《大学物理(一)》实验报告验证牛顿第二定律-气垫导轨实验(一)
《大学物理(一)》2014秋实验报告验证牛顿第二定律――气垫导轨实验(一)
《大学物理(一)》2014秋实验报告验证牛顿第二定律――气垫导轨实验(一).doc实验名称:验证牛顿第二定律——气垫导轨实验(一)实验目的:验证牛顿第二定律,了解气垫导轨的使用和原理。
实验器材:气垫导轨、气垫平台、小车、光门、计时器、电子天平、直尺等。
实验原理:牛顿第二定律:物体所受合力等于其质量与加速度的乘积,即F=ma。
气垫导轨:利用气垫技术实现小车在导轨上的滑动。
由于气垫产生的气垫力,平衡了小车的重力,使其很容易平滑地在导轨上移动。
实验步骤:1. 在气垫平台上安装气垫导轨,将导轨调整至水平状态。
2. 将小车放置在导轨上,并使用金属卡夹将两个轮子夹紧。
3. 使用直尺测量小车的质量m,并将其记录在实验记录本上。
4. 首先测量小车在静止状态下的重力G,即将小车放在气垫导轨上,放置好后记录其重量。
5. 用气泵将气垫导轨下面的气注满气,使气垫导轨处于气垫状态。
6. 开始对小车进行加速度的测量。
首先将小车推到一个适合的初始位置,在小车经过光门之前将其停住,然后用电子天平测出在小车上加上一定的质量后总重力G1。
记录G1的值。
7. 在小车通过光门后立即按下计时器的启动键,记录下小车通过光门时刻t1。
8. 将小车加上一定的重物,再重复步骤6和步骤7。
9. 再将小车加上重物,重复步骤6和步骤7。
10. 根据公式a=(Gn-G)/m计算小车加速度,其中n代表每次增加质量之后的编号。
11. 记录实验数据并进行处理、分析。
实验数据记录:测量物品:小车小车质量m=0.150kg静止状态下小车重力G=1.47N实验数据处理:计算小车+重物的重力G1、G2、G3:G1=(m+0.1kg)g=1.57NG2=(m+0.2kg)g=1.67NG3=(m+0.3kg)g=1.77N计算小车+重物的加速度a1、a2、a3:a1=(G1-G)/m=0.14m/s^2a2=(G2-G)/m=0.16m/s^2a3=(G3-G)/m=0.18m/s^2实验结论:根据实验数据的处理结果可得出,加速度与施加的力成正比,与物体质量成反比,符合牛顿第二定律的表述F=ma。
气垫导轨验证牛顿第二定律实验报告
气垫导轨验证牛顿第二定律实验报告
实验目的:
本次实验的目的是通过使用气垫导轨来验证牛顿第二定律,即力等于质量乘以加速度。
实验原理:
牛顿第二定律是经典力学中的基本定律之一,它表明物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
即F=ma,其中F为作用在物体上的力,m为物体的质量,a为物体的加速度。
气垫导轨是一种利用气垫来减小摩擦力的导轨,它可以使物体在导轨上运动时减小摩擦力的影响,从而更加准确地测量物体的加速度。
实验步骤:
1. 将气垫导轨放置在水平面上,并将物体放置在导轨上。
2. 通过调节气垫导轨的气压,使物体在导轨上运动时减小摩擦力的影响。
3. 通过测量物体在导轨上的运动时间和距离,计算物体的加速度。
4. 通过测量物体的质量和施加在物体上的力,计算出力等于质量乘以加速度。
实验结果:
通过实验测量,我们得到了物体在气垫导轨上的运动时间和距离,以及物体的质量和施加在物体上的力。
通过计算,我们得到了物体的加速度,并验证了牛顿第二定律,即力等于质量乘以加速度。
结论:
本次实验通过使用气垫导轨来验证了牛顿第二定律,即力等于质量乘以加速度。
通过实验结果的验证,我们可以更加深入地理解牛顿第二定律的物理原理,并在实际应用中更加准确地测量物体的加速度。
大学物理实验一 牛顿第二定律的验证
实验一牛顿第二定律的验证一、实验目的1、熟悉气垫导轨的构造,学习正确的调整方法;2、进一步熟悉用光电计时系统测量短时间的方法,从而学会测物体运动的速度和加速度;3、验证牛顿第二定律。
二、实验仪器用具气垫导轨,数字毫秒计,两个光电门,滑块,砝码及砝码托盘,气源。
1、气垫导轨部件如图2-1所示,各部件如下:1)缓冲弹片,2)光电管与小聚光灯,3)光电门架,4)喷气小孔,5)挡光片,6)滑块,7)导轨,8)气垫滑轮,9)垫片,10)调平螺丝(横向),11)堵头,12)双头螺栓,13)座底,14)调平螺丝(纵向),15)进图2-1气嘴。
(1)导轨由长1.2~2米的三角形铝管制成,要求平直度较高,轨面经过精密加工,打磨平滑,两侧各有两排相互错开、等间隔、孔径为0.4~0.8mm的小孔,导轨一端封死,另一端装有进气嘴,压缩空气由这里进入管腔后,从小孔喷出。
导轨两端还装有缓冲弹簧,有的导轨一端有气垫滑轮。
整个导轨通过一系列直立的双头螺栓安装在工字钢梁制成的底座上,底座下面有三个底座螺钉可供调水平用。
(2)滑块由10~30cm长的角铝制成,内表面经过细磨,与导轨两个侧面精确吻合。
(3)计时装置由数字毫秒计与光电门组成,使用方法见实验3和实验4。
(4)气源一般小型气源使用吹尘器,要求气压稳定、流量适当、消音减振及空气滤清。
滑块以托起100μm~200μm为宜。
2、气垫工作原理滑块为什么能漂浮?是因为有“气垫效应”。
滑块与轨面都经过精细加工,可以很好地吻合。
当导轨中小孔喷出空气流后,在滑块与导轨之间形成一个薄空气层——气垫,在滑块边缘,不断有空气逸出,同时小孔又不断向气垫补充空气,使气垫得以维持存在。
这是一个简单的耗散结构。
我们可以近似地把气垫看成密闭气体,在其中应用帕斯卡定律,小孔中的压强等量地传递到气垫各处,由于滑块与气垫接触面积大,受到很大的压力(方向向上),所以被托起漂浮。
因此,滑块并不是被气流吹起来的,而是被气垫托起的。
验证牛顿第二定律—气垫导轨实验(一)
