湖南大学2018年硕士研究生考试大纲-610数学分析

合集下载

硕士研究生入学历年考试、复试、同等学力加试参考目

硕士研究生入学历年考试、复试、同等学力加试参考目
《电磁学》<上、下册)赵凯华、陈熙谋,高等教育出版社,1985年,第2版
《光学教程》姚启钧,高等教育出版社,2002年,第3版
《信号与线性系统分析》吴大正,高等教育出版社,2005年8月,第4版
837物理化学
《物理化学》天津大学物理化学教研室,高等教育出版社,2004年,第4版
838环境化学
《环境化学》戴树桂,高等教育出版社,2006年,第2版
839无机化学
《无机化学》大连理工大学教研室,高等教育出版社,2007年,第5版
《数字测图原理与方法》潘正风、杨正、程效军,武汉大学出版社,2004年第1版
806测量平差基础
《误差理论与测量平差》武汉大学测绘学院测量平差学科组,武汉大学出版社,2003年
807地理信息系统原理
《地理信息系统基础》龚健雅,科学出版社,2001年
808材料力学
《材料力学》孙训芳,高等教育出版社,2003年,第4版
708马克思主义原理
《马克思主义基本原理概论》教育部社政司组,中国高等教育出版社,2007年
709文学理论
《文学理论教程》童庆炳,高等教育出版社,2004年,修订第2版
《中国古代文论教程》李壮鹰、李春青,高等教育出版社,2005年
710基础英语
《高级英语》(1,2册>张汉熙,外语教案与研究出版社,2002年
801结构力学
《结构力学》李廉锟,高等教育出版社,第4版
《结构力学教程》龙驭球,高等教育出版社,第3版
802土力学
《土质学与土力学》高大钊,人民交通出版社,2001年
803水力学
《水力学》吴持恭等,高等教育出版社,1995年
804道路工程
《道路工程》严作人、陈雨人、姚祖康,人民交通出版社

