结晶原理及操作

合集下载

结晶现象的原理与发生步骤

结晶现象的原理与发生步骤

结晶现象的原理与发生步骤在我们的日常生活和科学研究中,结晶现象是一种十分常见且重要的现象。

从厨房里的食盐结晶,到实验室里化学物质的结晶提纯,结晶无处不在。

那么,结晶究竟是怎么一回事呢?它背后的原理是什么?又有着怎样的发生步骤呢?要理解结晶现象,首先得明白什么是晶体。

晶体是内部原子、离子或分子在空间按一定规律周期性重复排列的固体物质。

这种有规律的排列赋予了晶体独特的性质,比如固定的几何外形、明确的熔点以及各向异性等。

结晶现象的原理,简单来说,就是溶液中的溶质分子或离子在一定条件下,通过相互作用,形成有规则排列的晶体结构。

这其中的关键在于过饱和度。

过饱和度是指溶液中溶质的含量超过了该温度下饱和溶液中溶质的含量。

当溶液达到过饱和状态时,溶质就有了结晶的趋势。

过饱和度可以通过多种方式产生,比如改变温度、蒸发溶剂或者加入晶种等。

以改变温度为例,大多数物质在不同温度下的溶解度是不同的。

当温度升高时,很多物质的溶解度增大,能溶解更多的溶质;而当温度降低时,溶解度减小,原本溶解在溶液中的溶质就可能会超过饱和限度,从而形成过饱和溶液。

蒸发溶剂也是一种常见的产生过饱和度的方法。

当溶剂不断蒸发,溶液的浓度逐渐增加,当超过饱和浓度时,就为结晶创造了条件。

接下来,让我们看看结晶的发生步骤。

第一步是形成晶核。

晶核就像是结晶的“种子”,它是晶体生长的起点。

晶核的形成可以是自发的,也可以是通过引入外来的微小晶体颗粒(晶种)来实现。

自发形成晶核需要溶液达到一定的过饱和度,并且在局部区域内,溶质分子或离子通过随机碰撞和聚集,形成具有一定有序结构的微小团体。

当这个微小团体达到一定的临界尺寸时,就成为了稳定的晶核。

第二步是晶体生长。

一旦晶核形成,溶质分子或离子会不断地在晶核表面附着和排列,使晶体逐渐长大。

这个过程中,溶质粒子会根据晶体的结构特点,以特定的方式在晶核表面沉积,从而保持晶体的有序性和对称性。

在晶体生长的过程中,环境条件对其有着重要的影响。

化工结晶过程原理及应用

化工结晶过程原理及应用

化工结晶过程原理及应用化工结晶是指物质由溶液或熔融状态转变为晶体状态的过程。

结晶过程在化工生产中具有广泛的应用,可以用于分离纯化物质、提纯产品、制备晶体材料等。

本文将从结晶原理、结晶过程和结晶应用三个方面来介绍化工结晶的相关知识。

一、结晶原理。

结晶是物质由无序状态向有序状态转变的过程,其原理主要包括溶解度、过饱和度和结晶核形成三个方面。

1. 溶解度。

溶解度是指在一定温度下,单位溶剂中最多能溶解的溶质的量。

当溶质的实际溶解度小于其饱和溶解度时,溶液处于不稳定状态,有结晶的倾向。

因此,通过控制温度、压力和溶剂浓度等因素,可以促使溶质从溶液中结晶出来。

2. 过饱和度。

过饱和度是指溶液中溶质的实际浓度超过了饱和浓度的程度。

当溶液处于过饱和状态时,溶质会以晶体的形式析出。

过饱和度是结晶过程中重要的物理参数,对结晶速率和晶体形态有重要影响。

3. 结晶核形成。

结晶核是晶体生长的起始点,是溶质分子在溶液中聚集形成的微小团簇。

结晶核的形成是结晶过程中的关键步骤,其数量和大小对晶体的形态和纯度有重要影响。

二、结晶过程。

结晶过程主要包括溶解、过饱和、核形成和晶体生长四个阶段。

1. 溶解。

在结晶过程开始之前,溶质先要从固体状态或其他溶剂中溶解到溶剂中形成溶液。

溶解是结晶过程中的起始阶段,也是影响结晶质量的重要环节。

2. 过饱和。

当溶液中的溶质浓度超过了饱和浓度时,溶液处于过饱和状态。

过饱和度越大,结晶核的形成速率越快,晶体生长速度也越快。

3. 核形成。

过饱和状态下,溶质分子聚集形成结晶核,是结晶过程中的关键步骤。

结晶核的形成需要克服表面张力和核形成能的影响,对结晶质量和产率有重要影响。

4. 晶体生长。

结晶核形成后,晶体开始在溶液中生长。

晶体生长的速率和方向受溶液中溶质浓度、温度、搅拌速度等因素的影响。

三、结晶应用。

结晶在化工生产中有着广泛的应用,包括分离纯化、提纯产品、制备晶体材料等方面。

1. 分离纯化。

结晶可以用于将混合物中的不同成分分离,提高产品的纯度。

结晶原理和起晶方法

结晶原理和起晶方法

结晶原理和起晶方法 High quality manuscripts are welcome to download一结晶原理和起晶方法结晶原理的说明从固体物质的不饱和溶液里析出晶体,一般要经过下列步骤:不饱和溶液→饱和溶液→过饱和溶液→晶核的发生→晶体生长等过程。

制取饱和溶液是溶质结晶的关键,下面应用溶解度曲线加以说明。

图中曲线S表示某物质的溶解度曲线。

P表示未达饱和时的溶液,使这种溶液变成过饱和溶液,从而析出晶体的方法有两种:(1)恒温蒸发,使溶剂的量减少,P点所表示的溶液变为饱和溶液,即变成S曲线上的A点所表示的溶液。

在此时,如果停止蒸发,温度也不变,则A点的溶液处于溶解平衡状态,溶质不会由溶液里析出。

若继续蒸发,则随着溶剂量的继续减少,原来用A点表示的溶液必需改用A'点表示,这时的溶液是过饱和溶液,溶质可以自然地由溶液里析出晶体。

(2)若溶剂的量保持不变,使溶液的温度降低,假如P点所表示的不饱和溶液的温度由t1℃降低到t2℃时,则原P点所表示的溶液变成了用S曲线上的B点所表示的饱和溶液。

在此时,如果停止降温,则B点的溶液处于溶解平衡状态,溶质不会由溶液里析出。

若使继续降温,由t2℃降到了t3℃时,则原来用B点表示的溶液必需改用B′点表示,这时的溶液是过饱和溶液,溶质可自然地由溶液里析出晶体。

1.结晶原理(过饱和溶液)2.结晶原理(晶核形成与晶体的长大)障碍的程度因溶液的性质和操作条件不一样,这就是存在过饱和溶液的原因。

当溶液的过饱和度超过饱和曲线时,也就是溶液中不稳定的高能质点很多,多到足以不受稳定的低能质点影响,而很快互相碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。