验证牛顿第二定律—气垫导轨实验(一)牛顿第二定律是牛顿三大定律之一,也称为“力的基本定律”。
它描述了物体的加速度与作用在它上面的力的关系,即 $F=ma$ (力等于质量乘以加速度)。
为了验证牛顿第二定律,我们可以通过气垫导轨实验来进行。
气垫导轨实验是一种相对简单的实验方法,它可以通过减少摩擦力来减小外部干扰,使我们更加精确地测量物体的加速度和力的关系。
实验装置包括一个平面气垫导轨和一组滑块。
在实验中,我们可以改变滑块的质量和加速度,并测量力和加速度的关系。
具体来说,实验流程如下:1. 首先,我们需要确定气垫导轨的长度和坡度。
导轨越长,物体的速度越大,导轨的坡度越大,物体在同样的初始位置上会更快地加速。
2. 然后,我们确定实验用的滑块的质量。
我们可以通过在滑块上加上不同的质量来改变滑块的重量,并在测量过程中记录滑块的质量。
3. 接下来,我们将滑块放在导轨的一端,对其进行一个恒定的初速度。
我们可以通过给滑块一个初始推力来实现初速度。
4. 在滑块运动的过程中,我们测量它在导轨上的运动距离和运动时间。
从而得出滑块的速度和加速度。
同时,我们还需要在导轨上放置一组测力仪,来测量物体所受的力。
5. 测量完成后,我们将数据记录下来,并通过绘制图表来分析它们之间的关系。
通过气垫导轨实验,我们可以验证牛顿第二定律的正确性。
实验结果通常与理论结果非常接近,这表明牛顿第二定律是不可否认的。
在实际应用中,我们可以使用牛顿第二定律来计算一些物理量,如动量和能量等,从而更好地理解和解释自然现象。
总之,气垫导轨实验是一种简单有效的实验方法,可以帮助我们验证牛顿第二定律的正确性,同时也可以让我们更加深入地理解力学和物理学的基本原理。
验证牛顿第二定律参考实验报告
《验证牛顿第二定律》参考实验报告实验目的1.熟悉气垫导轨的构造,掌握正确的使用方法。
2.熟悉光电计时系统的工作原理,学会用光电计时系统测量短暂时间的方法。
3.学会测量物体的速度和加速度。
4.验证牛顿第二定律。
实验仪器气垫导轨,气源,通用电脑计数器,游标卡尺,物理天平等。
实验原理牛顿第二定律的表达式为F =m a (1—1)验证此定律可分两步(1)验证m 一定时,a 与F 成正比。
(2)验证F 一定时,a 与m 成反比。
把滑块放在水平导轨上。
滑块和砝码相连挂在滑轮上,由砝码盘、滑块、砝码和滑轮组成的这一系统,其系统所受到的合外力大小等于砝码(包括砝码盘)的重力W 减去阻力,在本实验中阻力可忽略,因此砝码的重力W 就等于作用在系统上合外力的大小。
系统的质量m 就等于砝码的质量m 1、滑块的质量m 2和滑轮的折合质量2r I 的总和,按牛顿第二定律a rI m m W )(221++= (1—2) 在导轨上相距S (系统默认S=50cm )的两处放置两光电门k 1和k 2,测出此系统在砝码重力作用下滑块通过两光电门和速度v 1和v 2,则系统的加速度a (可有光电计时器直接读出)等于Sv v a 22122-= (1-3) 在滑块上放置双挡光片,同时利用计时器测出经两光电门的时间间隔,则通过2个光电门的速度为 (用卡尺测出遮光片两挡光沿的宽度d ∆,cm d 1=∆)(速度可有光电计时器直接读出)2211,t d v t d v ∆∆=∆∆= (1-4) 其中d ∆为遮光片两个挡光沿的宽度如图1-1所示。
在此测量中实际上测定的是滑块上遮光片(宽d ∆)经过某一段时间的平均速度,但由于d ∆较窄,所以在d ∆范围内,滑块的速度变化比较小,故可把平均速度看成是滑块上遮光片经过两光电门的瞬时速度。
同样,如果t ∆越小(相应的遮光片宽度d ∆也越窄),则平均速度越能准确地反映滑块在该时刻运动的瞬时速度。
实验步骤1.调好光电计时器,调整气垫导轨水平(1)首先检查计时装置是否正常。
验证牛顿第二定律—气垫导轨实验(一)
中国石油大学(华东)现代远程教育实验报告课程名称:大学物理(一)实验名称:验证牛顿第二定律――气垫导轨实验(一)实验形式:在线模拟+现场实践提交形式:提交书面实验报告学生姓名:学号:年级专业层次:学习中心:提交时间:年月日一、实验目的1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。
2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。
3.掌握在气垫导轨上测定速度、加速度的原理和方法。
4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。
5.掌握验证物理规律的基本实验方法。
二、实验原理1.速度的测量一个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间内的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。
当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度(1)实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。
但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。
本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。
2.加速度的测量在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。
对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。
(1)由测量加速度在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为(2)根据式(2)即可计算出滑块的加速度。