湖南大学考研真题 湖南大学研究生入学考试专业课真题

湖南大学考研真题 湖南大学研究生入学考试专业课真题

湖南大学考研真题,湖南大学研究生入学考试真题湖南大学马克思主义学院西方哲学史2004——2006,2008,2010马克思主义哲学原理2008,2010政治学原理2006,2008中国共产党思想政治工作史论2006,2008自然辩证法原理2000科学技术史2005岳麓书院西方哲学史2004——2006,2008,2010中国哲学史2008教育学专业基础综合(全国统)2007——2009历史学专业基础(全国统考试卷)2007——2009中国思想史2000经济与贸易学院经济学原理2003——2006,2008——2010西方经济学2001——2003经济学2000——2001经济学综合(含微观经济学、宏观经济学)2005——2010经济学综合(含宏观经济学、财政学)2006数据结构2002——2004,2006,2008数据结构与PASCAL 2000——2001计算机组成与体系结构2006,2008计算机组成原理2001管理学与管理系统工程2001管理学原理(管理科学与工程、工商管理专业)2002——2006,经营管理与市场营销2003经营决策和市场营销2001国际贸易理论与实务2001国际贸易学2001高等代数2002——2010数学分析1999——2010环境工程微生物学2001——2008金融学院金融学基础(联考)2002——2010经济学2000——2001经济学原理2003——2006,2008——2010西方经济学2001——2003会计学院经济学综合(含微观经济学、宏观经济学)2005——2010 经济学综合(含宏观经济学、财政学)2006中级财务会计学2008——2010财务会计学2007财务会计与财务管理2003——2004管理学综合(含管理学原理、财务会计学)2005(西方经济学2001——2003经济学2000——2001经济学原理2003——2006,2008——2010统计学院经济学综合(含微观经济学、宏观经济学)2005——2010 经济学综合(含宏观经济学、财政学)2006统计学2001,2003——2005,2008——2010西方经济学2001——2003经济学2000——2001经济学原理2003——2006,2008——2010高等代数2002——2010数学分析1999——2010数据结构2002——2004,2006,2008数据结构与PASCAL 2000——2001计算机组成与体系结构2006,2008计算机组成原理2001管理学与管理系统工程2001管理学原理(管理科学与工程、工商管理专业)2002——2006,2008——2010法学院专业综合一(含民法、刑法)2005——2010专业综合二(含法理学、宪法学)2005——2010综合考试(宪法学与行政法学专业)2004综合考试(国际法学专业)2004综合考试(法学理论专业)2004综合考试(刑法学、经济法学、环境与资源保护法学专业)2004 法学理论2004法学综合考试(民商法学专业)2003法学综合考试(刑法学、经济法学专业)2003国际经济法2004经济法学2003——2004民法学2002,2004民商法2003商法学2002宪法2004刑法学2002——2004中国环境法2004政治与公共管理学院政治学原理2006,2008,2010西方政治思想2008管理学原理(公共管理专业)2006——2010公共行政学2005——2010行政管理学2004政府经济学2004综合考试(行政管理专业)2004物理与微电子科学学院量子力学2004——2005,2008——2010普通物理2004——2005,2008——2010电子技术基础1999——2000,2002——2006,2008——2010 电子技术基础(818物)2010物理化学(理)2000——2010物理化学(工)2000 2009 2010有机化学(理)2000——2010材料科学基础2006,2008——2010材料物理化学2008半导体物理2008细胞生物学2004——2005,2007——2008生物化学2004——2005,2007——2009教育学专业基础综合(全国统)2007——2009 教育科学研究院教育学专业基础综合(全国统)2007——2009 管理学原理(教育经济与管理专业)2004管理学原理(公共管理专业)2006——2010 教育技术概论2004——2005教育学2003——2008体育学院体育学基础综合2008运动训练学2006中国语言文学学院语言学概论与写作2007——2010现代汉语2007——2010文学理论与写作2006,2008中外文学史2006,2008中国古代文学史2005中国现当代文学史2005专业基础综合(中国古代文学专业)2004——2005比较文学与外国文学2005外国语学院二外日语2002——2010二外法语2001,2003——2004,2008——2010二外德语2001,2004,2008——2010二外俄语2008基础英语(含词汇、语法、阅读、写作)2001——2010英语语言文学专业基础(含英语语言学基础、英美文学基础知识、英语国家概况、英汉互译)2007——2010专业基础综合课2004——2005专业英语2002——2003,2006语言学基础(语言学基础知识)2004——2010二外英语2000,2008基础日语2008日本语言文学专业基础2008小论文(日)2000读解与日汉互译2000新闻与传播学院新闻传播史论2004——2005,2008——2010新闻传播实务2004——2005,2008——2010大众传播理论(B)2005传播学理论2007A设计艺术学院设计艺术史论2008——2010专业设计2008——2010设计史及其理论2003——2006设计基础2006(2006有评分标准)产品设计基础2003——2005环境艺术表现技法2003,2005——2006建筑史1997——2006(2006有答案)[注:1997-2001年称“建筑历史”,其中1998年共2页,缺第2页]数学与计量经济学院高等代数2002——2010数学分析1999——2010化学化工学院物理化学(理)2000——2010物理化学(工)20002009高分子化学2008有机化学(理)2000——2010有机化学(药)2008——2010药学生化2008无机化学2001无机化学(工)2000无机化学(理)2000分析化学(含仪分)2000——2001化工原理2000——2001材料物理化学2008生命科学与技术研究院细胞生物学2004——2005,2007——2010 生物化学2004——2005,2007——2010 物理化学(理)2000——2009物理化学(工)20002009有机化学(理)2000——2010无机化学2001无机化学(工)2000无机化学(理)2000分析化学(含仪分)2000——2001化工原理2000——2001材料物理化学2008环境科学与工程学院环工原理2001,2004——2008环境毒理学2004——2008环境工程微生物学2001——2008环境毒理学与工程微生物学2009环境化学2001——2003,2005大气污染控制工程2001水污染控制工程2001力学与航空航天学院材料力学2002——2010结构力学1997——2011流体力学1999——2010机械原理1999——2006,2008——2010水分析化学与微生物学2008机械控制工程基础2001——2003控制工程基础2005机械与汽车工程学院机械原理1999——2006,2008——2010机械控制工程基础2001——2003控制工程基础2005(复试试题)微机原理及应用2003——2010微机原理(机械电子工程)2000——2001电路1999——2009电子技术基础1999——2000,2002——2006,2008——2010数据结构2002——2004,2006,2008数据结构与PASCAL 2000——2001计算机组成与体系结构2006,2008计算机组成原理2001自动控制原理1998——2000结构力学1997——2010流体力学1999——2010高等代数2002——2009数学分析1999——2009材料力学2002——2009工程热力学2008——2010水分析化学与微生物学2008电气与信息工程学院微机原理及应用2003——2010微机原理(机械电子工程)2000——2001电路1999——2011信号与系统2000,2002——2003,2006——2009电子技术基础1999——2000,2002——2006,2008——2010 电子技术基础2010(物)自动控制原理1998——2000智能仪器2008通信专业综合课2004——2005材料科学与工程学院结构力学1997——2010流体力学1999——2010材料力学2002——2010材料科学基础2006,2008——2009材料物理化学2008环境工程微生物学2001——2008)水分析化学与微生物学2008机械原理1999——2006,2008——2010机械控制工程基础2001——2003控制工程基础2005(复试试题)物理化学(理)2000——2011物理化学(工)20002009计算机与通信学院信号与系统2000,2002——2003,2006——2010 电路1999——2011数字电路与逻辑设计2008——2010半导体物理2008微机原理及应用2003——2010微机原理(机械电子工程)2000——2001电子技术基础1999——2000,2002——2006,2008——2010电子技术基础2010(物)数据结构2002——2004,2006,2008数据结构与PASCAL 2000——2001计算机组成与体系结构2006,2008计算机组成原理2001操作系统2001离散数学2001计算机专业综合课(含C语言、数据结构、离散数学、计算机组成原理)2004——2005通信专业综合课2004——2005高等代数2002——2010数学分析1999——2010软件学院数据结构2002——2004,2006,2008数据结构与PASCAL 2000——2001软件工程2008半导体物理2008计算机组成与体系结构2006,2008计算机组成原理2001操作系统2001计算机专业综合课2004——2005数字电路与逻辑设计2008——2009离散数学2001高等代数2002——2009数学分析1999——2009)信号与系统2000,2002——2003,2006——2009微机原理及应用2003——2009微机原理(机械电子工程)2000——2001电路1999——2009电子技术基础1999——2000,2002——2006,2008——2009电子技术基础2010(物)建筑学院建筑设计1998——2002,2005——2008,2010建筑学基础2010建筑构造1997——2004建筑知识综合(建筑历史与建筑构造)2005——2006,2008建筑史1997——2006(2006有答案)[注:1997-2001年称“建筑历史”,其中1998年共2页,缺第2页]土木工程学院结构力学1997——2010水分析化学与微生物学2008流体力学1999——2010(交通工程学2008——2010混凝土结构2003——2005桥梁工程2003——2005工商管理学院管理学原理(管理科学与工程、工商管理专业)2002——2006,2008——2010管理学与管理系统工程2001经营管理与市场营销2003经营决策和市场营销2001运筹学与统计学2000——2001生物医学工程中心微机原理及应用2003——2010微机原理(机械电子工程)2000——2001材料力学2002——2010细胞生物学2004——2005,2007——2008,2010生物化学2004——2005,2007——2010信号与系统2000,2002——2003,2006——2010数据结构2002——2004,2006,2008 数据结构与PASCAL 2000——2001计算机组成与体系结构2006,2008计算机组成原理2001操作系统2001计算机专业综合课2004——2005高等代数2002——2010数学分析1999——2010物理化学(理)2000——2010物理化学(工)20002009有机化学(理)2000——2010材料物理化学2008高分子化学2008。