起晶时一般认为由于质点的碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。

起晶时一般认为由于质点的碰撞,首先由几个质点结合成晶线,再扩大与晶面,最后结合成微小的晶格,称为晶核(晶芽),其他质点继续排列在晶核上,使晶核长大成晶体。

结晶的原理方法及其应用

结晶的原理方法及其应用

结晶的原理方法及其应用一、结晶的原理方法结晶是指物质从溶液或气体中逐渐变为晶体的过程。

结晶是固体物质中的原子、离子或分子按照一定的有序排列形成晶体的过程。

结晶的原理方法主要包括以下几种:1. 溶剂结晶溶剂结晶是指通过加入适当的溶剂,使溶质在溶液中逐渐形成晶体。

一般来说,溶剂结晶的方法包括过饱和溶液结晶、蒸发结晶和冷却结晶等。

•过饱和溶液结晶是指在溶液中溶质的溶解度已经达到最大值,再进一步降低溶液的温度或增加溶质的浓度,就会导致溶质通过结晶形成晶体。

•蒸发结晶是指将溶液置于开放容器中,通过蒸发溶剂来充分饱和溶液,使溶质逐渐结晶。

•冷却结晶是指通过将溶液置于低温环境中,使溶质逐渐结晶。

2. 气相结晶气相结晶是指物质从气体状态逐渐转变为晶体状态的过程。

这种结晶方法主要包括物理气相淀积和化学气相淀积两种。

•物理气相淀积是指在一定的温度和压力条件下,气体的溶质通过高能粒子的撞击使其逐渐形成晶体。

•化学气相淀积是指通过化学反应使气体的溶质发生化学变化,从而形成晶体。

3. 摇床结晶摇床结晶是指通过将溶液放置在摇床上,利用摇床的摇动使溶质逐渐结晶。

这种结晶方法主要适用于微量溶质的结晶过程。

二、结晶的应用结晶作为一种固体物质的制备方法,广泛应用于众多领域。

以下列举了结晶的几个主要应用:1. 制药领域在药物的制备过程中,结晶是一种常用的分离和纯化方法。

通过结晶,可以将溶液中的杂质去除,获得高纯度的药物晶体。

2. 材料科学领域在材料科学领域,结晶被广泛应用于金属、陶瓷、半导体等材料的制备过程中。

通过控制结晶的条件,可以改变材料的晶体结构和物理性质。

3. 化工领域在化工生产过程中,结晶是一种常用的分离和纯化方法。

通过结晶,可以将溶液中的目标物质分离出来,获得高纯度的产品。

4. 生物领域在生物领域中,结晶被广泛应用于蛋白质、核酸等生物大分子的制备和纯化过程中。

通过结晶,可以获得高纯度的生物大分子晶体,为后续的结构和功能研究提供基础。

结晶操作方法

结晶操作方法

结晶操作方法
结晶操作方法是一种常见的化学实验技术,主要用于从溶液中分离出固体晶体物质。

其基本原理是利用物质在不同温度下的溶解度差异,通过逐渐降低溶液中的溶质浓度,使溶质逐渐过饱和,从而使其结晶成固体。

以下是一些常见的结晶操作方法:
1. 循环结晶法:将溶液倒入结晶皿中,用热水浴使其逐渐升温并搅拌,直至完全溶解。

然后逐渐降温至室温,使溶液逐渐达到过饱和状态,结晶出固体晶体物质。

这种方法适用于溶解度难以预测或高温易分解的物质。

2. 慢降温结晶法:用热水浴将溶液加热至完全溶解,然后将它缓慢冷却至室温,使其逐渐过饱和。

这种方法适用于溶解度较低、易溶解和稳定的物质。

3. 蒸发结晶法:将溶液倒入浅平底皿中,在低温下慢慢蒸发,使其逐渐过饱和结晶。

这种方法适用于溶解度较低的物质。

4. 溶剂结晶法:在溶液中加入一定比例的另一种溶剂,使其逐渐过饱和结晶。

这种方法适用于有机物和无机物的结晶。

总之,选择合适的结晶操作方法可以提高结晶的产率和纯度,从而更好地满足实验需要。

- 1 -。

制作结晶方法

制作结晶方法

制作结晶方法结晶是指溶液中溶质逐渐从溶液中析出形成晶体的过程。

制作结晶是一项常见的实验技术,广泛应用于材料科学、化学工程和矿物学等领域。

本文将介绍几种常用的制作结晶方法以及相关步骤。

作用原理在溶液中,当溶质溶解度超过饱和度时,溶质会开始从溶液中析出,形成固体结晶。

制作结晶的目的是通过调整溶质的饱和度和溶液的温度、浓度等条件,使溶质以晶体的形式析出。

常用的制作结晶方法1. 蒸发结晶法蒸发结晶法是最常见也是最简单的制作结晶的方法之一。

其基本原理是通过加热溶液,使溶液中的溶质迅速溶解,然后随着溶液的蒸发,溶质逐渐从溶液中析出形成结晶。

步骤:1.准备所需的溶液。

根据实验需要,选取适当的溶剂和溶质,并将其充分混合,得到饱和溶液。

2.将饱和溶液倒入浅盘或玻璃器皿中。

3.将浅盘或玻璃器皿放置在恒温水槽中,控制温度在适宜的范围内。

4.通过加热或调节水槽的温度,使溶液缓慢蒸发。

5.当溶液蒸发到饱和度时,溶质开始析出形成结晶。

6.关闭加热装置或调节水槽温度,让溶液冷却至室温。

7.最后,使用过滤器将结晶分离出来,并用冷蒸馏水洗涤。

2. 降温结晶法降温结晶法是通过控制溶液的温度来实现结晶的方法。

其基本原理是将溶液加热至饱和状态,然后迅速降温,使溶质从溶液中析出形成结晶。

步骤:1.准备所需的溶液,并在加热器中加热至饱和状态。

2.将加热后的溶液迅速倒入恒温培养箱或冷冻器中。

3.通过调节恒温培养箱或冷冻器的温度,使溶液迅速降温。

4.当溶液降温到饱和度时,溶质开始从溶液中析出形成结晶。

5.关闭加热器或冷冻器,让溶液冷却至室温。

6.最后,使用过滤器将结晶分离出来,并用冷蒸馏水洗涤。

3. 蒸馏结晶法蒸馏结晶法是利用蒸馏过程中溶液的浓缩作用来制作结晶的方法。

