六年级下册数学圆柱的体积人教版

合集下载

人教版六年级下册 圆柱的体积说课稿

人教版六年级下册 圆柱的体积说课稿

《转化思想—解决问题》说课稿教材分析:本课是六年级数学下册第三单元《圆柱与圆锥》中《圆柱的体积》部分例7的内容。

对这一单元的学习有利于发展学生的空间观念,为进一步应用几何知识解决实际问题打下基础。

本课的教学是在学生探索并掌握了圆柱体积计算公式后,在解决问题的过程中对转化、推理和变中有不变的数学思想的体会,从而加强了数学知识与实际生活的联系,提高学生运用所学知识解决实际问题的意识与能力。

本课的教学要注重培养学生的问题意识,引导学生运用转化思想分析和解决问题。

学情分析:通过前面的学习,学生已经掌握了圆柱体的体积公式,同时通过六年的学习,学生已经具备一定的独立解决问题的能力,前面学习的圆柱体体积的公式探究过程也是转化思想的运用。

使学生通过经历发现和提出问题、分析和解决问题的完整过程,掌握问题解决的策略,培养应用意识。

学习圆柱的知识可以扩大学生认识形体的范围,增强形体的知识,促进空间观念的形成。

通过本课的学习,引导学生把不规则的图形转化成圆柱,通过转化思想的应用,为学生提供解决现实问题的策略,注重在问题解决中培养应用意识和创新意识。

教学目标:1.使学生熟练运用圆柱的体积计算公式解决实际问题。

2.使学生通过经历发现和提出问题、分析和解决问题的完整过程,掌握问题解决的策略,培养应用意识。

3.使学生在解决问题的过程中体会转化、推理和变中有不变的数学思想。

教学重点难点分析:教学重点:培养问题意识,体会转化思想。

教学难点:通过实践操作、合作交流,体会转化的数学思想。

教学策略分析:学生已经具备一定的独立解决问题的能力,教学时应从直观入手,帮助学生形成表象,可采用动手操作、合作探究的方式进行教学。

课前准备:教师:瓶体近似圆柱体的矿泉水瓶、课件学生:瓶体近似圆柱体的矿泉水瓶教学环节:(一)激趣导入,引出课题1、通过曹冲称象的故事引出转化思想。

2.转化思想在学习中的运用。

让学生回忆圆柱体转化成长方体的过程,说出计算公式,从而引出课题。

人教版小学数学六年级下册12册《圆柱的体积》教学课件

人教版小学数学六年级下册12册《圆柱的体积》教学课件
怎样求它们 的体积呢?
圆的面积公式推导过程:
圆的面积公式推导过程:
πr
S=π r
2
r
2
S=πr ×r =π r
1、拼成的长方体的体积与原来的圆 柱体体积是否相等? 2、它的底面积变了吗? 3、它的高变了吗?
把圆柱的底面平均分的份数越多, 切拼成的立体图形越接近长方体。
长方形的体积= 长×宽×高 正方形的体积= 棱长×棱长 ×棱长
大胆猜想圆柱体的体积等于??
因为变换成长方体后,底面积和 高的大小是不变的,所以圆柱的 体积也等于底面积×高
V= S × h
直柱体的体积 = 底面积×高
V =s h
一、填表。
高 h 圆柱体积 V (平方米) (米) (立方米)
底面积
s
15 40
3 4
45 160
二、填空
1、一个长方体和一个圆柱的体积相等,
米, 高 5 厘米。
5
12 24× 12
2
3.14× 2 × 5
2
求下面圆柱的体积。
3、底面直径 5 分米, 高 2 分米。
5
2 3.14×(5 2)× 5
2ቤተ መጻሕፍቲ ባይዱ
图1 :
h=h

讨论题:
1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

圆柱体的大小与底面积 有关!
高相等时底面积越大的 体积越大。
将一个圆柱截成不相等的两段,哪个圆柱 体积大?


