《数学分析》知识点整理.pdf

合集下载

数学分析知识要点整理

数学分析知识要点整理

数学分析知识要点整理数学分析是数学专业的重要基础课程,它为后续的许多课程提供了必备的知识和方法。

以下是对数学分析中的一些关键知识要点的整理。

一、函数函数是数学分析的核心概念之一。

1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每个元素 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的元素 y 与之对应,那么就称 f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。

2、函数的性质(1)单调性:若对于定义域内的任意两个自变量 x1 和 x2,当 x1< x2 时,都有 f(x1) < f(x2)(或 f(x1) > f(x2)),则称函数 f(x)在其定义域上单调递增(或单调递减)。

(2)奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数 f(x)为奇函数;若 f(x) = f(x),则称函数 f(x)为偶函数。

(3)周期性:若存在非零常数 T,使得对于定义域内的任意 x,都有 f(x + T) = f(x),则称函数 f(x)为周期函数,T 为函数的周期。

3、反函数设函数 y = f(x),其定义域为 D,值域为 R。

如果对于 R 中的每一个 y,在 D 中都有唯一确定的 x 与之对应,使得 y = f(x),则这样得到的 x 关于 y 的函数称为 y = f(x)的反函数,记作 x = f⁻¹(y)。

二、极限极限是数学分析中的重要概念,用于描述变量在一定变化过程中的趋势。

1、数列的极限对于数列{an},若存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 恒成立,则称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。

2、函数的极限(1)当x → x0 时函数的极限:设函数 f(x)在点 x0 的某个去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε,总存在正数δ,使得当 0 <|x x0| <δ 时,不等式|f(x) A| <ε 恒成立,则称常数A 是函数 f(x)当x → x0 时的极限,记作lim(x→x0) f(x) = A。