其基本原理是将溶液进行蒸馏,利用蒸发产生的蒸汽将溶质带走并形成结晶。

步骤:1.准备所需的溶液,并将其装入蒸馏器中。

2.开始蒸馏过程,通过加热蒸馏器,使溶液中的溶质迅速溶解。

3.当溶液达到饱和状态时,开始收集蒸发产生的蒸汽。

结晶法的原理和应用

结晶法的原理和应用

结晶法的原理和应用1. 原理结晶法是一种分离和纯化固体物质的方法,通过控制溶剂中溶质的饱和度和温度,使溶质逐渐从溶液中结晶出来。

它基于溶解度的差异,利用溶液与溶质之间的溶质分子间作用力,包括溶剂和溶质之间的吸引力以及溶质分子间的排斥力。

结晶法的原理包括以下几个方面:1.溶解-饱和度:将溶质溶解在溶剂中,形成饱和溶液。

饱和溶液中溶质和溶剂间的分子间吸引力大于溶质分子间的排斥力,溶质能够均匀溶解在溶剂中。

2.过饱和度:通过增加溶剂中溶质的浓度或降低溶剂温度,使溶液的饱和度超过平衡饱和度。

在过饱和溶液中,多余的溶质分子凝聚形成微小晶核。

3.形核:过饱和溶液中的微小晶核逐渐增长,形成大型的晶体。

4.结晶:溶质分子在溶液中逐渐聚集,形成有序的晶体结构。

5.结晶纯度:晶体的纯度取决于溶液中杂质的含量和晶体形成过程中的操作条件。

2. 应用结晶法在化学、生物学、药学等领域具有广泛的应用。

以下列举了一些常见的应用:2.1 药物制造药物的生产过程中,结晶法被广泛应用于药物分离和纯化。

通过控制反应条件和溶剂选择,可以使目标药物从复杂的混合物中结晶出来,并去除其中的杂质物质,从而得到高纯度的药物。

2.2 化学品制造结晶法在化学品制造中也起到关键作用。

通过结晶法可以从溶液中分离和纯化目标化学品。

例如,从含有多种金属离子的溶液中,通过改变溶液的条件,可以使特定金属离子结晶出来,从而得到纯度较高的金属化合物。

2.3 食品加工结晶法在食品加工中常用于脱色和提纯。

例如,白糖的生产过程中,通过溶解原始糖浆,并在适当的温度下控制结晶条件,可以使杂质物质逐渐从溶液中结晶出来,最终得到纯净的白色结晶糖。

2.4 分子物理学研究结晶法在分子物理学研究中也被广泛应用。

通过控制溶液中溶质的浓度和温度,可以制备出高质量的晶体样品,用于X射线衍射和单晶衍射等实验技术的应用。

这些实验技术可以揭示物质的晶体结构和分子间相互作用规律。

2.5 矿石提取结晶法在矿石提取中也有应用。

结晶原理和起晶方法

结晶原理和起晶方法

结晶原理和起晶方法
结晶原理是指物质从无序状态转变为有序状态的过程。

当物质的浓度
超过其饱和度时,就可以形成结晶。

结晶的过程可以由以下几个步骤组成:
1.产生核心:当物质浓度超过饱和度时,会出现过饱和现象,导致物
质开始聚集形成微小颗粒,称为结晶核心。

2.生长晶体:结晶核心会吸收周围的溶质,以便增长晶体。

在晶体生
长过程中,溶质会从溶液中转移到结晶体表面。

3.扩展晶体:晶体会不断生长并扩展,直到达到饱和浓度或其他外部
因素限制生长。

起晶方法主要有以下几种:
1.降温法:通过逐渐降低溶液的温度,使过饱和度增加,从而促进结
晶的形成。

这种方法适用于一些易溶性物质,如盐类、糖类等。

2.蒸发法:将溶液放置在容器中,让溶液中的溶质逐渐由于蒸发而浓缩,溶液浓度超过饱和度后开始形成结晶。

这种方法适用于一些易挥发性
物质,如草酸钙、硝酸钠等。

3.混合法:将两种或两种以上溶液混合,形成的混合溶液中溶质浓度
超过饱和度而形成结晶。

这种方法适用于一些溶解度较低的物质,如硫酸
铜和硫酸亚铁的混合溶液中可以形成硫酸铁。

4.冷却结晶法:先制备一个过饱和溶液,然后通过连续快速搅拌和快
速冷却的操作,促使结晶核形成和生长。

这种方法可以快速产生大量结晶,适用于一些较难结晶的物质。

总结起来,结晶的原理是物质在超过饱和度后形成结晶核,并通过生长来扩展晶体。

起晶方法主要包括降温法、蒸发法、混合法和冷却结晶法等。

这些方法可以根据物质的性质和需求的结晶结果选择合适的方法。

最新结晶原理及操作资料讲解

最新结晶原理及操作资料讲解

结晶原理及操作1、定义:利用被提纯物质与杂质在同一种溶剂中溶解性能的显著差异,而将它们分离的操作称为重结晶。

从自然界提取或通过有机化学反应合成得到的固体有机化合物,常常含有少量的杂质,除去杂质最有效的方法就是用适当的溶剂进行重结晶,它是提纯固体有机物最常用的方法。

大多数的固体有机物在溶剂中的溶解度随着温度的升高而增大,随温度的降低而减小,重结晶就是利用这个原理,使有机物在热溶剂中溶解,制成接近饱和的热溶液,趁热过滤,除去不溶性(在溶剂中溶解度很小)的杂质,再将溶液冷却,让有机物重新结晶析出,与可溶于冷溶剂(在溶剂中的溶解度很大)的杂质分离,这就是重结晶操作,经过一次或多次重结晶操作,可以大大提高固体有机物的纯度。

重结晶的一般过程为:选择合适的溶剂→溶解固体有机物制热饱和溶液→热滤、脱色除去杂质→冷却、析出晶体→抽滤→洗涤→干燥。

2、基本操作:(1)选择溶剂:选择适合的溶剂是重结晶的关键之一,适宜的溶剂必须符合以下几个条件:a、与被提纯的有机物不起化学反应;b、被提纯的有机物在该溶剂中的溶解度随温度变化显著,在热溶剂中溶解度大,在冷溶剂中溶解度小;c、杂质的溶解度很大(被提纯物成晶体析出时,杂质仍留在母液中)或很小(被提纯物溶解在溶剂中而杂质不溶,借热滤除去);d、溶剂的沸点适中,沸点过低,被提纯物在其中溶解度变化不大;过高时,附着于晶体表面的溶剂难以经干燥除去;e、价廉易得、毒性低、容易回收。