2018年考研数学一大纲

2018年考研数学一大纲

2018年数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体个体简单随机样本统计量样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解分布、分布和分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分。

湖南大学-2019年-硕士研究生招生考试大纲-859数学教学论

湖南大学-2019年-硕士研究生招生考试大纲-859数学教学论

《数学教学论》考试大纲
一、作为课程的数学教学论
数学教学论的结构内容,数学教学论的产生与发展,数学教学论的理论基础.
二、国际数学教学的改革与发展
国际中学数学教学改革概况,国际数学课程改革的特点,国际数学课程改革的启示.
三、我国中学数学教学的改革与发展
我国中学数学教学改革概况,20年来我国中学数学教学改革的总结评价.
四、新一轮国家基础教育课程改革
新一轮国家基础教育课程改革的兴起,国家《数学课程标准》的研制,新课程的理念与创新,新课程目标与学段目标.
五、《数学课程标准》理念下的数学教学
《数学课程标准》理念下的数学教学活动,《数学课程标准》理念下的数学教师角色,《数学课程标准》理念下的学生发展.
六、现代数学教学观
正确认识数学教学的本质,确立“大众数学”的教育观念,强化数学应用的意识,数学素质教育.
七、数学教育目的
数学教育目的概述,数学教育目的制定的依据,我国“数学教育。

硕士研究生入学考试、复试、同等学力加试参考书目

硕士研究生入学考试、复试、同等学力加试参考书目
816管理学原理
《现代管理理论与方法》周三多,复旦大学出版社,1995年
817工程经济
《工程经济》黄愈祥,同济大学出版社,1994年
818机械设计
《机械设计》濮良贵,高等教育出版社,2001年,第7版
819机械控制工程基础
《控制工程基础》左建民,机械工业出版社2001年
820汽车理论基础
《汽车理论》余志生,机械工业出版社,2000年,第3版
502专业综合
《工程测量学》张正禄,武汉大学出版社,2005年
《GPS测量原理及应用》徐绍铨等,武汉大学出版社,2004年
503路基路面工程
《路基路面工程》邓学钧,人民交通出版社,2005年
《公路沥青路面设计规范》(JTG D50-2006),人民交通出版社
《公路水泥混凝土路面设计规范》(JTG D40-2002),人民交通出版社
复试科目
主要参考书目
529产业经济学
《产业经济学》苏东水,高等教育出版社,2000年
530统计学
《统计学原理》黄良文,中国统计出版社,2000年
531专业综合
《管理信息系统》薛华成,清华大学出版社,2003年
《物流管理》刘刚,中国人民大学出版社,2005年
532专业综合
《中级财务管理》宋献中,东北财经大学出版社,2002年
《计算机控制技术》于海生,机械工业出版社
522专业综合
《计算机控制技术》于海生,机械工业出版社
《模拟电子技术基础》童诗白,高等教育出版社,第3版
《数字电子技术基础》阎石,高等教育出版社,第5版
523锅炉原理
《锅炉原理》叶江明,中国电力出版社,2004年,第1版
524换热器原理
《换热器原理与设计》余建祖,北京航空航天大学出版社,2006年,第1版

