=v .8-8、如图所示,载有电流1I 和2I 的长直导线ab 和cd 相互平行,相距为r 3,今有载有电流3I 的导线r MN =,水平放置,且其两端MN 分别与1I 、2I 的距离都是r ,ab 、cd 和MN 共面,求导线MN 所受的磁力大小和方向.解:载流导线MN 上任一点处的磁感强度大小为:【)2(π2)(π22010x r I x r I B --+=μμMN 上电流元x I d 3所受磁力:x x r I x r I I x B I F d ])2(π2)(π2[d d 201033--+==μμ )(2ln 2]2ln 2ln [22ln 2ln 2d 22d 2d ])2(2)(2[21302130213002300130020103I I II I Ir r I r r I I x x r I I x x r I I xx r I x r I I F r rr-π=-π=⎥⎦⎤⎢⎣⎡+π=⎥⎦⎤⎢⎣⎡-π-+π=-π-+π=⎰⎰⎰μμμμμμμ 若12I I >,则F 的方向向下,12I I <,则F的方向向上.8-9、半径为R 的半圆线圈ACD 通有电流2I ,置于电流为1I 的无限长直线电流的磁场中,直线电流1I 恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流1I 的磁力.…I 1I 22I 1解:长直导线在周围空间产生的磁场分布为)π2/(10r I B μ=取o-xy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为:θμsin π210R I B =,方向垂直纸面向里,…式中θ为场点至圆心的联线与y 轴的夹角.半圆线圈上段线l d 电流所受的力为:θθμd sin 2d d d 21022R R I I l B I B l I F π==⨯=θcos d d y F F =,根据对称性知:0d y y ==⎰F F θsin d d x F F =,2ππ2d 210210π0x x I I I I F F μμ===⎰∴半圆线圈受1I 的磁力的大小为: 2210I I F μ=,方向:垂直1I 向右.8-10、一平面线圈由半径为0.2m 的1/4圆弧和相互垂直的二直线组成,通以电流2A ,把它放在磁感强度为0.5T 的均匀磁场中,求:(1)线圈平面与磁场垂直时(如图),圆弧AC 段所受的磁力. (2)线圈平面与磁场成60°角时,线圈所受的磁力矩.解:(1)圆弧AC 所受的磁力:在均匀磁场中AC 通电圆弧所受的磁力与通有相同电流的AC 直线所受的磁力相等,故有N 283.02===RB I F F AC AC方向:与AC 直线垂直,与OC 夹角45°,如图.(2)磁力矩:线圈的磁矩为n n IS p2m 102-⨯π==—本小问中设线圈平面与B 成60°角,则m p与B 成30°角,有力矩 m N 1057.130sin 2m m ⋅⨯=︒=⨯=-B p B p M方向:力矩M 将驱使线圈法线转向与B平行.8-11、一通有电流1I (方向如图)的长直导线,旁边有一个与它共面通有电流2I (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23(如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为 ])(π2π2[10102a x I xI aI F +-=μμ~方向向右,从a x =到a x 2=磁场所作的功为;BI I 2)3ln 2ln 2(π2d )11(π22102210-=+-=⎰I aI x a x x I aI W aaμμ8-12、横截面为矩形的环形螺线管,圆环内外半径分别为1R 和2R ,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1)芯子中的B 值和芯子截面的磁通量. (2)在1R r <和2R r >处的B 值.解:(1)在环内作半径为r 的圆形回路,由安培环路定理得|NI r B μ=π⋅2,)2/(r NI B π=μ在r 处取微小截面r b S d d =,通过此小截面的磁通量 r b rNIS B d 2d d π==μΦ穿过截面的磁通量 12ln2d 2d R R NIbr b rNIS B Sπ=π==⎰μμΦ (2)同样在环外(1R r <和2R r >)作圆形回路,由于0=∑i I02=π⋅r B ∴0=B!四、习题精选8-1、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A )I aB π=02μ. (B )I a B 2π=02μ.(C )B =0. (D )I aB π=0μ.[ ]{8-2、无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A )RIπ20μ. (B )RI40μ. (C )0.(D ))11(20π-R Iμ. (E ))11(40π+R I μ.