当底面积相等时,高 越长的体积越大。
下 上
高也相等,那么它们的底面积(相等)。
2、一根横截面面积是10平方厘米的圆柱 形钢材,长是2米,它的体积是(

人教版数学六年级下册 3.1.3核心素养 教学设计 《圆柱的体积》

人教版数学六年级下册 3.1.3核心素养  教学设计 《圆柱的体积》

《圆柱的体积》教学模式介绍:核心素养下的培养是需要正确的教学模式作为载体的,对于以往的课堂来说是一种全新的转型。

核心素养下的教学设计是利用设计好的核心问题在课堂中培养学生的核心素质,激发和推动学生主体活动、能整合教材中内容并与学生生活实际相关联。

在这个课堂教学活动中,教师要以问题及其解决方式为主线的,整体设计思路是在教师的策划、指导和支持下,学生积极主动地参与问题的发现、提出与解决,在探索问题解决的过程中获得新知,构建新知。

老师作为学习共同体的一员,和学生共同为问题的解决,开展合作学习、共同探究,让学生在学习活动中解决问题、培养核心素养。

核心素养教学设计的课程环节:讲什么——为何讲——怎么讲——讲怎样设计思路说明:本节课是在学生学习了长方体、正方体的体积和圆的面积有关知识的基础上,并且对圆柱有了初步认识的基础上进行教学的。

教学开始,充分应用多媒体课件,以课本主题图引入新课;教学中,通过多处实例,结合学生生活经验,在展示与交流中加深对圆柱体积的认识,能够利用圆柱体积的知识解决简单的实际问题,培养学生灵活利用知识解决问题的能力。

一、讲什么1.教学内容(1)概念原理:圆柱的体积;(2)思想方法:理论联系实际,转化、推理、极限;(3)能力素养:研究问题和解决问题的能力。

2.内容解析:本课是《圆柱与圆锥》这一单元的第三课,在前面的学习中学生已经学过了长方体、正方体的体积和圆的面积有关知识,并且对圆柱有了初步认识。

因此有了一定的基础,这为学习圆柱的体积的内容奠定了良好的基础。

二、为何讲1、教学目标:(1)探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积。

(2)使学生在探索圆柱体积公式的过程中,进一步体会转化的思想方法,培养应用所学知识解决问题的能力,发展初步的推理能力和空间观念。

(3)使学生在参与数学活动的过程中,进一步感受数学知识和方法的学习价值,获得些学习成功的体验,培养对数学学习的兴趣。

2、目标解析:(1)使学生经历观察、操作、猜想、验证、类比和归纳等数学活动的过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并能解决相关的实际问题。

人教版六年级数学下册第一单元圆柱的体积

人教版六年级数学下册第一单元圆柱的体积

练习:1、一个圆柱的侧面积是125.6平方厘米, 半径是8厘米,求它的体积。
2、一个圆柱形水池底面直径8米,池深2米, 如果在水池的底面和四周涂上水泥,涂水泥的 面积有多少平方米?水池最多能盛水多少立方 米?
3、把一个底半径为5厘米的圆柱铁块放入一个 底半径10厘米,高14厘米的容器里,水面上升 了3厘米,求这个圆柱铁块的高。
5 :4
体积
5 :4
【例3】把一块长31.4厘米、宽20厘米、 高4厘米的长方体钢材熔化成底面半径是4 厘米的圆柱,圆柱的高是多少厘米?
3.14 20 4 5(厘米) 3.14 4 4
练习:一个圆柱的底面周长是25.12厘米, 高10厘米,把它装满水后,再倒入一个长 10厘米、宽8厘米的长方体容器中,水面 高多少厘米?
5厘米
20厘米
3、一个酒精瓶,它的瓶身呈圆柱形(不包括 瓶颈),如下图.已知它的容积为26.4π立方 厘米.当瓶子正放时,瓶内的酒精的液面高为 6厘米.瓶子倒放时,空余部分的高为2厘 米.问:瓶内酒精的体积是多少立方厘米?
2厘米
6厘米
【例7】在一只底面半径为10厘米的圆柱形玻璃容器中,水 深8厘米,要在容器中放入长10厘米、宽3.14厘米,高15厘 米的一块铁块。 (1)如果把铁块横放在水中水面上升多少厘米? (2)如果把铁块竖放在水中,水面上升多少厘米?
1、一个圆柱体的木头,底面 直径24厘米,高1米,锯下 25厘米长的一段后,表面积 减少多少平方厘米?
2、一个圆柱体木块的底面周长 是25.12厘米,竖着沿直径从中 间切开,表面积增加了32平方厘 米,求其中半个圆柱体的表面积?
1、一个圆柱体,如果它的高增 加1厘米,它的侧面积就增加 50.24平方厘米,这个圆柱体的 底面半径是多少?