(完整版)最新数学分析知识点最全汇总

(完整版)最新数学分析知识点最全汇总

(完整版)最新数学分析知识点最全汇总第⼀章实数集与函数§1实数授课章节:第⼀章实数集与函数——§1实数教学⽬的:使学⽣掌握实数的基本性质.教学重点:(1)理解并熟练运⽤实数的有序性、稠密性和封闭性;(2)牢记并熟练运⽤实数绝对值的有关性质以及⼏个常见的不等式.(它们是分析论证的重要⼯具)教学难点:实数集的概念及其应⽤.教学⽅法:讲授.(部分内容⾃学)教学程序:引⾔上节课中,我们与⼤家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给⼤家介绍这门课程的主要内容.⾸先,从⼤家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这⾥的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解⼀下实数的有关性质.⼀、实数及其性质1、实数(,q p q p ?≠有理数:任何有理数都可以⽤分数形式为整数且q 0)表⽰,也可以⽤有限⼗进⼩数或⽆限⼗进⼩数来表⽰.⽆理数:⽤⽆限⼗进不循环⼩数表⽰.{}|R x x =为实数--全体实数的集合.[问题]有理数与⽆理数的表⽰不统⼀,这对统⼀讨论实数是不利的.为以下讨论的需要,我们把“有限⼩数”(包括整数)也表⽰为“⽆限⼩数”.为此作如下规定:例: 2.001 2.0009999→L ;利⽤上述规定,任何实数都可⽤⼀个确定的⽆限⼩数来表⽰.在此规定下,如何⽐较实数的⼤⼩?2、两实数⼤⼩的⽐较1)定义1给定两个⾮负实数01.n x a a a =L L ,01.n y b b b =L L . 其中3 2.99992.001 2.0099993 2.9999→-→--→-L L L ;;00,a b 为⾮负整数,,k k a b (1,2,)k =L 为整数,09,09k k a b ≤≤≤≤.若有,0,1,2,k k a b k ==L ,则称x 与y 相等,记为x y =;若00a b >或存在⾮负整数l ,使得,0,1,2,,k k a b k l ==L ,⽽11l l a b ++>,则称x ⼤于y 或y ⼩于x ,分别记为x y >或y x <.对于负实数x 、y ,若按上述规定分别有x y -=-或x y ->-,则分别称为x y =与x y <(或y x >).规定:任何⾮负实数⼤于任何负实数.2)实数⽐较⼤⼩的等价条件(通过有限⼩数来⽐较).定义2(不⾜近似与过剩近似):01.n x a a a =L L 为⾮负实数,称有理数01.n n x a a a =L 为实数x 的n 位不⾜近似;110n n n x x =+称为实数x 的n 位过剩近似,0,1,2,n =L .对于负实数01.n x a a a =-L L ,其n 位不⾜近似011.10n n n x a a a =--L ;n 位过剩近似01.n n x a a a =-L .注:实数x 的不⾜近似n x 当n 增⼤时不减,即有012x x x ≤≤≤L ;过剩近似n x 当n 增⼤时不增,即有012x x x ≥≥≥L .命题:记01.n x a a a =L L ,01.n y b b b =L L 为两个实数,则x y >的等价条件是:存在⾮负整数n ,使n n x y >(其中n x 为x 的n 位不⾜近似,n y 为y 的n 位过剩近似).命题应⽤例1.设,x y 为实数,x y <,证明存在有理数r ,满⾜x r y <<.证明:由x y <,知:存在⾮负整数n ,使得n n x y <.令()12n n r x y =+,则r 为有理数,且n n x x r y y ≤<<≤.即x r y <<.3、实数常⽤性质(详见附录Ⅱ.289302P P -).1)封闭性(实数集R 对,,,+-?÷)四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为0)仍是实数.2)有序性:,a b R ?∈,关系,,a b a b a b <>=,三者必居其⼀,也只居其⼀.3)传递性:a b c R ?∈,,,,a b b c a c >>>若,则.4)阿基⽶德性:,,0a b R b a n N ?∈>>??∈使得na b >.5)稠密性:两个不等的实数之间总有另⼀个实数.6)⼀⼀对应关系:实数集R 与数轴上的点有着⼀⼀对应关系.例2.设,a b R ?∈,证明:若对任何正数ε,有a b ε<+,则a b ≤.(提⽰:反证法.利⽤“有序性”,取a b ε=-)⼆、绝对值与不等式1、绝对值的定义实数a 的绝对值的定义为,0||0a a a a a ≥?=?-从数轴看,数a 的绝对值||a 就是点a 到原点的距离.||x a -表⽰就是数轴上点x 与a 之间的距离.3、性质1)||||0;||00a a a a =-≥=?=(⾮负性);2)||||a a a -≤≤;3)||a h h a h ;4)对任何,a b R ∈有||||||||||a b a b a b -≤±≤+(三⾓不等式); 5)||||||ab a b =?;6)||||a ab b =(0b ≠).三、⼏个重要不等式1、,222ab b a ≥+ .1 sin ≤x . sin x x ≤2、均值不等式:对,,,,21+∈?R n a a a Λ记 ,1 )(121∑==+++=ni i n i a n n a a a a M Λ (算术平均值) ,)(1121nn i i n n i a a a a a G ???? ??==∏=Λ (⼏何平均值) .1111111)(1121∑∑====+++=n i i n i i n i a n a n a a a na H Λ (调和平均值)有平均值不等式:),( )( )(i i i a M a G a H ≤≤即:1212111n n a a a nna a a +++≤≤+++L L 等号当且仅当n a a a ===Λ21时成⽴.3、Bernoulli 不等式:(在中学已⽤数学归纳法证明过),1->?x 有不等式(1)1, .n x nx n +≥+∈N当1->x 且0≠x ,N ∈n 且2≥n 时,有严格不等式.1)1(nx x n +>+ 证:由01>+x 且>+++++=-++?≠+111)1(1)1( ,01Λn n x n x x ).1( )1( x n x n n n +=+>.1)1( nx x n +>+?4、利⽤⼆项展开式得到的不等式:对,0>?h 由⼆项展开式,!3)2)(1(!2)1(1)1(32n n h h n n n h n n nh h ++--+-++=+Λ有 >+n h )1( 上式右端任何⼀项.[练习]P4.5[课堂⼩结]:实数:⼀实数及其性质⼆绝对值与不等式. [作业]P4.1.(1),2.(2)、(3),3§2数集和确界原理授课章节:第⼀章实数集与函数——§2数集和确界原理教学⽬的:使学⽣掌握确界原理,建⽴起实数确界的清晰概念. 教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运⽤.教学重点:确界的概念及其有关性质(确界原理).教学难点:确界的定义及其应⽤.教学⽅法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导⼊新课.引⾔上节课中我们对数学分析研究的关键问题作了简要讨论;此后⼜让⼤家⾃学了第⼀章§1实数的相关内容.下⾯,我们先来检验⼀下⾃学的效果如何!1、证明:对任何x R ∈有:(1)|1||2|1x x -+-≥;(2) |1||2||3|2x x x -+-+-≥. (111(2)12,121x x x x x -=+-≥--∴-+-≥Q ())(2121,231,23 2.x x x x x x -+-≥-+-≥-+-≥()三式相加化简即可)2、证明:||||||x y x y -≤-.3、设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤.4、设,,x y R x y ∈>,证明:存在有理数r 满⾜y r x <<.[引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之⼀.⽽不要做完就完了!⽽要多想想,能否具体问题引出⼀般的结论:⼀般的⽅法?②由上述⼏个⼩题可以体会出“⼤学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,⽽⾮凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语⾔应⽤.提请注意这种差别,尽快掌握本门课程的术语和⼯具.本节主要内容:1、先定义实数集R 中的两类主要的数集——区间与邻域;2、讨论有界集与⽆界集;3、由有界集的界引出确界定义及确界存在性定理(确界原理).⼀、区间与邻域1、区间(⽤来表⽰变量的变化范围)设,a b R ∈且a b <.有限区间区间⽆限区间,其中{}{}{}{}|(,)|[,]|[,)|(,]x R a x b a b x R a x b a b x R a x b a b x R a x b a b ?∈<<=∈≤≤=∈≤<=∈<≤=开区间: 闭区间: 有限区间闭开区间:半开半闭区间开闭区间:{}{}{}{}{}|[,).|(,].|(,).|(,).|.x R x a a x R x a a x R x a a x R x a a x R x R ?∈≥=+∞?∈≤=-∞??∈>=+∞??∈<=-∞??∈-∞<<+∞=?⽆限区间2、邻域联想:“邻居”.字⾯意思:“邻近的区域”.与a 邻近的“区域”很多,到底哪⼀类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何⽤数学语⾔来表达呢?(1)a 的δ邻域:设,0a R δ∈>,满⾜不等式||x a δ-<的全体实数x 的集合称为点a 的δ邻域,记作(;)U a δ,或简记为()U a ,即 {}(;)||(,)U a x x a a a δδδδ=-<=-+.其中a δ称为该邻域的中⼼,称为该邻域的半径.(2)点a 的空⼼δ邻域{}(;)0||(,)(,)()o o U a x x a a a a a U a δδδδ=<-<=-?+@.(3)a 的δ右邻域和点a 的空⼼δ右邻域{}{}00(;)[,)();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ++++=+=≤<+=+=<<+@@(4)点a 的δ左邻域和点a 的空⼼δ左邻域{}{}00(;)(,]();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ+---=-=-<≤=-=-<<@@(5)∞邻域,+∞邻域,-∞邻域{}()||,U x x M ∞=>(其中M 为充分⼤的正数); {}(),U x x M +∞=>{}()U x x M -∞=<-⼆、有界集与⽆界集1、定义1(上、下界):设S 为R 中的⼀个数集.若存在数()M L ,使得⼀切x S ∈都有()x M x L ≤≥,则称S 为有上(下)界的数集.数()M L 称为S 的上界(下界);若数集S 既有上界,⼜有下界,则称S 为有界集.闭区间[],a b 、开区间b a b a ,( ),(为有限数)、邻域等都是有界数集,集合 {}) , ( ,sin ∞+∞-∈==x x y y E 也是有界数集.若数集S 不是有界集,则称S 为⽆界集.) , 0 ( , ) 0 , ( , ) , (∞+∞-∞+∞-等都是⽆界数集,集合∈==) 1 , 0 ( ,1 x xy y E 也是⽆界数集. 注:1)上(下)界若存在,不唯⼀;2)上(下)界与S 的关系如何?看下例:例1 讨论数集{}|N n n +=为正整数的有界性.解:任取0n N +∈,显然有01n ≥,所以N +有下界1;但N +⽆上界.因为假设N +有上界M,则M>0,按定义,对任意0n N +∈,都有0n M ≤,这是不可能的,如取[]0[]1n M M M =+(符号表⽰不超过的最⼤整数),则0n N +∈,且0n M >.综上所述知:N +是有下界⽆上界的数集,因⽽是⽆界集.例2证明:(1)任何有限区间都是有界集;(2)⽆限区间都是⽆界集;(3)由有限个数组成的数集是有界集.[问题]:若数集S 有上界,上界是唯⼀的吗?对下界呢?(答:不唯⼀,有⽆穷多个).三、确界与确界原理1、定义定义2(上确界)设S 是R 中的⼀个数集,若数η满⾜:(1) 对⼀切,x S ∈有x η≤(即η是S 的上界); (2) 对任何αη<,存在0x S ∈,使得0x α>(即η是S 的上界中最⼩的⼀个),则称数η为数集S 的上确界,记作sup .S η=从定义中可以得出:上确界就是上界中的最⼩者.命题1sup M E = 充要条件1),x E x M ?∈≤;2)00,,o x S x M εε?>?∈>-使得.证明:必要性,⽤反证法.设2)不成⽴,则00,,o x E x M εε?>?∈≤-使得均有,与M 是上界中最⼩的⼀个⽭盾.充分性(⽤反证法),设M 不是E 的上确界,即0M ?是上界,但0M M >.令00M M ε=->,由2),0x E ?∈,使得00x M M ε>-=,与0M 是E 的上界⽭盾.定义3(下确界)设S 是R 中的⼀个数集,若数ξ满⾜:(1)对⼀切,x S ∈有x ξ≥(即ξ是S 的下界);(2)对任何βξ>,存在0x S ∈,使得0x β<(即ξ是S 的下界中最⼤的⼀个),则称数ξ为数集S 的下确界,记作inf S ξ=.从定义中可以得出:下确界就是下界中的最⼤者.命题2 inf S ξ=的充要条件:1),x E x ξ?∈≥;2)ε?>0,00,x S x ∈有<.ξε+上确界与下确界统称为确界.例3(1),) 1(1-+=n S n 则sup S = 1 ;inf S = 0 . (2){}.),0( ,sin π∈==x x y y E 则sup S = 1 ;inf S = 0 . 注:⾮空有界数集的上(或下)确界是唯⼀的.命题3:设数集A 有上(下)确界,则这上(下)确界必是唯⼀的.证明:设sup A η=,sup A η'=且ηη'≠,则不妨设ηη'<A sup =η?A x ∈?有η≤xsup A η'=?对ηη'<,0x A ?∈使0x η<,⽭盾.例:sup 0R -= ,sup 11n Z n n +∈??= ?+??,1inf 12n Z n n +∈??= ?+?? {}5,0,3,9,11E =-则有inf 5E =-.开区间(),a b 与闭区间[],a b 有相同的上确界b 与下确界a例4设S 和A 是⾮空数集,且有.A S ?则有.inf inf ,sup sup A S A S ≤≥. 例5设A 和B 是⾮空数集.若对A x ∈?和,B y ∈?都有,y x ≤则有.inf sup B A ≤证明:,B y ∈?y 是A 的上界,.sup y A ≤?A sup ?是B 的下界,.inf sup B A ≤?例6A 和B 为⾮空数集,.B A S Y =试证明:{}. inf , inf m in inf B A S = 证明:,S x ∈?有A x ∈或,B x ∈由A inf 和B inf 分别是A 和B 的下界,有A x inf ≥或{}. inf , inf m in .infB A x B x ≥?≥即{} inf , inf m in B A 是数集S 的下界,{}. inf , inf m in inf B A S ≥?⼜S A S ,??的下界就是A 的下界,S inf 是S 的下界,S inf ?是A 的下界,;inf inf A S ≤?同理有.inf inf B S ≤于是有{} inf , inf m in inf B A S ≤.综上,有{} inf , inf m in inf B A S =.1. 数集与确界的关系:确界不⼀定属于原集合.以例3⑵为例做解释.2. 确界与最值的关系:设 E 为数集.(1)E 的最值必属于E ,但确界未必,确界是⼀种临界点.(2)⾮空有界数集必有确界(见下⾯的确界原理),但未必有最值.(3)若E max 存在,必有.sup max E E =对下确界有类似的结论.4. 确界原理:Th1.1(确界原理).设S ⾮空的数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.这⾥我们给⼀个可以接受的说明 ,E R E ?⾮空,E x ∈?,我们可以找到⼀个整数p ,使得p 不是E 上界,⽽1p +是E 的上界.然后我们遍查9.,,2.,1.p p p Λ和1+p ,我们可以找到⼀个0q ,900≤≤q ,使得0.q p 不是E 上界,)1.(0+q p 是E 上界,如果再找第⼆位⼩数1q ,,Λ如此下去,最后得到Λ210.q q q p ,它是⼀个实数,即为E 的上确界.证明:(书上对上确界的情况给出证明,下⾯讲对下确界的证明)不妨设S 中的元素都为⾮负数,则存在⾮负整数n ,使得1)S x ∈?,有n x >;2)存在S x ∈1,有1+≤n x ;把区间]1,(+n n 10等分,分点为n.1,n.2,...,n.9, 存在1n ,使得 1)S ∈?,有;1.n n x >;2)存在S x ∈2,使得10112.+≤n n x .再对开区间111(.,.]10n n n n +10等分,同理存在2n ,使得1)对任何S x ∈,有21.n n n x >;2)存在2x ,使2101212.+≤n n n x 继续重复此步骤,知对任何Λ,2,1=k ,存在k n 使得1)对任何S x ∈,k k n n n n x 10121.->Λ;2)存在S x k ∈,k k n n n n x Λ21.≤.因此得到ΛΛk n n n n 21.=η.以下证明S inf =η.(ⅰ)对任意S x ∈,η>x ;(ⅱ)对任何ηα>,存在S x ∈'使x '>α.[作业]:P9 1(1),(2); 2; 4(2)、(4);7§3函数概念授课章节:第⼀章实数集与函数——§3 函数概念教学⽬的:使学⽣深刻理解函数概念.教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表⽰法;(2)牢记基本初等函数的定义、性质及其图象.会求初等函数的存在域,会分析初等函数的复合关系.教学重点:函数的概念.教学难点:初等函数复合关系的分析.教学⽅法:课堂讲授,辅以提问、练习、部分内容可⾃学.教学程序:引⾔关于函数概念,在中学数学中已有了初步的了解.为便于今后的学习,本节将对此作进⼀步讨论.⼀、函数的定义1.定义1设,D M R∈,,如果存在对应法则f,使对x D存在唯⼀的⼀个数y M∈与之对应,则称f是定义在数集D上的函数,记作→:f D M→ .|x y数集D称为函数f的定义域,x所对应的y,称为f在点x的函数值,记为()f D.f x.全体函数值的集合称为函数f的值域,记作()即{}==∈.()|(),f D y y f x x D2.⼏点说明(1)函数定义的记号中“:f D M→”表⽰按法则f建⽴D到M 的函数关系,|x y→表⽰这两个数集中元素之间的对应关系,也记作→.习惯上称x⾃变量,y为因变量.|()x f x(2)函数有三个要素,即定义域、对应法则和值域.当对应法则和定义域确定后,值域便⾃然确定下来.因此,函数的基本要素为两个:定义域和对应法则.所以函数也常表⽰为:(),y f x x D =∈. 由此,我们说两个函数相同,是指它们有相同的定义域和对应法则.例如:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同)2)()||,,x x x R ?=∈ 2(),.x x x R ψ=∈(相同,只是对应法则的表达形式不同).(3)函数⽤公式法(解析法)表⽰时,函数的定义域常取使该运算式⼦有意义的⾃变量的全体,通常称为存在域(⾃然定义域).此时,函数的记号中的定义域可省略不写,⽽只⽤对应法则f 来表⽰⼀个函数.即“函数()y f x =”或“函数f ”.(4)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象.a 称为()f a 的原象.(5)函数定义中,x D ?∈,只能有唯⼀的⼀个y 值与它对应,这样定义的函数称为“单值函数”,若对同⼀个x 值,可以对应多于⼀个y 值,则称这种函数为多值函数.本书中只讨论单值函数(简称函数).⼆、函数的表⽰⽅法1 主要⽅法:解析法(公式法)、列表法(表格法)和图象法(图⽰法).2 可⽤“特殊⽅法”来表⽰的函数.1)分段函数:在定义域的不同部分⽤不同的公式来表⽰.例如 1,0sgn 0,01,0x x x x >??==??-,(符号函数)(借助于sgnx 可表⽰()||,f x x =即()||sgn f x x x x ==).2)⽤语⾔叙述的函数.(注意;以下函数不是分段函数)例1)[]y x =(取整函数)⽐如: [3.5]=3, [3]=3, [-3.5]=-4.常有 [][]1x x x ≤<+, 即[]01x x ≤-<.与此有关⼀个的函数[]{}y x x x =-@(⾮负⼩数函数)图形是⼀条⼤锯,画出图看⼀看.2)狄利克雷(Dirichlet )函数1,()0,x D x x ?=??当为有理数,当为⽆理数,这是⼀个病态函数,很有⽤处,却⽆法画出它的图形.它是周期函数,但却没有最⼩周期,事实上任⼀有理数都是它的周期.3)黎曼(Riemman )函数 1,(,,()0,0,1(0,1)p p x p q N q q q R x x +?=∈?=??=?当为既约分数),当和内的⽆理数.三函数的四则运算给定两个函数12,,,f x D g x D ∈∈,记12D D D =U ,并设D φ≠,定义f 与g 在D 上的和、差、积运算如下:()()(),F x f x g x x D=+∈;()()(),G x f x g x x D =-∈;()()(),H x f x g x x D =∈. 若在D 中除去使()0g x =的值,即令{}2\()0,D D x g x x D φ=≠∈≠g ,可在D g 上定义f 与g 的商运算如下;()(),()f x L x x Dg x =∈g . 注:1)若12D D D φ==U ,则f 与g 不能进⾏四则运算.2)为叙述⽅便,函数f 与g 的和、差、积、商常分别写为:,,,f f g f g fg g+-. 四、复合运算1.引⾔在有些实际问题中函数的⾃变量与因变量通过另外⼀些变量才建⽴起它们之间的对应关系.例:质量为m 的物体⾃由下落,速度为v ,则功率E 为2221122E mv E mg t v gt ?=??=??=?. 抽去该问题的实际意义,我们得到两个函数21(),2f v mv v gt ==,把()v t 代⼊f ,即得221(())2f v t mg t =. 这样得到函数的过程称为“函数复合”,所得到的函数称为“复合函数”.[问题] 任给两个函数都可以复合吗?考虑下例;2()arcsin ,[1,1],()2,y f u u u D u g x x x E R ==∈=-==+∈=.就不能复合,结合上例可见,复合的前提条件是“内函数”的值域与“外函数”的定义域的交集不空(从⽽引出下⾯定义).2.定义(复合函数)设有两个函数(),,(),y f u u D u g x x E =∈=∈,{}()E x f x D E =∈g I ,若E φ≠g ,则对每⼀个x E ∈g ,通过g 对应D 内唯⼀⼀个值u ,⽽u ⼜通过f 对应唯⼀⼀个值y ,这就确定了⼀个定义在E g 上的函数,它以x 为⾃变量,y 因变量,记作(()),y f g x x E =∈g 或()(),y f g x x E =∈g o .简记为f g o .称为函数f 和g 的复合函数,并称f 为外函数,g 为内函数,u 为中间变量.3. 例⼦例 .1)( ,)(2x x g u u u f y -==== 求 ()[]).()(x g f x g f =ο并求定义域.例⑴._______________)( ,1)1(2=++=-x f x x x f⑵ .1122xx x x f +=??? ??+ 则) ( )(=x fA. ,2xB. ,12+xC. ,22-xD. .22+x例讨论函数()[0,)y f u u ==∈+∞与函数()u g x x R ==∈能否进⾏复合,求复合函数.4 说明1)复合函数可由多个函数相继复合⽽成.每次复合,都要验证能否进⾏?在哪个数集上进⾏?复合函数的最终定义域是什么?例如:2sin ,1y u u v x ===-,复合成:[1,1]y x =∈-.2)不仅要会复合,更要会分解.把⼀个函数分解成若⼲个简单函数,在分解时也要注意定义域的变化. ①2log (0,1)log ,1.a a y x y u u z x =∈→===-②2arcsin , 1.y y u u v x =→===+③2sin 222,,sin .x u y y u v v x =→===五、反函数1.引⾔在函数()y f x =中把x 叫做⾃变量,y 叫做因变量.但需要指出的是,⾃变量与因变量的地位并不是绝对的,⽽是相对的,例如:2()1,f u u t ==+ 那么u 对于f 来讲是⾃变量,但对t 来讲,u 是因变量.习惯上说函数()y f x =中x 是⾃变量,y 是因变量,是基于y 随x 的变化现时变化.但有时我们不仅要研究y 随x 的变化状况,也要研究x 随y 的变化的状况.对此,我们引⼊反函数的概念.2.反函数概念定义设→X f :R 是⼀函数,如果?1x ,X x ∈2, 由)()(2121x f x f x x ≠?≠(或由2121)()(x x x f x f =?=),则称f 在X 上是 1-1 的.若Y X f →:,)(X f Y =,称f 为满的.若 Y X f →:是满的 1-1 的,则称f 为1-1对应.→X f :R 是1-1 的意味着)(x f y =对固定y ⾄多有⼀个解x ,Y X f →:是1-1 的意味着对Y y ∈,)(x f y =有且仅有⼀个解x .。