[实用参考]2018年考研数学一考试大纲及其解读

[实用参考]2018年考研数学一考试大纲及其解读

2017-09-18考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分1高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.函数——对任意自变量,只有唯一因变量与之对应(知道就行)2.了解函数的有界性、单调性、周期性和奇偶性.一般性了解(知道就行),有界性(连续函数必有界),单调性、周期性、奇偶性后面几章会用到3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.会求分段函数的复合函数,知道反函数的基本性质(与原函数对应关系相反),隐函数了解概念即可(非显函数)4.掌握基本初等函数的性质及其图形,了解初等函数的概念.要求同考纲,初等函数在定义域内均连续5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.了解(知道)极限定义,相关证明没有要求,左右极限需要掌握6.掌握极限的性质及四则运算法则.唯一性和保号性(重要),熟练掌握四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.掌握用夹逼定理(适用于函数和数列)和单调有界定理(适用于数列)求极限8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.知道什么是无穷小量(趋于0)、无穷大量(趋于正负无穷),掌握无穷小量的比较方法(作比,理解低阶、同阶、等价和高阶无穷小),熟练掌握用等价无穷小求极限(只适用于因式)9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.掌握连续判断、间断点类型及其判断10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.熟练掌握并会使用有界性(闭区间连续函数必有界)、最值定理、零点定理和介值定理解题2二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.导数定义式必须熟练掌握并会使用,其他要求同上(会计算)2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.尽可能掌握一阶微分形式不变性并会用其解题,其他要求同上3.了解高阶导数的概念,会求简单函数的高阶导数.知道什么是高阶导数,会用莱布尼茨公式求高阶导数4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.要求同上,特别注意分段点的导数(用定义式)5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(TaPlor)定理,了解并会用柯西(CauchP)中值定理.熟练掌握并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、柯西中值定理和泰勒(TaPlor)定理,前三个定理证明也需要掌握6.掌握用洛必达法则求未定式极限的方法.要求同上,牢记洛必达法则使用的三个条件7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.以上内容需全部掌握,还需要分清极值与最值,极值与导数为零的点的关系8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.函数形态、拐点、渐近线重点掌握9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.会计算曲率和曲率半径(两个公式),曲率圆一般性了解3三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.非常清晰的理解原函数和可积的关系,弄清不定积分(函数)和定积分(常数)的本质2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.不定积分和定积分计算是重点内容,近年不定积分解答题出题频率变小,定积分出解答题频率变大,两块都不能掉以轻心3.会求有理函数、三角函数有理式和简单无理函数的积分.必须掌握,可能以填空题形式出现4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.重要考点,常与极限洛必达法则联用,必须掌握5.了解反常积分的概念,会计算反常积分.掌握反常积分和其计算(重点是计算)6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.积分的实际应用必须掌握,大概率解答题内容4四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.1~9加粗部分为本章必须掌握的重点,其余内容一般性了解5五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.知道是什么东西就行2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.2.3会求二重极限和判断连续、可微、可偏导等、理解偏导数和全微分及其表达形式,会用全微分形式不变性求偏导4.理解方向导数与梯度的概念,并掌握其计算方法.掌握方向导数与梯度意义和公式并计算5.掌握多元复合函数一阶、二阶偏导数的求法.多元函数微分学重点——会求偏导数6.了解隐函数存在定理,会求多元隐函数的偏导数.会用多种方法求隐函数的偏导数(树形图、全微分等)7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.掌握空间曲线的切线和法平面及曲面的切平面和法线的求法以及应用8.了解二元函数的二阶泰勒公式.知道就行9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.掌握二元函数极值存在条件并会用公式判断,会用拉格朗日乘数法求条件极值并解决简单的应用题6六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).1~8条加粗的部分是本章必须掌握的重点内容7七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握...及麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.1~11加粗部分为本章必须掌握的重点部分,其余部分一般性了解,计算是重点8八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.非常清楚解、通解、初始条件和特解概念2.掌握变量可分离的微分方程及一阶线性微分方程的解法.重点掌握内容3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.2.3.4要求同上5.理解线性微分方程解的性质及解的结构.掌握齐次方程与非齐次方程通解的性质和结构6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.6.7掌握常见二阶常系数齐次线性微分方程解的形式,并会分析解的结构,组合自由项即将微分方程拆为若干项再按一般方法分别求解(重要)8.会解欧拉方程.要求同上9.会用微分方程解决一些简单的应用问题.能解决微分方程相关的实际应用题(重点是把实际问题转换为数学问题)9线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.知道什么是行列式,熟练掌握行列式的性质(计算)2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.掌握求行列式方法(重要)二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.知道什么是单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,并掌握它们的性质用于解题2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.有关矩阵的运算性质及方阵与行列式之间的关系必须熟练掌握并会解题3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.逆矩阵和伴随矩阵是线代中两个非常重要的概念,相关性质以及应用需要熟练掌握4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.掌握常见分块矩阵的运算三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.1.2.3.4需要全部熟练掌握5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.5.6.7.8施密特正交化和正交矩阵概念、性质是掌握重点,其他了解即可四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.克拉默法则必会2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.2.3.4.5关于齐次和非齐次线性方程组的求解必须熟练掌握,这是线代大题必考的步骤(结合五六章)五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.1.2.3所列内容均需全部掌握,有关特征值、特征向量必考大题六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.二次型概念及其矩阵、合同矩阵、标准型、规范性及惯性定理需要掌握(等价、合同、相似要清晰分辨)2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.配方法了解即可,出题概率非常小,正交变换法化二次型为标准型是重点3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考点之一,可能以选择题或填空题方式考察概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.有关随机事件关系及运算需要掌握,相关题目会做2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(BaPes)公式.这五大公式特别重要,后续章节涉及相关计算性的问题有可能会用到。