人教版六年级下册数学《圆柱的体积》教案6篇

人教版六年级下册数学《圆柱的体积》教案6篇

人教版六年级下册数学《圆柱的体积》教案6篇人教版六年级下册数学《圆柱的体积》教案1教学目标圆柱的体积(1)圆柱的体积(教材第25页例5)。

探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。

教学重难点1.掌握圆柱的体积公式,并能运用其解决简单实际问题。

2.理解圆柱体积公式的推导过程。

教学工具推导圆柱体积公式的圆柱教具一套。

教学过程【复习导入】1.口头回答。

(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。

2.引入新课。

我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。

今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?教师板书:圆柱的体积(1)。

【新课讲授】1.教学圆柱体积公式的推导。

(1)教师演示。

把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

(2)学生利用学具操作。

(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。

②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。

近似长方体的高就是圆柱的高,没有变化。

故体积不变。

(4)学生根据圆的面积公式推导过程,进行猜想:①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?①平均分的份数越多,拼起来的形状越接近长方体。

②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。

人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

人教版六年级数学下册第三单元_第03课时_圆柱的体积例5例6(教学设计)

第三单元第3课时圆柱的体积(1)教学设计情境导入—引“探究”教师谈话导入:什么是物体的体积?你会计算哪些物体的体积?长方体和正方体的体积计算公式?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?V长=长×宽×高V正=棱长×棱长×棱长V=底面积×高字母表示:V=Sh思考:圆柱的体积怎样计算呢?前面的学习中我们遇到过这样的问题吗?知识链接—构“联系”回忆一下圆面积的计算公式是如何推导出来的?(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的长方形。

长方形的长相当于圆周长的一半,长方形的宽就当于圆的半径,用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式。

圆柱的体积该怎么计算呢?今天我们就一起来研究这个问题。

(板书课题:圆柱的体积)学习任务一:圆柱体积公式的推导【设计意图:由复习圆面积公式的推导过程入手,实现知识的迁移,从而调动学生学习的积极性,激发学生探求新知的欲望,在教学中充分运用课件中的动画直观演示的同时,广泛让学生动手、动脑、动口,在操作中感知,在猜想中验证,在观察中理解,在比较中归纳。

让学生在自主探究、合作交流中发现和解决问题,培养学生乐学、积极探究的学习态度,获得成功的体验。

这样进行教学,不仅有利于学生理解公式的推导过程,而且在公式的推导过程中,充分让学生感受和体验“转化”这一解决数学问题重要的思想方法。

】新知探究—习“方法”结合教材的内容,探究圆柱体积公式的推导。

1.提问:什么是圆柱的体积?圆柱的体积怎么求?(说一说、想一想、猜一猜)让学生自由发言。

(1)学生猜想可以把圆柱转化成什么图形?(借助于圆面积公式的推导进行知识迁移学习)出示推导示意图,建立直观,巩固旧知(2)阅读教材内容,利用手中的学具进行探索,小组交流。

2.圆柱体积公式的推导(1)多媒体课件演示圆柱体等分转化为长方体。

(让学生观察)通过课件的演示、观察、思考:(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?(4) 你认为圆柱的体积可以怎样计算?3.交流展示,小组讨论,交流汇报。

圆柱的体积 说课稿

圆柱的体积   说课稿

《圆柱的体积》说课稿济渡小学杨薪琳一.说课标《圆柱的体积》属于空间与图形第三学段的内容,主要体现的学生的核心素养为:数感、量感、推理意识、空间观念、创新意识等。

数学课程标准(2022)关于本课时的要求,从“内容要求”、“学业要求”、“教学提示”三个方面进行课标摘抄。

内容要求:结合具体情境,探索并掌握圆柱的体积计算公式;探索某些实物的体积测量方法;运用有关知识解决简单的实际问题。

学业要求:会计算圆柱的体积,能应用公式解决简单的实际问题,形成空间观念和初步的应用意识。

教学提示:认识立体图形的特征,沟通立体图形之间的联系,增强空间想象能力。

通过操作、转化等活动探索立体图形的体积计算方法。

二.说教材(一)教学内容与在教材中的地位与作用《圆柱的体积》是人教版小学数学六年级下册第三单元的内容,是几何知识的综合应用。

本课时是在学生初步认识了圆柱,已经学过了圆的面积和长方体、正方体的体积公式的基础上进行学习的,学生有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难。