[ ]8-3、一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管bIaP单位长度上的匝数相等.设R =2r ,则两螺线管中的磁感强度大小R B 和r B 应满足:(A )r R 2B B =.(B )r R B B =. (C )r R 2B B =.(D )r R 4B B =.}[ ]8-4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A )方向垂直环形分路所在平面且指向纸内. (B )方向垂直环形分路所在平面且指向纸外. (C )方向在环形分路所在平面,且指向b . (D )方向在环形分路所在平面内,且指向a . (E )为零.、[ ]8-5、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为 (A )RI π40μ. (B )RI π20μ. (C )0. (D )RI 40μ.[ ]8-6、无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]8-7、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为θ,则通过半球面S 的磁通量(取弯面向外为正)为(A )B r 2π. (B )B r 22π.@(C )θsin π2B r -. (D )θcos π2B r -.[ ]8-9、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A )回路L 内的I ∑不变,L 上各点的B不变.(B )回路L 内的I ∑不变,L 上各点的B改变.(C )回路L 内的I ∑改变,L 上各点的B不变.(D )回路L 内的I ∑改变,L 上各点的B改变. [ ]8-10、一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则(A )两粒子的电荷必然同号. (B )粒子的电荷可以同号也可以异号. (C )两粒子的动量大小必然不同. (D )两粒子的运动周期必然不同.[ ]!8-11、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A )Oa . (B )Ob . (C )Oc . (D )Od .[ ]8-12、一运动电荷q ,质量为m ,进入均匀磁场中,(A )其动能改变,动量不变. (B )其动能和动量都改变. (C )其动能不变,动量改变. (D )其动能、动量都不变.[ ]8-13、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设A R ,B R 分别为A 电子与B 电子的轨道半径;A T ,B T 分别为它们各自的周期.则 |(A )2:B A =R R ,2:B A =T T . (B )2/1:B A =R R ,1:B A =T T .(C )1:B A =R R ,2/1:B A =T T .(D )2:B A =R R ,1:B A =T T .[ ]8-14、长直电流2I 与圆形电流1I 共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将(A )绕2I 旋转.(B )向左运动.(C )向右运动.(D )向上运动.(E )不动.[ ]8-15、在匀强磁场中,有两个平面线圈,其面积212A A =,通有电流212I I =,它们所受的最大磁力矩之比21/M M 等于~OI 1>(A )1. (B )2. (C )4. (D )1/4.[ ]8-16、两个同心圆线圈,大圆半径为R ,通有电流1I ;小圆半径为r ,通有电流2I ,方向如图.若R r <<(大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A )Rr I I 22210πμ. (B )Rr I I 22210μ. (C )rR I I 22210πμ. (D )0.[ ]8-17、如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是(A )ab 边转入纸内,cd 边转出纸外. (B )ab 边转出纸外,cd 边转入纸内. (C )ad 边转入纸内,bc 边转出纸外. (D )ad 边转出纸外,bc 边转入纸内.[ ]8-18、关于稳恒电流磁场的磁场强度H,下列几种说法中哪个是正确的(A )H仅与传导电流有关.)(B )若闭合曲线内没有包围传导电流,则曲线上各点的H必为零.(C )若闭合曲线上各点H均为零,则该曲线所包围传导电流的代数和为零.(D )以闭合曲线L为边缘的任意曲面的H通量均相等. [ ]8-19、磁介质有三种,用相对磁导率r μ表征它们各自的特性时: (A )顺磁质0r >μ,抗磁质0r <μ,铁磁质1r >>μ. (B )顺磁质1r >μ,抗磁质1r =μ,铁磁质1r >>μ. (C )顺磁质1r >μ,抗磁质1r <μ,铁磁质1r >>μ.`(D )顺磁质0r <μ,抗磁质1r <μ,铁磁质0r >μ.