选择溶剂时应根据“相似相溶”原理,溶质一般易溶于与其结构相似的溶剂中。

极性溶剂溶解极性固体,非极性溶剂溶解非极性固体。

具体选择可通过查阅有关化学手册,也可以通过实验来确定。

(2)固体溶解:待提纯固体有机物的溶解一般在锥形瓶或圆底烧瓶等细口容器中进行,一般不在烧杯等广口容器中进行,因为在锥形瓶中瓶口较小,溶剂不易挥发,又便于振荡。

溶解时先将待提纯的固体有机物放入锥形瓶中,加入比理论计算量略少的溶剂(因为含有杂质,溶解时需要的溶剂量少些),加热至微沸,振荡,若有固体未溶解,再加入少量溶剂,继续加热振荡,至瓶中固体不再溶解(当含有不溶性杂质时,添加足够量的溶剂杂质依然不溶。

结晶现象的原理与发生步骤

结晶现象的原理与发生步骤

3、结晶的步骤
4盐析法 在溶液中,添加另一种物质使原溶质的溶解度降低,形成过饱和溶液 而析出结晶.加入的物质可以是能与原溶媒互溶的另一种溶媒或另一种 溶质. 5抗溶剂法 通过加入能降低溶解度的抗溶剂,如碳酸钠的抗溶剂结晶,在此结晶 体系中,乙二醇、一缩二乙二醇或者1,2-丙二醇等可加入其水溶液中,以 降低溶解度,产生过饱和度.
结晶现象的原理与方法
目录
1 结晶与晶体 2 结晶的基本原理 3 结晶的步骤 4 结晶过程影响因素分析
1、结晶与晶体
1、结晶与晶体
结晶是指固体物质以晶体状态从溶液、蒸汽或熔融物中析出的过程. 晶体是指内部结构中质点元素〔原子、离子、分子作三维有序规则排 列排列的固态物质. 晶体可分为三大晶族,七大晶系如下: 高级晶族:立方晶系<等轴晶系 中级晶族:三方晶系、四方晶系、六方晶系 低级晶族:正交晶系<斜方晶系、单斜晶系、三斜晶系.
2、结晶的基本原理
介稳区
不稳区 过渡区 亚稳区
稳定区
1—饱和曲线;2—第一过饱和曲线; 3—第二过饱和曲线
A稳定区:即不饱和区.其浓度≦ 平衡浓度,在这里不可能发生结晶.
B亚稳区:即第一过饱和区.在此 区域内不会自发成核,当加入晶种时,结 晶会生长,但不会产生新晶核.
C过渡区:即第二过饱和区.在此 区域内也不会自发成核,但加入晶种后, 在结晶生长的同时会有新晶核产生.
4、结晶过程影响因素分析
〔4冷却〔蒸发速度的影响 在实际生产中,通过真空绝热蒸发冷却是使溶液产生过饱和度的重要手 段之一.冷却速度快,过饱和度增大就快,容易超越介稳区极限,到达不稳 定区时将析出大量晶核,影响结晶粒度.因些,结晶操作过程的冷却速度 不宜太快. 〔5杂质的影响 物料中杂质的存在对晶体的生长有很大的影响,应该尽量去除杂质,以提 高产品质量.