这课时的学习让学生深入研究立体几何图形,是学生发展空间观念的又一次飞跃。

学好圆柱体,可以进一步培养学生形成空间观念,为下一步学习“圆锥的体积”打下基础。

(二)教学目标1.通过推导圆柱体积公式的过程,理解圆柱体积的含义,使学生能够运用公式正确的计算圆柱的体积和容积。

2.让学生经历观察、操作、讨论等数学活动的过程,理解圆柱体积公式的推导过程,培养学生的自主探索意识。

3.在图形的变换中,培养学生的迁移能力、逻辑思维能力,并进一步发展其空间观念,渗透转化思想,感受数学结论的确定性。

(三)教学重难点1.教学重点:理解和掌握圆柱体积的计算公式并能正确应用。

2.教学难点:弄清圆柱与转化后的长方体之间的关系,理解推导过程。

三.学情分析六年级的学生已经有了丰富的生活经验,学习了圆、长方体和圆柱体的相关基础知识,具有一定的转化思想和知识迁移的能力。

本课时要把突破点放在学生经历公式的推导、发现过程,体验比较、分析、归纳发现的学习方法上。

人教版六年级数学下册《圆柱的体积》课件ppt

人教版六年级数学下册《圆柱的体积》课件ppt

个花坛一共需要填土多少立方米?
高为0.8m是多余信息, 花坛里所填土的体积只
花坛的底面积 3.14×(4÷2)=2 3.14×2 2=12.56
(m2
)
于土的高度有关。
两个花坛的体积
12.56×0.5×2=6.28×2=12.56(m³)
答:两个花坛一共需要填土12.56立方米。
课堂小结
这节课你们都学会了哪些知识?
人教版 数学 六年级 下册
3 圆柱与圆锥
圆柱与圆锥
圆柱的体积
复习导入
什么是体积?
圆柱与圆锥
怎样求长方体和 正方体的体积?
物体所占空间的大小是物体的体积。 高 宽 长方体的体积=长×宽×高

正方体的体积=棱长×棱长×棱长
棱长
复习导入
圆柱与圆锥
回想:圆的面积计算公式是怎样推导出来的?
r πr
S=πr2
杯子的底面积: 3.14 ×(8÷2)2
=3.14 ×16 =50.24(cm2)
=502.4(mL) 牛奶的体积: 240×2=480(mL) 502.4 >480 答:杯子能装下2袋这样的牛奶。
课堂练习
圆柱与圆锥
小明和妈妈出去游玩,带了一个圆柱形保温壶,从里 面量底面直径是8cm,高是15cm。如果两人游玩期间 要喝1L水,带这壶水够喝吗?
保温壶的底面积:
3.14×(8÷2)2 =3.14×16 =50.24(cm2)
保温壶的容积:
50.24×15=753.6( cm3 ) =0.7536(L)
1L>0.7536 L
答:带这壶水不够喝。
课堂练习
圆柱与圆锥
一根圆柱形木料底面直径是0.4m,长5m。如果做一张 课桌用去木料0.02m3,这根木料最多能做多少张课桌?

2024年人教版数学六年级下册圆柱的体积说课稿3篇

2024年人教版数学六年级下册圆柱的体积说课稿3篇

人教版数学六年级下册圆柱的体积说课稿3篇〖人教版数学六年级下册圆柱的体积说课稿第【1】篇〗一、让学生在现实情境中体验和理解数学《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。

在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。

学生经过思考、讨论、交流,找到了解决的方法。

而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。

在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。

二、鼓励学生独立思考,引导学生自主探索、合作交流数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。

在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。

那么怎样来切割呢?此时采用小组讨论交流的形式。

同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。

在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。

同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。

这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。

不足之处:在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。

在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。

数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。

人教版六年级数学下册《圆柱的体积》课件

人教版六年级数学下册《圆柱的体积》课件
的值。 3. 求方程的解的过程叫解方程。
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。

六年级下册数学教案-《圆柱的体积》人教版

六年级下册数学教案-《圆柱的体积》人教版
突破方法:提醒学生注意单位统一,以及π的取值(一般取3.14),培养学生严谨的计算习惯。
(4)合作交流中的难点:在小组合作过程中,学生可能无法充分表达自己的观点,或者无法倾听他人的意见。
突破方法:教师引导学生学会倾听、尊重他人,培养学生的团队协作能力和人际沟通能力。
四、教学流程
(一)导入新课(用时5分钟)
1.讨论主题:学生将围绕“圆柱体积在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如圆柱体积计算在工程设计中的应用。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.理论介绍:首先,我们要了解圆柱体积的基本概念。圆柱体积是指圆柱体所占空间的大小。它是我们研究几何体积的一个重要部分,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过将圆柱切割、拼凑成近似长方体的方式,推导出圆柱体积的计算公式,并展示如何运用这个公式解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调圆柱体积公式V=πr²h和圆柱与长方体体积关系这两个重点。对于难点部分,如空间观念的建立和公式的应用,我会通过实物操作和举例来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆柱体积相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量水桶的半径和高度,计算其体积,从而验证圆柱体积公式的正确性。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