[ ]8-20、顺磁物质的磁导率:(A )比真空磁导率略小. (B )比真空磁导率略大. (C )远小于真空磁导率. (D )远大于真空磁导率.[ ]8-21、电流元l I d 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向______________方向.8-22、半径为R 的细导线环中的电流为I ,那么离环上所有点的距离皆等于r 的一点处的磁感强度大小为=B ____________.(R r ≥)8-23、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量=Φ______________.8-24、一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10A 的电流时,它的横截面上的磁通量为___________.(真空磁导率m/A T 10π470⋅⨯=-μ),8-25、已知三种载流导线的磁感线的方向如图,则相应的电流流向在 图(1)中为由________向________; 图(2)中为由________向________; 图(3)中为由________向________.8-26、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅Ll Bd 等于:____________________________________(对环路a ).…____________________________________(对环路b ). ____________________________________(对环路c ).8-27、一长直螺线管是由直径mm 2.0=d 的漆包线密绕而成.当它通以A 5.0=I 的电流时,其内部的磁感强度=B ______________.(忽略绝缘层厚度)(270N/A 10π4-⨯=μ)8-28、有一长直金属圆筒,沿长度方向有横截面上均匀分布的稳恒电流I 流通.筒内空腔各处的磁感强度为________________,筒外空间中离轴线r 处的磁感强度为_____________.<ef图(1)图(2)图(3)y xzO8-29、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______________,运动轨迹半径之比是_______________.~8-30、电子在磁感强度为B的均匀磁场中沿半径为R 的圆周运动,电子运动所形成的等效圆电流强度=I _____________;等效圆电流的磁矩=m p __________.已知电子电荷为e ,电子的质量为e m .8-31、有半导体通以电流I ,放在均匀磁场B 中,其上下表面积累电荷如图所示.试判断它们各是什么类型的半导体是_______型,_______型8-32、电子以速率m/s 105=v 与磁力线成交角︒=30θ飞入匀强磁场中,磁场的磁感强度T 2.0=B ,那么作用在电子上的洛伦兹力=F _____________________.(基本电荷C 106.119-⨯=e )?8-33、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为____________,方向__________.8-34、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为__________,方向为____________.把线圈绕OO' 轴转过角度____________时,磁力矩恰为零.8-35、在磁场中某点放一很小的试验线圈.若线圈的面积增大一倍,且其中电流也增大一倍,该线圈所受的最大磁力矩将是原来的______________倍.8-36、有一流过电流A 10=I 的圆线圈,放在磁感强度等于0.015T 的匀强磁场中,处于平衡位置.线圈直径cm 12=d .使线圈以它的直径为轴转过角2/π=α时,外力所必需作的功=W _______,如果转角π2=α,必需作的功=W ________.!IB8-37、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为120°的两段,并置于均匀磁场B 中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁力的大小为_____________.8-38、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为___________,方向__________.8-39、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为μ的均匀磁介质.