(完整word版)最新数学分析知识点最全汇总
数学分析知识要点整理
数学分析知识要点整理数学分析是数学专业的重要基础课程,它为后续的许多课程提供了必备的知识和方法。
以下是对数学分析中的一些关键知识要点的整理。
一、函数函数是数学分析的核心概念之一。
1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每个元素 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的元素 y 与之对应,那么就称 f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。
2、函数的性质(1)单调性:若对于定义域内的任意两个自变量 x1 和 x2,当 x1< x2 时,都有 f(x1) < f(x2)(或 f(x1) > f(x2)),则称函数 f(x)在其定义域上单调递增(或单调递减)。
(2)奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数 f(x)为奇函数;若 f(x) = f(x),则称函数 f(x)为偶函数。
(3)周期性:若存在非零常数 T,使得对于定义域内的任意 x,都有 f(x + T) = f(x),则称函数 f(x)为周期函数,T 为函数的周期。
3、反函数设函数 y = f(x),其定义域为 D,值域为 R。
如果对于 R 中的每一个 y,在 D 中都有唯一确定的 x 与之对应,使得 y = f(x),则这样得到的 x 关于 y 的函数称为 y = f(x)的反函数,记作 x = f⁻¹(y)。
二、极限极限是数学分析中的重要概念,用于描述变量在一定变化过程中的趋势。
1、数列的极限对于数列{an},若存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 恒成立,则称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。
2、函数的极限(1)当x → x0 时函数的极限:设函数 f(x)在点 x0 的某个去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε,总存在正数δ,使得当 0 <|x x0| <δ 时,不等式|f(x) A| <ε 恒成立,则称常数A 是函数 f(x)当x → x0 时的极限,记作lim(x→x0) f(x) = A。
数学分析知识点总结
数学分析知识点总结数学分析是数学的一个重要分支,它研究数学对象的极限、连续性和变化率等性质。
在数学分析的学习过程中,我们掌握了许多重要的知识点,下面我将对其中的一些知识点进行总结。
1. 极限与连续在数学分析中,极限是一个非常重要的概念。
我们通常用符号lim来表示一个函数的极限,如lim (x→a) f(x)。
极限可以理解为函数在某一点附近值的稳定性。
如果极限存在且与a点无关,我们就说函数在a点是连续的。
在求极限的过程中,常用的方法有代数运算法、夹逼准则、洛必达法则等。
2. 导数与微分导数是函数在某一点的变化率,也可以理解为函数的斜率。
函数f(x)在点x=a处的导数可以用f'(a)或df/dx(x=a)表示。
导数的计算方法有基本求导法则和高阶导数法则等。
微分是一个近似的概念,它表示函数在某一点附近的线性近似。
微分有利于研究函数的性质和进行近似计算。
3. 积分与微积分基本定理积分是求解曲线下面的面积或曲线长度的运算。
在积分计算中,常用的方法有换元法、分部积分法、定积分的性质等。
微积分基本定理是微积分中的核心理论之一,它将导数与积分联系起来。
基本定理分为牛顿-莱布尼茨公式和柯西中值定理两部分,它们在微积分的理论和应用中都起着重要的作用。
4. 级数与收敛性级数是无穷多项之和,其求和问题是数学分析中的一个重要内容。
级数的收敛性判断是一个关键问题,主要有比较判别法、积分判别法、根值判别法等。
级数的收敛性与和的计算直接关系到级数的应用,如泰勒级数、傅里叶级数等。
5. 无穷极限与无穷小量无穷极限是指当自变量趋于无穷大或无穷小时,函数的趋势和性质。
无穷小量的概念是微积分的基础,它表示比自变量趋于零更小的量。
在求解极限、导数等问题时,无穷小量具有非常重要的应用价值。
6. 参数方程与极坐标参数方程是一种以参数形式给出函数方程的表达方式。
在参数方程中,通常我们会用一个参数来表示自变量和函数值,通过参数的取值范围可以得到函数图形。
数学分析的知识点
数学分析的知识点数学分析是数学的一个重要分支,涵盖了许多基本概念和定理。
本文将介绍数学分析的一些核心知识点,包括极限、导数、积分和级数等。
一、极限极限是数学分析的基础概念之一,它描述了函数在某一点附近的行为。
对于一个函数f(x),当x无限接近某一点a时,如果存在一个实数L,使得对于任意给定的正数ε,都存在一个正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立,那么我们称L是f(x)在x趋于a时的极限,记作lim(x→a)f(x)=L。
极限有许多重要的性质和定理,如极限的唯一性、四则运算法则、夹逼定理等,这些性质和定理在数学分析的推导和证明中起到了重要的作用。
二、导数导数是描述函数变化率的概念,它在数学和物理等领域中有广泛的应用。
对于一个函数f(x),如果在某一点x处,当x趋于x0时,存在一个常数A,使得lim(x→x0) [f(x)-f(x0)]/(x-x0) = A,那么我们称A为f(x)在x0处的导数,记作f'(x0)或df(x)/dx|x=x0。
导数具有许多重要的性质和定理,如导数的四则运算法则、链式法则、高阶导数等,这些性质和定理在求解函数的极值、函数的图像绘制等问题中起到了关键的作用。
三、积分积分是对函数的求和过程,它是导数的逆运算。
对于一个函数f(x),如果存在一个函数F(x),使得对于任意给定的区间[a,b],有∫(a→b) f(x) dx = F(b) - F(a),那么我们称F(x)为f(x)的一个原函数,而积分∫(a→b) f(x) dx表示函数f(x)在区间[a,b]上的积分。
积分也具有许多重要的性质和定理,如积分的线性性质、换元积分法、分部积分法等,这些性质和定理在求解曲线下的面积、求解定积分等问题中起到了重要的作用。
四、级数级数是数学分析中的一个重要概念,它是无穷多项的和。
对于一个数列{a_n},我们可以将其前n项的和表示为S_n=a_1+a_2+...+a_n,如果数列{S_n}的极限存在,那么我们称级数∑(n=1→∞) a_n收敛,极限值为该级数的和。
数学分析重点知识点总结
数学分析重点知识点总结•相关推荐数学分析重点知识点总结在日复一日的学习中,大家都没少背知识点吧?知识点就是掌握某个问题/知识的学习要点。
想要一份整理好的知识点吗?下面是小编为大家收集的数学分析重点知识点总结,欢迎阅读与收藏。
数学分析重点知识点总结1一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。
二、平面向量和三角函数对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。
三、数列数列这个板块,重点考两个方面:一个通项;一个是求和。
四、空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。
五、概率和统计概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。
六、解析几何这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
七、压轴题同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
数学分析重点知识点总结21、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
数学分析知识点
数学分析知识点数学分析是数学的一个重要分支,它研究的是函数、极限、连续性、微分和积分等概念与性质。
在这篇文章中,我们将介绍一些数学分析的基本知识点,帮助读者对这门学科有一个初步的了解。
一、函数与极限函数是数学中的一个基本概念,它描述了两个数集之间的对应关系。
在数学分析中,我们常常关注函数的极限。
函数的极限可以理解为函数在某个点上的趋势或趋近的程度。
对于一个函数f(x),当自变量x趋近于某个值a时,如果函数值f(x)无限接近于一个常数L,我们就说函数f(x)在点a处的极限为L,记作lim┬(x→a)〖f(x)=L〗。
二、连续性连续性是函数的一个重要性质。
一个函数在某个点上连续,意味着在该点的函数值与极限值相等。
具体来说,对于一个函数f(x),如果它在某个点a处的极限存在且等于函数值f(a),那么我们就说函数f(x)在点a处连续。
三、微分微分是数学分析中的一个重要概念,它描述了函数在某个点上的变化率。
对于一个函数f(x),如果它在某个点a处的极限存在,那么我们就可以求出函数在该点的导数。
导数表示了函数在该点上的切线斜率,它可以帮助我们研究函数的变化趋势和性质。
四、积分积分是数学分析中的另一个重要概念,它描述了函数在某个区间上的累积效应。
对于一个函数f(x),如果我们能找到一个新的函数F(x),使得F'(x)=f(x),那么我们就说函数f(x)在该区间上是可积的,同时F(x)称为函数f(x)的一个原函数。
积分可以帮助我们计算曲线下的面积、求解定积分等问题。
五、泰勒展开泰勒展开是一种将函数表示为无穷级数的方法,它可以将一个函数在某个点附近用多项式逼近。
具体来说,对于一个光滑的函数f(x),我们可以使用泰勒级数来近似表示它。
泰勒展开在数学分析中有着广泛的应用,可以帮助我们研究函数的性质和行为。
综上所述,数学分析是一门研究函数、极限、连续性、微分和积分等概念与性质的学科。
通过学习数学分析,我们可以深入理解数学的本质,掌握一些重要的数学工具和方法。
数学分析知识点总结
估值不等式、积分第一、第二中值定理。
5、定积分与不定积分旳联络
(1)变上限积分旳导数公式;
d
x
f (t )dt f ( x),
dx a
d
b( x)
f (t)dt
f b( x)b( x)
f a( x)a( x)
dx a( x)
(2)牛-莱公式。
(3)可积函数不一定有原函数,有原函 数旳函数不一定可积。
n 但其极限是无理数 e.
即数列旳单调有界定理在有理数域不成立。
3. 区间套定理
若{[ an,bn ]}是一种区间套,则在实数系中存在唯一旳点
,使 [an ,bn ],n 1,2,
反例:取单调递增有理数列{an },使an 2, 取单调递减有理数列{bn },使bn 2,
则 有理数域内构成闭区间 套 [an ,bn ]Q, 其在实数系内唯一的公 共点为 2 Q.
1)恒等变形(加一项减一项、乘一项除一项、 三角恒等变形);
2)线性运算;
3)换元法: 第一类(凑分法)——不需要变换式可逆; 第二类——变换式必须可逆;
4)分部积分法——常可用于两个不同类型函数乘积 旳积分; “对反幂三指,前者设为u”
5)三种特殊类型函数 “程序化”旳积分法。
注:检验积分成果正确是否旳基本措施。
(6) cos xdx sin x C
(12) e xdx e x C
(13)
a xdx
ax C ln a
(20)
a2
1
x 2 dx
1 a
arctan
x a
C
(21)
x2
1
a 2 dx
1 2a
ln
高中数学知识点完全总结(打印版)
高中数学知识点总结一、三角函数【1】以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=yr。
【2】同角三角函数平方关系:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;同角三角函数倒数关系:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;同角三角函数相除关系:αααcos sin =tg ,αααsin cos =ctg 。
【3】函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;对称轴是直线)(2Z k k x ∈+=+ππϕω,图象与直线B y =的交点都是该图象的对称中心。
【4】三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。
【5】=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1【6】二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -【7】三倍角公式是:sin3α=αα3sin 4sin 3-cos3α=ααcos 3cos 43-【8】半角公式是:sin2α=2cos 1α-±cos2α=2cos 1α+±tg2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。
数学分析的知识点总结
数学分析的知识点总结数学分析是数学的一个重要分支,它研究的是函数、极限、连续性、微分和积分等概念及其相互关系。
在学习数学分析的过程中,我们需要掌握一系列的基本知识点。
本文将对数学分析的一些重要知识点进行总结,帮助读者更好地理解和应用这些概念。
1. 函数与极限函数是数学中的基本概念,它描述了自变量和因变量之间的关系。
在数学分析中,我们需要研究函数的极限。
极限是函数在某一点附近的表现,它描述了函数在这一点的趋势和性质。
通过极限的概念,我们可以研究函数的连续性、导数和积分等重要性质。
2. 连续性与间断点连续性是函数的重要性质之一,它描述了函数在某一区间上的无间断性。
如果函数在某一点上连续,那么它在该点的左右极限存在且相等。
间断点是函数在某一点上不连续的情况,它可以分为可去间断点、跳跃间断点和无穷间断点等不同类型。
3. 导数与微分导数是函数在某一点上的变化率,它描述了函数在该点附近的切线斜率。
导数的计算可以通过极限的方法来实现,它是微分学的基础。
微分是导数的一个应用,它描述了函数在某一点附近的近似线性变化。
通过导数和微分的概念,我们可以研究函数的变化趋势、最值和曲线的凹凸性等性质。
4. 积分与不定积分积分是函数的一个重要操作,它描述了函数在某一区间上的累积效应。
通过积分,我们可以计算函数在某一区间上的面积、弧长和体积等量。
不定积分是积分的一个基本概念,它是积分的逆运算。
通过不定积分,我们可以求解函数的原函数和定积分。
5. 泰勒级数与幂级数泰勒级数是函数在某一点附近的展开式,它可以近似表示函数的性质和行为。
通过泰勒级数,我们可以计算函数在某一点的导数和积分等操作。
幂级数是一类特殊的泰勒级数,它在数学分析中有着广泛的应用,如求解微分方程和计算特殊函数的值等。
6. 极值与最值函数的极值和最值是函数的重要特征,它们描述了函数在某一区间上的最大值和最小值。
通过求解函数的导数和二阶导数,我们可以找到函数的极值点和最值点。
数学分析知识点的总结
数学分析知识点的总结数学分析是数学的一个重要分支,它研究的是函数、极限、连续性、微分和积分等概念与性质。
在学习数学分析的过程中,我们需要掌握一些基本的知识点。
本文将对数学分析中的一些重要知识点进行总结和概述。
一、函数与极限函数是数学分析的基础,它是一种特殊的关系,将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数的性质包括定义域、值域、单调性、奇偶性等。
而极限是函数中的一个重要概念,它描述了函数在某一点附近的趋势。
在计算极限时,我们需要使用极限的性质,如极限的四则运算法则、夹逼定理等。
二、连续性与一致连续性连续性是函数的一个重要性质,它描述了函数在定义域内的无间断性。
一个函数在某一点连续,意味着它在该点的极限存在且与函数值相等。
而一致连续性是连续性的一种更强的形式,它要求函数在整个定义域上都连续。
我们可以使用连续函数的性质来证明一些重要的定理,如介值定理、零点定理等。
三、微分与导数微分是数学分析中的一个重要概念,它描述了函数在某一点的局部变化率。
导数是微分的一种表示形式,它是函数在某一点的切线斜率。
在计算导数时,我们可以使用导数的性质,如导数的四则运算法则、链式法则等。
导数的应用广泛,如求极值、判定函数的增减性等。
四、积分与定积分积分是数学分析中的一个重要概念,它描述了函数与自变量之间的累积关系。
定积分是积分的一种形式,它表示了函数在某一区间上的累积效应。