小学数学《圆柱的体积》教案

小学数学《圆柱的体积》教案

小学数学《圆柱的体积》教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、合同协议、条据书信、规章制度、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, contract agreements, document letters, rules and regulations, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!小学数学《圆柱的体积》教案小学数学《圆柱的体积》教案(汇总6篇)下面是本店铺分享的小学数学《圆柱的体积》教案(汇总6篇)供大家阅读。

《圆柱的体积》(教案)六年级下册数学人教版

《圆柱的体积》(教案)六年级下册数学人教版

《圆柱的体积》(教案)六年级下册数学人教版在今天的数学课上,我们将一起探索圆柱的体积。

这是小学数学六年级下册的教学内容,我们将使用人教版的教材。

一、教学内容我们将在第107页的圆柱一节中学习圆柱的体积。

具体内容包括圆柱的定义、底面半径和高对体积的影响,以及圆柱体积的计算方法。

二、教学目标通过这节课,我希望孩子们能够理解圆柱体积的概念,掌握圆柱体积的计算方法,并能运用到实际问题中。

三、教学难点与重点重点是圆柱体积的计算公式,难点是理解底面半径和高对体积的影响。

四、教具与学具准备我已经准备好了圆柱模型、直尺、铅笔等教具,孩子们需要准备好练习本和笔。

五、教学过程我会通过一个实践情景引入:拿一个圆柱形的杯子,填满水,然后倒进一个与之等底等高的长方体杯子中,让孩子们观察水的体积变化,从而引出圆柱体积的概念。

接着,我会详细讲解圆柱体积的计算方法,并举例说明。

比如,假设一个圆柱的底面半径是3厘米,高是5厘米,那么它的体积就是π×3×3×5。

然后,我会让孩子们进行随堂练习,计算几个给定的圆柱体积。

在这个过程中,我会逐一解答他们的问题,帮助他们理解并掌握计算方法。

六、板书设计板书上将画出一个圆柱的示意图,标注出底面半径和高,并在旁边写出圆柱体积的计算公式。

七、作业设计1. 底面半径为4厘米,高为6厘米的圆柱。

2. 底面半径为5厘米,高为8厘米的圆柱。

答案:1. π×4×4×6 = 301.44(立方厘米)2. π×5×5×8 = 628.32(立方厘米)八、课后反思及拓展延伸课后,我会反思这节课的教学效果,看看孩子们是否掌握了圆柱体积的计算方法。

同时,我也会鼓励他们在生活中观察和运用圆柱体积的知识。

重点和难点解析在上述的教学设计中,有几个重点和难点是我认为需要特别关注的。

让孩子们通过实践情景引入圆柱体积的概念,这个环节的设计旨在激发他们的兴趣,并直观地感受体积的变化。

人教版六年级下册数学第三单元第7课时 圆柱的体积(3)【教案】

人教版六年级下册数学第三单元第7课时 圆柱的体积(3)【教案】

教学笔记第7课时圆柱的体积(3)教学内容教科书P27例7,完成教科书P29~30“练习五”中第9、10、15题。

教学目标1.用已学的圆柱的体积知识解决生活中的实际问题,掌握解决问题的策略,培养应用意识。

2.经历探究不规则物体体积的转化和计算过程,让学生在动手操作中初步体会转化的数学思想,体验“等积变形”的转化过程。

3.通过实践,在合作中建立协作精神,增强学生“用数学”的意识。

教学重点利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。

教学难点体会转化的思想。

教学准备课件,瓶体是圆柱形的矿泉水瓶,瓶里装有适量清水。

教学过程一、激活学生经验,引出问题1.教师出示一个空的矿泉水瓶。

师:这个矿泉水瓶的容积是多少?【学情预设】预设1:学生可能无处下手。

(让学生说说为什么不知道该怎么求,因为瓶子是一个不规则的物体。

)预设2:也可能会通过寻找标签上的“净含量”来代替矿泉水瓶的容积。

预设3:将瓶子里灌满水,把这些水倒到量杯或量筒中,就能测出瓶子的容积。

师:要是没有这些工具,甚至连一个玻璃杯都没有,怎么办?2.揭示课题。

师:这节课,我们就来研究怎样求这个不规则瓶子的容积的问题。

[板书课题:圆柱的体积(3)]【设计意图】抛出问题,引发学生思考,为学习新知作好铺垫。

二、体验过程,探索瓶子容积的计算方法1.教师出示一个装有适量水的矿泉水瓶(水大约有13瓶高)。

师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?【学情预设】预设1:瓶子里还有多少水?(就是剩下的水的体积。