简述结晶技术的原理及应用

简述结晶技术的原理及应用

简述结晶技术的原理及应用1. 结晶技术的原理结晶技术是一种物质从无序状态过渡到有序状态的过程,是通过调控物质中的分子或原子排列方式,使其形成具有规律的晶体结构。

结晶技术的原理主要包括以下几个方面:1.1 溶解过程溶解是结晶技术的起始阶段,物质在适当的溶剂中经过溶解形成溶液。

根据溶剂和溶质之间的相互作用力的不同,溶解过程中的物质分子或原子会以不同的方式进行排列。

1.2 过饱和度控制过饱和度是指溶液中溶质的浓度超过了该温度下溶解度的情况。

通过控制溶质的浓度和溶液的温度,可以控制过饱和度的大小,进而影响结晶的形成速率和晶体的尺寸。

1.3 晶核形成晶核是结晶过程中的起始结构单元,是溶液中起初形成的微小晶体。

晶核的形成需要克服过饱和度引起的能量障碍,通过调节溶液中的溶质浓度、温度和搅拌速度等条件,可以控制晶核的数量和尺寸。

1.4 晶体生长晶体生长是指溶液中的晶核逐渐生长并形成完整的晶体。

晶体生长的速率和形态受到温度、溶液流动性、溶质浓度等因素的影响。

通过调节这些条件,可以控制晶体生长的速率和形态,从而获得所需的晶体产物。

2. 结晶技术的应用结晶技术广泛应用于各个领域,特别是在化工、药物、食品等工业中的应用非常重要。

2.1 化工行业在化工行业中,结晶技术被广泛用于纯化和分离物质。

通过结晶技术可以去除溶液中的杂质,获得高纯度的产品。

此外,结晶技术还可以用于提纯有机化合物、制备催化剂和分离物质等领域。

2.2 药物工业在药物工业中,结晶技术是药物制剂的重要环节。

药物的结晶技术可以影响药物的溶解性、生物利用度和稳定性等特性,因此结晶技术对于药物的研发和制造具有重要的意义。

2.3 食品工业在食品工业中,结晶技术主要应用于糖类制品的生产。

通过控制结晶条件,可以获得细腻的糖晶、均匀的结晶度和适合口感的糖类制品。

2.4 材料科学在材料科学领域,结晶技术被广泛应用于合金、陶瓷、晶体管等材料的制备与改性。

通过控制结晶条件和晶体生长过程,可以调控材料的物理、化学性质,从而获得具备特定功能的材料。

结晶实验原理

结晶实验原理

结晶实验原理概述结晶实验是一种常用的实验方法,用于从溶液中分离纯净的晶体。

结晶是物质从溶液中逐渐沉淀出来的过程,通过控制结晶条件和操作方法,可以得到具有高纯度的晶体。

本文将详细介绍结晶实验的原理和操作方法。

结晶原理结晶是物质从溶液中析出形成晶体的过程,其原理基于溶质在溶液中的溶解度与温度的关系。

当溶液中的溶质浓度超过其饱和溶解度时,溶质就会以晶体的形式沉淀出来。

结晶实验的关键是通过控制温度和溶液浓度,使溶质达到过饱和状态,从而促进晶体的形成。

结晶实验步骤1. 准备溶液首先,需要准备一个含有溶质的溶液。

选择合适的溶剂和溶质,确保二者具有良好的相容性。

溶液的浓度应根据所需晶体的纯度和大小进行调整。

2. 加热溶液将溶液加热至接近沸点,使溶质充分溶解。

加热有助于提高溶质的溶解度,但需注意不要将溶液煮沸,以免溶质过度溶解。

3. 降温结晶将加热的溶液缓慢冷却至室温,或者使用冷却装置加速降温过程。

在溶液冷却的过程中,溶质逐渐超过其饱和溶解度,形成晶体。

4. 过滤晶体待溶液完全冷却后,将产生的晶体通过过滤分离出来。

可以使用滤纸或滤膜等过滤装置进行过滤操作,将溶液和晶体分离。

5. 晶体处理将过滤得到的晶体用适当的溶剂进行洗涤,以去除残留的杂质。

然后,将晶体晾干或使用吸水纸轻轻吸干表面的溶剂。

6. 测定晶体性质最后,对得到的晶体进行性质测试,如形态观察、熔点测定等。

这些测试可以帮助确定晶体的纯度和结晶效果。

结晶实验的影响因素结晶实验的结果受到多种因素的影响,包括溶液浓度、温度、溶剂选择、搅拌速度等。

下面将详细介绍这些因素的影响。

1. 溶液浓度溶液浓度是影响结晶效果的重要因素之一。

过低的浓度会导致晶体生长缓慢或无法形成晶体,而过高的浓度会导致晶体过饱和,产生大量细小的晶体。

2. 温度温度对结晶实验的影响也非常显著。

通常情况下,提高温度会增加溶质的溶解度,有利于结晶的形成。

但过高的温度可能会导致晶体的溶解,因此需要控制好温度条件。

结晶的原理方法及应用

结晶的原理方法及应用

结晶的原理方法及应用一、结晶的原理结晶是指溶液中溶质物质因过饱和而产生固相晶体的过程。

它是物质从无序状态向有序状态转变的过程,是一种重要的纯化和分离技术。

结晶的原理主要包括以下几个方面:1.过饱和度:溶质在溶液中的浓度高于其溶解度时,溶液处于过饱和状态。

过饱和度是结晶发生的关键参数,直接影响结晶的速率和产物的纯度。

2.稳定结晶核形成:结晶过程中,溶质分子在溶液中发生聚集,形成最初的结晶核。

稳定结晶核的形成受到溶剂特性、温度和搅拌等因素的影响。

3.结晶生长:在稳定结晶核的基础上,晶体逐渐增大,形成可见的晶体固相。

结晶生长的速率受到温度、浓度、搅拌速率和晶体生长面等因素的影响。

二、常见的结晶方法在工业生产和实验室研究中,常用的结晶方法包括:1.蒸发结晶法:将溶液置于容器中,通过加热或静置,使溶质逐渐从溶液中析出,并形成晶体。

2.降温结晶法:通过降低溶液温度,使溶质溶解度降低,从而导致过饱和,从溶液中析出晶体。

3.倾析结晶法:将过饱和的溶液慢慢倾斜放置,使晶体沿着特定方向缓慢生长。

4.冷凝结晶法:利用冷凝在冷凝器内壁上的水珠作为晶核,使溶质析出晶体。

5.溶剂结晶法:通过改变溶剂的性质(如溶解度、沸点等)来控制结晶的发生。

三、结晶的应用结晶是一项重要的分离和纯化技术,在许多领域都有广泛的应用。

1.医药工业:结晶在药物的分离纯化、提取和制备过程中起到关键作用。

通过结晶技术可以得到纯度高、晶型良好的药物物质。

2.食品工业:结晶用于食品添加剂、人工甜味剂、调味品等的提纯和制备过程中。

3.化学工业:结晶是许多化学品的纯化过程中的关键步骤。

通过控制结晶条件,可以得到高纯度的化学品。

4.环境保护:结晶技术可以用于废水处理,通过结晶分离出有价值的溶质,从而减少废水对环境的污染。

5.材料科学:结晶是合成和制备许多材料的重要方法,如单晶材料、多晶材料和纳米材料等。

总之,结晶技术在各个行业都有重要的应用,它不仅可以实现物质的纯化和分离,还能得到具有良好晶型和高纯度的产品,以及提高产品的品质和性能。

结晶原理、方法、设备ppt课件

结晶原理、方法、设备ppt课件
(氯化钠)
3、真空冷却结晶法
真空冷却结晶法是在减压、低于正常沸点条件下,使溶液中溶剂部分气
化并使溶液获得过饱和度。
真空冷却结晶法兼有蒸发结晶法和冷却结晶法的特点,适用于热稳定性
差及中等溶解度的物系。
15
4、盐析(溶析)结晶法
盐析(溶析)结晶:向溶液中加入某些物质,以降低溶质在原 溶剂中的溶解度,产生过饱和度的方法。
的一种重要的分离方法,是传质分离过程的一种单元操作。
例如:
加热蒸发
岩白菜素(溶液)
岩白菜素(饱和液)
①降温
②蒸发溶剂
溶液结晶 岩白菜素(晶体)
苯甲酸-萘(混熔物) 降温
苯甲酸(晶体)+ 混熔物
加热升华
降温
硫(固体)
硫(蒸气)
硫(结晶)
4
2、结晶过程的特点
(1)能从杂质含量相当多的溶液或多组分的熔融 混合物中形成纯净的晶体。而用其他方法难以分 离的混合物系,采用结晶分离更为有效。如同分 异构体混合物、共沸物系、热敏性物系等。
晶溶液的性质、结晶产品的粒度要求、晶型及生产能力要求等各有不同,因
此使用的结晶器也是多种多样。
1、冷却结晶器 间接换热釜式冷却结晶器是目前应用最广泛的一类冷却结晶器。冷却结
晶器根据其冷却形式又分为内循环冷却式和外内循环冷却式结晶器。
①内循环冷却式结晶器
原料液
内循环式冷却结晶器的构造如图所示,其冷却
剂与溶液通过结晶器的夹套进行热交换。
态物质的内部质点(如:原子、分子、离子)在三维空间成周期性重复排列的
固体,且具有长程有序。
⑵晶体的特性 由于晶体内部的质点在三维空间成周期性
重复排列,必然导致其有别于非晶体的一些性 质。 ①长程有序