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结数学分析是数学的基础学科之一,需要掌握的知识点很多。

以下是数学分析的一些基本知识点总结:一、极限与连续1. 实数与数列:实数的定义、有界性与稠密性、数列的极限与收敛性、Cauchy收敛准则。

2. 函数极限与连续:函数极限的定义、单侧极限与无穷极限、函数的连续性、Intermediate Value Theorem、间断点与可去间断点、无穷间断点。

二、导数与微分1.导数的定义与性质:导数的定义、导数的几何意义与物理意义、导数的性质(和差积商法则、链式法则等)、高阶导数、隐函数与由参数方程所确定的函数的导数。

2. 微分与微分中值定理:微分的概念与表达式、Rolle定理、Lagrange中值定理、Cauchy中值定理、Taylor公式与多项式逼近。

三、积分与积分学应用1.不定积分与定积分:不定积分的定义与性质、定积分的定义与性质、牛顿-莱布尼茨公式、换元法与分部积分法、定积分的几何与物理应用。

2.定积分求和与平均值:定积分求和的性质、定积分的平均值定理、定积分的迭加性质、定积分的估值与比较定理。

3.曲线与曲面的长度、面积与体积:曲线的长度、曲面的面积、旋转体的体积、曲线与曲面的参数化等。

四、级数与函数项级数1.数列级数与级数收敛性:数列的级数与偏序集、级数的部分和与极限、级数的收敛性判别法(比较判别法、比值判别法、根值判别法、积分判别法等)。

2. 函数项级数:函数项级数的定义与性质、幂级数与Taylor级数、幂级数的收敛半径与收敛区间、函数项级数的逐项求导与逐项求积、函数项级数的一致收敛与逐点收敛。

五、一元多项式与实代数函数1.多项式函数:多项式的定义与性质(系数、次数、根与因式分解等)、多项式函数的性质与图像。

2.真分式函数与部分分式分解:真分式的定义与性质、真分式的等价性、部分分式分解的方法与应用。

3.实代数函数:实代数函数的定义与性质、实代数函数的根与曲线的图像等。

六、基本解析几何1.点、线、面:基础概念与性质、点、线、面间的关系、点、线、面的投影与旋转等。

数学分析pdf

数学分析pdf

数学分析pdf数学分析是一种应用于数学研究的技术。

它使用精密的数学语言对外部客观世界和内部抽象世界的大量杂乱的事实、规律、关系、性质、过程和结果进行深入地描述、解释和预测。

数学分析技术围绕着许多学科展开,如概率数学、统计数学、动态系统分析、矩阵分析、拓扑学等。

一、数学分析的定义数学分析是一种专门研究函数、极限、积分、微分方程以及复杂几何体的数学技术。

它主要关注该学科的理论基础,并研究在特定条件下的函数的行为以及它们之间的关系。

二、数学分析的用途数学分析有着应用于各行各业的广泛,它可以被运用在物理学和工程学中,以解决各类实际问题,如拟计划优化、精确测量、力学和热学等。

它还是建立数学模型的基础,可用于研究现实世界的有限变量的不确定性。

三、数学分析的内容数学分析含有诸多概念、定义和定理,主要包括下列几部分:(1)实数与有理数:实数和有理数的定义,以及它们的性质。

(2)函数:定义、基本概念,多项式、参数方程和曲线的性质,例如局部极值、凹凸性等。

(3)微积分:求导数、积分、初等函数,定义和求证坐标系下函数的最大值、最小值等内容。

(4)复数分析:复数的定义及其在极坐标、相位表达式和极角表示中的性质,以及与微积分相关的定理。

(5)线性代数:向量、向量空间、矩阵、特殊形式、行列式、线性等式组、变换和子空间等,还包括齐次线性方程组和线性方程组的解法。

四、数学分析的应用数学分析也是物理学、工程学中数学运用的基础。

数学分析在许多领域都得到了广泛应用,如品质管理、计算机科学、金融学、经济学、生命科学、机械工程等。

它的理论和方法在许多实用领域得到了广泛,如建模仿真、最优化解决方案、计算解析和数值计算等。

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结数学分析是数学的重要分支,它研究的是实数集上的函数和序列的性质。

在学习数学分析的过程中,我们需要掌握一些基本的知识点和方法。

本文将对数学分析的一些重要知识点进行总结,并提供一些相关的例子和应用。

一、极限和连续1. 极限的定义和性质在数学分析中,极限是一个基本的概念。

对于一个函数或序列,当自变量趋于某个值时,函数或序列的取值也趋于某个值,我们就称这个值为函数或序列的极限。

极限具有唯一性和保序性等基本性质。

2. 连续函数的定义和性质在实数集上,连续函数是一类非常重要的函数。

连续函数的定义是指函数在定义域内的任意点都满足极限存在,并且函数值与极限值相等。

连续函数具有保号性、介值性和零点定理等重要性质。

二、导数和微分1. 导数的定义和性质导数是函数在某一点处的变化率,也可以理解为函数图像在该点的切线斜率。

导数的定义是函数在该点的极限,导数具有线性性、乘积法则和链式法则等基本性质。

2. 微分的定义和应用微分是导数的一个重要应用。

微分可以用来近似计算函数的变化量,也可以用来求函数的极值和拐点。

微分具有局部线性逼近的性质,可以用来解决实际问题中的优化和近似计算等应用题。

三、积分和级数1. 定积分的定义和性质定积分是一个函数在某一区间上的累积量,可以理解为函数图像与x轴之间的面积。

定积分的定义是将区间分成无穷多个小区间,然后对每个小区间上的函数值进行求和,并取极限。

定积分具有线性性、积分中值定理和换元积分法则等基本性质。

2. 级数的定义和收敛性级数是无穷多个数的和,它在数学分析中有着重要的应用。

级数的定义是将无穷多个数按照一定的顺序进行求和,并取其极限。

级数的收敛性是指级数的和存在有限值,而发散性则是指级数的和不存在有限值。

四、微分方程微分方程是数学分析的一个重要分支,它研究的是含有未知函数及其导数的方程。

微分方程具有一阶和高阶、线性和非线性等不同类型。

通过求解微分方程,我们可以得到函数的解析解或数值解,进而应用到实际问题中。

(完整版)数学分析知识点总结

(完整版)数学分析知识点总结

(完整版)数学分析知识点总结数学分析知识点总结导数与微分- 导数的定义:导数是一个函数在某一点的斜率,表示函数的增减速度。

- 常见函数的导数公式:- 幂函数:$(x^n)' = nx^{n-1}$- 指数函数:$(a^x)' = a^x\ln(a)$- 对数函数:$(\log_a(x))' = \frac{1}{x\ln(a)}$- 微分的定义:微分是切线在某一点处的线性近似,表示函数在该点的局部变化情况。

积分与不定积分- 不定积分的定义:不定积分是对函数的原函数的求解,表示函数从某一点到变量的积分结果。

- 常见函数的基本积分公式:- 幂函数:$\int x^n dx = \frac{1}{n+1}x^{n+1}+C$- 正弦函数:$\int \sin(x) dx = -\cos(x) + C$- 余弦函数:$\int \cos(x) dx = \sin(x) + C$一元函数极限- 极限的定义:函数在某一点处的极限是函数在这一点附近的取值逐渐趋于某个固定值的情况。