(2)由测量加速度设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为(3)根据式(3)也可以计算出作匀加速直线运动滑块的加速度。
大学物理气垫导轨实验报告
大学物理气垫导轨实验报告一、实验目的1、熟悉气垫导轨的构造和使用方法。
2、学习利用气垫导轨测量速度、加速度。
3、验证牛顿第二定律。
二、实验仪器气垫导轨、滑块、光电门、数字毫秒计、气源、游标卡尺、天平。
三、实验原理1、速度的测量当滑块在气垫导轨上运动时,通过光电门测量滑块通过两个光电门之间的时间间隔$\Delta t$,已知两个光电门之间的距离$\Delta s$,则滑块通过这段距离的平均速度$v =\frac{\Delta s}{\Delta t}$。
当$\Delta t$ 足够小时,平均速度就近似等于瞬时速度。
2、加速度的测量在气垫导轨上,让滑块在恒力作用下做匀加速直线运动。
设通过两个光电门的速度分别为$v_1$ 和$v_2$,两个光电门之间的距离为$s$,通过这两个光电门的时间间隔为$t$,则加速度$a =\frac{v_2 v_1}{t}$。
3、验证牛顿第二定律使滑块在水平方向受到一个拉力$F$ 的作用,通过测量滑块的质量$m$、加速度$a$,验证$F = ma$。
四、实验步骤1、气垫导轨的调节(1)将气垫导轨放置在水平实验台上,用水平仪调整导轨使其水平。
(2)打开气源,调节气流大小,使滑块在导轨上能平稳地运动,且不发生明显的左右晃动。
2、测量滑块的质量用天平测量滑块的质量,记录测量结果。
3、速度的测量(1)将两个光电门固定在气垫导轨上,相距一定距离。
(2)让滑块从导轨的一端自由滑下,通过光电门,记录通过两个光电门的时间间隔。
(3)改变光电门的位置,重复测量多次,计算滑块通过不同距离的平均速度。
4、加速度的测量(1)在滑块上系一根细线,通过定滑轮悬挂一个砝码盘,盘中放置砝码,给滑块一个水平方向的拉力。
(2)让滑块从导轨的一端由静止开始运动,通过光电门,记录通过两个光电门的时间间隔和速度。
(3)改变砝码的质量,重复测量多次,计算滑块在不同拉力作用下的加速度。
5、验证牛顿第二定律(1)根据测量得到的拉力$F$(砝码和砝码盘的总重力)、滑块的质量$m$ 和加速度$a$,计算$F$ 和$ma$ 的值。
验证牛顿第二定律参考实验报告
《验证牛顿第二定律》参考实验报告实验目的1.熟悉气垫导轨的构造,掌握正确的使用方法。
2.熟悉光电计时系统的工作原理,学会用光电计时系统测量短暂时间的方法。
3.学会测量物体的速度和加速度。
4.验证牛顿第二定律。
实验仪器气垫导轨,气源,通用电脑计数器,游标卡尺,物理天平等。
实验原理牛顿第二定律的表达式为F =m a (1—1)验证此定律可分两步(1)验证m 一定时,a 与F 成正比。
(2)验证F 一定时,a 与m 成反比。
把滑块放在水平导轨上。
滑块和砝码相连挂在滑轮上,由砝码盘、滑块、砝码和滑轮组成的这一系统,其系统所受到的合外力大小等于砝码(包括砝码盘)的重力W 减去阻力,在本实验中阻力可忽略,因此砝码的重力W 就等于作用在系统上合外力的大小。
系统的质量m 就等于砝码的质量m 1、滑块的质量m 2和滑轮的折合质量2r I 的总和,按牛顿第二定律a rI m m W )(221++= (1—2) 在导轨上相距S (系统默认S=50cm )的两处放置两光电门k 1和k 2,测出此系统在砝码重力作用下滑块通过两光电门和速度v 1和v 2,则系统的加速度a (可有光电计时器直接读出)等于Sv v a 22122-= (1-3) 在滑块上放置双挡光片,同时利用计时器测出经两光电门的时间间隔,则通过2个光电门的速度为 (用卡尺测出遮光片两挡光沿的宽度d ∆,cm d 1=∆)(速度可有光电计时器直接读出)2211,t d v t d v ∆∆=∆∆= (1-4) 其中d ∆为遮光片两个挡光沿的宽度如图1-1所示。
在此测量中实际上测定的是滑块上遮光片(宽d ∆)经过某一段时间的平均速度,但由于d ∆较窄,所以在d ∆范围内,滑块的速度变化比较小,故可把平均速度看成是滑块上遮光片经过两光电门的瞬时速度。
同样,如果t ∆越小(相应的遮光片宽度d ∆也越窄),则平均速度越能准确地反映滑块在该时刻运动的瞬时速度。
实验步骤1.调好光电计时器,调整气垫导轨水平(1)首先检查计时装置是否正常。
大学物理实验气垫导轨实验报告
气轨导轨上的实验——测量速度、加速度及验证牛顿第二运动定律一、实验目的1、学习气垫导轨和电脑计数器的使用方法。
2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。
3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。
二、实验仪器气垫导轨(QG-5-1.5m)、气源(DC-2B 型)、滑块、垫片、电脑计数器(MUJ-6B型)、电子天平(YP1201型)三、实验原理1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。
2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3xv t∆=∆x t ∆∆4过1s 、s 离s ∆a =速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。
5、牛顿第二定律得研究若不计阻力,则滑块所受的合外力就是下滑分力,sin hF mg mg Lθ==。
假定牛顿第二定律成立,有h mgma L =理论,ha g L=理论,将实验测得的a 和a 理论进行比较,计算相对误差。