结晶法的原理及应用

结晶法的原理及应用

结晶法的原理及应用1. 原理结晶法是一种物质分离和纯化技术,通过溶剂的蒸发或溶质的上升浓缩,使溶质从溶液中结晶出来。

其原理基于物质在溶液中的溶解度随温度的变化而变化,通过控制温度和溶剂的挥发性,可以实现溶质的结晶分离。

结晶法的原理主要基于以下几个方面:1.1 溶解度溶解度是指在一定温度下单位溶剂中溶解的溶质的质量或摩尔数。

溶解度与温度密切相关,一般情况下,随着温度的升高,溶质的溶解度也会增加,反之亦然。

1.2 饱和溶液饱和溶液是指在一定温度下,已经溶解了最大量溶质的溶液。

当溶液中的溶质已经达到饱和状态时,继续加热或增加溶质的浓度,溶质就会开始结晶出来。

1.3 结晶温度结晶温度是指溶质从溶液中结晶出来的温度。

结晶温度取决于溶质的溶解度和溶液的浓度,通常在饱和溶液中温度较高时结晶较容易发生。

1.4 操作条件结晶法可以通过控制操作条件来实现溶质的结晶分离。

一般来说,可以采取以下几个操作条件:•降低溶液的温度:通过降低溶液的温度,使溶质的溶解度降低,从而促使溶质结晶。

•蒸发溶剂:通过让溶剂蒸发,使溶解度超过饱和度,从而引发结晶过程。

•添加溶质:通过增加溶质的浓度,使溶解度超过饱和度,从而导致结晶。

2. 应用结晶法作为一种重要的分离和纯化技术,在许多领域都有广泛的应用。

以下列举了一些主要的应用领域:2.1 制药工业在制药工业中,结晶法常用于药物的分离和提纯。

根据药物在不同溶剂中的溶解度和饱和度,可以采用不同的结晶方法,获得纯度较高的药物结晶体。

此外,结晶法还常用于药物的晶型控制和溶解度研究。

2.2 食品工业结晶法在食品工业中的应用非常广泛。

例如,糖果、巧克力、冰淇淋等食品的生产中,常需要对关键成分进行结晶分离,以获得所需品质和口感。

此外,结晶法还用于蔗糖和糖浆的生产,以及食品添加剂、调味品和色素等的提纯。

2.3 化工工业结晶法在化工工业中也有重要的应用。

例如,对有机合成中的产物进行结晶分离,可以提高产物的纯度和收率。

结晶现象的原理与发生步骤

结晶现象的原理与发生步骤
目 录
1 2
结晶与晶体 结晶的基本原理 结晶的步骤 结晶过程影响因素分析
3
4
1、结晶与晶体
1、结晶与晶体
结晶是指固体物质以晶体状态从溶液、蒸汽或熔融物中析出的过程。 晶体是指内部结构中质点元素(原子、离子、分子)作三维有序规则
排列排列的固态物质。
晶体可分为三大晶族,七大晶系如下: 高级晶族:立方晶系(等轴晶系)
处于平衡的溶液称为该固体的饱和溶液。
溶液浓度恰好等于溶质的溶解度,即达到液固相平衡状态时的浓 度曲线,称为饱和曲线;
溶液过饱和而欲自发的产生晶核的极限浓度曲线称为过饱和曲线
。饱和曲线与过饱和曲线之间的区域为结晶的介稳区。
2、结晶的基本原理
A稳定区:即不饱和区。其浓度
不稳区 过渡区 介稳区
≦平衡浓度,在这里不可能发生结晶
3、结晶的步骤
3、结晶的步骤
结晶是从均一的溶液中析出固相晶体的一个操作,常包括为三个 步骤:过饱和溶液的形成、晶核的生成和晶体的成长。 a-晶核的生成 b-诱导期 c-结晶成长 d-结晶老化 e-平衡的饱和溶液
3、结晶的步骤
(1)过饱和溶液的形成 结晶的首要条件是过饱和,制备过饱和溶液的方法一般有五种:
4、结晶过程影响因素分析
4、结晶过程影响因素分析
根据结晶原理,结晶操作的影响因素主要考虑晶核形成速率和晶 体成长速率的影响因素,包括过饱和度、温度、搅拌强度、冷却速度
、杂质以及晶种等方面。
(1)过饱和度的影响 晶核生成速率和晶体成长速率均随过饱和度的增加而增大。在不
稳区,溶液会产生大量晶核,不利于晶体成长。
化学反应法
冷却法
盐析法 蒸发法
抗溶剂法
3、结晶的步骤

4-1 结晶技术

4-1 结晶技术
过程:将溶剂中的物质析出产生 结晶和沉淀都是是分子分离纯化的一种手段

不同

纯度不同:沉淀的纯度远低于结晶,是一种初级分离 技术。但多步沉淀操作也可制备高纯度的目标产物。 结构不同:沉淀是无规则排列的无定形粒子 速度不同:结晶和沉淀相比应当是一个缓慢的过程, 必须有适合的晶核


应用广泛性:沉淀广泛应用于蛋白质等生物产物的分 离,蛋白质沉淀是不定形颗粒,不是结晶。
(1)剪切力成核,一个变n个
(2)接触成核,两个变一个
晶核的成核速度 定义:单位时间内在单位体积溶液中生成新核的数目。

是决定结晶产品粒度分布的首要动力学因素;
成核速度大:导致细小晶体生成 因此,需要避免过量晶核的产生
3.
晶体的成长
晶体成长速度大大超过晶核生成速度,过饱和度主要用 来使晶体成长, 得到粗大而有规则晶体;
特点:



优点:构造简单,生产能力大,操作控制较容易。
缺点:必须使用蒸汽,冷凝耗水量较大,操作费用和能 耗较高。
名词
晶浆:在结晶器中结晶出来的晶体和剩余的溶液 (或熔液)所构成的混悬物。 母液:去除悬浮液中的晶体后剩下的溶液(或熔液)。 晶习: 一定环境中,结晶的外部形态。 结晶过程中,含有杂质的母液(或熔液)会以表面粘 附和晶间包藏的方式夹带在固体产品中。
3. 结晶操作的特点
多数情况下,只有同类分子或离子才能排列成晶体,因 此结晶过程有良好的选择性。
结晶

真空浓缩结晶锅主要用于味精结晶
冷却盘式结晶器

提高纯度
结晶过程的预测与改善
提高产率:提高起始浓度,降低溶解度, 杂质的存在原因: a 母液带入; b 杂质包埋; c 单晶中包含母液; d 杂质取代晶格分子 改善晶体大小分布:改变成核和生长速度,控制过饱和度 进程 控制过滤速度:大晶体与窄的粒径分布过滤效果好 避免结垢:晶体沉积在容器中