2018考研数学二答案真题解析

2018考研数学二答案真题解析
0 1 1
5 / 11 第 5 页,共 11 页
梦想不会辜负每一个努力的人
101 所以 A 1 1 0 2 .
011
三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过 程或演算步骤.
(15)(本题满分 10 分)
求不定积分 e2x arctan ex 1dx .

x0
(A) 1 , b 1 2
【答案】B
(B) 1 ,b 1 2
(C) a 1 , b 1 2
(D) a 1 ,b 1 2
【解析】由已知有原极限等于
lim[1
(ex
ax2
bx
1)]ex
1
ex
ax2 bx1
ax2 bx1 x2
x0
elim x0
e
x
ax2 bx1 x2
lim ex 2axb
1 2
(
1
1 )dx 1 ln
5 x 3 x 1
2
x3 x 1 5
1 ln 2 . 2
4 / 11 第 4 页,共 11 页
梦想不会辜负每一个努力的人
(12)曲线
x y
cos3 sin3 t

t
4
对应点处的曲率为___________.
【答案】 2 3
【解析】
dy dx
ቤተ መጻሕፍቲ ባይዱ
3sin2 t cos t 3cos2 t(sin t)
0
x
f (t)dt x
x
f (u)du
x uf (u)du ax2
0
0
0
x
f (x) 0 f (u)du xf (x) xf (x) 2ax

2018考研数学三参考答案

2018考研数学三参考答案
n ( )2 1 Xi − X , S ∗ = ∑ n − 1 i =1

1 n ( Xi − µ ) 2 n i∑ =1
( ) ) ) ) ) √ ( √ ( √ ( √ ( n X−µ n X−µ n X−µ n X−µ ∼ t (n) D. ∼ t ( n − 1) A. ∼ t (n) B. ∼ t (n − 1) C. ∗ S S S S∗ ( ) √ ( ) n ( ) ( )2 n X−µ σ2 1 【解析】首先 X ∼ N µ, σ2 ⇒ X ∼ N µ, ⇒ ∼ N (0, 1). 而样本方差 S2 = Xi − X 满足的 ∑ n σ n − 1 i =1 √ ( ) √ n( X −µ) n X−µ ( n − 1) 2 2 σ √ 分布为 S ∼ χ (n − 1), 根据 t 分布的定义知 ∼ t (n − 1), 选 B. = ( n −1) 2 σ2 S S
P { X < 0} =
∫ 1
f ( x )d x =
−∞
f ( x )d x −
f ( x )dx = 0.5 − 0.3 = 0.2
选 A. ( ) 8. 设 X1 , X2 , · · · , Xn (n ⩾ 2) 为来自总体 X ∼ N µ, σ2 (σ > 0) 的简单随机样本, 令 1 n X = ∑ Xi , S = n i =1 则 √

10.
1 − e2x dx = . √ sin t du, 原积分化为 【解析】令 arcsin 1 − e2x = t, 则 ex = cost, dx = − cos t ex arcsin



t cos t
sin t dt = − cos t

618数学分析

618数学分析

Word-可编辑2023年年全国硕士研究生统一入学考试数学分析科目考试大纲一、考查目标要求考生控制数学分析课程的基本概念、基本定理和基本主意,能够运用数学分析的理论分析、解决相关问题。

二、考试形式和试卷结构1、试卷满分及考试时光本试卷满分150分,考试时光为180分钟。

2、答题方式答题方式为闭卷、笔试3、试卷题型结构全卷普通由十个大题组成,详细分布为计算题:5~6小题,每题10分,约50~60分分析论述题(包括证实、研究、综合计算):5~6大题,每题15~20分,约75~100分三、考查范围本课程考核内容包括实数理论和延续函数、一元微积分学、级数、多元微积分学等等。