如果误差实在可允许的范围内(<5%),即可认为a a =理论,则验证了牛顿第二定律。
(本地g 取979.5cm/s 2) 6、定性研究滑块所受的粘滞阻力与滑块速度的关系实验时,滑块实际上要受到气垫和空气的粘滞阻力。
考虑阻力,滑块的动力学方程为h mg f ma L -=,()hf mg ma m a a L =-=理论-,比较不同倾斜状态下的平均阻力f 与滑块的平均速度,可以定性得出f 与v 的关系。
四、实验内容与步骤1、将气垫导轨调成水平状态先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s 左右的速度(挡光宽度1cm ,挡光时间20ms 左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。
《大学物理(一)》实验报告(速度、加速度的测定和牛顿运动定律的验证)
中国石油大学(华东)现代远程教育实验报告课程名称:大学物理(一)实验名称:速度、加速度的测定和牛顿运动定律的验证实验形式:在线模拟+现场实践提交形式:在线提交实验报告学生:学号: 184********** 年级专业层次:学习中心:明仁学习中心提交时间: 2019 年月日一、实验目的1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。
2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。
3.掌握在气垫导轨上测定速度、加速度的原理和方法。
4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。
5.掌握验证物理规律的基本实验方法。
二、实验原理1.速度的测量一个作直线运动的物体,如果在t~t+Δt时间通过的位移为Δx(x~x+Δx),则该物体在Δt时间的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。
当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度(1)实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。
但在一定误差围,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。
本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。
2.加速度的测量在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。
对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。
(1)由测量加速度在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为(2)根据式(2)即可计算出滑块的加速度。
(2)由测量加速度设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为(3)根据式(3)也可以计算出作匀加速直线运动滑块的加速度。
《大学物理(一)》实验报告
中国石油大学(华东)现代远程教育实验报告课程名称:大学物理(一)实验名称:速度、加速度的测定和牛顿运动定律的验证实验形式:在线模拟+现场实践提交形式:在线提交实验报告学生姓名:朱建军学提交时间:2017年6月6日四、实验内容像a—F图像.(6) 保持沙和小桶质量不变,在小车上加砝码,重复上面的实验,然后画出质量倒数与加速度a之间关系a—的图像.3. 注意事项(1) 使沙和小桶的总质量远小于小车和砝码的总质量.(2) 平衡摩擦力时不要挂小桶,应连着纸带,且接通电源. 判断小车是否作匀速直线运动可以直接观察,也可以用打点计时器打出的纸带判定(各点间间距相等).(3) 小车应紧靠打点计时器,先接通电源后才放手.(4) 画a—F和a—图像时,应使所描的点均匀分布在直线两侧.4。
难点突破:(1). 数据处理需要计算各种情况下所对应的小车加速度时,使用“研究匀变速直线运动”的方法,先在纸带上标明计数点,测量各计数点间的距离,根据公式a=计算加速度.需要记录各组对应的加速度与小车所受牵引力F,然后建立直角坐标系,纵坐标表示加速度a,横坐标表示作用力F,描点画a—F图像,如果图像是一条直线,便证明T加速度与作用力成正比.再记录各组对应的加速度与小车和砝码总质量,然后建立直角坐标系,用纵坐标表示加速度a,横坐标表示总质量的倒数,描点画a—图像,如果图像是一条直线,就证明了加速度与质量成反比五、实验数据①研究加速度与质量成反比,跟力成正比实验中所采用的牵引力由细绳来提供,而计算时,采用的是桶和沙所受的总重力(M′+m′)g,这二者之间存在着差异,当桶和沙通过细绳与小车一起运动时,由于桶和沙也做匀加速直线运动,故其所受合外力不为零,即(M′+m′)g>F. F为细绳上的张力,也是细绳对小车的拉力. 因此,用这种方法得到的结果必然存在误差. 因此本实验要求桶和沙的总质量远小于车和砝码的质量,此时(M′+m′)相对于(M+m)可以忽略,则(M′+m′)a相对于(M+m)a可以忽略,即F近似等于(M′+m′)g. 因此,理论上说,桶和沙的总质量与小车和砝码的总质量相比越小,误差越小.②平衡摩擦力时,如果忘记了这一步,就会出现如图甲所示的a—F图像,这种情况下,直线不过原点. 但是如果平衡摩擦力时斜面倾角过大,也造成误差,形成如图乙所示的a—F 图像,因此实验中如果出现图示的情况,应检查平衡摩擦力造成的偏差.三、好题精析例题1.某同学设计了一个探究加速度与物体所受合力F及物体质量m的关系实验。