)预设2:喝了多少水?(也就是瓶子的空气部分的体积。

)预设3:这个瓶子一共能装多少水?(也就是这个瓶子容积。

) 师:你觉得你能轻松解决什么问题?【学情预设】求瓶子里还有多少水。

师:需要知道哪些信息呢?【学情预设】学生汇报瓶子里剩下的水呈圆柱状,所以只要量出这个瓶子的底面直径和水的高,就能算出剩下水的体积。

【设计意图】让学生自己提出问题,激发学生解决问题的内在需求,培养学生的问题意识。

《圆柱的体积》教学设计

《圆柱的体积》教学设计
现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按 小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实 验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各 种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段, 激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论, 体现了以学生为主体、教师为主导的教学原则。 教学过程
答:502.4 大于 498,所以这个杯子能装下这袋奶。
(让同学们独立完成,小组内交流,集体订正。出错的同学向大家说出错的原因。)
(三)做一做
1. 一根圆柱形木料,底面积是 75 平方厘米,长 90 厘米,它的体积是多少?
2. 李家庄挖了一口圆柱形水井,地面以下的井深 10m,底面直径为 1m。挖出的土有多少立方米?
1.理解并掌握圆柱的体积计算公式的推导过程,能熟练运用公式计算圆柱的体积。 2.知道知识间是可以相互转化的,提高空间观念和逻辑推理能力。 3.培养学生自学能力,动手能力,观察分析和归纳知识的能力。
教学重点
能熟练运用圆柱的体积计算公式计算圆柱的体积。
教学难点
理解并掌握圆柱的体积计算公式的推导过程。 教学策略
(让同学们独立完成,集体订正。)
(四)课堂练习
1. 填表
底面积 S(平方米) 18 5.5
高 h(米) 8 7
圆柱的体积 V(立方米)
学习好资料
பைடு நூலகம்
欢迎下载
2. 一个圆柱形水池,半径是 15 米,深 1 米.这个水池占地面积是多少?水池的容积是多少?
3.有一个高为 12.56 分米的圆柱体的机件,它的侧面展开正好是一个正方形,这个机件的体积 是多少?

六年级下数学教案圆柱的体积_人教新课标

六年级下数学教案圆柱的体积_人教新课标

六年级下数学教案圆柱的体积_人教新课标【教学内容】《义教课标实验教科书数学》(人教版)六年级下册【教学目标】1、探究并把握圆柱体积的运算方法,并能运用运算公式解决简单的实际问题。

2、经历观看、实验、猜想、证明等数学活动过程,进展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、通过圆柱体积运算公式的推导、运用的过程,体验数学问题的探干脆和挑战性,感受数学摸索过程的条理性和数学结论的确定性,获得成功的欢乐。

【教学重点】:把握和运用圆柱体积运算公式。

【教学难点】:圆柱体积公式的推导过程。

【教学预备】:多媒体课件【自学内容】:见预习作业听课随想【教学预设】一、自学反馈如图,一根圆柱形木料,底面半径是5分米,长10分米。

它的体积是多少?12、汇报交流:34圆柱的底面是圆。

5、什么缘故圆柱的体积能够用底面积乘高来运算?二、关键点拨1、回忆旧知,关心迁移请大伙儿想一想,在学习圆的面积时,我们是如何样把圆转化成已学的图形,来推导圆面积的运算公式的?配合学生的回答,课件动态演示:把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积的运算公式。

2、小组合作,实践迁移(1)启发:我们能不能把圆柱转化成我们已学过的立体图形,来运算它的体积?学生相互讨论,摸索应如何转化,而后组织全班汇报。

(2)操作:学生操作学具,进行拼组。

课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……)让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

(3)讨论:圆柱与所拼成的近似长方体之间有什么联系?学法指导:长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积确实是圆柱的体积,长方体的体积等于底面积乘高,因此圆柱的体积也等于底面积乘高。

(4)概括:试着让学生依照圆柱与近似长方体的关系,推导公式,用字母表示运算公式。

出示推导图示:长方体的体积=底面积×高=高用字母表示公式:V=sh(6)深化:要用那个公式运算圆柱的体积,必须明白什么条件?三、巩固练习2、判定正误,对的画“√”,错误的画“×”。