第一章实数集与函数1.了解邻域,上确界、下确界的概念和确界原理。

2.控制函数复合、基本初等函数、初等函数及常用特性。

(单调性、周期性、奇偶性、有界性等)3.控制基本初等不等式及应用。

第二章数列极限1.熟练控制数列极限的ε-N定义。

2.控制收敛数列的常用性质。

3.熟练控制数列收敛的判别条件(单调有界原理、迫敛性定理、Cauchy准则、压缩映射原理、Stolz变换等)。

4.能够熟练求解各类数列的极限。

第三章函数极限千里之行,始于足下1.深刻领略函数极限的“ε-δ”定义及其它变式。

2.熟练控制函数极限存在的条件及判别。

(归结原则,柯西准则,左、右极限、单调有界等)。

3.熟练应用两个重要极限求解较复杂的函数极限。

4.理解无穷小量、无穷大量的概念;会应用等价无穷小求极限;认识等价无穷小、同阶无穷小、高阶无穷小及其性质。

第四章函数延续性1.控制函数在某点及在区间上延续的几种等价定义,尤其是ε-δ定义。

2.认识函数间断点及类型。

3.熟练控制闭区间上延续函数的三大性质及其应用。

4.熟练控制区间上一致延续函数的定义、判断和应用。

5.知道初等函数的延续性。

第五章导数和微分1.控制导数的定义、几何意义,领略其思想内涵;认识单边导数概念及应用。

2.控制求导四则运算法则、熟记基本初等函数的导数。

中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)

中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)

|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵

a21
a1a2 + 1 · · · a1an + 1

A
=

a2a1 + 1
a22
···
a2an + 1


,
···
··· ··· ···


ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.

南方科技大学610数学分析2020年考研专业课初试大纲

南方科技大学610数学分析2020年考研专业课初试大纲

南方科技大学
2020年硕士研究生入学考试大纲
考试科目名称:数学分析考试科目代码:610
一、考试要求
1)要求考生熟练掌握数学分析的基本概念、基本理论和基本方法。

2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。

3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。

二、考试内容
1) 极限和连续性
a.数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。

b.极限的性质及四则运算性质,两面夹原理。

c.区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel有限覆盖定理,Cauchy收敛准则。

d.函数连续性的概念及相关的不连续点类型。

函数连续的四则运算与复合运算性质,以及无穷小量比较。

e.闭区间上连续函数的性质:有界性定理、最值定理、介值定理和一致连续性定理。

2) 一元函数微分学
a.导数和微分的概念及其相互关系,导数的几何意义和物理意义,函数可导性与连续性之间的关系。

b.函数导数与微分的运算法则,包括高阶导数的运算法则,分段函数的导数。

c.Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor公式。

d.函数的导数与单调性,极值,最值和凸凹性。

e.L’Hopital(洛必达)法则,不定式极限。

3) 一元函数积分学
a.不定积分的概念,不定积分的基本公式,换元积分法和分部积分法,有理函数、三角函数和简单无理函数的积分。

数学分析610研究生入学考试大纲

数学分析610研究生入学考试大纲

《数学分析》(610)研究生入学考试大纲一、参考书目:1.《数学分析》第四版(上、下册)华东师范大学数学系编(高等教育出版社)。

2.《数学分析》(上、下册)盛炎平等编(机械工业出版社)。

二、考试大纲:(第一章~第二十二章,所有带*号的部分不用看)第一章实数集与函数数集的确界,确界原理.第二章数列极限极限定义,收敛数列性质,单调有界原理,重要极限.第三章函数极限函数极限定义,函数极限性质,两个重要极限,无穷大量与无穷小量,渐近线.第四章函数连续性函数连续概念,间断点分类,连续函数的性质,一致连续的概念.第五章导数与微分导数概念,导数几何意义,求导法则,基本求导公式,参变量函数求导,高阶导数,微分的概念,几何意义.第六章微分中值定理及其应用罗尔定理,拉格朗日定理,函数单调性的判定,柯西中值定理,不定式极限的罗必达法则,泰勒公式,,函数极值的判定,最值问题,函数凹凸性的判定.第七章实数的完备性了解刻画实数完备性定理的内容.第八章不定积分原函数与不定积分概念,基本积分公式,换元法与分部积分法.第九章定积分定积分概念,定积分性质,牛顿-莱布尼兹公式,变限积分和原函数存在定理,积分中值定理,计算积分的换元法与分部积分法.第十章定积分应用计算平面图形面积,立体体积,曲线弧长,旋转曲面面积.第十一章反常积分无穷积分和瑕积分的概念和性质,非负无穷积分和瑕积分的比较判别法,一般无穷积分和瑕积分的狄立克莱判别法和阿贝尔判别法.第十二章数项级数级数收敛的定义,级数的性质,正项级数的比较、根值、比值判别法,一般项级数的阿贝尔判别法和狄立克雷判别法.第十三章函数列与函数项级数函数列的一致收敛性,一致收敛的柯西准则及充要条件,一致收敛函数列的极限函数的性质,函数项级数一致收敛概念,判别法,一致收敛函数项级数的性质.第十四章幂级数幂级数的收敛半径、收敛区间、收敛域,收敛半径的计算,幂级数的性质,泰勒级数,初等函数的幂级数展开.第十五章傅立叶级数三角级数,正交系,收敛定理,周期函数的傅里叶展开,偶函数与奇函数的傅里叶级数与展开.第十六章多元函数的极限与连续二元函数的极限与连续.第十七章多元函数微分学偏导数的概念,全微分的概念,偏导数的几何意义,复合函数的求导法则,方向导数与梯度的概念,多元函数的极值问题.第十八章隐函数定理及其应用了解隐函数定理,会隐函数求导,曲线的切线,曲面的切平面与法线,条件极值问题.第十九章含参积分该章不考察.第二十章曲线积分第一型曲线积分定义与计算,第二型曲线积分的定义与计算,两类积分的联系.第二十一章重积分二重积分的概念、性质,直角坐标计算,极坐标计算,格林公式,曲线积分与路径的无关性,三重积分的定义,性质,利用直角坐标计算,柱坐标计算,球坐标计算.第二十二章曲面积分第一型曲面积分定义与计算,第二型曲面积分的定义与计算,高斯公式与斯托克斯公式三、试卷结构:1.概念简答题;2.计算题;3.证明题.。