[整理]大学物理实验报告(验证牛顿第二定律)
中国石油大学(华东)现代远程教育实验报告提交时间:2014 年 6 月 2 日由上图可以看出,a与F成线性关系,且直线近似过原点。
由上图可以看出,a与1/M成线性关系,且直线近似过原点。
表3 验证加速度与合外力关系数据记录表2012年安徽省普通高校对口招收中等职业学校毕业考试语文试题(本卷满分150分,时间120分钟)一.语言文学知识与语言表达(共11小题,每小题3分,计33分)1.下列句子中加点字的注音,正确的一项是( )A.殷(yān)红的鲜血滴落在泥土上。
B.她梦想到盛(shèng)在名贵盘碟里的佳肴。
C.第二步工作叫掐丝,就是拿扁铜丝粘(nián)在铜胎表面上。
D.仿佛远处高楼上渺茫的歌声似(sì)的。
2.下列句子没有错别字的一项是( )A.得知我还必需回渡假村,她楞住了。
B.住宅的寒伧,墙壁的暗淡,家俱的破旧,衣料的粗陋,都使她苦恼。
C.归来时带着几份鹊跃的心情,一跳一跳就跳过了那些山坡。
D.丈夫从实验室回来时,孩子们已经做完功课睡觉了。
3.对下列词语中加点字的解释,不正确的一项是( )A.累世(累:连续)勤能补拙(拙:笨)B.睿智(睿:锋利)越俎代庖(庖:厨房)C.绵亘(亘:延续不断)扪心自问(扪:摸)D.自诩(诩:夸耀)自惭形秽(秽:丑陋)4.下列句子成语使用恰当的一项是( )A.贵族老爸们养尊处优的生活场所已消失得杳无音信。
B.过去有些园名,可以望文生义,如梅园,它的特色是梅。
C.在孩子们的眼神里,我看到了他们的心悦诚服。
D.赚钱是每一个生意人众望所归的事。
5.下列句子没有语病的一项是( )A.人脑是一部最奇妙的机器,但它能和平结合,使人成为万物之灵。
B.好的立意,来源于作者对社会生活的用心提炼、体验、思考和观察。
C.母亲在非解释一下不足以平服别人的时候才这样说。
D.人物的塑造,要经过摊牌打磨的过程,才能创造出鲜活的形象。
6.将下列句子组成语意连贯的一段文字,排序正确的一项是( )①当时我很年轻,而且正是不动扳机就感到手痒的时期。
《大学物理(一)》实验报告(速度、加速度的测定和牛顿运动定律的验证)
中国石油大学(华东)现代远程教育实验报告课程名称:大学物理(一)实验名称:速度、加速度的测定和牛顿运动定律的验证实验形式:在线模拟+现场实践提交形式:在线提交实验报告学生姓名:学号:184**********年级专业层次:学习中心:山东济南明仁学习中心提交时间:2019 年月日一、实验目的1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。
2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。
3.掌握在气垫导轨上测定速度、加速度的原理和方法。
4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。
5.掌握验证物理规律的基本实验方法。
二、实验原理1.速度的测量一个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间内的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。
当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度(1)实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。
但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。
本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。
2.加速度的测量在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。
对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。
(1)由测量加速度在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为(2)根据式(2)即可计算出滑块的加速度。
(2)由测量加速度设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为(3)根据式(3)也可以计算出作匀加速直线运动滑块的加速度。
大学物理实验报告(验证牛顿第二定律)
中国石油大学(华东)现代远程教育实验报告学习中心:提交时间:2014 年 6 月 2 日汽垫上静止释放,调节导轨调平螺钉,使滑块保持不动或稍微左右摆动,而无定向运动,即可认为导轨已调平。
2.练习测量速度。
计时测速仪功能设在“计时2”,让滑块在汽垫上以一定的速度通过两个光电门,练习测量速度。
3.练习测量加速度计时测速仪功能设在“加速度”,在砝码盘上依次加砝码,拖动滑块在汽垫上作匀加速运动,练习测量加速度。
4.验证牛顿第二定律(1)验证质量不变时,加速度与合外力成正比。
用电子天平称出滑块质量滑块m ,测速仪功能选“加速度”, 按上图所示放置滑块,并在滑块上加4个砝码(每个砝码及砝码盘质量均为5g),将滑块移至远离滑轮一端,使其从静止开始作匀加速运动,记录通过两个光电门之间的加速度。
再将滑块上的4个砝码分四次从滑块上移至砝码盘上,重复上述步骤。
(2)验证合外力不变时,加速度与质量成反比。
计时计数测速仪功能设定在“加速度”档。
在砝码盘上放一个砝码(即g m 102=),测量滑块由静止作匀加速运动时的加速度。