- 常见函数的极限计算方法:- 算术运算法则:常数的极限是常数本身;极限的和等于极限的和;极限的乘积等于极限的乘积。

- 复合函数法则:对于复合函数,可以先求内层函数的极限,再求外层函数的极限。

泰勒级数- 泰勒级数的定义:泰勒级数是一个函数在某一点附近的展开式,由函数在该点的导数决定。

- 常见函数的泰勒级数展开:- 幂函数:$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \dots$以上是数学分析的一些基本知识点总结,希望对您有所帮助。

数学分析知识点总结

数学分析知识点总结

估值不等式、积分第一、第二中值定理。
5、定积分与不定积分旳联络
(1)变上限积分旳导数公式;
d
x
f (t )dt f ( x),
dx a
d
b( x)
f (t)dt
f b( x)b( x)
f a( x)a( x)
dx a( x)
(2)牛-莱公式。
(3)可积函数不一定有原函数,有原函 数旳函数不一定可积。
n 但其极限是无理数 e.
即数列旳单调有界定理在有理数域不成立。
3. 区间套定理
若{[ an,bn ]}是一种区间套,则在实数系中存在唯一旳点
,使 [an ,bn ],n 1,2,
反例:取单调递增有理数列{an },使an 2, 取单调递减有理数列{bn },使bn 2,
则 有理数域内构成闭区间 套 [an ,bn ]Q, 其在实数系内唯一的公 共点为 2 Q.
1)恒等变形(加一项减一项、乘一项除一项、 三角恒等变形);
2)线性运算;
3)换元法: 第一类(凑分法)——不需要变换式可逆; 第二类——变换式必须可逆;
4)分部积分法——常可用于两个不同类型函数乘积 旳积分; “对反幂三指,前者设为u”
5)三种特殊类型函数 “程序化”旳积分法。
注:检验积分成果正确是否旳基本措施。
(6) cos xdx sin x C
(12) e xdx e x C
(13)
a xdx
ax C ln a
(20)
a2
1
x 2 dx
1 a
arctan
x a
C
(21)
x2
1
a 2 dx
1 2a
ln

数学分析原理 pdf

数学分析原理 pdf

数学分析原理 pdf数学分析原理PDF。

数学分析是现代数学的一个重要分支,它主要研究实数集上的函数和序列的极限、连续性、可微性以及积分等问题。

数学分析原理是数学分析的基础,它包括了实数的性质、实数集上的函数极限、连续性、可导性、积分等基本概念和定理。

本文将介绍数学分析原理的一些基本内容,希望能够帮助读者更好地理解和掌握这一重要的数学分支。

首先,我们来介绍实数的性质。

实数是包括有理数和无理数在内的数的集合,它们具有完备性、稠密性和有界性等重要性质。

其中完备性是指实数集上的每一个非空有上界的子集都有最小上界,这一性质是实数集的一个重要特征。

稠密性是指实数集中任意两个不相等的实数之间都存在有理数,这一性质保证了有理数在实数集中的密集分布。

有界性是指实数集中的任意有界非空子集都有上确界和下确界,这一性质是实数集的一个重要特征。

其次,我们来介绍实数集上的函数极限。

函数极限是数学分析中的一个重要概念,它描述了函数在某一点处的趋近性质。

对于实数集上的函数f(x),当自变量x 无限趋近于某一实数a时,若函数值f(x)无限趋近于某一实数L,则称函数f(x)在点a处的极限为L,记作lim┬(x→a)⁡f(x)=L。

函数极限的存在性和计算方法是数学分析原理中的重要内容,它们为后续的连续性和可导性的研究奠定了基础。

接着,我们来介绍实数集上的函数连续性。

函数连续性是指函数在某一点处的连续性质。

对于实数集上的函数f(x),若它在某一点a处的极限存在且与函数值f(a)相等,则称函数f(x)在点a处连续。

函数的连续性是数学分析中的一个重要概念,它保证了函数在一段区间上的稳定性和可积性,是实际问题建模和求解中的重要工具。

最后,我们来介绍实数集上的函数可导性和积分。

函数的可导性描述了函数在某一点处的导数存在性和计算方法,它是微积分学的基础。

函数的积分描述了函数在一段区间上的面积或累积量,它是微积分学的核心。

函数的可导性和积分是数学分析中的两个重要内容,它们为实际问题的求解和数学模型的建立提供了重要的数学工具。

数学分析知识点总结

数学分析知识点总结

第一篇 分析基础 1.1收敛序列(收敛序列的定义)定义:设}{n x 是实数序列,a 是实数,如果对任意0>ε都存在自然数N ,使得只要N n >,就有ε<-a x n那么}{n x 收敛,且以a 为极限,称为序列}{n x 收敛收敛于a ,记为a x n =lim 或者)(+∞→→n a x n定理1:如果序列}{n x 有极限,那么它的极限是唯一的。

定理2(夹逼原理):设}{n x ,}{n y 和}{n z 都是实数序列,满足条件N n z y x n n n ∈∀≤≤,如果a z x n n ==lim lim ,那么}{n y 也是收敛序列,且有a y n =lim定理3:设}{n x 是实数序列,a 是实数,则以下三陈述等价(1) 序列}{n x 以a 为极限; (2) {}n x a -是无穷小序列; (3) 存在无穷小序列{}n a 使得,1,2,.n n x a a n =+=(收敛序列性质)定理4:收敛序列}{n x 是有界的。

定理5:(1)设a x n =lim ,则a x n =lim 。

(2)设a x n =lim ,b y n =lim ,则b a y x n n ±=±)lim (。

(3)设a x n =lim ,b y n =lim ,则ab y x n n =)lim(。

(4)设0≠n x ,0lim ≠=a x n ,则ax n 11lim=。

(5)设0≠n x ,0lim ≠=a x n ,b y n =lim ,则lim limlim n n n n y y b x x a==。

(收敛序列与不等式)定理6:如果lim lim n n x y <,那么存在0N N ∈,使得0n N >时有n n x y <定理7:如果}{n x 和{}n y 都是收敛序列,且满足0,,n n x y n N ≤∀>那么lim lim n n x y ≤1.2 收敛原理(单调序列定义)定义:(1)若实数序列}{n x 满足1,,n n x x n N +≤∀∈则称}{n x 是递增的或者单调上升的,记为{}.n x ↑(2)若实数序列{}n y 满足1,,n n y y n N +≥∀∈则称{}n y 是递减的或者单调下降的,记为{}n y ↓(3)单调上升的序列和单调下降的序列统称为单调序列。