在计算定积分时,我们可以使用定积分的性质,如定积分的线性性质、换元积分法等。
定积分的应用广泛,如计算曲线下的面积、求函数的平均值等。
五、级数与收敛性级数是数学分析中的一个重要概念,它是无穷个数的和。
级数的收敛性是级数的一个重要性质,它描述了级数的和是否有限。
在判断级数的收敛性时,我们可以使用级数的性质,如比较判别法、积分判别法等。
级数的收敛性对于数学分析中的许多问题都有着重要的应用。
综上所述,数学分析是一门重要的数学学科,它研究的是函数、极限、连续性、微分和积分等概念与性质。
(完整word版)高考数学知识点归纳总结,推荐文档
高中数学必修 + 选修知识点概括必修 1 数学知识点第一章:会合与函数观点1、会合三因素:确立性、互异性、无序性。
2、常有会合:正整数会合:N*或N,整数会合:Z ,有理数会合: Q,实数会合: R.3、并集 . 记作:A B.交集.记作: A B.全集、补集C U A { x | x U ,且 x A}(C U A)∩( C U B) = C U(A∪B) (C U A)∪( C U B) = C U(A∩B);A B B B A;简略逻辑:或:有真为真,全假为假。
且:有假为假,全真为真。
非:真假相反原命题互逆逆命题若 p则 q互若 q 则 p否为互逆互否为逆否否互否命题逆否命题若┐q则┐p若┐p则┐q互逆原命题:若 P则 q;抗命题:若q 则 p;否命题:若┑ P 则┑q;逆否命题:若┑ q 则┑ p。
常用变换:① f ( x y) f ( x) f ( y) f ( x y) f ( x).f ( y)证f ( x y)f ( y)f( )[()]() ( )f ( x)x f x y y f x y f y② f (x) f ( x) f (y) f (x y) f ( x) f ( y)y证:x xf()f()f() f (y)yy4、设 A、B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合A中的随意一个数 x ,在会合B中都有唯一确立的数 f x和它对应,那么就称 f : A B 为会合A到会合B的一个函数,记作: y f x , x A .分母不等于零5、定义域被开方大于等于零对数的幂大于零,底大于零不等于1值域:利用函数单一性求出所给区间的最大值和最小值,6、函数单一性:(1)定义法:设x1、x2[ a, b], x1 x2那么f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是增函数;f (x1 ) f ( x2 )0 f ( x)在[ a, b] 上是减函数.步骤:取值—作差—变形—定号—判断(2)导数法:设函数 y f ( x) 在某个区间内可导,若f (x) 0 ,则f ( x)为增函数;若f ( x)0 ,则 f ( x)为减函数 .7、奇偶性f x 为偶函数:f x f x 图象对于y 轴对称.函数 f x 为奇函数f x f x 图象对于原点对称 .若奇函数y f x 在区间0,上是递加函数,则y f x 在区间,0 上也是递加函数.若偶函数 yf x 在区间 0,上是递加函数,则yf x 在区间 ,0 上是递减函数.函数的几个重要性质:① 如 果 函 数 yf x 对 于 一 切 x R , 都 有f ax f ax 或 f ( 2a-x ) =f ( x ),那函数 y f x 的图象对于直线 x a 对称 .②函数 yf x 与函数 y fx 的图象对于直线x 0对称;函数 yf x 与函数 y f x 的图象对于直线y 0 对称;函数 yf x 与函数 yf x的图象对于坐标原点对称 .二、函数与导数1、几种常有函数的导数① C '0 ;② ( x n )' nx n 1 ;③ (sin x) ' cos x ; ④ (cos x) ' sin x ; ⑤ ( a x ) 'a xln a ; ⑥ ( e x) 'e x; ⑦ (log a x)'1 ;⑧ (ln x) ' 1x ln ax2、导数的运算法例( 1) (u v)'u ' v '.( 2) (uv)' u 'v uv ' .( 3) ( u)'u 'v uv ' (v 0) .vv 23、复合函数求导法例复合函数 yf (g (x)) 的导数和函数y f (u), u g ( x) 的导数间的关系为 y x y u u x , 即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积 .解题步骤 :分层—层层求导—作积复原导数的应用:1、 yf ( x) 在点 x 0 处的导数的几何意义 :函数 yf (x) 在点 x 0 处的导数是曲线yf ( x) 在P(x 0 , f (x 0 )) 处的切线的斜率 f (x 0 ) ,相应的切线方程是 yy 0 f (x 0 )(xx 0 ) .切线方程 : 过点 P x 0 , y 0 的切线方程,设切点为x 1, y 1 ,则切线方程为 y y 1 f ' x 1 x x 1 ,再将 P 点带入求出 x 1 即可 2、函数的极值 (---- 列表法 )(1) 极值定义:极值是在 x 0 邻近全部的点,都有f ( x) < f ( x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极大值;极值是在 x 0 邻近全部的点,都有 f ( x) > f (x 0 ) ,则 f ( x 0 ) 是函数 f (x) 的极小值 .(2) 鉴别方法:①假如在 x 0 邻近的左边 f ' (x) > 0,右边 f ' (x) < 0,那么 f ( x 0 ) 是极大值;②假如在 x 0 邻近的左边 f ' (x) < 0,右边 f ' (x) > 0,那么 f ( x 0 ) 是极小值 .3、求函数的最值(1) 求 y f (x) 在 (a, b) 内的极值(极大或许极小值)(2) 将 y f (x) 的各极值点与 f (a), f (b) 比较,此中最大的一个为最大值,最小的一个为极小值。
数学分析知识点
数学分析知识点数学分析是数学的一个重要分支,它研究的是函数、极限、连续性、微分和积分等概念与性质。
在数学分析中,有一些重要的知识点需要我们掌握和理解。
本文将介绍数学分析中的一些常见知识点,帮助读者对这些概念有更清晰的认识。
一、函数与极限1. 函数的定义与性质函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
函数的定义包括定义域、值域和对应关系等方面。
函数的性质包括奇偶性、周期性、单调性等。
2. 极限的概念与性质极限是函数的重要性质之一,它描述了函数在某一点附近的表现。
极限的定义包括数列极限和函数极限,它们都与趋近性和收敛性有关。
极限的性质包括四则运算法则、夹逼准则等。
二、连续性与可导性1. 连续函数与间断点连续函数是指在定义域内的每一个点上都具有极限,并且函数值与极限相等。
间断点是指函数在某一点上不满足连续性的情况,包括可去间断、跳跃间断和无穷间断等。
2. 可导函数与导数可导函数是指在定义域内的每一个点上都具有导数。
导数是函数在某一点处的切线斜率,它描述了函数的变化率。
导数的计算方法包括求导法则、高阶导数和隐函数求导等。
三、微分与积分1. 微分的概念与应用微分是导数的另一种表示形式,它描述了函数在某一点附近的局部线性近似。
微分的应用包括切线方程、极值与最优化等。
2. 积分的概念与计算积分是函数的反导数,它描述了函数在某一区间上的累积效应。
积分的计算方法包括不定积分和定积分,其中不定积分是求解原函数,定积分是计算曲线下的面积或求解定积分方程等。
四、级数与收敛性1. 数列与级数的概念数列是一系列数按照一定规律排列的结果,级数是数列的部分和的无穷和。
数列和级数的性质包括单调性、有界性和收敛性等。
2. 收敛级数的判别法收敛级数的判别法是判断级数是否收敛的方法。
常见的判别法包括比较判别法、比值判别法、根值判别法和积分判别法等。
以上是数学分析中的一些常见知识点,它们构成了数学分析的基础理论。
掌握这些知识点对于进一步学习和应用数学分析具有重要意义。
(word完整版)非常全的小学数学知识点汇总,推荐文档
一、各年级知识点:小学一年级九九乘法口诀表。
学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。
路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
二、必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、计算方面读懂理解会应用以下定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。
(完整版)最新数学分析知识点最全汇总(可编辑修改word版)
第一章实数集与函数§1实数授课章节:第一章实数集与函数——§1 实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质⎪1、实数⎧有理数: 任何有理数都可以用分数形式 q ( p , q 为整数且q ≠ 0) 表示,⎪p ⎨也可以用有限十进小数或无限十进小数来表示. ⎪⎩ 无理数: 用无限十进不循环小数表示.R = {x | x 一 一 一 }- - 一 一 一 一 一 一 一 .[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利 的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:例:2.001 → 2.0009999 ; 3 → 2.9999 ; -2.001 → -2.009999 -3 → -2.9999利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1) 定义 1 给定两个非负实数x = a 0 .a 1 a n , y = b 0 .b 1 b n . 其中对于正有限小数x = a 0 .a 1a 2 a n , 其中0 ≤ a i ≤ 9, i = 1, 2, , n , a n ≠ 0, a 0为非负整数,记x = a 0 .a 1 a n -1 (a n -1)9999 ;对于正整数x = a 0 , 则记x = (a 0 -1).9999 ;对于负有限小数(包括负整数) y ,则先将- y 表示为无限小数,现在所得的小数之前加负号.0 表示为 0= 0.0000a 0 ,b 0 为非负整数, a k , b k (k = 1, 2, ) 为整数, 0 ≤ a k ≤ 9, 0 ≤ b k ≤ 9 . 若有a k = b k , k = 0,1, 2, ,则称 x 与 y 相等,记为 x = y ;若a 0 > b 0 或存在非负整数l ,使得a k = b k , k = 0,1, 2, , l ,而a l +1 > b l +1 ,则称x 大于 y 或 y 小于x , 分别记为 x > y 或 y < x . 对于负实数 x 、 y , 若按上述规定分别有-x = - y 或-x > - y ,则分别称为x = y 与x < y (或 y > x ).规定:任何非负实数大于任何负实数.2)实数比较大小的等价条件(通过有限小数来比较).定义 2(不足近似与过剩近似): x = a 0 .a 1 a n 为非负实数,称 有理数 x = a .a a 为实数 x 的n 位不足近似; x = x + 1称为实数 xn0 1nn n10n的n 位过剩近似, n = 0,1, 2, .对于负实数 x = -a .a a,其n 位不足近似 x = -a .a a - 1; 0 1 nn 位过剩近似x n = -a 0 .a 1 a n .n 0 1 n10n注:实数 x 的不足近似 x n 当n 增大时不减,即有 x 0 ≤ x 1 ≤ x 2 ≤ ; 过剩近似 x n 当 n 增大时不增,即有x 0 ≥ x 1 ≥ x 2 ≥ .命题:记 x = a 0 .a 1 a n , y = b 0 .b 1 b n 为两个实数,则 x > y 的等 价条件是:存在非负整数 n ,使x n > y n (其中x n 为x 的n 位不足近似,y n 为 y 的n 位过剩近似).命题应用例 1.设x , y 为实数, x < y ,证明存在有理数r ,满足x < r < y . 证明:由 x < y ,知:存在非负整数 n ,使得x < y .令r =1(x+ y ),nn则 r 为有理数,且x ≤ x n < r < y n ≤ y .即x < r < y .2nn⎩3、实数常用性质(详见附录Ⅱ. P 289 - P 302 ).1) 封闭性(实数集R 对+, -,⨯, ÷ )四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为 0)仍是实数.2) 有序性: ∀a , b ∈ R ,关系a < b , a > b , a = b ,三者必居其一,也只居其一.3) 传递性: ∀a ,b ,c ∈ R , 若a > b , b > c ,则a > c .4) 阿基米德性: ∀a , b ∈ R , b > a > 0 ⇒ ∃n ∈ N 使得na > b .5) 稠密性:两个不等的实数之间总有另一个实数.6) 一一对应关系:实数集R 与数轴上的点有着一一对应关系.例 2.设∀a , b ∈ R ,证明:若对任何正数,有a < b +,则a ≤ b .(提示:反证法.利用“有序性”,取= a - b )二、绝对值与不等式1、绝对值的定义实数a 的绝对值的定义为| a |= ⎧ a ,a ≥ 0 .⎨-a a < 02、几何意义从数轴看,数a 的绝对值| a | 就是点a 到原点的距离.| x - a | 表示就是数轴上点x 与a 之间的距离.3、性质1)| a |=| -a |≥ 0;| a |= 0 ⇔ a = 0 (非负性);2) - | a |≤ a ≤| a | ;3)| a |< h ⇔ -h < a < h ,| a |≤ h ⇔ -h ≤ a ≤ h .(h > 0) ;abn (1 + x )n n 4)对任何a , b ∈ R 有| a | - | b |≤| a ± b |≤| a | + | b |(三角不等式);5)| ab |=| a | ⋅ | b |;6)= | a |( b ≠ 0 ).| b |三、几个重要不等式1、a 2 + b 2 ≥ 2 ab ,sin x ≤ 1. sin x ≤ x .2、均值不等式:对∀a 1, a 2 , , a n ∈ R + , 记M (a ) =a 1 + a 2 + + a n =1∑na ,(算术平均值)in n i i =11 ⎛ n ⎫ nG (a i ) = = ∏ a i ⎪ , (几何平均值)H (a ) =⎝ i =1 ⎭n = 1= n .(调和平均值) i1 + 1 + + 1 1 ∑n 1 ∑ 1 a 1 a2 a n n i =1 a i i =1 a i有平均值不等式: H (a i ) ≤ G (a i ) ≤ M (a i ), 即:n ≤≤ a 1 + a 2 + + a n1 + 1 + + 1 na 1 a 2 a n等号当且仅当a 1 = a 2 = = a n 时成立.3、Bernoulli 不等式:(在中学已用数学归纳法证明过)∀x > -1, 有不等式(1+ x )n ≥ 1+ nx ,n ∈ N .当x > -1且 x ≠ 0 , n ∈ N 且n ≥ 2 时,有严格不等式(1 + x )n > 1 + nx .证:由1 + x > 0 且1 + x ≠ 0, ⇒ (1 + x )n + n - 1 = (1 + x )n + 1 + 1 + + 1 >> n = n (1 + x ). ⇒ (1 + x )n > 1 + nx .4、利用二项展开式得到的不等式:对∀h > 0, 由二项展开式n a 1a 2 a n⎨二 绝对值与不等式 (1 + h )n = 1 + nh +n (n -1) h 2 +n (n -1)(n - 2)h 3 + + h n ,2!3!有(1 + h )n > 上式右端任何一项.[练习]P4.5 [课堂小结]:实数: ⎧一 实数及其性质.⎩[作业]P4.1.(1),2.(2)、(3),3§2 数集和确界原理授课章节:第一章实数集与函数——§2 数集和确界原理 教学目的:使学生掌握确界原理,建立起实数确界的清晰概念. 教学要求:(1) 掌握邻域的概念;(2) 理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理). 