再将四个配重块(每个配重块的质量均为m ′=50g)逐次加在滑块上,分别测量出对应的加速度。
【数据处理】1、由数据记录表3,可得到a 与F 的关系如下:由上图可以看出,a 与F 成线性关系,且直线近似过原点。
上图中直线斜率的倒数表示质量,M=1/0.0058=172克,与实际值M=165克的相对误差:%2.4165165172=- 可以认为,质量不变时,在误差范围内加速度与合外力成正比。
2、由数据记录表4,可得a 与M 的关系如下:由上图可以看出,a 与1/M 成线性关系,且直线近似过原点。
直线的斜率表示合外力,由上图可得:F=9342gcm/s 2,实际合外力F=10克力=10g*980cm/s 2=9800gcm/s 2,相对误差:%7.4980093429800=-可以认为,合外力不变时,在误差范围内加速度与质量成反比。
《大学物理(一)》实验报告(速度、加速度的测定和牛顿运动定律的验证)
中国石油大学(华东)现代远程教育实验报告课程名称:大学物理(一)实验名称:实验形式:在线模拟+现场实践提交形式:在线提交实验报告学生姓名:学号:184**********年级专业层次:学习中心:山东济南明仁学习中心提交时间:2019年月日二、实验原理1.速度的测量一个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间内的平均速度为,Δt越小,平均速度就越接近于t时刻的实际速度。
当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度???????????????????????????????????(1)实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。
但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度近似代替t时刻到达x点的瞬时速度。
本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。
2.加速度的测量在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。
对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。
(1)由测量加速度在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为?????????????????????????????????????(2)根据式(2)即可计算出滑块的加速度。
(2)由测量加速度设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为????????????????????????????????????(3)根据式(3)也可以计算出作匀加速直线运动滑块的加速度。
(3)由测量加速度还可以根据匀加速直线运动加速度a、位移S(S=x-x0)及运动时间t之间的关系式测量加速度。
牛顿第二定律的验证(1)
牛顿第二定律的验证【实验目的】1. 熟悉气垫导轨的构造,掌握正确的调整方法。
2. 熟悉用光电测量系统测量短时间的方法。
3. 验证牛顿第二定律。
【实验仪器】气垫导轨、气源、存贮式数字毫秒计、砝码、砝码盘、细线【实验原理】设一物体的质量为M ,运动的加速度为a ,所受的合外力为F ,则按牛顿第二定律有如下关系:ma F = (1)此定律分两步验证:(1)验证物体质量M 一定时,所获得的加速度a 与所受的合外力F 成正比。
(2)验证物体所受合外力F 一定时,物体运动的质量M 与加速度a 成反比。
实验时,如图1,将滑块和砝码盘相连并挂在滑轮上,对于滑块、砝码盘、砝码这一运动系统,其所受合外力G 的大小等于砝码和砝码盘的重力减去阻力的总和,在此实验中由于应用了水平气垫导轨,所以摩擦阻力较小,可略去不计,因此作用在运动系统上的合外力G 的大小为砝码和砝码盘的重力之和。
图1 验证牛顿第二定律系统因此按牛顿第二定律:a m n n m m Ma g m n m G ])([)(22110220+++==+= (2)其中砝码盘的质量为m 0,加在砝码盘中砝码的质量为n 2m 2(每个砝码的质量为m 2,共加了n 2个),滑块的质量为m 1,加在滑块上砝码的质量为n 1m 2(共加了n 1个)。
则运动系统的总质量M 为上述各部分质量之和。
从(2)式看,由于各部分质量均可精确测量,因此只需精确测量出加速度a 即可验证牛顿第二定律。
现给出加速度a 的测量方法:在导轨上相距为s 的两处,放置两光电门K 1和K 2,测出此系统在合外力G 作用下滑块通过两光电门时的速度分别为v 1和v 2。
则系统的加速度a 等于sv v a 22122-=(3) 因此,问题简化为测量出滑块通过两光电门时的速度,滑块的速度按以下原理测量:挡光片的形状如图2所示,把挡光片固定在滑块上,挡光片两次挡光的前缘'11和'22之间的距离为x ∆。
利用气垫导轨验证牛顿第二定律实验报告中国石油大学华东[五篇模版]
利用气垫导轨验证牛顿第二定律实验报告中国石油大学华东[五篇模版]第一篇:利用气垫导轨验证牛顿第二定律实验报告中国石油大学华东利用气垫导轨验证牛顿第二定律】【摘要】:气垫导轨是为研究无摩擦现象而设计的力学实验设备,在导轨表面分布着许多小孔,压缩空气从这些小孔中喷出,在导轨和滑块之间形成了月 0.1mm 厚的空气层,即气垫,由于气垫的形成,滑块被托起,使滑块在气垫上作近似无摩擦的运动。
利用气垫导轨,再配以光电计时系统和其他辅助部件,可以对做直线运动的物体(即滑块)进行许多研究,如测定速度、加速度、验证牛顿第二定律,研究物体间的碰撞,研究简谐运动的规律等。