数学分析3知识点整理

数学分析3知识点整理

数学分析3知识点整理●场论●数量场●定义●在区域上的一个点将对应一个数量●f:D\rightarrow \mathrm{R}●向量场●定义●在区域上的一个点将对应一个向量●f:D\rightarrow \mathrm{R}^3●梯度●向量场●\operatorname{grad}f(\pmb{p})=\left(\frac{\partial f(\pmb{p})}{\partialx},\frac{\partial f(\pmb{p})}{\partial y},\frac{\partial f(\pmb{p})}{\partial z}\right)●Nabla 算子●定义●\nabla=\left(\frac{\partial}{\partial x},\frac{\partial}{\partialy},\frac{\partial}{\partial z}\right)●作用在数量场●\nabla f=\left(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partialf}{\partial z}\right)●性质●线性●\nabla (fg)=f\nabla g+g\nabla f●\nabla (\varphi\circ f)=\varphi '\circ f\nabla f●作用在向量场数量积形式●\nabla \bullet F=\left(\frac{\partial P}{\partial x},\frac{\partial Q}{\partialy},\frac{\partial R}{\partial z}\right)●性质●线性●\nabla\bullet\varphi F=\varphi\nabla\bullet F+F\bullet\nabla\varphi\varphi是数量场●向量积形式●定义●F=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k●\nabla\times F=\begin{vmatrix}i&j&k\\\frac{\partial}{\partialx}&\frac{\partial}{\partial y}&\frac{\partial}{\partialz}\\P&Q&R\end{vmatrix}●性质●线性●\nabla\times(\varphi\mathbf{F})=\varphi\nabla\times\mathbf{F}+\nabla\varphi\times\mathbf{F}\varphi为数量函数●\nabla\bullet(F_1\times\mathbf{F}_2)=(\nabla\times\mathbf{F}_1)\bullet\mathbf{F}_2-(\nabla\times\mathbf{F}_2)\bullet\mathbf{F}_1混合积●通量●定义●向量场通过正则曲面的流量●\iint\limits_{\Sigma}\pmb{F}\cdot \pmb{n}\mathrm{d}\sigma●正源区域通量为0●负源区域通量为负●无源区域通量为正●散度●定义●向量场\pmb{F}通过无限趋于一点M的闭曲面\Sigma的流量●(\mathrm{div} \pmb{F})_M=\lim\limits_{V\toM}\frac1{\mu(V)}\iint\limits_S\pmb{F}\cdot \pmb{n}\mathrm{d}\sigma●定理●散度计算●向量场F=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k●P.Q,R存在连续偏导●\operatorname{div}F= \nabla · F=\frac{\partial P}{\partial x}+\frac{\partialQ}{\partial y}+\frac{\partial R}{\partial z}●例子●静电场的Gauss 定理●不可压缩流体的连续性方程●Laplace 算子●定义●\Delta=\nabla^2=\nabla\cdot\nabla=\frac{\partial^2}{\partialx^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2}●调和函数●定义●数量场u满足Laplace 方程●\Delta u =\frac{\partial^2u}{\partial x^2}+\frac{\partial^2 u}{\partialy^2}+\frac{\partial^2u}{\partial z^2}=0●u为区域上的调和函数●环量●定义●\Gamma圆周曲线中沿切线的变化速度●\int_\Gamma(F\cdot t)\mathrm{d}st为单位切向量●漩涡强度●确定一个平面上点的平均环量极限●\lim\limits_{\Gamma\to M}\left.\frac1A\right]_{\Gamma}(F\cdot t)\mathrm{d}s●旋度●定义●漩涡强度对应的最大方向,模为漩涡强度●\mathrm{rot~}F=(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partialz})i+(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})j+(\frac{\partialQ}{\partial x}-\frac{\partial P}{\partial y})k●不同形式●\text{rot}F=\begin{vmatrix}i&j&k\\\frac{\partial}{\partialx}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\P&Q&R\end{vmatrix}●\operatorname{rot}F=\nabla\times F●例子●有心场●有势场●向量场F=(P,Q,R)●存在数量场\varphi满足\mathrm{grad} \:\varphi(p) = F(p)●\varphi为势函数●势函数(不计常数)唯一●保守场●曲线积分与路径无关●任意一条封闭曲线\int_\Gamma F\cdot \mathrm{d}p=0●无旋场●任意点旋度\operatorname{rot}F=0●空间单连通●区域中的任意封闭曲面包含在区域中●曲面单连通●对区域中任意逐段光滑曲线\Gamma,有逐段光滑曲面以\Gamma为边界●曲面单连通与空间单连通不相关●曲面单连通区域的等价场●F\in C^2(D)●F为有势场\Leftrightarrow无旋场\Leftrightarrow保守场●恰当微分形式●1次微分形式P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z●存在0形式微分\mathrm{d}\varphi=P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z●隐函数\varphi(x,y)=c为恰当微分方程P\mathrm{d}x+Q\mathrm{d}y+R\mathrm{d}z=0的通解●旋度场●存在F=\nabla\times G●F为旋度场●向量场G为向量势●可推出无源场●向量势不唯一,G_1=G+\nabla \varphi也是向量势●星形域●区域两点的线段仍在区域●星形域上旋度场\Leftrightarrow无源场●正交曲线坐标系●定义●参数域与积分区域间的连续可微双射且\mathrm{det} \:J f>0●u_0\in D,p_0=f(u_0)\in f(D)u_0=(u_1,u_2,u_3)为参数坐标●h_i=||\frac{\partial f}{\partial u_i}||,\quad h_i e_i=\frac{\partial f}{\partial u_i}●e_i为正交向量系(随点变化)●梯度表示●\nabla \Phi=\sum\limits_{i=1}^{3}\frac{1}{h_{i}}\frac{\partial\Phi}{\partialu_{i}}e_{i}\nabla \Phi=(\frac{\partial\Phi}{\partial x_{1}},\frac{\partial\Phi}{\partialx_{2}},\frac{\partial\Phi}{\partial x_{3}})●引理●\begin{aligned}&(1)\nablau_{i}=\frac{e_{i}}{h_{i}}\left(i=1,2,3\right)\\&(2)\nabla\times\frac{e_i}{h_i}=0\left(i=1,2,3\right)\\&(3)\nabla\bullet\frac{e_1}{h_2h_3}=\nabla\bullet\frac{e_2}{h_1h_3}=\nabla\bullet\frac{e_3}{h_1h_2}=0\end{aligned}●散度表示●F=F_{1}e_{1}+F_{2}e_{2}+F_{3}e_{3}●\nabla\bulletF=\frac{1}{h_{1}h_{2}h_{3}}\Big(\frac{\partial(F_{1}h_{2}h_{3})}{\partialu_{1}}+\frac{\partial(F_{2}h_{1}h_{3})}{\partialu_{2}}+\frac{\partial(F_{3}h_{1}h_{2})}{\partial u_{3}}\Big)●旋度表示●F=F_{1}e_{1}+F_{2}e_{2}+F_{3}e_{3}●\nabla\timesF=\frac1{h_1h_2h_3}\left|\begin{array}{ccc}h_1e_1&h_2e_2&h_3e_3\\\frac\partial{\partial u_1}&\frac\partial{\partial u_2}&\frac\partial{\partialu_3}\\F_1h_1&F_2h_2&F_3h_3\end{array}\right|●Laplace 算子●\Delta\Phi=\frac1{h_1h_2h_3}\sum\limits_{i=1}^3\frac\partial{\partialu_i}\Big(\frac{h_1h_2h_3}{h_i^2}\frac{\partial\Phi}{\partial u_i}\Big)●Fourier级数●简弦波●定义●x(t)=A\sin(\omega t+\varphi)●周期T=2\pi/\omega●圆频率\omega●初相\varphi●振幅A●三角函数系1,\cos x,\sin x,\cos2x,\sin2x,\cdots,\cos nx,\sin nx,\cdots●正交性\delta_{mn}:克罗内克符号(Kronecker Symbol)●\int_{-\pi}^\pi \sin {mx}\sin {nx}=\pi \delta_{mn}●\int_{-\pi}^\pi \cos {mx}\cos{nx}=\pi \delta_{mn}●\int_{-\pi}^\pi \sin {nx}\cos {mx}=0●Fourier级数●定义●f(x)\sim\frac{a_0}2+\sum_{n=1}^\infty(a_n\cos nx+b_n\sin nx)●Fourier系数●\begin{cases}a_n=\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cosnx\mathrm{d}x\quad(n=0,1,\cdots)\\ \\b_n=\dfrac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sinnx\mathrm{d}x\quad(n=1,2,\cdots)\end{cases}●Riemann-Lebesgue 引理●f(x)在[a,b](b可以是+\infty)可积且绝对可积●\lim\limits_{\lambda\to+\infty}\int_a^bf(x)\cos\lambda x\operatorname{d}x=0●\lim\limits_{\lambda\to+\infty}\int_a^bf(x)\sin\lambda x\operatorname{d}x=0●推论●[-\pi,\pi]可积且绝对可积的函数的Fourier系数●\lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}b_n=0●\int _0^{+\infty}\frac{\sin x}{x}\mathrm{d}x=\frac{\pi}{2}●Fourier 级数部分和●S_n(x)=\frac{1}{\pi}\int_{0}^{\pi}(f(x_{0}+t)+f(x_{0}-t))\frac{\sin\left(n+\frac{1}{2}\right)t}{2\sin\frac{t}{2}}\mathrm{d}t●为Dirichlet 积分●\frac{\sin\left(n+\frac{1}{2}\right)t}{2\sin\frac{t}{2}} 为Dirichlet 核●局部化定理●f\in \mathrm{\pmb{R}}[-\pi,\pi].Fourier级数在x_0处收敛的收敛情况仅与f在x_0附近的行为有关f是以2\pi为周期的函数●Dini 判别法●条件●f\in \mathrm{\pmb{R}}[-\pi,\pi],\varphi(t)=f(x_0+t)+f(x_0-t)-2sR[-\pi,\pi]是周期为2\pi的可积且绝对可积函数类●存在\delta>0,使得\varphi(t)/t在[0,\delta]上可积且绝对可积●则Fourier级数在x_0上收敛于s,即\lim\limits_{n\rightarrow \infty}S_n(x_0)=s ●Dini 判别法推论●f\in \mathrm{\pmb{R}}[-\pi,\pi]满足下列条件之一\RightarrowDini 判别法条件成立●满足\alpha阶Lipschitz条件●存在\delta>0,L>0,\alpha\in(0,1]●\mid f(x_0+t)-f(x_0+0)\mid\leqslant Lt^\alpha,\quad\mid f(x_0-t)-f(x_0-0)\mid\leqslant Lt^\alpha\alpha\geqslant 1可推得有界●存在有限单侧导数●f_{+}^{\prime}(x_{0})=\lim\limits_{t\to0^{+}}\frac{f(x_{0}+t)-f(x_{0})}{t},\quad f_{-}^{\prime}(x_{0})=\lim\limits_{t\to0^{+}}\frac{f(x_{0}-t)-f(x_{0})}{-t}●仅有两个有限的广义单侧导数●\lim\limits_{t\to0^+}\frac{f(x_0+t)-f(x_0+0)}t,\quad\lim\limits_{t\to0^+}\frac{f(x_0-t)-f(x_0-0)}{-t}●分段可微●定义●存在[a,b]的分割a=t_0<t_1<\cdots<t_n=b●g_i(x)=\begin{cases}f(t_{i-1}+0),&x=t_{i-1},\\f(x),&x\in(t_{i-1},t_i)\quadi=1,2,\cdots,n\\f(t_i-0),&x=t_i\end{cases}●g_i(x)都可微(端点处单侧可微)则函数f分段可微●分段可微的函数\lim\limits_{n\rightarrow \infty}S_n(x_0)=\frac{(f(x_0+0)+f(x_0-0))}{2}●延拓●对单侧函数\mathrm{def} \: f=(0,\pi)●偶性延拓●f(x)=f(-x)●展开为余弦级数f(x)\sim\frac{a_0}2+\sum\limits_{n=1}^\infty a_n\cos nx●奇性延拓●f(x)=-f(-x)●展开为正弦级数f(x)\sim\sum\limits_{n=1}^\infty b_n\sin nx●Cesàro和●Cesàro收敛●\sigma_n=\frac{S_1+\cdots+S_n}n\quad(n=1,2,\cdots)●\lim_{n\to\infty}\sigma_n=\sigma●称级数\sum\limits_{n=1}^\infty a_n在Cesàro意义下收敛到\sigma●记为\sum\limits_{n=1}^\infty a_n=\sigma(\mathrm{C})●Fejér 定理●f\in \mathrm{\pmb{R}}[-\pi,\pi]●x_0左右极限存在●\sigma_n(x_0)=\frac{1}{n}\sum\limits_{k=0}^{n-1}S_k(x_0)●则\lim\limits_{n\to +\infty} S_n(x_0)=\frac{f(x_0-0)+f(x_0+0)}{2}(\mathrm{C})\sigma_n(x_0)\to \frac{f(x_0-0)+f(x_0+0)}{2},Cesàro和为左右极限的均值●若傅里叶级数收敛一定收敛到左右极限的均值●f是以2\pi为周期的连续函数●Fourier级数在Cesàro意义下在(-\infty,+\infty)上一致收敛于f●Weierstrass 逼近定理●f\in C[-\pi,\pi]且f(-\pi)=f(\pi)●f一定能用三角多项式一致逼近即\sigma_n(x)●平方平均逼近●\lim\limits_{n\to\infty}\int_{-\pi}^{\pi}(f(x)-T_n(x))^2\mathrm{d}x=0●部分和T_n平方平均逼近(收敛于)f● \mathrm{\pmb{R}}^2[a,b]可积且平方可积空间●定义●线性空间●函数加法与数乘●内积●\langle f,g\rangle=\int_a^bf(x)g(x)\mathrm{d}x●范数●||f||=\sqrt{\langle f,f\rangle}●正交●当\langle f,g\rangle=0●正交系●函数间两两正交●范数不为0●规范正交系●范数为1的函数正交系●Fourier系数●\{\varphi_k\}为规范正交系●c_k=\langle f,\varphi_k\rangle为f关于正交系的Fourier系数●Fourier级数●f(x)\sim\sum\limits_{k=1}^\infty c_k\varphi_k(x)c_k为Fourier系数●规范正交性上的投影●\parallel f-\sum\limits_{k=0}^n\alpha_k\varphi_k\parallel\geqslant\parallel f-\sum\limits_{k=0}^nc_k\varphi_k\parallel对任意a_k,n=1,2,\cdots●\parallel f-\sum\limits_{k=0}^nc_k\varphi_k\parallel^2=\parallel f\parallel^2-\sum\limits_{k=0}^nc_k^2●\sum\limits_{k=0}^\infty c_k^2\leqslant\|f\|^2Bessel不等式●Parseval 等式/封闭性方程●\sum\limits_{k=0}^\infty c_k^2=\|f\|^2Bessel不等式等号成立●完备正交系●对任意f,Paseval等式成立,即可用Fourier级数的部分和平方平均逼近●定理●三角函数系是完备的●与三角函数系中每个函数正交的连续函数为0●相同Fourier级数的连续函数唯一●函数内积计算●f的系数为a_n,b_n,g的系数为\alpha_n,\beta_n●\frac1\pi\int_{-x}^{\pi}f(x)g(x)\mathrm{d}x=\frac{a_0\alpha_0}2+\sum_{n=1}^{\infty}(a_n\alpha_n+b_n\beta_n)●逐项积分●f(x)\sim\frac{a_0}2+\sum\limits_{n\operatorname{=}1}^\infty(a_n\cosnx+b_n\sin nx)●则\int_a^bf(x)\mathrm{d}x=\int_a^b\frac{a_0}2\mathrm{d}x+\sum\limits_{n=1}^\infty\int_a^b(a_n\cos nx+b_n\sin nx)\mathrm{d}x[a,b]\sub [-\pi,\pi]●\mathrm{\pmb R}[-l,l]●Fourier 级数●f(x)\sim\frac{a_0}2+\sum\limits_{n=1}^{x}\left(a_n\cos\frac{n\pi}lx+b_n\sin\frac{n\pi}lx\right)●Fourier 系数●\begin{aligned}a_n&=&\frac1l\int_{-1}^lf(x)\cos\frac{n\pi}lx\mathrm{d}x&(n=0,1,\cdots)\\b_n&=&\frac1l\int_{-l}^lf(x)\sin\frac{n\pi}lx\mathrm{d}x&(n=1,2,\cdots)\end{aligned}●Fourier积分f \in \mathrm{\pmb R}(-\infty,+\infty)●定义●a\left(u\right)=\frac1\pi\int_{-\infty}^{+\infty}f(t)\cos ut\mathrm{d}t,\quadb\left(u\right)=\frac1\pi\int_{-\infty}^{+\infty}f(t)\sin ut\mathrm{d}t●f(x)\thicksim\int_0^{+\infty}(a(u)\cos ux+b(u)\sin ux)\mathrm{d}u●a(u),b(u)在(-\infty,+\infty)一致连续●有限积分●\begin{aligned}S(\lambda,x)& =\int_0^\lambda(a(u)\cos ux+b(u)\sinux)\mathrm{d}u &\quad &(定义)\\&=\frac1\pi\int_{0}^{\lambda}(\int_{-\infty}^{+\infty}f(t)\cos u(t-x)\mathrm{d}t)\mathrm{d}u&\quad &(代入a(u),b(u))\\&=\frac1\pi\int_{0}^{+\infty}\left(f(x+t)+f(x-t)\right)\frac{\sin\lambda t}t\mathrm{d}t &\quad &(有限次序交换再取极限)\end{aligned}●局部化定理●f在x的Fourier积分收敛情况仅与f在x附近的函数值有关●Dini 定理●\varphi(t)=f(x+t)+f(x-t)-2s●存在\delta>0,使得\varphi(t)/t在[0,\delta]上可积且绝对可积●Fourier积分在x点收敛于s●收敛定理Fourier积分在x点收敛于左右极限的平均值●有广义左右导数●\frac1\pi\int_0^{+\infty}\mathrm{d}u\int_{-\infty}^{+\infty}f(t)\cos u\left(t-x\right)\mathrm{d}t=\frac12(f(x+0)+f(x-0))●\int_0^{+\infty}(a(u)\cos ux+b(u)\sin ux)\mathrm{d}u=\frac12(f(x+0)+f(x-0))●连续●f(x)=\frac1\pi\int_0^{+\infty}\mathrm{d}u\int_{-\infty}^{+\infty}f(t)\cosu\left(t-x\right)\mathrm{d}t●f(x)=\int_0^{+\infty}(a(u)\cos ux+b(u)\sin ux)\mathrm{d}u●Fourier 余弦公式f为偶函数●g(u)=\sqrt{\frac2\pi}\int_0^{+\infty}f(t)\cos ut\mathrm{d}tFourier余弦变换公式●f(x)=\sqrt{\frac2\pi}\int_0^{+\infty}g(u)\cos xu\mathrm{d}u反变换公式●Fourier 正弦公式f为奇函数●h(u)=\sqrt{\frac2\pi}\int_0^{+\infty}f(t)\sin ut\mathrm{d}tFourier正弦变换公式●f(x)=\sqrt{\frac2\pi}\int_0^{+\infty}h(u)\sin xu\mathrm{d}u反变换公式●Fourier 积分复数形式●f(x)=\frac1{2\pi}\int_{-\infty}^{+\infty}\mathrm{d}u\int_{-\infty}^{+\infty}f(t)\mathrm{e}^{\mathrm{i}u(x-t)}\mathrm{d}t●Fourier变换●\hat{f}(u)=\frac1{2\pi}\int_{-\infty}^{+\infty}f(t)\mathrm{e}^{-\mathrm{i}tu}\mathrm{d}t●反变换公式●f(x)=\int_{-\infty}^{+\infty}\hat{f}(u)\mathrm{e}^{\mathrm{i}ux}\mathrm{d}u●导数定理●\lim \limits_{t\to \infty}f(t)=0 \Rightarrow\hat{f}^{\prime}(x)=\mathrm{i}x\hat{f}(x)●\lim \limits_{t\to \infty}f^{(k)}(t)=0 (k=1,2\cdots ,n-1)\Rightarrow\hat{f}^{(n)}(x)=(\mathrm{i}x)^n\hat{f}(x)●卷积●(f* g)(t)=\frac1{2\pi}\int_{-\infty}^{+\infty}f(t-u)g(u)\mathrm{d}u●卷积定理●\hat{(f* g)(t)}=\hat{f(t)}\hat{g(t)}●Fourier级数复数形式满足收敛定理●离散的Fourier变换●f(x)=\sum\limits_{n=-\infty}^\infty\hat{f}(n)\mathrm{e}^{\mathrm{i}nx}●\hat{f}(n)=\begin{cases}\frac12(a_n-\mathrm{i}b_n)=\frac1{2\pi}\int_{-\pi}^\pi f(x)\mathrm{e}^{-\mathrm{i}nx}\mathrm{d}x,&n=1,2,\cdots\\\frac{a_0}{2},&n=0\\\frac12(a_n+\mathrm{i}b_n)=\frac1{2\pi}\int_{-\pi}^\pif(x)\mathrm{e}^{\mathrm{i}nx}\mathrm{d}x,&n=-1,-2,\cdots\end{cases}●离散的Fourier 反变换●\hat{f}(n)=\frac1{2\pi}{\int_{-\pi}^{\pi}}f(x)\mathrm{e}^{-inx}\mathrm{d}x\quad(n=0,\pm1,\cdots)。