教学难点:确界的定义及其应用. 教学方法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.引 言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章§1 实数的相关内容.下面,我们先来检验一下自学的效果如何!1 、证明:对任何x ∈R 有: (1)| x -1| + | x -2 |≥ 1 ; (2)| x -1| + | x - 2 | + | x - 3 |≥ 2 .((1) x-1=1+(x-2)≥1-x-2,∴x-1+x-2≥1)((2)x -1 +x - 2 ≥1, x - 2 +x - 3 ≥1, x - 2 +x - 3 ≥ 2.三式相加化简即可)2、证明:| x | - | y | ≤| x -y |.3、设a,b∈R,证明:若对任何正数有a+b<,则a≤b.4、设x, y ∈R, x >y ,证明:存在有理数r 满足y <r <x .[引申]:①由题 1 可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一.而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用.提请注意这种差别,尽快掌握本门课程的术语和工具.本节主要内容:1、先定义实数集 R 中的两类主要的数集——区间与邻域;2、讨论有界集与无界集;3、由有界集的界引出确界定义及确界存在性定理(确界原理).一、区间与邻域1、区间(用来表示变量的变化范围)⎧有限区间设a, b ∈R 且a <b .区间⎨,其中⎩无限区间⎨⎪ ⎨ ⎪ + +⎧ ⎪ ⎪ ⎪有限区间⎪⎪ ⎪ 开区间: {x ∈ R | a < x < b } = (a , b ) 闭区间: {x ∈ R | a ≤ x ≤ b } = [a , b ]⎧⎪闭开区间: {x ∈ R | a ≤ x < b } = [a , b ) ⎪半开半闭区间⎨⎩⎪⎪⎩开闭区间: {x ∈ R | a < x ≤ b } = (a , b ]⎧ {x ∈ R | x ≥ a } = [a , +∞).⎪{x ∈ R | x ≤ a } = (-∞, a ]. 无限区间⎪{x ∈ R | x > a } = (a , +∞).⎪{x ∈ R | x < a } = (-∞, a ). ⎪⎩{x ∈ R | -∞ < x < +∞} = R .2、邻域联想:“邻居”.字面意思:“邻近的区域”.与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?(1) a 的邻域:设a ∈ R ,> 0 ,满足不等式| x - a |< 的全体实数x的集合称为点a 的邻域,记作U (a ;) ,或简记为U (a ) ,即U (a ;) = {x | x - a |< } = (a -, a +) .其中a 称为该邻域的中心,称为该邻域的半径. (2) 点a 的空心邻域U o (a ;) = {x 0 <| x - a |< } = (a -, a ) ⋃ (a , a +) U o (a ) .(3) a 的右邻域和点a 的空心右邻域U + (a ;) = [a , a +) U + (a ) = {x a ≤ x < a +};U 0 (a ;) = (a , a +) U 0 (a ) = {x a < x < a +}. (4) 点a 的左邻域和点a 的空心左邻域U - (a ;) = (a -, a ] U - (a ) = {x a -< x ≤ a }; U(a ;) = (a -, a ) U 0 (a ) = {x a -< x < a }.-+⎨ ⎬ (5) ∞ 邻域, + ∞ 邻域, -∞ 邻域U (∞) = {x | x |> M }, (其中 M 为充分大的正数); U (+∞) = {x x > M }, U (-∞) = {x x < -M }二 、有界集与无界集1、定义 1(上、下界):设S 为R 中的一个数集.若存在数M (L ) ,使得一切 x ∈ S 都有x ≤ M (x ≥ L ) ,则称 S 为有上(下)界的数集.数M (L ) 称为 S 的上界(下界);若数集 S 既有上界,又有下界,则称 S 为有界集.闭区间[a , b ] 、开区间(a , b ) (a , b 为有限数)、邻域等都是有界数集,集合 E = {yy = sin x , x ∈( - ∞ , + ∞ )}也是有界数集.若数集 S 不是有界集,则称 S 为无界集.( - ∞ , + ∞ ) , ( - ∞ , 0 ) , ( 0 , + ∞ ) 等都是无界数集,集合 E = ⎧ y ⎩ y = 1 , x x ∈ ( 0 ,1 )⎫也是无界数集.⎭注:1)上(下)界若存在,不唯一;2)上(下)界与 S 的关系如何?看下例:例 1 讨论数集N + = {n | n 为正整数} 的有界性. 解:任取n 0 ∈ N + ,显然有n 0 ≥ 1 ,所以 N + 有下界 1;但 N + 无上界.因为假设 N + 有上界 M,则 M>0,按定义,对任意n 0 ∈ N + , 都 有 n 0 ≤ M , 这 是 不 可 能 的 , 如 取n 0 = [M ] +(1 符号[M ]表示不超过M 的最大整数) 则n 0 ∈ N + ,且n 0 > M .综上所述知:N+是有下界无上界的数集,因而是无界集.例 2 证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集.[问题]:若数集S 有上界,上界是唯一的吗?对下界呢?(答:不唯一,有无穷多个).三、确界与确界原理1、定义定义 2(上确界)设S 是R 中的一个数集,若数满足:(1) 对一切x∈S,有x≤(即是S 的上界); (2) 对任何<,存在x0∈S ,使得x0>(即是S 的上界中最小的一个),则称数为数集S 的上确界,记作= sup S.从定义中可以得出:上确界就是上界中的最小者.命题 1 M = sup E 充要条件1)∀x ∈E, x ≤M ;2)∀>o, ∃x0∈S, 使得x>M -.证明:必要性,用反证法 .设 2)不成立,则∃0>0,使得∀x∈E,均有x≤M-o,与M是上界中最小的一个矛盾.充分性(用反证法),设M不是E的上确界,即∃M是上界,但M>M0.令=M-M>0,由 2),∃x∈E,使得x>M-=M,与M是E 的上界矛盾.定义 3(下确界)设S 是R 中的一个数集,若数满足:(1)对一切x∈S,有x≥(即是S 的下界);(2)对任何>,存在x0∈S ,使得x0<(即是S 的下界中最大的一个),则称数为数集 S 的下确界,记作=inf S.从定义中可以得出:下确界就是下界中的最大者.⎝ ⎭ ⎝ ⎭命题 2 = inf S 的充要条件:1) ∀x ∈ E , x ≥ ;2) ∀>0, x 0 ∈ S ,有x 0 <+.上确界与下确界统称为确界.⎧ (-1 )n ⎫例 3(1) S = ⎨1 +⎩⎬, 则sup S = 1 ; inf S = 0 . n ⎭ ( 2) E = {y y = sin x , x ∈ (0,)}. 则sup S =1; inf S =0 .注:非空有界数集的上(或下)确界是唯一的.命题 3:设数集 A 有上(下)确界,则这上(下)确界必是唯一的.证明:设= sup A ,' = sup A 且≠' ,则不妨设<'= sup A ⇒ ∀x ∈ A 有x ≤' = sup A ⇒ 对<' , ∃ x 0 ∈ A 使< x 0 ,矛盾.例: sup R - = 0 , sup ⎛n ⎫= 1, inf ⎛n ⎫ = 1n ∈Z + n +1 ⎪ n ∈Z + n +1 ⎪ 2E = {-5, 0, 3, 9,11} 则有inf E = -5 .开区间(a , b ) 与闭区间[a , b ]有相同的上确界b 与下确界a例 4 设S 和 A 是非空数集,且有S ⊃ A . 则有sup S ≥ sup A , inf S ≤ inf A ..例 5 设 A 和 B 是非空数集.若对 ∀x ∈ A 和 ∀y ∈ B , 都有 x ≤ y , 则有sup A ≤ inf B .证明: ∀y ∈ B , y 是 A 的上界, ⇒ sup A ≤ y . ⇒ sup A 是 B 的下界,⇒ sup A ≤ inf B.例 6 A 和B 为非空数集, S =A B. 试证明: inf S = min{inf A , inf B }.证明:∀x ∈S, 有x ∈A 或x ∈B, 由inf A 和inf B 分别是A 和B 的下界,有x ≥ inf A 或x ≥ inf B. ⇒x ≥ min{inf A , inf B }.即min{inf A , inf B }是数集S 的下界,⇒ inf S ≥ min{inf A , inf B }.又S ⊃A, ⇒ S 的下界就是 A 的下界,inf S 是S 的下界, ⇒ inf S 是 A 的下界, ⇒ inf S ≤ inf A; 同理有inf S ≤ inf B.于是有inf S ≤ min{inf A , inf B }.综上,有inf S = min{inf A , inf B }.1.数集与确界的关系:确界不一定属于原集合.以例3⑵为例做解释.2.确界与最值的关系:设 E 为数集.(1)E 的最值必属于E ,但确界未必,确界是一种临界点.(2)非空有界数集必有确界(见下面的确界原理),但未必有最值.(3)若max E 存在,必有max E = sup E. 对下确界有类似的结论.4.确界原理:T h1.1(确界原理).设S 非空的数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.这里我们给一个可以接受的说明 E ⊂R, E 非空,∃x ∈E ,我们可以找到一个整数p ,使得p 不是E 上界,而p +1是E 的上界.然后我们遍查p.1 , p.2 , , p.9 和p + 1 ,我们可以找到一个q0 ,0 ≤q0 ≤ 9 ,使得p.q0 不是E 上界,p.(q0 + 1) 是E 上界,如果再找第二位小数q1 , , 如此下10k去,最后得到 p .q 0 q 1q 2 ,它是一个实数,即为E 的上确界.证明:(书上对上确界的情况给出证明,下面讲对下确界的证明) 不妨设S 中的元素都为非负数,则存在非负整数n ,使得1) ∀x ∈ S ,有x > n ;2) 存在x 1 ∈ S ,有x ≤ n + 1 ; 把区间(n , n + 1] 10 等分,分点为 n.1,n.2,..,n.9, 存在n 1 ,使得 1) ∀ ∈ S ,有; x > n .n 1 ;2)存在x ∈ S ,使得x 2 ≤ n .n 1 + 1 .210再对开区间(n .n , n .n + 1] 10 等分,同理存在n ,使得111021) 对任何x ∈ S ,有x > n .n 1n 2 ;2) 存在 x 2 ,使x 2 ≤ n .n 1n 2 + 1102继续重复此步骤,知对任何k = 1,2, ,存在n k 使得1) 对任何 x ∈ S , x > n .n 1n 2 n k - 1; 2) 存在x k ∈ S , x k ≤ n .n 1n 2 n k .因此得到= n .n 1n 2 n k .以下证明= inf S .(ⅰ)对任意x ∈ S , x >;(ⅱ)对任何>,存在x ' ∈ S 使> x ' .[作业]:P9 1(1),(2); 2; 4(2)、(4);7§3 函数概念授课章节:第一章实数集与函数——§3 函数概念 教学目的:使学生深刻理解函数概念. 教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示法;(2)牢记基本初等函数的定义、性质及其图象.会求初等函数的存在域,会分析初等函数的复合关系.教学重点:函数的概念.教学难点:初等函数复合关系的分析.教学方法:课堂讲授,辅以提问、练习、部分内容可自学.教学程序:引言关于函数概念,在中学数学中已有了初步的了解.为便于今后的学习,本节将对此作进一步讨论.一、函数的定义1.定义1设D, M ⊂R ,如果存在对应法则f ,使对∀x ∈D ,存在唯一的一个数y ∈M 与之对应,则称 f 是定义在数集D 上的函数,记作f : D →Mx |→y .数集D 称为函数 f 的定义域,x 所对应的y ,称为f 在点x 的函数值,记为 f (x) .全体函数值的集合称为函数 f 的值域,记作 f (D) .即 f (D) ={y | y =f (x), x ∈D}.2.几点说明(1)函数定义的记号中“ f : D →M ”表示按法则 f 建立D 到M 的函数关系,x |→y 表示这两个数集中元素之间的对应关系,也记作x |→f (x) .习惯上称x 自变量,y 为因变量.(2)函数有三个要素,即定义域、对应法则和值域.当对应法则和定义域确定后,值域便自然确定下来.因此,函数的基本要素为两个:定义域和对应法则.所以函数也常表示为:y =f (x), x ∈D .由此,我们说两个函数相同,是指它们有相同的定义域和对应法则.例如:1)f (x) =1, x ∈R,g(x) = 1, x ∈R \ {0}. (不相同,对应法则相同,定义域不同)2)(x) =| x |, x ∈R , (x) = x2 , x ∈R.(相同,只是对应法则的表达形式不同).(3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域).此时,函数的记号中的定义域可省略不写,而只用对应法则 f 来表示一个函数.即“函数y =f (x) ”或“函数 f ”.(4)“映射”的观点来看,函数f 本质上是映射,对于a ∈D ,f (a)称为映射 f 下a 的象. a 称为 f (a) 的原象.(5)函数定义中,∀x ∈D ,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x值,可以对应多于一个y 值,则称这种函数为多值函数.本书中只讨论单值函数(简称函数).二、函数的表示方法1主要方法:解析法(公式法)、列表法(表格法)和图象法(图示法).2可用“特殊方法”来表示的函数.1)分段函数:在定义域的不同部分用不同的公式来表示.⎨ ⎩⎨0,当x 为无理数, ⎨ F (x ) = f (x ) + g (x ), x ∈ D ; G (x ) = f (x ) - g (x ), x ∈ D ;H (x ) = f (x )g (x ), x ∈ D .⎧ 1, x > 0 例如sgn x = ⎪0, x = 0 ,(符号函数)⎪-1, x < 0(借助于 sgnx 可表示 f (x ) =| x |, 即 f (x ) =| x |= x sgn x ).2) 用语言叙述的函数.(注意;以下函数不是分段函数)例 1) y = [x ] (取整函数)比如: [3.5]=3, [3]=3, [-3.5]=-4.常有 [x ] ≤ x < [x ] +1 , 即0 ≤ x -[x ] < 1.与此有关一个的函数 y = x -[x ] {x } (非负小数函数)图形是一条大锯,画出图看一看.2)狄利克雷(Dirichlet )函数D (x ) = ⎧1,当x 为有理数, ⎩这是一个病态函数,很有用处,却无法画出它的图形.它是周期函数,但却没有最小周期,事实上任一有理数都是它的周期.3)黎曼(Riemman )函数⎧ 1,当x = p ( p , q ∈ N , p为既约分数) ,R (x ) = ⎪ q q+ q ⎪⎩0,当x = 0,1和(0,1)内的无理数. 三 函数的四则运算给定两个函数 f , x ∈ D 1 , g , x ∈ D 2 ,记D = D 1 D 2 ,并设D ≠ ,定义 f 与 g 在D 上的和、差、积运算如下:若在 D 中除去使 g (x ) = 0 的值,即令 D = D \ {x g (x ) ≠ 0, x ∈ D 2 } ≠ ,⎬ 可在D 上定义 f 与 g 的商运算如下; L (x ) =f (x ), x ∈ D . g (x )注:1)若D = D 1 D 2 =,则 f 与 g 不能进行四则运算.2)为叙述方便,函数 f 与 g 的和、差、积、商常分别写为:f +g , f - g , fg ,f .g四、复合运算1.引言在有些实际问题中函数的自变量与因变量通过另外一些变量才建立起它们之间的对应关系.例:质量为 m 的物体自由下落,速度为 v ,则功率E 为E = 1 mv 2 ⎫12 v = gt ⎪ ⇒ E = ⎪⎭mg 2t 2 . 