结晶现象的原理与发生步骤

结晶现象的原理与发生步骤

引言概述结晶现象是物质在一定条件下由液体或气体转变为固体的过程。

对于许多科学领域而言,了解结晶的原理和发生步骤是至关重要的,因为结晶现象广泛应用于化学、材料科学、地球科学等领域。

本文将深入探讨结晶现象的原理和发生步骤,希望读者能够更加理解这一现象。

正文内容一、原理1.结晶的定义和基本概念结晶是一种物质由无序状态变为有序结构的过程。

在结晶中,原子、分子或离子按照一定的规律排列,形成晶粒。

2.结晶的热力学基础结晶的发生需要克服固体与液体之间的能量差,即自由能差。

当自由能差为负时,结晶就能发生。

3.结晶的动力学过程结晶的动力学过程指的是物质从高能量状态转变为低能量状态的过程。

这个过程涉及到核化、生长和形态发生等多个步骤。

4.结晶的驱动力驱动结晶过程的因素有很多,如温度、溶剂性质、溶质浓度、杂质等。

不同的系统对这些因素的响应也大不相同。

5.结晶的种类结晶现象可分为物理结晶和化学结晶。

物理结晶是由于温度或浓度变化引起的,而化学结晶则是由于化学反应引起的。

二、发生步骤1.核化核化是结晶的第一步,指的是液体中出现起始晶核。

起始晶核的形成需要克服活化能的影响,活化能越低,核化速度越快。

2.生长晶核后,它们会通过吸收周围溶液中的溶质来增大尺寸,形成晶体的过程被称为生长。

生长速度受到温度、浓度、溶液饱和度等因素的影响。

3.晶体形态发生晶体形态发生是指晶体在生长过程中的形状改变。

形态发生的原因有很多,如溶剂对溶质的影响、晶体生长速度的变化等。

4.晶体合并晶体合并是指在结晶过程中,颗粒之间发生相互迁移和接触,形成更大晶体的过程。

合并的影响因素包括温度、浓度、晶体形态等。

5.晶体分散晶体分散是指结晶过程中,固体晶体颗粒由于能量分散、扩散等原因发生分离的过程。

晶体分散会导致空心晶体、多晶晶体等形成。

结尾总结结晶现象的原理与发生步骤是一个复杂且多变的过程。

通过了解结晶的原理,我们能够更好地理解和控制结晶现象,在化学工业和材料科学等领域有更广泛的应用。

结晶的原理和应用实验

结晶的原理和应用实验

结晶的原理和应用实验1. 结晶的原理结晶是物质从溶液或融化状态进一步凝固,形成晶体的过程。

其原理基于物质在溶液或融化状态下,经过适当的条件调控,使其分子或离子重新有序排列并形成晶体。

结晶是一种精确而有序的凝聚态形态,其结构和性质与原始溶解物质相比较而言,具有更高的纯度和稳定性。

结晶的原理涉及到以下几个关键步骤:•溶解:将固体溶质溶解于适当的溶剂中,形成溶液。

•过饱和:通过控制温度和溶质浓度,使溶液的浓度超过饱和度,形成过饱和溶液。

•凝聚核心形成:过饱和溶液中的溶质分子或离子聚集成凝聚核心。

•晶体生长:凝聚核心作为生长点,吸附溶液中的溶质分子或离子,逐渐生长形成晶体。

•结晶回收:通过过滤、洗涤、干燥等操作,将结晶的晶体从溶液中分离并纯化。

2. 结晶的应用实验结晶是一种重要的分离和纯化技术,在实际应用中有广泛的使用。

以下是一些常见的结晶应用实验:2.1 溶质纯化通过结晶实验可以将溶液中的杂质与溶质进行分离,从而实现对溶质的纯化。

一般的实验过程如下:1.准备一定浓度的溶液,可以是单组分溶液或者混合溶液。

2.用适当的方法使溶液过饱和,如不断搅拌溶液、加热溶液或者浓缩溶液等。

3.过滤溶液,将溶质纯度较高的晶体分离出来。

4.晶体洗涤,用无杂质的溶剂对晶体进行洗涤,以去除表面的附着杂质。

5.晶体干燥,将洗涤后的晶体放置于通风干燥器中,使其完全干燥。

6.对晶体进行重复结晶和纯化,直至达到所需纯度。

2.2 药物制剂结晶技术在药物制剂领域具有重要的应用价值,可以用于提取和纯化药物原料,改变药物的物理性质,以及制备药物配方中的晶体。

•提取和纯化:通过结晶技术可以从草药中提取活性成分,并将其纯化为晶态物质,以获得更纯净和安全的药物原料。

•物理性质改变:结晶技术可以改变药物原料的溶解度、稳定性、溶解速率等物理性质,从而对药物的吸收、代谢和释放等环节产生影响。

•制备药物配方:将药物配方中的活性成分结晶,可以改变药物的溶解特性、稳定性、吸收速率等,进而调节药物的疗效、效应持续时间和剂量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结晶原理及操作
1、定义:利用被提纯物质与杂质在同一种溶剂中溶解性能的显著差异,而将它们分离的操作称为重结晶。

从自然界提取或通过有机化学反应合成得到的固体有机化合物,常常含有少量的杂质,除去杂质最有效的方法就是用适当的溶剂进行重结晶,它是提纯固体有机物最常用的方法。

大多数的固体有机物在溶剂中的溶解度随着温度的升高而增大,随温度的降低而减小,重结晶就是利用这个原理,使有机物在热溶剂中溶解,制成接近饱和的热溶液,趁热过滤,除去不溶性(在溶剂中溶解度很小)的杂质,再将溶液冷却,让有机物重新结晶析出,与可溶于冷溶剂(在溶剂中的溶解度很大)的杂质分离,这就是重结晶操作,经过一次或多次重结晶操作,可以大大提高固体有机物的纯度。

重结晶的一般过程为:
选择合适的溶剂→溶解固体有机物制热饱和溶液→热滤、脱色除去杂质→冷却、析出晶体→抽滤→洗涤→干燥。

2、基本操作:
(1)选择溶剂:选择适合的溶剂是重结晶的关键之一,
适宜的溶剂必须符合以下几个条件:
a、与被提纯的有机物不起化学反应;
b、被提纯的有机物在该溶剂中的溶解度随温度变化显
著,在热溶剂中溶解度大,在冷溶剂中溶解度小;
c、杂质的溶解度很大(被提纯物成晶体析出时,杂质仍留在母液中)或很小(被提纯物溶解在溶剂中而杂质不溶,借热滤除去);
d、溶剂的沸点适中,沸点过低,被提纯物在其中溶解度变化不大;过高时,附着于晶体表面的溶剂难以经干燥除去;
e、价廉易得、毒性低、容易回收。