介质中离中心轴距离为r 的某点处的磁场强度的大小H =_____________,磁感强度的大小B =__________.!8-40、一个单位长度上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r μ的磁介质,则管内中部附近磁感强度B =______________,磁场强度H =_______________.8-41、如图所示,半径为R ,线电荷密度为0λ(00>λ)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω转动,求轴线上任一点的B的大小及其方向.;8-42、在一半径cm 0.1=R 的无限长半圆筒形金属薄片中,沿长度方向有横截面上均匀分布的电流A 0.5=I 通过.试求圆柱轴线任一点的磁感强度.(270N/A 10π4-⨯=μ)8-43、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b 的任意点P 的磁感强度.、a bI120°BO IaI dy ORωO bxaPδ8-44、如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.】8-45、一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.'8-46、半径为R 的均匀环形导线在b 、c 两点处分别与两根互相垂直的载流导线相连接,已知环与二导线共面,如图所示.若直导线中的电流强度为I ,求:环心O 处磁感强度的大小和方向.\8-47、已知真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.)8-48、如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.?8-49、已知载流圆线圈中心处的磁感强度为B 0,此圆线圈的磁矩与一边长为a 通过电流为I 的正方形线圈的磁矩之比为2∶1,求载流圆线圈的半径.8-50、已知均匀磁场,其磁感强度B=2.0Wb ⋅m -2,方向沿x 轴正向,如图所示.试求:(1)通过图中abOc 面的磁通量; (2)通过图中bedO 面的磁通量;·(3)通过图中acde 面的磁通量.8-51、一根很长的圆柱形铜导线均匀载有10A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.!(真空的磁导率=4×10-7T ·m/A ,铜的相对磁导率r≈1)8-52、如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为.该筒以角速度绕其轴线匀速旋转.试求圆筒内部的磁感强度.:8-53、在B=0.1T 的均匀磁场中,有一个速度大小为v=104m/s 的电子沿垂直于B的方向通过某点,求电子的轨道半径和旋转频率.(基本电荷e=1.60×1019C ,电子质量m e =9.11×1031kg )*x y za b cOe d B30 cm30 cm 40 cm 50 cmSRωσ8-54、两长直平行导线,每单位长度的质量为m=0.01kg/m ,分别用l=0.04m 长的轻绳,悬挂于天花板上,如截面图所示.当导线通以等值反向的电流时,已知两悬线张开的角度为2=10°,求电流I .(tg5°=0.087,0=4×10-7N ⋅A -2)-8-55、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B 中,求整个导线所受的安培力(R 为已知).?8-56、如图所示线框,铜线横截面积S=2.0mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度=8.9×103kg/m 3,当铜线中的电流I=10A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角=15°.求磁感强度B 的大小.~8-57、已知半径之比为2∶1的两载流圆线圈各自在其中心处产生的磁感强度相等,求当两线圈平行放在均匀外场中时,两圆线圈所受力矩大小之比.8-1 单位时间里通过导体任一横截面的电量叫做 。
大学物理第8章 磁场题库2(含答案)
10题图第八章 磁场 填空题 (简单)1、将通有电流为I 的无限长直导线折成1/4圆环形状,已知半圆环的半径为R ,则圆心O 点的磁感应强度大小为08IRμ 。
2、磁场的高斯定理表明磁场是 无源场 。
3、只要有运动电荷,其周围就有 磁场 产生;4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。
电 流I 1产生的磁场作用在I 2回路上的合力F 的大小为01201222()I I L I I La ab μμππ-+,F 的方向 水平向左 。
(综合)5、有一圆形线圈,通有电流I ,放在均匀磁场B 中,线圈平面与B 垂直,则线圈上P 点将受到 安培 力的作用,其方向为 指向圆心 ,线圈所受合力大小为 0 。
(综合)6、∑⎰==⋅n i i lI l d B 00μ是 磁场中的安培环路定理 ,它所反映的物理意义是 在真空的稳恒磁场中,磁感强度B 沿任一闭合路径的积分等于0μ乘以该闭合路径所包围的各电流的代数和。
7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 0 。