【关键词】气垫导轨、通用计数器、测速的试验方法、牛顿第二定律、控制变量法、导轨调平实验回顾【实验目的】1.熟悉气垫导轨和 MUJ-613 电脑式数字毫秒计的使用方法。
2.学会测量滑块速度和加速度的方法。
3.研究力、质量和加速度之间的关系,通过测滑块加速度验证牛顿第二定律。
【实验原理】(一)仪器使用原理 1.气垫导轨如图 4-1 所示,气垫导轨是一种摩擦力很小的实验装置,它利用从导轨表面小孔喷出的压缩空气,在滑块与导轨之间形成很薄的空气膜,将滑块从导轨面上托起,使滑块与导轨不直接接触,滑块在滑动时只受空气层间的内摩擦力和周围空气的微弱影响,这样就极大地减少了力学实验中难于克服的摩擦力的影响,滑块的运动可以近似看成无摩擦运动,使实验结果的精确度大为提高。
图 4-1气垫导轨装置图2.MUJ-613 电脑式数字毫秒计在用气垫导轨验证牛顿第二定律实验中,我们采用 MUJ-613 电脑式数字毫秒计测量时间。
利用它的测加速度程序,可以同时测量出滑块通过两个光电门的时间及滑块通过两个光电门之间的时间间隔。
使用计数器时,首先将电源开关打开(后板面),连续按功能键。
使得加速度功能旁的灯亮,气垫导轨通入压缩空气后,使装有两个挡光杆的滑块依次通过气垫导轨上的两个光电门计数器按下列顺序显示测量的时间:显示字符含单位 1通过第一个光电门的速度cm/s(亮)××·××通过第二个光电门的速度cm/s(亮)××·××1—2在第一和第二个光电门之间运动的加速度cm/s2(亮)××·××若不是要求的单位亮则按转换键即可显示要求的单位。
《大学物理(一)》实验报告验证牛顿第二定律-气垫导轨实验(一)
同样,实验时保持合外力F=m2g不变,改变系统总质量mi=m1i+m2,即逐次向滑块增加不同重量的质量块,测出系统相应的加速度ai。如果在实验误差允许的范围内式(11)成立,
(11)
则验证了F不变的情况下,a与m成反比。还可以利用上述a和m数据作a~ 关系图,若为直线,则可验证式(10),即a与m成反比。
(2)
根据式(2)即可计算出滑块的加速度。
(2)由 测量加速度
设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为
(3)
根据式(3)也可以计算出作匀加速直线运动滑块的加速度。
(3)由 测量加速度
还可以根据匀加速直线运动加速度a、位移S(S=x-x0)及运动时间t之间的关系式 测量加速度。据此计算加速度有多种方法,其中一种方法是根据式(4)由作图法求出加速度。
图1 验证牛顿第二定律
调节气垫导轨水平后,将一定质量的砝码盘通过一细线经气垫导轨的滑轮与滑块相连。设滑块部分的质量为 ,滑块本身所受重力为 ,气垫对滑块的漂浮力为N,此二力相平衡,滑块在垂直方向受到的合外力为零。滑块在水平方向上受到细线的拉力,此力为重物作用于细线所产生的张力T,由于气垫导轨和滑块及细线所受的粘滞阻力及空气阻力忽略不计,则有
(6)
式中a为运动系统的加速度,根据式(6)有
(7)
在式(7)中,若令m=m1+m2表示运动物体系统的总质量,F=m2g表示物体系统在运动方向所受的合外力,则式(7)即为式(5)F=ma。根据式(7),验证牛顿第二定律可分为以下两步来完成。
(1)当系统总质量m保持不变时,加速度a应与合外力F成正比,比值为常数,即
如果式(8)和式(10)均被验证,则式(7)即式(5)得到验证,也就是说,验证了牛顿第二定律。
大学物理气垫导轨实验报告
大学物理气垫导轨实验报告一、实验目的1、熟悉气垫导轨的构造和性能,掌握其使用方法。
2、学习利用气垫导轨测量物体的速度和加速度。
3、验证牛顿第二定律。
二、实验原理1、气垫导轨是一种摩擦力很小的实验装置,它利用从导轨表面小孔喷出的压缩空气,在导轨与滑块之间形成一层很薄的气膜,使滑块与导轨不直接接触,从而大大减小了摩擦力。
2、速度的测量:通过测量滑块在一定时间内通过的距离,根据速度的定义式$v =\frac{\Delta s}{\Delta t}$计算出速度。
3、加速度的测量:使用光电门测量滑块通过两个光电门的时间间隔$\Delta t_1$和$\Delta t_2$,以及两个光电门之间的距离$\Delta s$,根据加速度的定义式$a =\frac{v_2 v_1}{\Delta t}$,其中$v_1 =\frac{\Delta s}{\Delta t_1}$,$v_2 =\frac{\Delta s}{\Delta t_2}$,计算出加速度。
4、验证牛顿第二定律:在滑块上加上不同质量的砝码,测量滑块的加速度,根据牛顿第二定律$F = ma$,其中$F$为合力(等于滑块所受重力沿导轨方向的分力),分析加速度与合力、质量的关系。
三、实验仪器气垫导轨、滑块、光电门、数字毫秒计、砝码、天平。
四、实验步骤1、调节气垫导轨水平打开气源,将滑块放在导轨上,轻轻推动滑块,观察滑块的运动情况。
若滑块在导轨上能保持匀速直线运动或静止,则导轨基本水平;若滑块加速或减速运动,则需调节导轨的底脚螺丝,直到滑块能近似匀速运动。
2、测量滑块的速度安装好光电门,使滑块从导轨的一端以一定的初速度运动,通过光电门时数字毫秒计记录下通过的时间。
改变滑块的初速度,多次测量,计算滑块的平均速度。
3、测量滑块的加速度在滑块上放置质量为$m_1$的砝码,使滑块从导轨的一端由静止开始运动,通过两个相距一定距离的光电门,记录通过两个光电门的时间间隔$\Delta t_1$和$\Delta t_2$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。
(1)由 测量加速度