选择溶剂时应根据“相似相溶”原理,溶质一般易溶于与其结构相似的溶剂中。

极性溶剂溶解极性固体,非极性溶剂溶解非极性固体。

具体选择可通过查阅有关化学手册,也可以通过实验来确定。

(2)固体溶解:
待提纯固体有机物的溶解一般在锥形瓶或圆底烧瓶等细口容器中进行,一般不在烧杯等广口容器中进行,因为在锥形瓶中瓶口较小,溶剂不易挥发,又便于振荡。

溶解时先将待提纯的固体有机物放入锥形瓶中,加入比理论计算量略少的溶剂(因为含有杂质,溶解时需要的溶剂量少些),加热至微沸,振荡,若有固体未溶解,再加入少量溶剂,继续加热振荡,至瓶中固体不再溶解(当含有不溶性杂质时,添加足够量的溶剂杂质依然不溶。

)或全溶(不含不溶性杂质)为止,最后再多加计算量20%的溶剂(将溶液稀释,防止热滤时由于溶剂的挥发和温度的下降导致晶体析出),振荡,制成热的近饱和溶液。

(3)除去杂质
a、脱色:若热溶液有色,说明其中有有色杂质,可利用活性炭进行脱色处理,除去有色杂质。

脱色操作:
将沸腾的溶液稍冷后,加入活性炭加热煮沸几分钟,然后趁热过滤,除去活
性炭,得到无色溶液。

注意:
不能向正在沸腾的热溶液中加入活性炭,以免爆沸。

活性炭的用量根据溶液颜色的深浅而定,一般为固体粗产物的1~10%,加入过量的活性炭会吸附产物而造成损失。

加热煮沸的时间一般为5~10分钟。

b、热滤:待重结晶的有机物热溶液中若有不溶性杂质或经活性炭脱色后必须趁热过滤除去杂质或活性炭。

热滤应尽可能快速进行,防止在过滤中由于溶剂挥发或温度下降引起晶体析出,析出的晶体与杂质混在一起,造成损失。

为了加快热滤的速度应采取以下措施:
a、选用颈短而粗的玻璃漏斗,避免析出晶体堵塞漏斗颈。

b、使用热水漏斗,保持溶液温度。

c、使用菊花形折叠滤纸,增大过滤面积,提高过滤速度。

4、晶体析出:热滤得到的滤液,放置,让其自然冷却,晶体逐步析出。

结晶过程中,如果将溶液急速冷却或剧烈摇动,析出的晶体颗粒太小,晶体表面积大,吸附的杂质较多,纯度较低。

因此应将溶液缓慢冷却、静置,得到颗粒较大的晶体。

但是,晶体颗粒也不能太大,否则晶体中包含大量的母液,产物纯度过低,也给干燥带来困难。

当看到有较大晶体形成时,及时轻轻摇动使之形成均匀的小晶体。

如果溶液冷却后没有晶体析出,可以用玻璃棒摩擦器壁或用冰水冷却促使晶体生成。

5、抽滤:结晶完全后,过滤使晶体与母液分离,溶解度大的杂质留在母液中。

一般采用抽滤进行过滤,因为抽滤速度快且能吸干母液得到产品纯度高。

抽滤装置由布氏漏斗、吸滤瓶、缓冲瓶、真空泵组成。

布氏漏斗插入吸滤瓶时应该让漏斗下端斜口正对吸滤瓶的支管口;漏斗内放一张圆形滤纸,滤纸直径要小于漏斗内径,但必须能完全盖住所有小孔。

吸滤前用少量溶剂将滤纸润湿并吸紧。

缓冲瓶的作用是调节系统压力,防止倒吸。

抽滤时先将晶体和母液转移到布氏漏斗上,使晶体均匀分布在滤纸上,用少量溶剂将粘附在溶器壁上的晶体洗出倒入漏斗,抽气吸干,用玻璃棒挤压晶体,尽量除去母液,用少量溶剂洗涤晶体,继续抽干。

结束抽滤时应先打开缓冲瓶上的旋塞放气,内外压力平衡后再关闭真空泵。

6、晶体的干燥:经过抽滤得到的晶体表面吸附有少量溶剂,必须干燥除去,以得到纯净的产品。

固体有机物的干燥通常采用烘干法。

使晶体干燥,干燥后取下晶体,用玻璃棒轻敲滤纸使粘在滤纸上的晶体全部脱落下来。

二、结晶步骤:
1、固体溶解:
称取待提纯的粗制品己二酸g(或乙酰苯胺3g),放于锥形瓶中,加入ml水(50ml水,理论计算用水量为55ml),加热至沸,振荡,若固体不能全部溶解,可分次添加少量水,每次2~3ml,加热沸腾,振荡,至固体全溶或不再溶解为止,记录加入水量,再过量20%的水,加热至微沸。

2、脱色:热溶液稍冷后,加入0.1~0.5g活性炭,边加热边搅拌,煮沸5~10分钟。

3、热滤:在金属漏斗中注入热水,放于铁圈上,用酒精灯加热侧管,取一个短颈玻璃漏斗放入金属漏斗中,将折叠好的菊花滤纸放在玻璃漏斗上,预热一段时间。

用少量热水润湿滤纸,再将沸腾的热溶液倒入漏斗中过滤,每次倒入少量,分几次过滤,瓶中剩余的溶液继续加热保持微沸。

过滤完毕,用少量热水洗涤锥形瓶和滤纸。

4、结晶:滤液静置,自然冷却,晶体逐渐析出。

5、抽滤:连接抽滤装置,剪一个大小合适的滤纸放于布氏漏斗上,用少量水润湿后开动真
空泵吸紧,打开缓冲瓶旋塞,将晶体和母液一起倒入漏斗中,晶体要尽可能分布均匀,关闭缓冲瓶旋塞,抽滤,抽干后用少量水洗涤晶体两次,继续抽干。

6、烘干:将滤纸和滤饼一同从漏斗中取出,放在一个干燥洁净的表面皿上,在水蒸气浴上加热,晶体表面的溶剂很快挥发,晶体逐渐干燥。

取下晶体,将滤纸上沾附的少量晶体刮下合并在一起。

7、称重计算:
八、注意事项:
1 不能将活性炭加入正在沸腾的溶液中,必须等溶液冷后再加。

2 热滤时漏斗滤纸都要预热,每次倒入少量液体,过滤速度要快,防止在滤纸上出现结晶。

3 结晶析出时要静置切勿摇动。

4 抽滤时注意正确操作。

相关文档
最新文档