数学人教版六年级下册圆柱体积公式的应用

数学人教版六年级下册圆柱体积公式的应用

新知探究
7 一个内直径是8cm的瓶子里,水的高度是
7cm,把瓶盖拧紧倒置放平,无水部分是 圆柱形,高度是18cm。这个瓶子的容积 是多少?
分析:瓶子里的水倒置 后,体积没变,水的体 积加上18cm高圆柱的体 积就是瓶子的容积。
7cm 18cm
新知探究
7 一个内直径是8cm的瓶子里,水的高度是
7cm,把瓶盖拧紧倒置放平,无水部分是 圆柱形,高度是18cm。这个瓶子的容积 是多少?
数学人教版六年级下册圆柱体积公式的应用
复习旧知
圆柱的体积如何求?
圆柱的体积=底面积×高 V圆柱=S底面积×h=πr2h
复习旧知
1. 一个圆柱形水桶,底面积是20平方 厘米,高是1.5米。它可以装多少立方 厘米水?
1.5m = 150cm 20×150 = 3000(cm3) 答:它的体积是3000立方厘米。
课堂训练
饮料瓶中装有18升的饮料,正放时饮料的高 度是15厘米,倒放时空余部分的高度是10厘 米,这个瓶子最多还能装进多少升的饮料?
谢谢大家!
3.14×(6÷2)2×10 =282.6(cm3) =282.6(mL) 答:小明喝了282.6毫升的水。
10cm
课堂训练
一个圆柱形容器的底面直径是10厘米,把一 块铁块放入这个容器后,水面上升2厘米,这 块铁块的体积是多少?
3.14×(10÷2)2×2 =157(cm3) 答:这块铁块的体积是157立方厘米。
瓶子的容积:
3.14×(8÷2)2×7+3.14×(8÷2)2×18
=3.14×16×(7+18)
=3.14×16×25 =1256(cm3)
转化法
=1256(mL)
答:这个瓶子的容积是1256毫升。源自课堂训练一瓶装满的矿泉水,小明喝了一些,把瓶盖 拧紧后倒置放平,无水部分高10cm,内直径 是6cm。小明喝了多少水?

人教版数学六年级下册圆柱体积公式的推导及应用

人教版数学六年级下册圆柱体积公式的推导及应用

《圆柱体积公式的推导及应用》教学设计教学内容:人教版小学数学第十二册第三单元第3课时《圆柱的体积》教学目标:1、知识技能结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

2、过程方法让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

3、情感态度价值观通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:掌握和运用圆柱体积计算公式。

教学难点:圆柱体积计算公式的推导过程设计理念:圆柱的体积是几何知识的综合运用,是在学生已了解了圆柱体的特征、掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的,是后面学习圆锥体积的基础。

因此根据本节课内容的特点,我把教学设计定位在通过对圆柱体积知识的探究,培养学生探究数学知识的能力和方法。

《数学新课标》指出:动手实践、自主探索、合作交流是学生学习数学的重要方式,在圆柱的体积这节课我尽量使其体现达到最大化,因此为了突破重难点,本节课的教法和学法体现出以下的几个特点:1、合作探究学习为主要的学习方式。

2、直观教学,先利用教具演示让学生观察比较,再让学生动手操作。

3、让学生运用知识的迁移规律,主动学习,掌握知识、形成技能。

教学用具:课件烧杯水体积不同的圆柱体圆柱实物教学过程一、情景引入1、教学开始首先观看微视频,教师拿一个装了半杯水的烧杯,然后拿出一个圆柱形物体准备投入水中并让学生观察思考:会发生什么情况?再放入一个更大一些的圆柱体呢?由这个发现你想到了些什么?(水面会上升,因为圆柱占了一定个空间)2、引出体积的概念提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)【设计意图:在这个环节设计观察活动,意图是让学生通过观察自主得出圆柱体积的定义,进一步加深对体积概念的理解,并为下面的探究活动提供了研究方法。

人教版六年级下册《圆柱的体积》小学数学-有答案-同步练习卷(某校)

人教版六年级下册《圆柱的体积》小学数学-有答案-同步练习卷(某校)

人教版六年级下册《圆柱的体积》小学数学-有答案-同步练习卷(某校)一、解答题(共13小题,满分0分)1. 一个圆柱体玻璃杯,从里面量得直径是6厘米,深是10厘米,这个玻璃杯内最多能装多少毫升水?2. 做一个底面直径是0.4米,高是5分米的圆柱形水桶,这样的一个水桶能盛多少升水?3. 将一张长为20厘米、宽为15厘米的长方形纸以长边为轴,旋转一周,得到一个立体图形,它的体积是多少?4. 一个圆柱的底面直径是4厘米,它的侧面展开图正好是一个正方形。