在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过两个光电门之间的时间为t21,则加速度a为
三、实验器材
气垫导轨、光电计时系统、滑块、砝码、质量块(铁块)等。
四、实验内容
1.调节气垫导轨和光电计时系统
调整气垫导轨水平,达到细调水平要求,即滑块往返一次 。调整光电计时系统处于正常工作状态。具体调节方法请参阅附录一和附录二。
2.验证物体系统总质量不变时加速度与合外力成正比
保证物体系统总质量不变,逐步增加砝码盘中砝码的质量,改变外力5次。每一外力下分别记录滑块经过两个光电门的时间 和 ,重复测量6次。
(4)
实验时固定初位置x0(光电门1的位置),改变不同的末位置x(光电门2的位置),使物体(滑块)从静止开始运动,测出相应的运动时间t,作 关系图线。如果是直线,说明物体作匀加速运动,直线的斜率为 。
以上介绍了3种测量加速度a的方法。具体测量时先把气垫导轨调水平,再使滑块在水平方向受到一恒力的作用,那么滑块的运动就是匀加速直线运动;也可先把气垫导轨调水平,然后将其一端垫高h高度,使气垫导轨倾斜,滑块在倾角为θ的导轨上面下滑,其运动也是匀加速直线运动。
5.掌握验个作直线运动的物体,如果在t~t+Δt时间内通过的位移为Δx(x~x+Δx),则该物体在Δt时间内的平均速度为 ,Δt越小,平均速度就越接近于t时刻的实际速度。当Δt→0时,平均速度的极限值就是t时刻(或x位置)的瞬时速度
(1)
实际测量中,计时装置不可能记下Δt→0的时间来,因而直接用式(1)测量某点的速度就难以实现。但在一定误差范围内,只要取很小的位移Δx,测量对应时间间隔Δt,就可以用平均速度 近似代替t时刻到达x点的瞬时速度 。本实验中取Δx为定值(约10mm),用光电计时系统测出通过Δx所需的极短时间Δt,较好地解决了瞬时速度的测量问题。
如果式(8)和式(10)均被验证,则式(7)即式(5)得到验证,也就是说,验证了牛顿第二定律。
4.判定实验与理论是否相符
根据实验数据,计算加速度a实验值的不确定度和理论值的不确定度,如果式(12)成立,
(12)
则说明实验验证了理论;否则,实验不能验证理论,应查出原因。式(12)中的 就是 允许的实验最大误差可能范围。
(6)
式中a为运动系统的加速度,根据式(6)有
(7)
在式(7)中,若令m=m1+m2表示运动物体系统的总质量,F=m2g表示物体系统在运动方向所受的合外力,则式(7)即为式(5)F=ma。根据式(7),验证牛顿第二定律可分为以下两步来完成。
(1)当系统总质量m保持不变时,加速度a应与合外力F成正比,比值为常数,即
3.验证牛顿第二定律
牛顿第二定律所描述的内容,就是一个物体的加速度与其所受合外力成正比,与其本身质量成反比,且加速度的方向与合外力方向相同。数学表述为
F=ma(5)
为了研究牛顿第二定律,考虑如图1所示一个运动物体系统,系统由 (滑块)和 (砝码)两个物体组成,忽略空气阻力及气垫对滑块的粘滞力,不计滑轮和细线的质量等。
(10)
同样,实验时保持合外力F=m2g不变,改变系统总质量mi=m1i+m2,即逐次向滑块增加不同重量的质量块,测出系统相应的加速度ai。如果在实验误差允许的范围内式(11)成立,
(11)
则验证了F不变的情况下,a与m成反比。还可以利用上述a和m数据作a~ 关系图,若为直线,则可验证式(10),即a与m成反比。
(2)
根据式(2)即可计算出滑块的加速度。
(2)由 测量加速度
设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为
(3)
根据式(3)也可以计算出作匀加速直线运动滑块的加速度。
(3)由 测量加速度
还可以根据匀加速直线运动加速度a、位移S(S=x-x0)及运动时间t之间的关系式 测量加速度。据此计算加速度有多种方法,其中一种方法是根据式(4)由作图法求出加速度。
3.验证物体系统所受合外力不变时加速度与总质量成反比
保持砝码盘部分的质量不变,即合外力不变,在滑块上逐步增加质量块,改变物体系统总质量5次。每一总质量下分 别记录滑块经过两个光电门的时间 和 ,重复测量6次。
五、实验数据
六、结论
1、关于牛顿第二定律的验证。
2、关于滑块所受的气体阻力与滑块运动速度的关系
图1 验证牛顿第二定律
调节气垫导轨水平后,将一定质量的砝码盘通过一细线经气垫导轨的滑轮与滑块相连。设滑块部分的质量为 ,滑块本身所受重力为 ,气垫对滑块的漂浮力为N,此二力相平衡,滑块在垂直方向受到的合外力为零。滑块在水平方向上受到细线的拉力,此力为重物作用于细线所产生的张力T,由于气垫导轨和滑块及细线所受的粘滞阻力及空气阻力忽略不计,则有
(8)
实验时,在保持总质量m不变的情况下,改变合外力Fi=m2ig,即逐次改变砝码盘中砝码的质量,测出系统相应的加速度ai。如果在实验误差允许的范围内式(9)成立,
(9)
则验证了m不变的情况下,a与F成正比。还可以利用上述a和F数据作a~F关系图,若为直线,则可验证式(8),即a与F成正比。
(2)当保持系统所受合外力F=m2g不变时,加速度a的大小应与系统的总质量m=m1+m2成反比,即
备注:该报告纳入考核,占总评成绩的10%。
大学物理(一)速度、加速度的测定和牛顿运动定律的验证
提交时间:2014年12月17日
一、实验目的
1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。
2.了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。
3.掌握在气垫导轨上测定速度、加速度的原理和方法。
4.从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。