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结数学分析是数学的一个重要分支,它研究实数域上的函数、极限、连续性、可导性、积分等基本概念和性质。

本文将对数学分析的一些重要知识点进行总结,帮助读者加深对数学分析的理解。

一、实数和实函数1.实数的定义和性质:实数是指具有无理数和有理数两类的数字,它们共同构成了实数域。

实数具有有序性和完备性两个重要性质。

2.函数的概念:函数是一种映射关系,它将自变量的值映射到因变量的值上。

函数可以通过函数关系式、函数图像和函数表达式等方式表示。

3.实函数的性质:实函数可以分为奇函数和偶函数。

奇函数关于原点对称,即f(-x)=-f(x);偶函数关于y轴对称,即f(-x)=f(x)。

另外,实函数可以是周期函数、有界函数、单调函数、非负函数等。

二、极限和连续性1. 极限的概念:函数f(x)在x趋于无穷大或无穷小时的极限表示为lim(x→∞)f(x)=L或lim(x→a)⁡f(x)=L。

其中,无穷大极限表示函数在x趋向于∞或-∞时的极限,而有限极限表示函数在x趋向于其中一点a 时的极限。

2. 极限的性质:极限具有唯一性、有界性、局部性和四则运算的性质。

也就是说,如果lim(x→a⁡)⁡f(x)=L,那么L是唯一确定的,并且lim(x→a⁡)⁡c= c、lim(x→a⁡)⁡(c*f(x)) = c*lim⁡(x→a⁡)⁡f(x)等。

3. 连续性的概念:函数f(x)在其中一点a处连续,表示为f(a⁡)=lim⁡(x→a⁡)⁡f(x)。

也就是说,在这一点上,函数的值等于极限。

4.连续性的性质:连续函数具有限制相容性、四则运算的连续性、复合函数的连续性等性质。

另外,闭区间上的连续函数是有界的,且在闭区间上存在最大值和最小值。

三、可导性和微分1. 可导性的概念:函数f(x)在其中一点a处可导,表示为f'(a)=lim⁡(x→a⁡)⁡(f(x)-f(a))/(x-a)。

也就是说,在这一点上,函数在图像上具有一条切线。

【自制】数学分析 重点概念整理 保研考研面试必备

【自制】数学分析 重点概念整理 保研考研面试必备

数学分析重点概念整理第一章 集合与函数1. 集合定理1.1.1可列个可列集之并也是可列集。

定理1.1.2 有理数集Q 是可列集Descartes 乘积集合{(,)|}A B x y x A y B ⨯=∈∈并且 2. 映射与函数映射的基本要素映射要求元素的像必须是唯一的,但不要求逆像也具有唯一性。

基本初等函数Dirichlet 函数,任何有理数都是其周期。

定义1.2.7 算术平均值:1...n a a n ++,调和平均值111...nna a ++第二章 数列极限1.实数系的连续性上确界的定义:下确界的定义:定理 2.1.1(确界存在定理——实数系连续性定理)非空有上界的数集必有上确界;非空有下界的数集必有下确界。

定理2.1.2非空有界数集的上(下)确界是唯一的。

2.数列与数列极限数列极限的形式 (1)唯一性定理2.2.1 收敛数列的极限必唯一 (2)有界性定理2.2.2收敛数列必有界 (3)数列的保序性定理2.2.3 设数列{},{}n n x y 均收敛,若,且a b <,则存在正整数N ,当n N >是,成立n n x y <四则运算只能推广到有限个数列的情况3.无穷大量4.收敛准则定理2.4.1 单调有界数列必定收敛。

(确界存在定理)用定理证明的时候先用方法证明有界性(归纳法等),再证明单调性(做差)用闭区间套定理可以证明定理2.4.3 实数集R 是不可列集。

定理2.4.5(Bolzano-Weierstrass 定理)有界数列必有收敛子列。

定理 2.4.6 若{}n x 是一个无界数列,则存在子列{}k n x 使得lim k n k x →∞=∞。

定理2.4.7(Cauchy收敛原理)数列{}n x收敛的充要条件是{}n x是基本数列。

由实数构成的基本数列必存在实数极限,这一性质称为实数系的完备性,有理数不具有完备性。

实数系之间的推理关系:定理2.4.8 实数系的完备性等价于实数系的连续性。

(完整版)《数学分析》考试知识点.

(完整版)《数学分析》考试知识点.