8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。
9、磁场最基本的性质是对 运动电荷、载流导线 有力的作用。
10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α。
求通过该半球面的磁通量为2cos B R πα-。
(综合) 12、一电荷以速度v 运动,它既 产生 电场,又 产生 磁场。
(填“产生”或4题图5题图“不产生”)13、一电荷为+q ,质量为m ,初速度为0υ的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 匀速圆周 运动,其回旋半径R=0m Bqυ,回旋周期T=2mBq π 。
14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O 的磁感应强度为___0__________; 图b 圆心O 的磁感应强度为04IRμ。
大学物理稳恒磁场教案
课时:2课时教学目标:1. 理解稳恒磁场的基本概念,包括磁感应强度、磁场中的高斯定理、毕奥-萨伐尔定律等。
2. 掌握毕奥-萨伐尔定律的应用,能够计算载流导线产生的磁场。
3. 理解安培环路定理,并能够运用其解决实际问题。
4. 了解磁矩、磁力矩、洛伦兹力等概念,并掌握其应用。
教学重点:1. 稳恒磁场的基本概念和公式。
2. 毕奥-萨伐尔定律的应用。
3. 安培环路定理的推导和应用。
教学难点:1. 毕奥-萨伐尔定律公式的推导和应用。
2. 安培环路定理的推导和应用。
教学过程:第一课时一、导入1. 回顾静电场的基本概念,引出稳恒磁场。
2. 介绍稳恒磁场的基本概念,如磁感应强度、磁场中的高斯定理等。
二、新课讲授1. 磁感应强度:- 定义磁感应强度,讲解其大小和方向。
- 举例说明磁感应强度在生活中的应用。
2. 磁场中的高斯定理:- 介绍高斯定理的概念,讲解其数学表达式。
- 举例说明高斯定理在解决实际问题中的应用。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁感应强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁感应强度。
四、总结1. 回顾本节课所学内容,强调稳恒磁场的基本概念和公式。
2. 布置课后作业,巩固所学知识。
第二课时一、导入1. 回顾上一节课所学内容,引出毕奥-萨伐尔定律。
2. 介绍毕奥-萨伐尔定律的概念,讲解其数学表达式。
二、新课讲授1. 毕奥-萨伐尔定律:- 定义毕奥-萨伐尔定律,讲解其数学表达式。
- 举例说明毕奥-萨伐尔定律在解决实际问题中的应用。
2. 安培环路定理:- 介绍安培环路定理的概念,讲解其数学表达式。
- 推导安培环路定理,讲解其推导过程。
三、课堂练习1. 计算一个载流直导线在空间某点产生的磁场强度。
2. 计算一个载流圆形导线在中心轴线上某点产生的磁场强度。
四、总结1. 回顾本节课所学内容,强调毕奥-萨伐尔定律和安培环路定理的应用。
2. 布置课后作业,巩固所学知识。
教学反思:1. 本节课通过理论讲解和实例分析,帮助学生掌握了稳恒磁场的基本概念和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fmax
q
F 大小: 大小 B = qv sin α 磁场也服从叠加原理
磁场力或磁力(洛伦兹力) 洛伦兹力) r 方向: 方向 q 不受力的方向定义为 B的方向 的方向.
v v B = ∑ Bi
i
v v
+
v B
单位: 单位 特斯拉 T ( 1 T = 10 4 G )
6
8.2 磁场 磁感应强度
8.2.3 磁通量 磁场的高斯定理
v 也可以引入磁感线(磁力线或 来形象的描述磁场。 也可以引入磁感线 磁力线或 B线)来形象的描述磁场。 来形象的描述磁场
规定:曲线上每一点的切线方向就是该点的磁感 规定:曲线上每一点的切线方向就是该点的磁感 切线方向 的方向,曲线的疏密程度 疏密程度表示该点的磁感强度 强度 B 的方向,曲线的疏密程度表示该点的磁感强度 B 的大小。 的大小。 I S N S I I N
+
v v F 定义非静电场强: 定义非静电场强: E = k k q + r v 方向: 电动势 ε = ∫ Ene ⋅ dl ε 方向:电源内部负极
−
A 即 ε = ne q
=
v v F ⋅ dr ∫ k
−
+
−
q
正极
(电 内 源 )
普遍表达式
ε = ∫L
v v Ek ⋅ dl
3
8.2 磁场 磁感应强度
磁介质中的 总磁感强度
v v 实验表明: B = µr B 相对磁导率 µr 磁导率 µ = µrµ0 实验表明: 0
顺磁质 抗磁质 铁磁质
v v B > B0 v v B < B0
(铝、氧、锰等) 锰等) (铜、铋、氢等) 氢等) (铁、钴、镍等) 镍等)
物理意义: 物理意义:通过任意闭合曲面的磁通量必等于零 故磁场是无源的 无源的) (故磁场是无源的) 磁单极不存在! 磁单极不存在!