2018考研数学真题最强解析及点评全集

2018考研数学真题最强解析及点评全集

数三第11题
考差分方程定义的简单理解。见 《金讲》289-291页。
数一第12题
可能是部分同学卷面遇上的第四道难题,考查具有对称 性的重积分的简化运算。积分对称性的应用一直是《金 讲》的反复重点强调的要点,同型题见《金讲》262页 例1.8.5.如若掌握,本题亦是送分题。但《金讲》以外 大部分参考书对重积分的本质定义的理解讲解甚少,只 是繁杂公式的罗列,会让大部分同学对重积分产生畏惧, 简单题亦变成难题,所以本题有可能成为《金讲》以外 学习者的第四道难题。
数一第11题
考查旋度公式的记忆,直接用 旋度公式计算即得答案。旋度 公式的详细计算公式参见《金 讲》288页,属送分题。
数二第11题
考查三种常见有理式积分的求解。这类题只有两种思 路,分解因式或凑方, 《金讲》中对这类题从最简单 到复杂的求解方式都有归纳,并辅以详细例题解析, 稍有掌握,本题一眼可看出分母容易分解因式,因此 采用分解因式法,此类题属最常规的积分计算。
数二第18题
数三第18题
简单函数的级数展开并求通项。展开部分直接套公 式,属于送分。求通项虽偶有难度,但任何求通项 都可以通过适当展开进行归纳这一万能方法,在 《金讲》 中有强调,所以也属于半送分。《金讲》 254页至259页用了一个重点专题予以详解本考点, 足以解决任何函数的展开式。
数一第19题 数三第19题 数二第21题
数三第8题
数一第9题
考查幂指函数的极限求解,幂指函数首先用对数形式 转换。《金讲》中反复强调了这一万能解答步骤,属 送分题。
数二第9题
∞ ⋅ 0 型极限必须化成商式。反三角函 考查常规极限的计算。 数的式子唯一化简的方式是求导,故化为商式用洛必达法 则求解是必然的路径。这是最基本的数学简化思维,《金 讲》全书在不断强化数学中化繁为简的思维,稍有领会本 题必可解。,《金讲》中也有本题的同型题。

什么是高等数学610

什么是高等数学610

我先来说下‎什么是高等‎数学610‎。

高数610‎是中国地质‎大学(北京)自己出的高‎等数学题,考试大纲也‎是地大发布‎的。

和国家出的‎数学一、二、三不是同一‎个东东。

地大高数2‎010以前‎是610,去年201‎1年改成了‎601,今年又改回‎了是610‎。

大家不要纠‎结于这个是‎610还是‎601,大纲和试题‎是通用的,放心用好了‎。

以下文中的‎601=610再说一个常‎见的问题,610只考‎高数。

什么线性代‎数和概率论‎通通的都不‎考,通通的扔掉‎。

高数考试大‎纲和真题在‎这里:中国地质大‎学(北京)高等数学考‎试大纲中国地质大‎学(北京)专业课试题‎库有版友很纠‎结高数和地‎概的选择问‎题,我的意见是‎选你擅长的‎。

但是但是!!如果你选了‎地概并且不‎幸被调剂了‎,学校需要你‎的高数成绩‎,这时候就要‎加试,而考高数的‎这时就没有‎这个加试了‎。

调剂到别的‎学校也需要‎这个成绩,这个加试是‎复试时候的‎事了,以下见复试‎通知:高等数学加‎试根据相关规‎定,凡由学术型‎转入专业学‎位型的考生‎必须具有“高等数学”成绩。

由于学术型‎硕士生录取‎名额有限,为充分保证‎上线考生的‎权益,我院将于下‎述时间、地点加试“高等数学”,使相关考生‎不致因缺少‎数学成绩而‎丧失调剂研‎究生类型的‎机会(全国研究生‎统一考试期‎间已经选考‎“高等数学”的考生无需‎参加)。