2抽去该问题的实际意义,我们得到两个函数 f (v ) = 1mv 2 , v = gt ,把2v (t ) 代入 f ,即得f (v (t )) = 1mg 2t 2 .2这样得到函数的过程称为“函数复合”,所得到的函数称为“复合函数”.[问题] 任给两个函数都可以复合吗?考虑下例;y = f (u ) = arcsin u , u ∈ D = [-1,1], u = g (x ) = 2 + x 2 , x ∈ E = R .就不能复合,结合上例可见,复合的前提条件是“内函数”的值域与“外函数”的定义域的交集不空(从而引出下面定义).2.定义(复合函数) 设有两个函数 y = f (u ), u ∈ D , u = g (x ), x ∈ E ,⎛ 1 ⎫ 2 x E = {x f (x ) ∈ D } E ,若 E ≠ ,则对每一个 x ∈ E ,通过 g 对应 D 内唯一一个值u ,而u 又通过 f 对应唯一一个值 y ,这就确定了一个定义在E 上的函数,它以 x 为自变量, y 因变量,记作 y = f (g (x )), x ∈ E 或y = ( f g )(x ), x ∈ E .简记为 f g .称为函数 f 和 g 的复合函数,并称 f 为外函数, g 为内函数, u 为中间变量.3.例子 例y = f (u ) = u , u = g (x ) = 1 - x 2 . 求( f g )(x ) = f [g (x ).]并求定义域. 例⑴f (1 - x ) = x 2 + x + 1,f (x ) =.⑵f x + = x + 1. 则⎪⎝ ⎭f (x ) = ()A . x 2 ,B . x 2 + 1,C . x 2 - 2,D .x 2 + 2.例 讨论函数 y = f (u ) = u , u ∈[0, +∞) 与函数u = g (x ) = 1- x 2 , x ∈ R 能否进行复合,求复合函数.4 说明1)复合函数可由多个函数相继复合而成.每次复合,都要验证能否进行?在哪个数集上进行?复合函数的最终定义域是什么? 例 如 : y = sin u , u = v , v = 1- x 2 , 复 合 成 :y = sin 1- x 2 , x ∈[-1,1] .2)不仅要会复合,更要会分解.把一个函数分解成若干个简单函x 2a 数,在分解时也要注意定义域的变化.①y = log a 1- x 2 , x ∈(0,1) → y = log u ,u = z , z = 1- x 2.② y = arcsin → y = arcsin u , u = v , v = x 2 +1.③ y = 2sin 2x → y = 2u , u = v 2 , v = sin x .五、反函数1.引言在函数 y = f (x ) 中把 x 叫做自变量, y 叫做因变量.但需要指出的是,自变量与因变量的地位并不是绝对的,而是相对的,例如:f (u ) = u , u = t 2 +1,那么u 对于 f 来讲是自变量,但对t 来讲, u 是因变量.习惯上说函数 y = f (x ) 中x 是自变量, y 是因变量,是基于 y 随x 的变化现时变化.但有时我们不仅要研究 y 随x 的变化状况,也要研究x随 y 的变化的状况.对此,我们引入反函数的概念. 2.反函数概念定义设 f : X → R 是一函数, 如果∀ x 1 , x 2 ∈ X , 由x 1 ≠ x 2 ⇒ f (x 1 ) ≠ f (x 2 )(或由 f (x 1 ) = f (x 2 ) ⇒ x 1 = x 2 ),则称 f 在 X 上是 1-1 的.若 f : X → Y ,Y = f ( X ) ,称 f 为满的.若 f : X → Y 是满的 1-1 的,则称 f 为 1-1 对应.f : X → R 是1-1 的意味着 y = f (x ) 对固定 y 至多有一个解x , f : X → Y 是 1-1 的意味着对 y ∈Y , y = 仅有一个解x .f (x ) 有且 x 2 +1y 2 +1 ⎨定义 设 f : X → Y 是1-1 对应. ∀y ∈Y , 由 y = f (x ) 唯 一确定一个 x ∈ X , 由这种对应法则所确定的函数称为y = f (x ) 的反函数,记为x = f -1( y ) .反函数的定义域和值域恰为原函数的值域和定义域f : X → Yf -1 : Y → X显然有f -1 f= I : X → X(恒等变换)f f -1 = I : Y → Y (恒等变换)( f -1 )-1 = f : X → Y .从方程角度看,函数和反函数没什么区别,作为函数,习惯上我们还是把反函数记为 y = f -1(x ) , 这样它的图形 与 y = f (x ) 的图形是关于对角线 y = x 对称的. 严格单调函数是 1-1 但 1-1 例子 f (x ) =⎧ x ,0 ≤ x < 1 ⎩3 - x ,1 ≤ x ≤ 2它的反函数即为它自己.实际求反函数问题可分为二步进行:1. 确定 f : X → Y 的定义域 X 和值域Y ,考虑 1-1 对应条件.固定 y ∈Y ,解方程 f (x ) = y 得出 x = f -1( y ) .2. 按习惯,自变量x 、因变量 y 互换,得y = f -1(x ) . 例 求 y = sh (x ) = e x - e - x2:R → R 的反函数.解 固定 y ,为解 e x - e - x ,令2e x = z ,方程变为 2zy = z 2 -1 z 2 - 2zy -1 = 0 z = y ±( 舍去 y - )得x = ln( y + y 2 +1) ,即 y = ln(x + x 2 +1) = sh -1(x ) ,称为反双曲正弦. 定理 给定函数 y = f (x ) ,其定义域和值域分别记为 X 和Y , 若在Y 上存在函数g ( y ) ,使得 g ( f (x )) = x , 则有g ( y ) = f -1( y ) .y 2 +1y =分析:要证两层结论:一是y =f (x) 的反函数存在,我们只要证它是 1-1 对应就行了;二是要证g( y) = f -1( y) .证要证y =f (x) 的反函数存在,只要证 f (x) 是X 到Y 的 1-1 对应.∀x1,x2∈X ,若f (x1) = g( f (x1)) =x1f (x2 ) ,则由定理条件,我们有g( f (x2 )) =x2⇒x1 =x2,即 f : X →Y是 1-1 对应.再证g( y) = f -1 ( y) .∀y ∈Y ,∃x ∈X ,使得y = f (x) .由反函数定义x =f -1( y) ,再由定理条件g( y) =g( f (x)) =x . ⇒g( y) = f -1( y)例 f : R →R ,若f ( f (x)) 存在唯一(∃| )不动点,则f (x) 也∃|不动点.证存在性,设x * = f [ f (x *)],f (x *) = f f [ f (x * )],即f (x * ) 是f f 的不动点,由唯一性 f (x * ) =x *,即存在f (x) 的不动点x *.唯一性:设x = f (x) ,x = f (x) = f ( f (x)) ,说明x 是 f f 的不动点,由唯一性,x = x *.从映射的观点看函数.设函数y =f (x), x ∈D .满足:对于值域 f (D) 中的每一个值y ,D中有且只有一个值x ,使得f (x) =y ,则按此对应法则得到一个定义在 f (D) 上的函数,称这个函数为 f 的反函数,记作f -1 : f (D) →D,( y |→x) 或x =f -1( y), y ∈f (D) .3、注释a)并不是任何函数都有反函数,从映射的观点看,函数 f 有反函数,意味着 f 是D与 f (D) 之间的一个一一映射,称 f -1为映射 f 的逆映射,它把 f (D) →D ;b) 函数 f 与f -1 互为反函数,并有: f -1( f (x)) ≡x, x ∈D, f ( f -1(x)) ≡y, y ∈f (D).c)在反函数的表示x =f -1( y), y ∈f (D) 中,是以y 为自变量,x 为因变量.若按习惯做法用x 做为自变量的记号,y 作为因变量的记号,则函数 f 的反函数 f -1可以改写为y =f -1(x), x ∈f (D).应该注意,尽管这样做了,但它们的表示同一个函数,因为其定义域和对应法则相同,仅是所用变量的记号不同而已.但它们的图形在同一坐标系中画出时有所差别.六、初等函数1.基本初等函数(6类)常量函数y=C(C为常数);幂函数y =x(∈R) ;指数函数y =a x(a > 0, a ≠ 1) ;对数函数y = logx(a > 0, a ≠ 1) ;a三角函数y = sin x, y = cos x, y =tgx, y = c tgx ;反三角函数y = arcsin x, y = arccos x, y =arctgx, y =arcctgx .注:幂函数y =x(∈R) 和指数函数y =a x(a > 0, a ≠ 1) 都涉及乘幂,而在中学数学课程中只给了有理指数乘幂的定义.下面我们借助于确界来定义无理指数幂,便它与有理指数幂一起构成实指数乘幂,并保持有理批数幂的基本性质.定义2.给定实数a > 0, a ≠ 1 ,设x 为无理数,我们规定:⎨ ⎩ { } sin( ), y a ⎧ a x = ⎪sup {a r | r 为有理数},当a > 1时, r < x ⎪i nf a r | r 为有理数 ,当0 < a < 1时. r <x这样解决了中学数学仅对有理数x定义a x 的缺陷.[问题]:这样的定义有意义否?更明确一点相应的“确界是否存在呢?”2.初等函数定义3.由基本初等函数经过在有限次四则运算与复合运算所得到的函数,统称为初等函数如: y = 2 sin x + cos 2 x , y = 1 = l o g x + x e sinx -1 x 2, y =| x | . 不是初等函数的函数,称为非初等函数.如 Dirichlet 函数、Riemann 函数、取整函数等都是非初等函数.注:初等函数是本课程研究的主要对象.为此,除对基本初等函数的图象与性质应熟练掌握外,还应常握确定初等函数的定义域.确定定义域时应注意两点.例2.求下列函数的定义域.(1) y =(2) y = ln | sin x | . 3. 初等函数的几个特例: 设函数 f (x ) 和 g (x ) 都是初等函数, 则(1) f (x ) 是初等函数, 因为 f (x ) = ( f (x ))2 .(2) Φ(x ) = max {f (x ) , g (x )} 和 (x ) = min {f (x ) , g (x )}都是初等函数, 因为 Φ(x ) = max {f (x ) , g (x )} =1 [f (x ) + g (x ) +2 f (x ) - g (x ) ] , (x ) = min {f (x ) , g (x )} = 1 [f (x ) + g (x ) - 2f (x ) -g (x ) ] . x x -1(3)幂指函数(f(x))g ( x)(f (x) > 0)是初等函数,因为(f(x))g(x)=e ln(f ( x) )g(x)=e g ( x) ln f ( x) .[作业]P:3;4:(2)、(3);5:(2);7:(3);11 15§4具有某些特性的函数授课章节:第一章实数集与函数——§4 具有某些特性的函数教学目的:熟悉与初等函数性态有关的一些常见术语.教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期.教学重点:函数的有界性、单调性.教学难点:周期函数周期的计算、验证.教学方法:有界函数讲授,其余的列出自学题纲,供学生自学完成. 教学程序:引言在本节中,我们将介绍以后常用的几类具有某些特性的函数,如有界函数、单调函数、奇偶函数与周期函数.其中,有些概念在中学里已经叙述过,因此,这里只是简单地提一下.与“有界集”的定义类似,先谈谈有上界函数和有下界函数.一、有界函数1、有上界函数、有下界函数的定义定义 1 设f 为定义在 D 上的函数,若存在数M (L) ,使得对每一个x ∈D 有f (x) ≤M ( f (x) ≥L) ,则称f 为D 上的有上(下)界函数,M (L) 称为f 在D 上的一个上(下)界.注:(1)f 在D 上有上(下)界,意味着值域f (D) 是一个有上(下)界的数集;(2又)若M(L)为f在D 上的一个(上下)界则,任何大于(M小于L)的数也是 f 在D 上的上(下)界.所以,函数的上(下)界若存在,则不是唯一的,例如:y=sin x,1 是其一个上界,下界为-1,则易见任何小于-1 的数都可作为其下界;任何大于 1 的数都可作为其上界;(3)任给一个函数,不一定有上(下)界;6 5 x 5 2 6(4) 由(1)及“有界集”定义,可类比给出“有界函数” 定义:f 在 D 上有界⇔ f (D ) 是一个有界集⇔ f 在 D 上既有上界又有下 界⇔ f 在 D 上的有上界函数,也为 D 上的有下界函数.2、有界函数定义定义 2 设 f 为定义在 D 上的函数.若存在正数M,使得对每一个 x ∈ D 有| f (x ) |≤ M ,则称 f 为 D 上的有界函数.注:(1)几何意义: f 为 D 上的有界函数,则 f 的图象完全落在 y = M 和 y = -M 之间;(2) f 在 D 上有界⇔ f 在 D 上既有上界又有下界;例子: y = sin x , y = cos x ;(3)关于函数 f 在 D 上无上界、无下界或无界的定义.3、 例题例 1 证明 f : X → R 有界的充要条件为: ∃ M , m ,使得对∀x ∈ X , m ≤ f (x ) ≤ M . 证明 如果 f : X → R 有界,按定义∃ M >0,∀x ∈ X 有f (x ) ≤ M ,即 -M ≤ f (x ) ≤ M ,取m = -M ,M = M 即可. 反之如果∃ M , m 使得∀x ∈ X , m ≤ f (x ) ≤ M ,令M 0 = max { M +1, m },则 f (x ) ≤ M 0 ,即∃ M 0 > 0 ,使得对∀x ∈ X 有界.f (x ) ≤ M 0 ,即 f : X → R 有 例 2.证明 例 3. 设 f (x ) = 1 为(0,1] 上的无上界函数. x f ,g 为 D 上 的 有 界 函 数 . 证 明 : ( 1)inf f (x ) + inf g (x ) ≤ inf { f (x ) + g (x )} ;x ∈D x ∈D x ∈D(2) s up { f (x ) + g (x )} ≤ sup f (x ) + sup g (x ) .x ∈D x ∈D x ∈D例 4 验证函数 f (x ) = 5x 2x 2+ 3在R 内有界. 解法一 由2x 2 + 3 = ( 2x )2 + ( 3)2 ≥ 2 2x ⋅ = 2 x , 当x ≠ 0 时,有f (x ) = = 2x 2 + 3 ≤ = ≤ 3. f (0) ∴ 对 = 0 ≤ 3 ,∀x ∈ R , 总有 f (x ) ≤ 3,即 f (x ) 在R 内有界.解法二 令实数根.y =5x , ⇒ 2x 2 + 3 关于x 的二次方程 2 yx 2 - 5x + 3y = 0 有 3 5x 2x 2 + 3 5 x 2 6 x5 3 tgt 3 2 tg 2t + 1 5 sin t 16 cos t sec 2 t 5 2 6 2 2 ∴ ∆ = 52 - 24 y 2 ≥ 0, ⇒ y 2 ≤ 25 ≤ 4, ⇒ 24 y ≤ 2. 解法三 令 x = 3tgt , t ∈ ⎛- ⎫ 对应x ∈ ( - ∞ , + ∞ ). 于是f (x ) = 2 5x = 2x 2 + 3 ⎛ 3 , ⎪ ⎝ ⎭= = = ⎫2 2 tgt ⎪ + 3⎝ 2 ⎭= sin 2t , ⇒ f (x ) = sin 2t ≤ 5 . 2 6二、单调函数定义 3 设 f 为定义在 D 上的函数, ∀x 1 , x 2 ∈ D , x 1 < x 2 , ( 1) 若 f (x 1 ) ≤ f (x 2 ) ,则称 f 为 D 上的增函数;若 f (x 1 ) < f (x 2 ) ,则称 f 为 D 上 的严格增函数.( 2) 若 f (x 1 ) ≥ f (x 2 ) , 则称 f 为 D 上的减函数; 若 f (x 1 ) > f (x 2 ) ,则称 f 为 D 上的严格减函数.例 5.证明: y = x 3 在(-∞, +∞) 上是严格增函数.