9
8.3 毕奥-萨伐尔定律 毕奥(电流元在空间产生的磁场 电流元在空间产生的磁场) 电流元在空间产生的磁场
dB =
µ0 Idl sin θ
4π r2
v dB
P *v
I
7
8.2 磁场 磁感应强度
磁通量
v 磁场中某点处垂直 B 矢量的单位面积上通过的磁 v 的数值。 感线数目等于该点 B 的数值。
Φm = BS cosθ = BS⊥
匀强磁场磁通量
v v v v Φm = B ⋅ S = B ⋅ en S
v v dΦ = B ⋅ dS
非匀强磁场磁通量
dΦ = BdS cos θ
θ1
r v r µ0 Idl ×er dB = ⋅ 4π r'2 v µ0 Idl sinθ ⋅ dB B = ∫ dB = ∫ 4π r'2 r r ' = P r = sin(π−θ ) sinθ
v v v µ0 Idl ×r dB = 4π r3
BP =
4πr
11 *P
圆形电流对称轴线处磁场: 例2 圆形电流对称轴线处磁场: v v v Idl π dB er Idl sin r µ0 2 R dB = ⋅ θ θ 4π r2 x µ0 Idl sinθ x O ⋅ B = ∫ dBsinθ = ∫ P 4π r2 µ0 I sinθ = ⋅ I 2 ∫ dl 4π r π µ0 I sinθ 当x=0 (θ = ) 2πR = ⋅ 2 2 4π r µ0I R2 sinθ µ0I sin3 θ = 圆形电流中心处 = ⋅ 2R 2R r2 µ0I µ0I R2 B= = ⋅ 2 2R 2 ( x + R2 )3 2 r 例3 . 无限长直均匀密绕直螺线管轴线上的 B 的大小 B = µ0nI (自己证) 12 自己证)
µ0I
2π r
I
r
P
无限长均匀电流圆柱面
Bin = 0
µ0I
2π r
无限长均匀电流圆柱体
µ0 I 1 B = 2πR2 r = 2 µ0 Jr (r < R) v µ0 v v B = J ×r 2 B = µ0 I (r > R) 2πr
16
8.4 安培环路定理
2. 螺绕环 内部: 内部:
v v v µ0 Idl ×r dB = 4π r3
真空磁导率
r
θ
v Id Idl
µ0 = 4π×10−7 N⋅ A−2
任意载流导线在点 P 处的磁感强度
v v v v µ0I dl ×r B = ∫ dB = ∫ 4π r3
磁感强度叠加原理
10
例1 直线电流的磁场
θ2
v θ Idl
l
r'
0 I
r
F1 = − F1′
F′ 2
d
a
v F1
I
b
θc v v F2 en
v F′ 1
v F1′ v
B
M = Fl1 sinθ = BI l2l1 sinθ = BI Ssinθ 1
r v 定义: 定义:线圈磁矩 P = N IS m
r r v ∴ M = P ×B m
a,b
v F1
θ v
φ
d,c
v B
19
l ( S)
(l包)
v r Q ∑Ii = ∫∫ j ⋅ dS ∴
( S)
v r v v ∫ B⋅ dl = µ0 ∫∫ j ⋅ dS
l ( S)
15
8.4 安培环路定理
8.4.2 利用安培环路定理求磁场的分布
1.无限长直线电流 无限长直线电流
求BP = ?