“高等数学”加试成绩不‎计入复试成‎绩。

我来说一下‎我关于高数‎601的经‎验吧,因为一开始‎复习过一段‎时间601‎,后来改考数‎学二了。

周围有很多‎同学都是考‎的高数,用的是同济‎五版的教材‎,当然你用同‎济六版也一‎样,地大本科上‎课用的教材‎是北京大学‎出版社发行‎的《高等数学》作者是褚宝‎增、陈兆斗,是两位地大‎的老师编写‎的,书的封面样‎子在这个帖‎子的沙发,就是点我,快点啊。

当时我们复‎习只有05‎、07两年的‎真题,不像现在真‎题这么多,大家看过0‎5、07的题的‎同学,都知道那两‎年的题简单‎得和白开水‎没什么区别‎,大家之所以‎11年好多‎反应难的。

湖南大学历年考研真题信息

湖南大学历年考研真题信息
环境院 环境毒理学与环境工程微生物综合:04--14,答案:04--14.
建筑院 建筑学基础:03---14 建筑设计:04--14 城市规划基础:12--14,答案 12--13. 城市规划设计:07--14。
数学院
数学分析:03--14,答案 06-07,09-12 高等代数:03--14,答案 06-07,09-12(12 年答案少一页) 教育综合:11--14
化工院 有机化学(理):03-14,答案 03-14 物理化学(理):03-14,答案 03-14 物理化学(工一):03-14,答案 03-14 有机化学(药):11-14 物理化学(工二):14 药物合成:11-14 药学生化:09-14
外院 基础英语:03-14,答案 03-13
语言学基础:04-14,答案 07 英语语言文学专业基础:04-14,答案 04-14 2 外日语:02-14,答案 05,07 2 外法语:03-14,答案 03-09 2 外德语:04,08-14 年(无答案) 基础日语:06-14,答案 07 日语语言文学专业基础:06-14(无答案) 2 外英语:04-14,答案 05,07 英语语言文学专业基础二:10-14(无答案) 教育综合:11-14(无答案) 翻译硕士英语:10-14,答案 10-14 英语翻译基础:10-14,答案 10-14 百科:10-14,答案 10-14
物电院 计算机应用基础:13--14 现代教育技术:10--14 普通物理:04--14(少 06) 量子力学;04--14(少 06) 数字与模拟电子技术:14,电子技术 03--13 电磁场与电磁波:14 教育综合:11--14 普通物理二:11--14 现代教育技术二:13
艺术院 设计艺术史论:03--14 专业设计 A:07--14 工业设计工程:11--14 艺术基础:10--14

2018考研数学三参考答案

2018考研数学三参考答案

10.
1 − e2x dx = . √ sin t du, 原积分化为 【解析】令 arcsin 1 − e2x = t, 则 ex = cost, dx = − cos t ex arcsin



t cos t
sin t dt = − cos t

t sin tdt = t cos t −

cos tdt = t cos t − sin t + C
∫ 1
( B. f ( x ) = | x | sin √
)
A. f ( x ) = | x | sin | x |
|x|
D. f ( x ) = cos

|x|
( ) 1 B. 当 f ′′ ( x ) < 0 时, f <0 (2 ) 1 D. 当 f ′′ ( x ) > 0 时, f <0 2
(1 + x )2 d x, N = 1 + x2

π 2
−π 2
Hale Waihona Puke 1+x d x, K = ex
(
−π 2
1+

) cos x dx, 则 ( )
B. M > K > N C. K > M > N D. N > M > K ) ∫ π ∫ π ( 2 2 (1 + x ) 2 2x 【解析】利用对称性可以计算 M = 1+ dx = dx = π , 另外比较被积函数与 1 的大小关系易 2 π π 1 + x 1 + x2 −2 −2 见 K > π = M > N. 4. 设某产品的成本函数 C ( Q) 可导, 其中 Q 为产量, 若产量为 Q0 时平均成本最小, 则 A. C ′ ( Q0 ) = 0 ( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学分析》考试大纲
一、极限与连续
内容:映射与函数;数列的极限、函数的极限;实数系的连续性、连续函数、一致连续;欧氏空间中的点集、多元函数的极限与连续;函数和连续函数的各种性质。

要求:理解集合、映射、函数、极限、连续、一致连续等概念;理解极限和连续的有关性质和定理;掌握求数列和函数极限的各种方法;掌握连续性、间断性的判别方法。

二、微分学
内容:微分的概念、导数的概念、微分和导数的意义;全微分和偏导数的概念;求导运算;微分运算;微分中值定理;洛必达法则、泰勒公式;最值和极值。

要求:理解微分和导数的概念、关系、几何意义和性质;掌握求微分和导数(一阶和高阶,一元和多元,隐函数,复合函数)的各种方法;理解和应用微分中值定理、泰勒展开;掌握各种最值和极值的求法(一元和多元,条件极值);判断函数的凹凸性;求空间曲面的切平面和空间曲线的切线。

三、积分学
内容:定积分的概念、性质和微积分基本定理;不定积分和定积分的计算;定积分的应用;重积分的概念及其性质、重积分的计算;曲线积分和曲面积分;反常积分的定义和判别。

要求:理解定积分的概念、性质、意义和微积分基本定理,理解。

相关文档
最新文档