证明:设x < x , x 3 - x 3 = (x - x )(x 2 + x x + x 2 ) 1 2 1 2 1 2 1 1 2 2如x x < 0 ,则x > 0 > x ⇒ x 3 < x 3 1 2 2 1 1 2如x x > 0 ,则x 2 + x x + x 2 > 0, ⇒ x 3 < x 3 1 2 1 1 2 2 1 2故x 3 - x 3 < 0 即得证. 1 2例 6.讨论函数 y = [x ] 在R 上的单调性.∀x 1, x 2 ∈ R ,当x 1 < x 2 时,有[x 1] ≤ [x 2 ] ,但此函数在R 上的不是严格 增函数.注:1)单调性与所讨论的区间有关.在定义域的某些部分, f 可能单调,也可能不单调.所以要会求出给定函数的单调区间;2)严格单调函数的几何意义:其图象无自交点或无平行于x 轴的部分.更准确地讲:严格单调函数的图象与任一平行于 x 轴的直线至多有一个交点.这一特征保证了它必有反函数.总结得下面的结论:定理 1.设 y = f (x ), x ∈ D 为严格增(减)函数,则 f 必有反函数 f -1 , 且 f -1 在其定义域 f (D ) 上也是严格增(减)函数. 证明:设 f 在D 上严格增函数.对∀y ∈ f (D ), 一x ∈ D , 一f (x ) = y .下面 证明这样的 x 只有一个.事实上,对于D 内任一 x 1 ≠ x , 由于 f 在D 上严格增函数,当 x 1 < x 时 f (x 1 ) < y ,当 x 1 > x 时 f (x 1 ) > y ,总之 f (x 1 ) ≠ y .即 5 3tgt 2 5 2 6⎨ ∀y ∈ f (D ), 一 一 一 一 一一 一 一x ∈ D , 一一 f (x ) = y ,从而例 7 讨论函数 y = x 2 在(-∞, +∞) 上反函数的存在性;如果 y = x 2 在 (-∞, +∞) 上不存在反函数,在(-∞, +∞) 的子区间上存在反函数否?结论:函数的反函数与讨论的自变量的变化范围有关.例8 证明: y = a x 当a > 1 时在R上严格增,当0 < a < 1时在R 上严格递减.三、奇函数和偶函数定义 4. 设 D 为对称于原点的数集, f 为定义在 D 上的函数.若 对每一个 x ∈ D 有(1) f (-x ) = - f (x ) ,则称 f 为 D 上的奇函数;(2) f (-x ) = f (x ) ,则称 f 为 D 上的偶函数.注:(1)从函数图形上看,奇函数的图象关于原点对称(中心 对称),偶函数的图象关于 y 轴对称;(2)奇偶性的前提是定义域对称,因此 f (x ) = x , x ∈[0,1] 没有必要讨论奇偶性.⎧ ⎪ (3) 从奇偶性角度对函数分类: ⎪ 奇函数: y=si nx 偶函数: y=sgnx ;⎪非奇非偶函数: y=si nx+cosx⎩⎪ 既奇又偶函数: y ≡ 0(4) 由于奇偶函数对称性的特点,研究奇偶函数性质时,只须讨论原点的左边或右边即可四、周期函数1、定义设 f 为定义在数集 D 上的函数,若存在> 0 ,使得对一切x ∈ D 有 f (x ±) = f (x ) ,则称 f 为周期函数,称为 f 的一个周期.2、几点说明:(1) 若是 f 的周期,则n (n ∈ N + ) 也是 f 的周期,所以周期若存在,则不唯一.如 y = sin x ,= 2, 4, .因此有如下“基本周期”的说法,即若在周期函数 f 的所有周期中有一个最小的周期,则称此最小周期为 f 的“基本周期”,简称“周期”.如 y = sin x ,周期为2;(2) 任给一个函数不一定存在周期,既使存在周期也不一定有基本周期,如:1) y = x +1,不是周期函数;2) y = C (C为常数),任何正数都是它的周期.第二章数列极限引 言为了掌握变量的变化规律,往往需要从它的变化过程来判断它的。
数学分析知识点总结
数学分析知识点总结在数学的学科体系中,数学分析是一个非常重要的分支。
它主要研究实数和复数的极限、连续性、微积分以及相关的定理和方法。
对于数学分析的学习,我们需要掌握以下知识点。
一、极限极限是数学分析最为基础的概念之一。
它用于描述函数趋近于某个值时的情况。
我们需要掌握无穷小量、无穷大量、极限的定义、左右极限、排除法和插值法等内容。
二、函数的连续性函数的连续性也是数学分析中的重要概念。
它描述的是函数在一定的定义域内是否具有无间断点的特性。
我们需要掌握函数的连续性定义、间断点的分类、连续函数的四个基本定理、单调函数和反函数等重要内容。
三、求导和微分求导和微分是数学分析的核心内容之一。
它主要描述函数的局部变化情况和相关的最值问题。
我们需要掌握导数的定义、基本代数运算、求导法则、高阶导数、微分的定义、微分运算法则、一阶微分方程等内容。
四、积分积分是数学分析中非常重要的概念之一。
它主要描述函数在某个定义域内的“总量”或“面积”。
我们需要掌握定积分和不定积分的定义、基本积分公式、换元积分法、分部积分法、有理分式积分、常系数线性微分方程等。
五、级数级数是数学分析中重要的概念之一。
它描述的是无穷多个数的总和。
我们需要掌握级数和部分和的定义、收敛和发散的概念、常见级数的收敛性和求和公式、绝对收敛和条件收敛、交错级数及别的常见级数。
综上所述,数学分析的知识点十分广泛,需要我们有较高的数学素养,同时也需要不断努力和实践。
只有通过多次反复学习和练习,才能真正掌握数学分析的核心内容和方法,进入到科学和工程领域的高端学习。
数学分析知识点总结
数学分析知识点总结考点一:集合与简易规律集合局部一般以选择题消失,属简单题。
重点考察集合间关系的理解和熟悉。
近年的试题加强了对集合计算化简力量的考察,并向无限集进展,考察抽象思维力量。
在解决这些问题时,要留意利用几何的直观性,并注意集合表示方法的转换与化简。
简易规律考察有两种形式:一是在选择题和填空题中直接考察命题及其关系、规律联结词、“充要关系”、命题真伪的推断、全称命题和特称命题的否认等,二是在解答题中深层次考察常用规律用语表达数学解题过程和规律推理。
考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考察函数的定义域与值域、函数的性质、函数与方程、根本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考察函数的性质。
导数局部一方面考察导数的运算与导数的几何意义,另一方面考察导数的简洁应用,如求函数的单调区间、极值与最值等,通常以客观题的形式消失,属于简单题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式消失,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面对量一般是2道小题,1道综合解答题。
小题一道考察平面对量有关概念及运算等,另一道对三角学问点的补充。
大题中假如没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考察平面对量为主的试题,要留意数形结合思想在解题中的应用。
向量重点考察平面对量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型。
考点四:数列与不等式不等式主要考察一元二次不等式的解法、一元二次不等式组和简洁线性规划问题、根本不等式的应用等,通常会在小题中设置1到2道题。
对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进展考察。
(完整版)数学分析复习资料及公式大全
导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
完整版)数学分析复习资料及公式大全
完整版)数学分析复习资料及公式大全导数公式:求导是微积分的重要内容之一,掌握导数公式对于解题至关重要。
常见的导数公式如下:tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)·tan(x)csc(x)的导数为-csc(x)·cot(x)ax的导数为ax·ln(a)log_a(x)的导数为1/(x·ln(a))基本积分表:积分是微积分的重要内容之一,掌握基本积分表对于解题至关重要。
常见的基本积分表如下:arcsin(x)的导数为1/(sqrt(1-x^2))arccos(x)的导数为-1/(sqrt(1-x^2))arctan(x)的导数为1/(1+x^2)arcctan(x)的导数为-1/(1+x^2)tan(x)dx=-ln|cos(x)|+Ccot(x)dx=ln|sin(x)|+Csec(x)dx=ln|sec(x)+tan(x)|+Ccsc(x)dx=ln|csc(x)-cot(x)|+Cdx/x=ln|x|+Csin(x)dx=-cos(x)+Ccos(x)dx=sin(x)+Cdx/(x^2+a^2)=1/a·arctan(x/a)+Cdx/(a^2-x^2)=1/(2a)·ln|(a+x)/(a-x)|+C dx/(a^2+x^2)=1/a·ln|(a+x)/x|+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+C e^x dx=e^x+Csin^2(x)dx=1/2·(x-sin(x)cos(x))+C cos^2(x)dx=1/2·(x+sin(x)cos(x))+Csec(x)·tan(x)dx=sec(x)+Ccsc(x)·cot(x)dx=-csc(x)+Ca^x dx=a^x/ln(a)+Csinh(x)dx=cosh(x)+Ccosh(x)dx=sinh(x)+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+Cπ/2+πn (n为整数)lim(1+x)→∞=e=2.xxxxxxxxxxxxxxx。
(完整word版)大学高等数学知识点,推荐文档
大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩ 四. 必备公式:1. 等价无穷小: 当()0u x →时,sin ()()u x u x :; tan ()()u x u x :; 211cos ()()2u x u x -:; ()1()u x eu x -:; ln(1())()u x u x +:; (1())1()u x u x αα+-:;arcsin ()()u x u x :; arctan ()()u x u x : 2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→=V V V3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰L ,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑L ,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?nf x kx x →: (1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔L ()()!!n n na a f x x x x n n α=+: (2)()xxn f t dt kt dt ⎰⎰:2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++:(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x→+-V V V ; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导)2. 微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=V V V V (1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx 5. 高阶导()()n f x 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C uv C u v --=+++L 注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++L L ()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =):(1) '()0()f x f x ≥⇒Z ; '()0()f x f x ≤⇒];(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计: '()f f x ξ=V V九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰二. 不定积分常规方法1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简):x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n ax nx e dx x xdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰ 三. 定积分:1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*2(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x dx f u t u t dt βα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰,(4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰220sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x +∞⎰; (2)101p dx x⎰ 五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰ 2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds =(1)(),[,]y f x x a b =∈ as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩ 21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()baf a b f x dx b a =-⎰;(2)0()[0)limx x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰ (2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程:含双变量条件()f x y +=L 的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==L8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+V V V V (2)lim ,lim,lim y x x y f ff f f x y∆∆∆==∆∆(3),x y f x f y df +V V @ (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y f x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =U ; *(,)f x y 分片定义; *(,)f x y 奇偶 2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++L ; (3)lim n n S →∞(如1(1)!n nn ∞=+∑) 注: (1)lim n n a →∞; (2)n q ∑(或1n a∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: n S Z ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n∑, (2)ln k n n α∑, (3)1ln k n n ∑3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):n p ka n:(估计), 如10()n f x dx ⎰;()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛?注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n p n+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0n n a a →]; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比 na∑;(1)n na-∑;na∑;2na∑之间的敛散关系四. 幂级数:1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域) 23111,2!3!xe x x x R =++++Ω=L 24111()1,22!4!x x e e x x R -+=+++Ω=L 35111(),23!5!x x e e x x x R --=+++Ω=L 3511sin ,3!5!x x x x R =-+-Ω=L 2411cos 1,2!4!x x x R =-++Ω=L ;211,(1,1)1x x x x =+++∈--L ; 211,(1,1)1x x x x=-+-∈-+L 2311ln(1),(1,1]23x x x x x +=-+-∈-L2311ln(1),[1,1)23x x x x x -=----∈-L3511arctan ,[1,1]35x x x x x =-+-∈-L (2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x @0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰@()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑ (2)'()S x =L ,(注意首项变化) (3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰L4. 题型: (注: ()(),?f x S x x =∈)(1)2T π=且(),(,]f x x ππ=∈-L (分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +r r ; (平行b a λ⇔=v v)2. a r ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=u u v v @v )3. a b ⋅r r ; (投影:()aa b b a⋅=v v vv v ; 垂直:0a b a b ⊥⇔⋅=v v v v ; 夹角:(,)a b a b a b⋅=v v v v S v v ) 4. a b ⨯r r ; (法向:,n a b a b =⨯⊥v v v v v ; 面积:S a b =⨯Y v v )二. 平面与直线 1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=v(2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕=v(2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =)(2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒v (或(,1)x y n z z =--v)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t =r (或12s n n =⨯v u v u u v)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=, z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=v , 注: (,)(,1)x y z f x y n f f =⇒=-v(2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒=v(2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯v uv u u v六. 方向导与梯度(重点)1. 方向导(l v方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒v(2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==u r cos sin x y zf f lθθ∂⇒=+∂r(3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G u r:(1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==u v; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒==u v(2)结论()a u l∂∂0G l =⋅u r ur ; ()b 取l G =ur v 为最大变化率方向;()c 0()G M u r为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰u v v u v v4. 应用范围 (1)第一类积分 (2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点): (1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片 2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换: A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰u v v u v u v四: 第二类曲线积分(1):(,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: (1)()LDQ PPdx Qdy dxdy x y∂∂+=-∂∂⎰⎰⎰Ñ; (2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y∂∂≠⇒∂∂围路径(3)L⎰Ñ(xy QP =但D 内有奇点)*LL =⎰⎰蜒(变形)3. 推广(路径无关性):P Qy y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰u v v(Γ有向τv ,(,,)F P Q R =u v ,(,,)d r ds dx dy dz τ==v v ) 五. 第二类曲面积分: 1. 定义: Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项):(,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--v[()()]xyPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰(3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=v(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用:(1)散度计算: P Q RdivA x y z∂∂∂=++∂∂∂u v (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰u vÒ(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰Ò(含奇点)4. 通量与积分:A d S ∑Φ=⋅⎰⎰u v u v (∑有向n v ,(),,A P Q R =u v,(,,)d S ndS dydz dzdx dxdy ==u v v )六: 第二类曲线积分(2):(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =u v v 时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰u v v2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧)(1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂u v u v (2)交面式(一般含平面)封闭曲线: 0F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =v 或{,,}x y z G G G ;(3)Stokes 公式(选择): ()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰u v v u v vÑ(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰。
数学分析的知识点总结
数学分析的知识点总结•相关推荐数学分析的知识点总结上学的时候,看到知识点,都是先收藏再说吧!知识点有时候特指教科书上或考试的知识。
相信很多人都在为知识点发愁,以下是小编为大家整理的数学分析的知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
数学分析的知识点总结1圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章实数集与函数§1实数授课章节:第一章实数集与函数——§1实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质1、实数(,q p q p ⎧≠⎪⎪⎨⎪⎪⎩有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示.{}|R x x =为实数--全体实数的集合.[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定: ,n a ,,n n a ≠1(1)9999n na a --0,a =则记;对于负有限小数(包括负,则先将y -表示为无限小数,现在所得的小数之前加负0.0000例: 2.001 2.0009999→;利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1)定义1给定两个非负实数01.n x a a a =,01.n y b b b =. 其中3 2.99992.001 2.0099993 2.9999→-→--→-;;00,a b 为非负整数,,k k a b (1,2,)k =为整数,09,09k k a b ≤≤≤≤.若有,0,1,2,k k a b k ==,则称x 与y 相等,记为x y =;若00a b >或存在非负整数l ,使得,0,1,2,,k k a b k l ==,而11l l a b ++>,则称x 大于y 或y 小于x ,分别记为x y >或y x <.对于负实数x 、y ,若按上述规定分别有x y -=-或x y ->-,则分别称为x y =与x y <(或y x >).规定:任何非负实数大于任何负实数.2) 实数比较大小的等价条件(通过有限小数来比较).定义2(不足近似与过剩近似):01.n x a a a =为非负实数,称有理数01.n n x a a a =为实数x 的n 位不足近似;110n n n x x =+称为实数x 的n 位过剩近似,0,1,2,n =.对于负实数01.nx a a a =-,其n 位不足近似011.10n n nx a a a =--;n 位过剩近似01.n n x a a a =-. 注:实数x 的不足近似n x 当n 增大时不减,即有012x x x ≤≤≤; 过剩近似n x 当n 增大时不增,即有012x x x ≥≥≥. 命题:记01.n x a a a =,01.n y b b b =为两个实数,则x y >的等价条件是:存在非负整数n ,使n n x y >(其中n x 为x 的n 位不足近似,n y 为y 的n 位过剩近似). 命题应用例1.设,x y 为实数,x y <,证明存在有理数r ,满足x r y <<. 证明:由x y <,知:存在非负整数n ,使得n n x y <.令()12n n r x y =+,则r 为有理数,且n n x x r y y ≤<<≤.即x r y <<.3、实数常用性质(详见附录Ⅱ.289302P P -).1)封闭性(实数集R 对,,,+-⨯÷)四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为0)仍是实数.2)有序性:,a b R ∀∈,关系,,a b a b a b <>=,三者必居其一,也只居其一.3)传递性:a b c R ∀∈,,,,a b b c a c >>>若,则.4)阿基米德性:,,0a b R b a n N ∀∈>>⇒∃∈使得na b >.5)稠密性:两个不等的实数之间总有另一个实数.6)一一对应关系:实数集R 与数轴上的点有着一一对应关系. 例2.设,a b R ∀∈,证明:若对任何正数ε,有a b ε<+,则a b ≤.(提示:反证法.利用“有序性”,取a b ε=-)二、绝对值与不等式1、绝对值的定义实数a 的绝对值的定义为,0||0a a a a a ≥⎧=⎨-<⎩. 2、几何意义从数轴看,数a 的绝对值||a 就是点a 到原点的距离.||x a -表示就是数轴上点x 与a 之间的距离.3、性质1)||||0;||00a a a a =-≥=⇔=(非负性);2)||||a a a -≤≤;3)||a h h a h <⇔-<<,||.(0)a h h a h h ≤⇔-≤≤>;4)对任何,a b R ∈有||||||||||a b a b a b -≤±≤+(三角不等式); 5)||||||ab a b =⋅;6)||||a ab b =(0b ≠). 三、几个重要不等式1、,222ab b a ≥+ .1 sin ≤x . sin x x ≤2、均值不等式:对,,,,21+∈∀R n a a a 记 ,1 )(121∑==+++=ni i n i a n n a a a a M (算术平均值) ,)(1121nn i i n n i a a a a a G ⎪⎪⎭⎫ ⎝⎛==∏= (几何平均值) .1111111)(1121∑∑====+++=n i i n i i n i a n a n a a a na H (调和平均值)有平均值不等式:),( )( )(i i i a M a G a H ≤≤即: 12212111n n n n a a a na n a a a +++≤≤+++等号当且仅当n a a a === 21时成立.3、Bernoulli 不等式:(在中学已用数学归纳法证明过),1->∀x 有不等式(1)1, .n x nx n +≥+∈N当1->x 且0≠x ,N ∈n 且2≥n 时,有严格不等式.1)1(nx x n +>+ 证:由01>+x 且>+++++=-++⇒≠+111)1(1)1( ,01 n n x n x x ).1( )1( x n x n n n +=+>.1)1( nx x n +>+⇒4、利用二项展开式得到的不等式:对,0>∀h 由二项展开式,!3)2)(1(!2)1(1)1(32n n h h n n n h n n nh h ++--+-++=+ 有 >+n h )1( 上式右端任何一项.[练习]P4.5[课堂小结]:实数:⎧⎨⎩一 实数及其性质二 绝对值与不等式. [作业]P4.1.(1),2.(2)、(3),3§2数集和确界原理授课章节:第一章实数集与函数——§2数集和确界原理教学目的:使学生掌握确界原理,建立起实数确界的清晰概念. 教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理).教学难点:确界的定义及其应用.教学方法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.