《数学分析》考试知识点题目类型及所占比例:填空题(20分)、解答题(60分)、证明题(70分)考试范围:一、极限和函数的连续性考试内容:1映射与函数的概念及表示法,函数的四则运算、复合函数与反函数的求法,函数的有界性、奇偶性、单调性与周期性;2数列与函数极限的定义与性质,函数的左右极限,无穷小量与无穷大量的概念及关系、无穷小量与无穷大量的阶,极限的计算;3函数的连续性和一致连续性;4实数系的连续性;5连续函数的各种性质。

考试要求:1理解映射与函数的概念,掌握函数的表示法;会函数的四则运算、复合运算;知道反函数及隐函数存在的条件及求法;了解初等函数的概念,会求初等函数的定义域;2理解函数与数列极限(包括左右)的概念,会用极限的概念证明有关极限的命题;熟练掌握极限的四则运算及性质;会问题及简单的求函数熟练掌握数列极限与函数极限的概念;理解无穷小量的概念及基本性质。

掌握极限的性质及四则运算性质,能够熟练运用两面夹原理和两个特殊极限。

掌握实数系的基本定理。

熟练掌握函数连续性的概念及相关的不连续点类型。

熟练掌握闭区间上连续函数的性质。

二、一元函数微分学考试主要内容:微分的概念、导数的概念、微分和导数的意义;求导运算;微分运算;微分中值定理;洛必达法则、泰勒展式;导数的应用。

考试要求:理解导数和微分的概念。

熟练掌握函数导数与微分的运算法则,包括高阶导数的运算法则、复合函数求导法则,会求分段函数的导数。

熟练掌握Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor展式。

能用导数研究函数的单调性、极值,最值和凸凹性。

掌握用洛必达法则求不定式极限的方法。

三、一元函数积分学考试主要内容:定积分的概念、性质和微积分基本定理;不定积分和定积分的计算;定积分的应用;广义积分的概念和广义积分收敛的判别法。

考试要求:理解不定积分的概念。

掌握不定积分的基本公式,换元积分法和分部积分法,会求初等函数、有理函数和三角有理函数的积分。

数学分析讲义第六版pdf

数学分析讲义第六版pdf

数学分析讲义第六版pdf在学习数学分析时,有一本非常优秀的讲义——《数学分析讲义》第六版。

它详细讲解了数学分析的基础知识,理论和应用,是广大数学爱好者必备的学习资料。

以下是该讲义的主要内容:一、实数的构造1.自然数与整数在学习实数的构造之前,我们需要先了解自然数和整数的概念。

自然数是指数学中常用的一种数,大于等于1的数,表示为N={1,2,3,...}。

整数是指自然数、0、自然数相反数所组成的集合,表示为Z={...,-3,-2,-1,0,1,2,3,...}。

2.有理数的密度性有理数是指一切整数与分数的总称,表示为Q。

在数轴上,无论任意两个不同的有理数x和y,总可以找到另一个有理数z,使得x<z<y。

3.实数集的引入为了解决开方运算中出现的无理数问题,人们引入了实数的概念。

实数是由有理数集合扩充得到的,表示为R。

实数集具有有理数集合的性质,并且保证了开方运算的存在性和唯一性。

二、极限与连续1.极限的概念在数学中,极限是一种重要的概念,是函数、数列等数学对象的基本性质之一。

如果函数f(x)在x=a的任意邻域内都可以无限接近L,那么就称L是f(x)在x=a处的极限,表示为limf(x)=L。

2.函数连续的概念函数在定义域上的任意一点处都存在极限,并且极限等于函数在该点的函数值,那么就称函数在该点处连续。

函数连续可以用极限的概念来描述:函数f(x)在x=a处连续,当且仅当limf(x)=f(a)。

三、导数与微分1.导数的定义导数是描述函数在某个点的变化率的量,表示为f'(x)或y'。

导数的定义式是f'(x)=lim(f(x+h)-f(x))/h(h→0)。

导数的几何意义是函数在该点处的切线斜率。

2.微分的概念微分是导数的一种形式化表达方式,表示为df(x)=f'(x)dx。

它可以用于计算函数值的微小变化。

以上是《数学分析讲义》第六版的主要内容,它们构成了数学分析的重要基础知识,掌握这些知识对于深入研究数学分析及其应用至关重要。

(完整版)数学分析复习资料及公式大全

(完整版)数学分析复习资料及公式大全

导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全导数公式:求导是微积分的重要内容之一,掌握导数公式对于解题至关重要。

常见的导数公式如下:tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)·tan(x)csc(x)的导数为-csc(x)·cot(x)ax的导数为ax·ln(a)log_a(x)的导数为1/(x·ln(a))基本积分表:积分是微积分的重要内容之一,掌握基本积分表对于解题至关重要。

常见的基本积分表如下:arcsin(x)的导数为1/(sqrt(1-x^2))arccos(x)的导数为-1/(sqrt(1-x^2))arctan(x)的导数为1/(1+x^2)arcctan(x)的导数为-1/(1+x^2)tan(x)dx=-ln|cos(x)|+Ccot(x)dx=ln|sin(x)|+Csec(x)dx=ln|sec(x)+tan(x)|+Ccsc(x)dx=ln|csc(x)-cot(x)|+Cdx/x=ln|x|+Csin(x)dx=-cos(x)+Ccos(x)dx=sin(x)+Cdx/(x^2+a^2)=1/a·arctan(x/a)+Cdx/(a^2-x^2)=1/(2a)·ln|(a+x)/(a-x)|+C dx/(a^2+x^2)=1/a·ln|(a+x)/x|+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+C e^x dx=e^x+Csin^2(x)dx=1/2·(x-sin(x)cos(x))+C cos^2(x)dx=1/2·(x+sin(x)cos(x))+Csec(x)·tan(x)dx=sec(x)+Ccsc(x)·cot(x)dx=-csc(x)+Ca^x dx=a^x/ln(a)+Csinh(x)dx=cosh(x)+Ccosh(x)dx=sinh(x)+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+Cπ/2+πn (n为整数)lim(1+x)→∞=e=2.xxxxxxxxxxxxxxx。

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结数学分析是数学专业的重要基础课程,它为后续的许多数学课程提供了必要的理论基础和方法。

以下是对数学分析中的一些重要知识点的总结。

一、函数函数是数学分析中的核心概念之一。

函数可以理解为一种对应关系,对于给定的自变量的值,通过某种规则确定唯一的因变量的值。

1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每一个数 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的数 y 与之对应,那么就称f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。

2、函数的性质(1)单调性:如果对于定义域内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) >f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

(2)奇偶性:如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)= f(x),那么函数 f(x)就叫做奇函数;如果都有 f(x) = f(x),那么函数f(x)就叫做偶函数。

(3)周期性:对于函数 y = f(x),如果存在一个不为零的常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x)都成立,那么就把函数 y = f(x)叫做周期函数,周期为 T。

3、反函数设函数 y = f(x),其定义域为 D,值域为 R。

如果对于 R 中的每一个 y 值,在 D 中都有唯一确定的 x 值与之对应,那么就可以得到一个新的函数 x =φ(y),称其为函数 y = f(x)的反函数。

二、极限极限是数学分析中用于描述函数在某个过程中的变化趋势的重要概念。

1、数列的极限对于数列{an},如果存在一个常数 A,对于任意给定的正数ε(无论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A|<ε 都成立,那么就称常数 A 是数列{an} 的极限,记作lim(n→∞)an = A。

最新数学分析知识点最全汇总

最新数学分析知识点最全汇总

第一章实数集与函数§1实数授课章节:第一章实数集与函数—-§1实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数"开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质1、实数(,q p q p ⎧≠⎪⎪⎨⎪⎪⎩有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示.{}|R x x =为实数--全体实数的集合.[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: ,n a ,,n n a ≠1(1)9999n n aa --0,a =则记;对于负有限小数,则先将y -表示为无限小数,现在所得的小数之前加负0.0000例: 2.001 2.0009999→;利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1)定义1给定两个非负实数01.n x a a a =,01.n y b b b =。