这个圆柱的体积大约是多少立方厘米?5. 一个圆柱的底面半径是5厘米,它的侧面展开图正好是一个正方形,这个圆柱的体积大约是多少立方厘米?6. 一个圆柱形玻璃瓶,体积是75.36立方厘米,底面积是12.56平方厘米。

它的高是多少厘米?7. 一根6米长的圆柱形木料被锯成3段,表面积增加了15平方厘米,这根木料的体积是多少立方厘米?8. 一根长为2米的圆木,截成两段相同的圆木后,表面积增加了48平方厘米,每段圆木的体积是多少立方厘米?9. 已知一个圆柱的半径是2厘米,把它切拼成一个近似的长方体后,表面积增加了48平方厘米,这根圆柱的体积是多少?10. 一个圆柱的底面周长是6.28厘米,把它切拼成一个近似的长方体后,表面积增加了48平方厘米。

求原来圆柱的体积?11. 一个酒瓶里面深32厘米,底面内直径为8厘米,瓶里酒深10厘米,把瓶盖拧紧后瓶口向下,这时酒深20厘米,酒瓶的容积是多少毫升?12. 甲、乙两个圆柱形容器的底面积之比为3:5,甲容器中装着1200毫升水,水面高16厘米,乙容器中是空的。

现将甲容器中的一部分水倒入乙容器,使两个容器中水的高度一样。

问:这时水面高多少厘米?13. 一个圆柱形玻璃杯内装着水,水面高15厘米,从里面量,玻璃杯的底面积是50平方厘米,将一个底面积为10平方厘米,高17厘米的长方体铁块垂直放入杯中,这时高多少厘米?(水未溢出)【家庭作业】一、填空.一个圆柱的底面半径3分米,高2分米,表面积是________平方分米,体积________立方分米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体图形?你是怎样转化成这个立体图形
的?转化后的立体图形和圆柱体有什么
关系?
切拼成的长方体的体积相当于( 圆柱的体积) 长方体的底面积相当于(圆柱的底面积 ) 长方体的高相当于( 圆柱的高 ) 因为长方体的体积=( 底面积 )×( 高 ) 所以圆柱体的体积=(底面积 )×( 高 )
把圆柱的底面平均分的份数越多, 切拼成的立体图形越接近长方体。
1. 一根圆柱形木料,底面积为75cm2 ,长90cm。 它的体积是多少?
75 ×90 =6750(cm3) 答:它的体积是6750cm3。
知识应用
2. 小明和妈妈出去游玩,带了一个圆 柱形保温杯,从里面量底面直径是8cm, 高是15cm。如果两人游玩期间要喝1L 水,带这杯水够喝吗?
保温杯的底面积:3.14×(8÷2)2 = 3.14×42 = 3.14×16 = 50.24 (cm2)
=
长方体的底面积等于圆柱的 底面积 ,
高等于圆柱的 高 。 长方体体积=底面积×高
圆柱体积
V=Sh
巩固新知
一根圆柱形木料, 底面积是75平方厘 米,长90厘米。它 的体积是多少?
圆柱体积=底面积×高
75×90=6750(立方厘米)
答:它的体积是6750立方厘米。
巩固新知
10cm
下图的杯子能不能装下这袋牛奶?(数据是 从杯子里面测量得到的。)
8cm
杯子的底面积:3.14×(8杯÷子2的)2容积。
=3.14×4²
=3.14×16
=50.24 (cm2 )
杯子的容积: 50.24×10 =502.4 (cm3 ) =502.4 (mL)
请你想一想,要回答这个问题, 答:因为50先2.要4大计于算4出98什,么所?以杯子能装下这袋牛奶。
知识应用
保温杯的容积:50.24×15 =753.6 (cm³) =0.7536(L)
答:因为0.7536小于1,所以带这杯水不够喝。
知识应用
3. 一个圆柱的体积是80cm³,底面积是16cm2。它 的高是多少厘米?
80 ÷16 =5(cm)
答:它的高是5cm。
活动三:寻找生活 中的圆柱形
物体,测量出有关数据,并计 算出体积。
活动一:“体积”指的是什么?长方体,正方
体的体积如何计算?
高 宽

真 棒!
棱长
长方体的体积=长×宽×高
v长=a b h
正方体的体积=棱长×棱长×棱长
v正 =a 3
V=s底 h
圆的面积公式推导过程:
圆的面积公式推导过程:
S=π r 2
பைடு நூலகம்
r
πr
S=πr ×r
分割 拼合
活动二:你准备把圆柱体转化成什么立
相关文档
最新文档