引 言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章§1实数的相关内容.下面,我们先来检验一下自学的效果如何!1、证明:对任何x R ∈有:(1)|1||2|1x x -+-≥;(2) |1||2||3|2x x x -+-+-≥. (111(2)12,121x x x x x -=+-≥--∴-+-≥())(2121,231,23 2.x x x x x x -+-≥-+-≥-+-≥()三式相加化简即可)2、证明:||||||x y x y -≤-.3、设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤.4、设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<.[引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一.而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用.提请注意这种差别,尽快掌握本门课程的术语和工具.本节主要内容:1、先定义实数集R 中的两类主要的数集——区间与邻域;2、讨论有界集与无界集;3、由有界集的界引出确界定义及确界存在性定理(确界原理).一 、区间与邻域1、 区间(用来表示变量的变化范围)设,a b R ∈且a b <.⎧⎨⎩有限区间区间无限区间,其中{}{}{}{}|(,)|[,]|[,)|(,]x R a x b a b x R a x b a b x R a x b a b x R a x b a b ⎧∈<<=⎪⎪⎪∈≤≤=⎪⎨⎪⎪∈≤<=⎧⎪⎪⎨⎪∈<≤=⎪⎩⎩开区间: 闭区间: 有限区间闭开区间:半开半闭区间开闭区间:{}{}{}{}{}|[,).|(,].|(,).|(,).|.x R x a a x R x a a x R x a a x R x a a x R x R ⎧∈≥=+∞⎪∈≤=-∞⎪⎪∈>=+∞⎨⎪∈<=-∞⎪⎪∈-∞<<+∞=⎩无限区间2、邻域联想:“邻居”.字面意思:“邻近的区域”.与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?(1)a 的δ邻域:设,0a R δ∈>,满足不等式||x a δ-<的全体实数x 的集合称为点a 的δ邻域,记作(;)U a δ,或简记为()U a ,即 {}(;)||(,)U a x x a a a δδδδ=-<=-+.其中a δ称为该邻域的中心,称为该邻域的半径.(2)点a 的空心δ邻域{}(;)0||(,)(,)()o o U a x x a a a a a U a δδδδ=<-<=-⋃+.(3)a 的δ右邻域和点a 的空心δ右邻域{}{}00(;)[,)();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ++++=+=≤<+=+=<<+(4)点a 的δ左邻域和点a 的空心δ左邻域{}{}00(;)(,]();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ+---=-=-<≤=-=-<<(5)∞邻域,+∞邻域,-∞邻域{}()||,U x x M ∞=>(其中M 为充分大的正数); {}(),U x x M +∞=>{}()U x x M -∞=<-二 、有界集与无界集1、 定义1(上、下界):设S 为R 中的一个数集.若存在数()M L ,使得一切x S ∈都有()x M x L ≤≥,则称S 为有上(下)界的数集.数()M L 称为S 的上界(下界);若数集S 既有上界,又有下界,则称S 为有界集.闭区间[],a b 、开区间b a b a ,( ),(为有限数)、邻域等都是有界数集, 集合 {}) , ( ,sin ∞+∞-∈==x x y y E 也是有界数集.若数集S 不是有界集,则称S 为无界集.) , 0 ( , ) 0 , ( , ) , (∞+∞-∞+∞-等都是无界数集,集合 ⎭⎬⎫⎩⎨⎧∈==) 1 , 0 ( ,1 x xy y E 也是无界数集. 注:1)上(下)界若存在,不唯一;2)上(下)界与S 的关系如何?看下例:例1 讨论数集{}|N n n +=为正整数的有界性.解:任取0n N +∈,显然有01n ≥,所以N +有下界1;但N +无上界.因为假设N +有上界M,则M>0,按定义,对任意0n N +∈,都有0n M ≤,这是不可能的,如取[]0[]1n M M M =+(符号表示不超过的最大整数),则0n N +∈,且0n M >.综上所述知:N +是有下界无上界的数集,因而是无界集.例2证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集.[问题]:若数集S 有上界,上界是唯一的吗?对下界呢?(答:不唯一 ,有无穷多个).三 、确界与确界原理1、定义定义2(上确界) 设S 是R 中的一个数集,若数η满足:(1) 对一切,x S ∈有x η≤(即η是S 的上界); (2) 对任何αη<,存在0x S ∈,使得0x α>(即η是S 的上界中最小的一个),则称数η为数集S 的上确界,记作sup .S η=从定义中可以得出:上确界就是上界中的最小者.命题1sup M E = 充要条件1),x E x M ∀∈≤;2)00,,o x S x M εε∀>∃∈>-使得.证明:必要性,用反证法.设2)不成立,则00,,o x E x M εε∃>∀∈≤-使得均有,与M 是上界中最小的一个矛盾.充分性(用反证法),设M 不是E 的上确界,即0M ∃是上界,但0M M >.令00M M ε=->,由2),0x E ∃∈,使得00x M M ε>-=,与0M 是E 的上界矛盾.定义3(下确界)设S 是R 中的一个数集,若数ξ满足:(1)对一切,x S ∈有x ξ≥(即ξ是S 的下界);(2)对任何βξ>,存在0x S ∈,使得0x β<(即ξ是S 的下界中最大的一个),则称数ξ为数集S 的下确界,记作inf S ξ=.从定义中可以得出:下确界就是下界中的最大者.命题2 inf S ξ=的充要条件:1),x E x ξ∀∈≥;2)ε∀>0,00,x S x ∈有<.ξε+上确界与下确界统称为确界.例3(1),) 1(1⎭⎬⎫⎩⎨⎧-+=n S n 则sup S = 1 ;inf S = 0 . (2){}.),0( ,sin π∈==x x y y E 则sup S = 1 ;inf S = 0 . 注:非空有界数集的上(或下)确界是唯一的.命题3:设数集A 有上(下)确界,则这上(下)确界必是唯一的.证明:设sup A η=,sup A η'=且ηη'≠,则不妨设ηη'<A sup =η⇒A x ∈∀有η≤xsup A η'=⇒对ηη'<,0x A ∃∈使0x η<,矛盾.例:sup 0R -= ,sup 11n Z n n +∈⎛⎫= ⎪+⎝⎭,1inf 12n Z n n +∈⎛⎫= ⎪+⎝⎭ {}5,0,3,9,11E =-则有inf 5E =-.开区间(),a b 与闭区间[],a b 有相同的上确界b 与下确界a例4设S 和A 是非空数集,且有.A S ⊃则有.inf inf ,sup sup A S A S ≤≥. 例5设A 和B 是非空数集.若对A x ∈∀和,B y ∈∀都有,y x ≤则有.inf sup B A ≤证明:,B y ∈∀y 是A 的上界,.sup y A ≤⇒A sup ⇒是B 的下界,.inf sup B A ≤⇒例6A 和B 为非空数集,.B A S =试证明:{}. inf , inf m in inf B A S = 证明:,S x ∈∀有A x ∈或,B x ∈由A inf 和B inf 分别是A 和B 的下界,有A x inf ≥或{}. inf , inf m in .infB A x B x ≥⇒≥即{} inf , inf m in B A 是数集S 的下界,{}. inf , inf m in inf B A S ≥⇒又S A S ,⇒⊃的下界就是A 的下界,S inf 是S 的下界,S inf ⇒是A 的下界,;inf inf A S ≤⇒同理有.inf inf B S ≤于是有{} inf , inf m in inf B A S ≤.综上,有{} inf , inf m in inf B A S =.1. 数集与确界的关系:确界不一定属于原集合.以例3⑵为例做解释.2. 确界与最值的关系:设 E 为数集.(1)E 的最值必属于E ,但确界未必,确界是一种临界点.(2)非空有界数集必有确界(见下面的确界原理),但未必有最值.(3)若E max 存在,必有.sup max E E =对下确界有类似的结论.4. 确界原理:Th1.1(确界原理).设S 非空的数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.这里我们给一个可以接受的说明 ,E R E ⊂非空,E x ∈∃,我们可以找到一个整数p ,使得p 不是E 上界,而1p +是E 的上界.然后我们遍查9.,,2.,1.p p p 和1+p ,我们可以找到一个0q ,900≤≤q ,使得0.q p 不是E 上界,)1.(0+q p 是E 上界,如果再找第二位小数1q ,, 如此下去,最后得到 210.q q q p ,它是一个实数,即为E 的上确界.证明:(书上对上确界的情况给出证明,下面讲对下确界的证明)不妨设S 中的元素都为非负数,则存在非负整数n ,使得1)S x ∈∀,有n x >;2)存在S x ∈1,有1+≤n x ;把区间]1,(+n n 10等分,分点为n.1,n.2,...,n.9, 存在1n ,使得 1)S ∈∀,有;1.n n x >;2)存在S x ∈2,使得10112.+≤n n x . 再对开区间111(.,.]10n n n n +10等分,同理存在2n ,使得1)对任何S x ∈,有21.n n n x >;2)存在2x ,使2101212.+≤n n n x 继续重复此步骤,知对任何 ,2,1=k ,存在k n 使得1)对任何S x ∈,k k n n n n x 10121.-> ;2)存在S x k ∈,k k n n n n x 21.≤.因此得到 k n n n n 21.=η.以下证明S inf =η.(ⅰ)对任意S x ∈,η>x ;(ⅱ)对任何ηα>,存在S x ∈'使x '>α.[作业]:P9 1(1),(2); 2; 4(2)、(4);7§3函数概念授课章节:第一章实数集与函数——§3 函数概念教学目的:使学生深刻理解函数概念.教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示法;(2)牢记基本初等函数的定义、性质及其图象.会求初等函数的存在域,会分析初等函数的复合关系.教学重点:函数的概念.教学难点:初等函数复合关系的分析.教学方法:课堂讲授,辅以提问、练习、部分内容可自学.教学程序:引言关于函数概念,在中学数学中已有了初步的了解.为便于今后的学习,本节将对此作进一步讨论.一、函数的定义1.定义1设,D M R∀∈,⊂,如果存在对应法则f,使对x D存在唯一的一个数y M∈与之对应,则称f是定义在数集D上的函数,记作→:f D M→ .|x y数集D称为函数f的定义域,x所对应的y,称为f在点x的函数值,记为()f D.f x.全体函数值的集合称为函数f的值域,记作()即{}==∈.()|(),f D y y f x x D2.几点说明(1)函数定义的记号中“:f D M→”表示按法则f建立D到M 的函数关系,|x y→表示这两个数集中元素之间的对应关系,也记作→.习惯上称x自变量,y为因变量.|()x f x(2)函数有三个要素,即定义域、对应法则和值域.当对应法则和定义域确定后,值域便自然确定下来.因此,函数的基本要素为两个:定义域和对应法则.所以函数也常表示为:(),y f x x D =∈. 由此,我们说两个函数相同,是指它们有相同的定义域和对应法则.例如:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同)2)()||,,x x x R ϕ=∈ 2(),.x x x R ψ=∈(相同,只是对应法则的表达形式不同).(3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域).此时,函数的记号中的定义域可省略不写,而只用对应法则f 来表示一个函数.即“函数()y f x =”或“函数f ”.(4)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象.a 称为()f a 的原象.(5)函数定义中,x D ∀∈,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x 值,可以对应多于一个y 值,则称这种函数为多值函数.本书中只讨论单值函数(简称函数).二 、函数的表示方法1 主要方法:解析法(公式法)、列表法(表格法)和图象法(图示法).2 可用“特殊方法”来表示的函数.1)分段函数:在定义域的不同部分用不同的公式来表示.例如 1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,(符号函数)(借助于sgnx 可表示()||,f x x =即()||sgn f x x x x ==).2)用语言叙述的函数.(注意;以下函数不是分段函数)例 1)[]y x =(取整函数)比如: [3.5]=3, [3]=3, [-3.5]=-4.常有 [][]1x x x ≤<+, 即[]01x x ≤-<.与此有关一个的函数[]{}y x x x =-(非负小数函数)图形是一条大锯,画出图看一看.2)狄利克雷(Dirichlet )函数1,()0,x D x x ⎧=⎨⎩当为有理数,当为无理数,这是一个病态函数,很有用处,却无法画出它的图形.它是周期函数,但却没有最小周期,事实上任一有理数都是它的周期.3)黎曼(Riemman )函数 1,(,,()0,0,1(0,1)p p x p q N q q q R x x +⎧=∈⎪=⎨⎪=⎩当为既约分数),当和内的无理数.三 函数的四则运算给定两个函数12,,,f x D g x D ∈∈,记12D D D =,并设D φ≠,定义f 与g 在D 上的和、差、积运算如下:()()(),F x f x g x x D=+∈;()()(),G x f x g x x D =-∈;()()(),H x f x g x x D =∈. 若在D 中除去使()0g x =的值,即令{}2\()0,D D x g x x D φ=≠∈≠,可在D 上定义f 与g 的商运算如下;()(),()f x L x x Dg x =∈. 注:1)若12D D D φ==,则f 与g 不能进行四则运算.2)为叙述方便,函数f 与g 的和、差、积、商常分别写为:,,,f f g f g fg g+-. 四、复合运算1.引言在有些实际问题中函数的自变量与因变量通过另外一些变量才建立起它们之间的对应关系.例:质量为m 的物体自由下落,速度为v ,则功率E 为2221122E mv E mg t v gt ⎫=⎪⇒=⎬⎪=⎭. 抽去该问题的实际意义,我们得到两个函数21(),2f v mv v gt ==,把()v t 代入f ,即得221(())2f v t mg t =. 这样得到函数的过程称为“函数复合”,所得到的函数称为“复合函数”.[问题] 任给两个函数都可以复合吗?考虑下例;2()arcsin ,[1,1],()2,y f u u u D u g x x x E R ==∈=-==+∈=.就不能复合,结合上例可见,复合的前提条件是“内函数”的值域与“外函数”的定义域的交集不空(从而引出下面定义).2.定义(复合函数) 设有两个函数(),,(),y f u u D u g x x E =∈=∈,{}()E x f x D E =∈,若E φ≠,则对每一个x E ∈,通过g 对应D 内唯一一个值u ,而u 又通过f 对应唯一一个值y ,这就确定了一个定义在E 上的函数,它以x 为自变量,y 因变量,记作(()),y f g x x E =∈或()(),y f g x x E =∈.简记为f g .称为函数f 和g 的复合函数,并称f 为外函数,g 为内函数,u 为中间变量.3. 例子例 .1)( ,)(2x x g u u u f y -==== 求 ()[]).()(x g f x g f = 并求定义域.