∴BP =
B = out
2πrBP = µ0I
8.2.1 基本磁现象 磁场
磁现象: 磁现象: 1)磁体与磁体(磁极、磁力) 1)磁体与磁体(磁极、磁力) 磁体与磁体 2) 磁体对电流 1820年奥斯特实验 年奥斯特实验) 3) 电流对磁体 (1820年奥斯特实验) 4) 磁体对运动电荷 5) 电流对电流 S N N I S
-
-
+
-
+
+
-
+
4
8.2 磁场 磁感应强度
v v Φ = ∫∫ B⋅ dS
s
8
=T m 单位1Wb 1 ×1
2
8.2 磁场 磁感应强度
v B
S
v dS1 v θ1 B 1
v dS2
θ2
v B2
v v dΦ1 = B1 ⋅ dS1 > 0 v v dΦ2 = B2 ⋅ dS2 < 0
∫∫ B cos θ d S = 0
S
磁场高斯定理
v v ∫∫ B⋅ d S = 0
2πrBP = µ0 N I
BP =
µ0 NI
2πr
很大, 当r很大,环很细时: 很大 环很细时: 外部: 外部:
BP = µ0nI
BP = 0
均匀磁场
17
2πrBP = 0
1 BP = µ0 i 2
3. 无限大均匀电流平面(自己证) 无限大均匀电流平面(自己证)
8.5 磁场对电流的作用
8.5.1 磁场对载流导线的作用 —— 安培定律
14
8.4 安培环路定理 r r ∫ B⋅dl = µ0∑Ii内
L i
1)安培环路定理是稳恒电流磁场的性质方程。(稳恒电流 安培环路定理是稳恒电流磁场的性质方程。(稳恒电流 稳恒电流磁场的性质方程。( 的回路必须闭合或伸展到∞ 的回路必须闭合或伸展到∞) 2)磁感应强度对任意闭合曲线的环流不等于零,是非保守场, )磁感应强度对任意闭合曲线的环流不等于零,是非保守场, —— 有旋场(涡旋场) 有旋场(涡旋场) r r v r ∫ B⋅ dl = ∫∫ (∇×B)⋅ dS= µ0 ∑Ii
v v v µ0 Idl ×r dB = 4π r3
8.4 安培环路定理
8.4.1 安培环路定理 v 的恒定磁场中磁感强度沿任一闭 在磁感强度为 B 的恒定磁场中磁感强度沿任一闭
合环路的线积分等于穿过该环路的所有电流的代数和 的µ0倍
r r ∫ B⋅dl = µ0∑Ii内
L i
证明: 证明: 1) 如图所示 r v v ∫ B⋅ dl = ∫ Bcosθ |dl | = ∫ Brdϕ
l
安培力
18
8.5 磁场对电流的作用
8.5.2 磁场对平面载流线圈的作用
均匀磁场中有一矩形载流线圈 磁场中有一矩形载流线圈abcd v 如图 均匀磁场中有一矩形载流线圈 v v
v v F2 = BIl1 sin(π− φ ) F2 = − F2′
v v F = ∑F = 0 i
i
F1 = BIl2
IS IS
分子 电流
磁力是运动电荷相互作用的表现。 磁力是运动电荷相互作用的表现。 运动电荷相互作用的表现
5
8.2 磁场 磁感应强度
8.2.2 磁感应强度矢量
运动电荷 磁场 运动电荷 实验表明, 实验表明,运动电荷在磁场中的作用力与它所带 v 电荷量、速度有关。 电荷量、速度有关。
r v v v 磁感应强度 B f = qv × B
•
•
1
8.1 电流与电动势
2. 电流密度
qndV qn(vdt cosθdS) dI = = dt dt v v = qnv cosθdS = qnv ⋅ dS
dV
dS
q
v vv e
θ
n
定义电流密度矢量: 定义电流密度矢量: 电流密度矢量
r dS
v v J = qnv
大小: 大小 方向: 方向
v vdt
r dl = 2 dθ l = rctg(π −θ )= −rctgθ sin θ θ2 µ µ0I 0 I B= ∫ ⋅ sinθdθ = (cosθ1 −cosθ2 ) θ1 4π r 4πr 无限长直线电流的磁场 B = µ0I I 2πr µ0I o r