其3 2.99992.001 2.0099993 2.9999→-→--→-;;中00,a b 为非负整数,,k k a b (1,2,)k =为整数,09,09k k a b ≤≤≤≤.若有,0,1,2,k k a b k ==,则称x 与y 相等,记为x y =;若00a b >或存在非负整数l ,使得,0,1,2,,k k a b k l ==,而11l l a b ++>,则称x 大于y 或y 小于x ,分别记为x y >或y x <.对于负实数x 、y ,若按上述规定分别有x y -=-或x y ->-,则分别称为x y =与x y <(或y x >).规定:任何非负实数大于任何负实数.2) 实数比较大小的等价条件(通过有限小数来比较).定义2(不足近似与过剩近似):01.n x a a a =为非负实数,称有理数01.n n x a a a =为实数x 的n 位不足近似;110n n n x x =+称为实数x 的n 位过剩近似,0,1,2,n =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学分析(3)》复习资料第十三章 函数列与函数项级数(5%)1.(1)函数列收敛域为(),1,2,nn f x x n == (1,1]-,极限函数为0,1,()1, 1.x f x x ⎧<⎪=⎨=⎪⎩.(2)函数列sin (),1,2,n nxf x n n == 收敛域为(,)-∞+∞,极限函数为()0f x =. 2.(1)函数列在(02(),1,2,nx n f x nxe n -== ,)+∞上不.一致收敛. (2)函数列()1,2,n f x n == 在(1,1)-上一致收敛. (3)函数列22(),1,2,1n xf x n n x ==+ 在(,上一致收敛.)-∞+∞(4)函数列(),1,2,n xf x n n== 在[0上不.一致收敛. ,)+∞(5)函数列()sin,1,2,n xf x n n== 在上不.一致收敛. (,-∞+∞)3.(1)函数项级数nn x∞=∑在(1上不.一致收敛. ,1)-(2)函数项级数2sin nx n ∑,2cos nxn ∑在上一致收敛.(,-∞+∞)(3)函数项级数(1)!nx n -∑在上一致收敛. [,]r r -(4)函数项级数122(1)(1)n nx x --+∑在(,上一致收敛. )-∞+∞(5)函数项级数n n x ∑在11r x r r ∙>⎧⎪>⎨=⎪⎩上一致收敛上不一致收敛.(6)函数项级数2nx n ∑在上一致收敛.[0,1](7)函数项级数12(1)n x n --+∑在上一致收敛.(,-∞+∞)(8)函数项级数221(1)n x x -+∑在(,上不.一致收敛. )-∞+∞第十四章 幂级数(10%)1.对于幂级数,若0n n n a x ∞=∑lim n ρ=(1limn n na a ρ+→∞=) 则(i )当0ρ=时,收敛半径R =+∞,收敛域为(,)-∞+∞;(ii )当ρ=+∞时,收敛半径,仅在0R =0x =处收敛; (iii )当0ρ<=+∞时,收敛半径1R ρ=,收敛域为(,)R R -,还要进一步讨论区间端点x R =±处的敛散性.2.幂级数展开式: (1)()2(0)(0)(0)()(0)1!2!!n nf f f f x f x x x n '''=+++++(2)011nn x x ∞==-∑,01(1)1n n n x x ∞==-+∑ (1x )<. (3)2(1)(1)(1))12!!m n m m m m m n x mx x x n ---++=+++++ (11)x -<<111],.1110101m m m ≤--⎧⎪-<<-⎨⎪>-⎩时,收敛域为(,)时,收敛域为(,]时,收敛域为[,(1(4)1110(1)(1)ln(1)(11)1n n n n n n x x x x n n -∞∞+==--+==-<≤+∑∑,1ln(1)nn x x n∞=--=∑ (11)x -≤<. (5)210(1)sin (21)!n n n x x n ∞+=-=+∑,20(1)cos (sin )(2)!n nn x x n ∞=-'==∑ ()x -∞<<+∞.(6)10(1)arctan (11)21n n n x x n ∞+=-=-≤+∑≤(7)0)!nxn x n ∞==-∞<<+∞∑e x3.幂级数的和函数(1)1)(0,1,2,k 1knn kx x x x ∞==<-)∑ = . (2)()(1)1)1knnn kx x x x ∞=--=<+)∑ . (0,1,2,k = (3)1ln(1)nn x x n∞==--∑ .(11)x -≤<(4)121111()1(1)n nn n n n x nxx x x x ∞∞∞-===''⎛⎫⎛⎫'==== ⎪ ⎪--⎝⎭⎝⎭∑∑∑ (1x )<. (5)223)21111(1)()1(1)(1n n n n n n x n n x x x x x x ∞∞∞-==='''''⎛⎫⎛⎫⎛⎫''-===== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭∑∑∑ (1x <). 第十五章 傅里叶级数(10%)()f x 是以2π为周期且在[,]ππ-上可积的函数: 1.01()(cos sin )2n n n a f x a nx b nx ∞==++∑,01()a f x πππ-=⎰dx ,1()cos n a f x nx πππ-=⎰dx ,1()sin nbf x nx πππ-=⎰dx 1,2,n ,= .2.01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,01()ll a f x l -=⎰dx , 1()cos l n l n x a f x dx πl l -=⎰,1()sin l n l n xb f x dx πl l-=⎰,1,2,n = .3.(1)偶函数的傅里叶级数:01()cos2n n a n x f x a l π∞==+∑,012()cos ()cos l l n l n x n xa f x dx f x dx πl l l l π-==⎰⎰,. 1,2,n = 01()cos 2n n a f x a nx ∞==+∑,012()cos ()cos n a f x nxdx f x nxd πππππ-==⎰⎰x ,1,2,n = .(2)奇函数的傅里叶级数:1()sinn n n x f x b lπ∞==∑,012()sin ()sin l l n l n x n xf x dx f x dx l l l l πb π-==⎰⎰1,2,,n = .1()sin n n f x b ∞==∑nx ,012()sin ()sin n b ,f x nxdx f x nxdx πππππ-==⎰⎰1,2,n = .第十六章 多元函数的极限与连续(5%)1.若累次极限00lim lim (,)x x y y f x y →→,00lim lim (,)y y x x f x y →→和重极限00(,)(,)lim (,)x y x y f x y →都存在,则三者相等.2.若累次极限00lim lim (,)x x y y f x y →→与00lim lim (,)y y x x f x y →→存在但不相等,则重极限00(,)(,)lim (,)x y x y f x y →必不存在.3.2222(,)(0,0)lim 0x y x y x y →=+,2222(,)(0,0)1lim x y x y x y →++=+∞+,22(,)lim 2x y →=,22(,)(0,0)1lim ()sin 0x y x y x y →+=+,2222(,)(0,0)sin()lim 1x y x y x y →+=+. 第十七章 多元函数微分学(20%)1.全微分:z zdz dx dy x y ∂∂=+∂∂. 2.zzz x y x yx x y yt t∂∂s t s sts∂∂∂∂∂∂∂∂∂∂z z x z y s y t∂∂∂∂∂=+s x s y z z x z t x t y ∂∂∂∂∂∂∂∂∂∂=+∂∂∂∂∂. 3.若函数f 在点可微,则0P f 在点沿任一方向的方向导数都存在,且0P 000(,,)l x y z 0000()()cos ()cos ()cos l x y z f P f P f P f P αβγ=++,其中cos α,cos β,cos γ为方向l x 的方向余弦,000(,,)y z即cos α=cos β=,cos γ=4.若(,,)f x y z 在点存在对所有自变量的偏导数,则称向量0000(,,)P x y z 000((),(),())x y z f P f P f P 为函数f 在点的梯度,记作0P 000(),()ad )z ((),x y gr f P f =P f P f .向量grad f 的长度(或模)为gra d f =.5.设,(,z f x y xy =+)f 有二阶连续偏导数,则有1211z 212()z f yf z x x y y y ∂⎛⎫∂ ⎪''∂+∂∂⎝⎭==∂∂∂∂2f f y f yf x∂'''=⋅+⋅=+∂',11122212221112221(1)()f f x f y f f x f f x y f xyf ''''''''''''''''=⋅+⋅++⋅+⋅=++++.6.设,令00()()0x y f P f P ==0()xx f P A =,0()xy f P B =,0()yy f P C =,则(i )当,时,20AC B ->0A >f 在点取得极小值; 0P (ii )当,20AC B ->0A <时,f 在点取得极大值; 0P (iii )当时,20AC B -<f 在点不能取得极值; 0P (iv )当时,不能肯定20AC B -=f 在点是否取得极值.0P 第十八章 隐函数定理及其应用(10%)1.隐函数,则有(,)0F x y =x yF dydx F =-. 2.隐函数,则有(,,)0F x y z =x z F zx F ∂=-∂,y zF z y F ∂=-∂(,,,)0(,,,)0F x y u v G x y u v . =⎧⎨3.隐函数方程组:=⎩,有x yu v xyuv F F F F F F F F x y u v G G G G GG G G x yuv ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫ ⎪⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭, 则uv uv uv F F J G G =,xv xv xv F F J G G =,uxux u x F F J G G =,y v yv y v F F J G G =,uyuy uyF F JG G =, xv uv J u x J ∂=-∂ ,ux uv J vx J ∂=-∂,yv uv J u y J ∂=-∂,uy uvJ v y J ∂=-∂. 4.平面曲线在点的切线..方程为(,)0F x y =000(,)P x y 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线..方程为000000(,)()(,)()0y x F x y x x F x y y y -+-=. 5.空间曲线:在点处的L (,,)0(,,)0F x y z G x y z =⎧⎨=⎩0000(,,)P x y z切线..方程为00z x yz x y z x y z x y 0x x y y z z F F F F F F G G G G G G ---==⎛⎫⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭⎝⎫⎪⎭00000()()()0x y z F x x F y y F z z , 法线..方程为. 00()()()yz xy zx yz xy zx F F F F F F x x y y z z G G G G G G ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6.曲面在点处的切平面...方程为(,,)0F x y z =0000(,,)P x y z -+-+-=, 法线..方程为00x y 0zx x y y z z F F F ---==. 7.条件极值例题:求函数在约束条件22u x y z =++222z x y =+与4x y z ++=下的最大值和最小值.解:令,22222(,,,,)()(4)L x y z x y z z x y x y z λμλμ=+++--+++-则由,得稳定点22220222040x yz L x x L y y L z L z x y L x y z λμλμλμλμ=-+=⎧⎪=-+=⎪⎪=++=⎨⎪=--=⎪=++-=⎪⎩00112x y z =⎧⎪=⎨⎪=⎩及228x y z =-⎧⎪=-⎨⎪=⎩,故当1x y ==,时函数在约束条件下取得最小值, 2z =22u x y z =++28z =26当,时函数在约束条件下取得最大值.2x y ==-22u x y z =++72第十九章 含参量积分(5%)1.,;10()s xs x e +∞--Γ=⎰dx 0s >(1)(s s )s Γ+=Γ;1(2Γ=;1()2n Γ+=,1()2n Γ-=. 2.1110(,)(1)p q p q x x ---⎰)dx (0,0p q >>B =;(,)(,)p q q p B =B ;1(,)(,1)1q p q p q p q -B =B -+- ;(0,1p q >>)1(,)(1,)1p p q p q -p q B =B -+-) ;(1,0p q >>(1)(1)(,)(1,1)(1)(2)p q p q p q p q p q --B =B --+-+- .(1,1p q >>)3.()()(,)()p q p q p q ΓΓB =Γ+ .(0,0p q >>)第二十章 曲线积分(5%)1.设有光滑曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,函数(,)f x y 为定义在L 上的连续函数,则(,)((),(Lf x y ds f t t βαϕψ=⎰⎰;当曲线由方程L ()y x ψ=,[,]x a b ∈表示时,(,)(,(bLaf x y ds f x x ψ=⎰⎰.2.设平面曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,其中()t ϕ,在[,]αβ上具有一阶连续导函数,且((),())A ϕαψα,((),())B ϕβψβ. 又设与为上的连续函数,则沿L 从A 到(,)P x y (,)Q x y L B 的第二型曲线积分(,)(,)[((),())()((),())()]LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰.第二十一章 重积分(20%)1.若(,)f x y 在平面点集}{12(,)()(),D x y y x y y x a x b =≤≤≤≤(x 型区域)上连续,其中1()y x ,2()y x 在[,上连续,则]a b 21()()(,)(,)b y x ay x Df x y d dx f x y dy σ=⎰⎰⎰⎰,即二重积分可化为先对y ,后对x 的累次积分.若}{12(,)()(),D x y x y x x y c y d =≤≤≤≤,其中1()x y ,2()x y 在]上连续,则二重积分可化为先对[,c d x ,后对y 的累次积分21()()(,)(,dx y cx y D)f x y d dy f x y σ=⎰⎰⎰⎰dx .在二重积分中,每次积分的上、下限一定要遵循“上限大,下限小”的原则,且一般来说,第一次(先)积分的上、下限一般为第二次(后)积分的积分变量的函数或常数,而第二次(后)积分的上、下限均为常数. 2.格林公式:若函数,在闭区域上连续,且有一阶偏导数,则有(,)P x y (,)Q x y D ()L DQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰ (或L Dx y d Pdx Q +dy P Qσ∂∂∂∂=⎰⎰⎰ D ),这里为区域的边界曲线,并取正方向. L 3.设是单连通闭区域.若函数,在内连续,且具有一阶连续偏导数,则以下四个条件等价:D (,)P x y (,)Q x y D (i )沿内任一按段光滑封闭曲线,有D L 0LPdx Qdy +=⎰;(ii )对中任一按段光滑曲线,曲线积分与路线无关,只与的起点及终点有关;D L LPdx Qdy +⎰L (iii )是内某一函数的全微分,即在内有Pdx Qdy +D (,)u x y D du Pdx Qdy =+;(iv )在内处处成立D P Qy x∂∂=∂∂. (,)4.设f x y 在极坐标变换cos ,:sin ,x r T y r θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域与D r θ平面上区域∆对应,则成立(,D)(cos ,sin )f x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.通常积分区域为圆形、扇形、环形或为其一部分,或积分区域的边界线用极坐标方程表示较简单,且被积函数为22()f x y +,(y f x ,(xf y,()f x y +等形式时常选用在极坐标系下计算二重积分.。

相关文档
最新文档