例 ⑴._______________)( ,1)1(2=++=-x f x x x f⑵ .1122xx x x f +=⎪⎭⎫ ⎝⎛+ 则) ( )(=x fA. ,2xB. ,12+xC. ,22-xD. .22+x例 讨论函数()[0,)y f u u ==∈+∞与函数()u g x x R ==∈能否进行复合,求复合函数.4 说明1)复合函数可由多个函数相继复合而成.每次复合,都要验证能否进行?在哪个数集上进行?复合函数的最终定义域是什么? 例如:2sin ,1y u u v x ===-,复合成:[1,1]y x =∈-.2)不仅要会复合,更要会分解.把一个函数分解成若干个简单函数,在分解时也要注意定义域的变化. ①2log (0,1)log ,1.a a y x y u u z x =∈→===-②2arcsin , 1.y y u u v x =→===+③2sin 222,,sin .x u y y u v v x =→===五、反函数1.引言在函数()y f x =中把x 叫做自变量,y 叫做因变量.但需要指出的是,自变量与因变量的地位并不是绝对的,而是相对的,例如:2()1,f u u t ==+ 那么u 对于f 来讲是自变量,但对t 来讲,u 是因变量.习惯上说函数()y f x =中x 是自变量,y 是因变量,是基于y 随x 的变化现时变化.但有时我们不仅要研究y 随x 的变化状况,也要研究x 随y 的变化的状况.对此,我们引入反函数的概念.2.反函数概念定义设→X f :R 是一函数,如果∀1x ,X x ∈2, 由)()(2121x f x f x x ≠⇒≠(或由2121)()(x x x f x f =⇒=),则称f 在X 上是 1-1 的.若Y X f →:,)(X f Y =,称f 为满的.若 Y X f →:是满的 1-1 的,则称f 为1-1对应.→X f :R 是1-1 的意味着)(x f y =对固定y 至多有一个解x ,Y X f →:是1-1 的意味着对Y y ∈,)(x f y =有且仅有一个解x .定义 设Y X f →:是1-1对应.Y y ∈∀, 由)(x f y =唯一确定一个X x ∈, 由这种对应法则所确定的函数称为)(x f y =的反函数,记为)(1y f x -=.反函数的定义域和值域恰为原函数的值域和定义域Y X f →:X Y f →-:1显然有X X I f f→=-:1 (恒等变换) Y Y I f f →=-:1 (恒等变换)Y X f f →=--:)(11.从方程角度看,函数和反函数没什么区别,作为函数,习惯上我们还是把反函数记为 )(1x f y -=, 这样它的图形与 )(x f y =的图形是关于对角线x y =对称的. 严格单调函数是1-1但 1-1 例子⎩⎨⎧≤≤-<≤=21,310,)(x x x x x f它的反函数即为它自己.实际求反函数问题可分为二步进行:1. 确定 Y X f →:的定义域X 和值域Y ,考虑 1-1对应条件.固定 Y y ∈,解方程 y x f =)( 得出)(1y f x -=. 2. 按习惯,自变量x 、因变量y 互换,得)(1x f y -=. 例 求 2)(x x e e x sh y --== :R → R 的反函数. 解 固定y ,为解 2x x e e y --=,令 z e x =,方程变为 122-=z zy0122=--zy z12+±=y y z ( 舍去12+-y y ) 得)1ln(2++=y y x ,即)()1ln(12x sh x x y -=++=,称为反双曲正弦. 定理 给定函数)(x f y =,其定义域和值域分别记为X 和Y , 若在Y 上存在函数)(y g ,使得 x x f g =))((, 则有)()(1y f y g -=.分析:要证两层结论:一是)(x f y =的反函数存在,我们只要证它是 1-1 对应就行了;二是要证1()()g y f y -=. 证 要证)(x f y =的反函数存在,只要证)(x f 是X 到Y 的 1-1 对应.∀1x ,X x ∈2,若)()(21x f x f =, 则由定理条件,我们有11))((x x f g = 22))((x x f g =21x x =⇒,即 Y X f →: 是 1-1 对应. 再证1()()g y f y -=.∀Y y ∈,∃X x ∈,使得)(x f y =.由反函数定义 )(1y f x -=,再由定理条件()(())g y g f x x ==.1()()g y f y -⇒=例 :f R R →,若))((x f f 存在唯一(|∃)不动点,则)(x f 也|∃不动点.证 存在性,设)]([* * x f f x =,)]([)(* * x f f f x f =,即)(* x f 是f f 的不动点,由唯一性* * )(x x f =,即存在)(x f 的不动点* x .唯一性: 设)(x f x =,))(()(x f f x f x ==,说明 x 是f f 的不动点,由唯一性,x =*x .从映射的观点看函数. 设函数(),y f x x D =∈.满足:对于值域()f D 中的每一个值y ,D中有且只有一个值x ,使得()f x y =,则按此对应法则得到一个定义在()f D 上的函数,称这个函数为f 的反函数,记作1:(),(|)f f D D y x -→→或1(),()x f y y f D -=∈.3、注释a) 并不是任何函数都有反函数,从映射的观点看,函数f 有反函数,意味着f 是D与()f D 之间的一个一一映射,称1f -为映射f的逆映射,它把()f D D→;b) 函数f 与1f -互为反函数,并有:1(()),,f f x x x D -≡∈ 1(()),().f f x y y f D -≡∈c) 在反函数的表示1(),()x f y y f D -=∈中,是以y 为自变量,x 为因变量.若按习惯做法用x 做为自变量的记号,y 作为因变量的记号,则函数f 的反函数1f -可以改写为1(),().y f x x f D -=∈应该注意,尽管这样做了,但它们的表示同一个函数,因为其定义域和对应法则相同,仅是所用变量的记号不同而已.但它们的图形在同一坐标系中画出时有所差别.六 、初等函数1.基本初等函数(6类)常量函数 y C =(C为常数);幂函数 ()y x R αα=∈;指数函数(0,1)x y a a a =>≠;对数函数 log (0,1)a y x a a =>≠;三角函数 sin ,cos ,,c y x y x y tgx y tgx ====;反三角函数 arcsin ,arccos ,,y x y x y arctgx y arcctgx ====.注:幂函数()y x R αα=∈和指数函数(0,1)x y a a a =>≠都涉及乘幂,而在中学数学课程中只给了有理指数乘幂的定义.下面我们借助于确界来定义无理指数幂,便它与有理指数幂一起构成实指数乘幂,并保持有理批数幂的基本性质.定义2.给定实数0,1a a >≠,设x 为无理数,我们规定:{}{}sup |,1|,01r x r xr a r a a a r a <⎧>⎪=⎨<<⎪⎩r<x为有理数当时,inf 为有理数当时. 这样解决了中学数学仅对有理数x定义xa 的缺陷.[问题]:这样的定义有意义否?更明确一点相应的“确界是否存在呢?”2.初等函数定义3.由基本初等函数经过在有限次四则运算与复合运算所得到的函数,统称为初等函数如:22112sin cos ,sin(),l g ,||.a e y x x y y o x y x x x -=+==+= 不是初等函数的函数,称为非初等函数.如Dirichlet 函数、Riemann 函数、取整函数等都是非初等函数.注:初等函数是本课程研究的主要对象.为此,除对基本初等函数的图象与性质应熟练掌握外,还应常握确定初等函数的定义域.确定定义域时应注意两点.例2.求下列函数的定义域.(1)y = (2) ln |sin |.y x = 3.初等函数的几个特例: 设函数)(x f 和)(x g 都是初等函数, 则(1) )( x f 是初等函数, 因为 ().)( )( 2x f x f =(2){})( , )(m ax )(x g x f x =Φ 和 {})( , )(m in )(x g x f x =φ都是初等函数, 因为 {})( , )(m ax )(x g x f x =Φ[])()()()(21x g x f x g x f -++=,{})( , )(m in )(x g x f x =φ [])()()()(21x g x f x g x f --+= . (3)幂指函数 ()()0)( )()(>x f x f x g 是初等函数,因为()(). )()(ln )()(ln )()(x f x g x f x g e e x f x g ==[作业] 15P : 3;4:(2)、(3); 5:(2); 7:(3);11§4具有某些特性的函数授课章节:第一章实数集与函数——§4具有某些特性的函数 教学目的:熟悉与初等函数性态有关的一些常见术语.教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期.教学重点:函数的有界性、单调性.教学难点:周期函数周期的计算、验证.教学方法:有界函数讲授,其余的列出自学题纲,供学生自学完成. 教学程序:引 言在本节中,我们将介绍以后常用的几类具有某些特性的函数,如有界函数、单调函数、奇偶函数与周期函数.其中,有些概念在中学里已经叙述过,因此,这里只是简单地提一下.与“有界集”的定义类似,先谈谈有上界函数和有下界函数.一、有界函数1、有上界函数、有下界函数的定义定义1设f 为定义在D 上的函数,若存在数()M L ,使得对每一个x D ∈有()(())f x M f x L ≤≥,则称f 为D 上的有上(下)界函数,()M L 称为f 在D 上的一个上(下)界.注:(1)f 在D 上有上(下)界,意味着值域()f D 是一个有上(下)界的数集;(2)又若()M L 为f 在D 上的一个上(下) 界,则任何大于M(小于L)的数也是f 在D 上的上(下)界.所以,函数的上(下)界若存在,则不是唯一的,例如:sin y x =,1是其一个上界,下界为-1,则易见任何小于-1的数都可作为其下界;任何大于1的数都可作为其上界;(3)任给一个函数,不一定有上(下)界;(4)由(1)及“有界集”定义,可类比给出“有界函数”定义:f 在D 上有界⇔()f D 是一个有界集⇔f 在D 上既有上界又有下界⇔f 在D 上的有上界函数,也为D 上的有下界函数.2、有界函数定义定义2设f 为定义在D 上的函数.若存在正数M,使得对每一个x D ∈有|()|f x M ≤,则称f 为D 上的有界函数.注:(1)几何意义:f 为D 上的有界函数,则f 的图象完全落在y M =和y M =-之间;(2)f 在D 上有界⇔f 在D 上既有上界又有下界;例子:sin ,cos y x y x ==;(3)关于函数f 在D 上无上界、无下界或无界的定义.3、 例题例 1 证明:f X R →有界的充要条件为:∃M ,m ,使得对X x ∈∀,M x f m ≤≤)(.证明 如果:f X R →有界,按定义∃M >0,X x ∈∀有()f x M ≤,即()M f x M -≤≤,取M m -=,M M =即可.反之如果∃M ,m 使得,()x X m f x M ∀∈≤≤,令{}0max 1,M M m =+,则0()f x M ≤,即∃00M >,使得对x X ∀∈有0()f x M ≤,即:f X R →有界.例2.证明 1()f x x=为(0,1]上的无上界函数.例3.设,f g 为D 上的有界函数.证明:(1){}inf ()inf ()inf ()()x D x D x Df xg x f x g x ∈∈∈+≤+; (2){}sup ()()sup ()sup ()x D x D x D f x g x f x g x ∈∈∈+≤+.例4验证函数 325)(2+=x x x f 在R 内有界. 解法一 由,62322)3()2(32222x x x x =⋅≥+=+当0≠x 时,有 .3625625325325 )( 22≤=≤+=+=x x x x x x x f 30 )0( ≤=f ,∴ 对 ,R ∈∀x 总有 ,3 )( ≤x f 即)(x f 在R 内有界.解法二 令 ,3252⇒+=x x y 关于x 的二次方程 03522=+-y x yx 有实数根. 22245 y -=∆∴.2 ,42425 ,02≤⇒≤≤⇒≥y y 解法三 令 ⎪⎭⎫ ⎝⎛-∈=2,2 ,23ππt tgt x 对应). , (∞+∞-∈x 于是 ==+=+⎪⎪⎭⎫ ⎝⎛=+=t t t t tg tgt tgt tgt x x x f 2222sec 1cos sin 65123353232235325)( .6252sin 625)( ,2sin 625≤=⇒=t x f t二、单调函数定义3设f 为定义在D 上的函数,1212,,,x x D x x ∀∈< (1)若12()()f x f x ≤,则称f 为D 上的增函数;若12()()f x f x <,则称f 为D 上的严格增函数.(2)若12()()f x f x ≥,则称f 为D 上的减函数;若12()()f x f x >,则称f 为D 上的严格减函数.例5.证明:3y x =在(,)-∞+∞上是严格增函数.证明:设21x x <,))((222121213231x x x x x x x x ++-=- 如021<x x ,则3231120x x x x <⇒>>如120x x >,则22331122120,x x x x x x ++>⇒<故03231<-x x 即得证. 例6.讨论函数[]y x =在R 上的单调性.12,x x R ∀∈,当12x x <时,有[][]12x x ≤,但此函数在R 上的不是严格增函数.注:1)单调性与所讨论的区间有关.在定义域的某些部分,f 可能单调,也可能不单调.所以要会求出给定函数的单调区间;2)严格单调函数的几何意义:其图象无自交点或无平行于x 轴的部分.更准确地讲:严格单调函数的图象与任一平行于x 轴的直线至多有一个交点.这一特征保证了它必有反函数.总结得下面的结论:定理1.设(),y f x x D =∈为严格增(减)函数,则f 必有反函数1f -,且1f -在其定义域()f D 上也是严格增(减)函数.证明:设f 在D 上严格增函数.对(),,()y f D x D f x y ∀∈∈=有使.下面证明这样的x 只有一个.事实上,对于D 内任一1,x x ≠由于f 在D 上严格增函数,当1x x <时1()f x y <,当1x x >时1()f x y >,总之1()f x y ≠.即(),,()y f D x D f x y ∀∈∈=都只存在唯一的一使得,从而例7 讨论函数2y x =在(,)-∞+∞上反函数的存在性;如果2y x =在(,)-∞+∞上不存在反函数,在(,)-∞+∞的子区间上存在反函数否?结论:函数的反函数与讨论的自变量的变化范围有关.例8 证明:x y a =当1a >时在R上严格增,当01a <<时在R 上严格递减.三、奇函数和偶函数定义4. 设D 为对称于原点的数集,f 为定义在D 上的函数.若对每一个x D ∈有(1)()()f x f x -=-,则称f 为D 上的奇函数;(2)()()f x f x -=,则称f 为D 上的偶函数.注:(1)从函数图形上看,奇函数的图象关于原点对称(中心对称),偶函数的图象关于y 轴对称;(2)奇偶性的前提是定义域对称,因此(),[0,1]f x x x =∈没有必要讨论奇偶性.(3)从奇偶性角度对函数分类:⎧⎪⎪⎨⎪⎪≡⎩奇函数:y=sinx 偶函数:y=sgnx 非奇非偶函数:y=sinx+cosx既奇又偶函数:y 0; (4)由于奇偶函数对称性的特点,研究奇偶函数性质时,只须讨论原点的左边或右边即可四、周期函数1、定义设f 为定义在数集D 上的函数,若存在0σ>,使得对一切x D ∈有()()f x f x σ±=,则称f 为周期函数,σ称为f 的一个周期.2、几点说明:(1)若σ是f 的周期,则()n n N σ+∈也是f 的周期,所以周期若存在,则不唯一.如sin ,2,4,y x σππ==.因此有如下“基本周期”的说法,即若在周期函数f 的所有周期中有一个最小的周期,则称此最小周期为f 的“基本周期”,简称“周期”.如sin y x =,周期为2π;(2)任给一个函数不一定存在周期,既使存在周期也不一定有基本周期,如:1)1y x =+,不是周期函数;2)y C =(C为常数),任何正数都是它的周期.第二章数列极限。