图的储存结构以及深度遍历DFS

合集下载

图的深度优先遍历(DFS)c++非递归实现

图的深度优先遍历(DFS)c++非递归实现

图的深度优先遍历(DFS)c++⾮递归实现深搜算法对于程序员来讲是必会的基础,不仅要会,更要熟练。

ACM竞赛中,深搜也牢牢占据着很重要的⼀部分。

本⽂⽤显式栈(⾮递归)实现了图的深度优先遍历,希望⼤家可以相互学习。

 栈实现的基本思路是将⼀个节点所有未被访问的“邻居”(即“⼀层邻居节点”)踹⼊栈中“待⽤”,然后围绕顶部节点猛攻,每个节点被访问后被踹出。

读者可以⾃⼰画图分析⼀下,难度并不⼤。

代码写的⽐较随意,仅供参考。

~#include <iostream>#include <stack>using namespace std;#define MaxNode 20#define MAX 2000#define StartNode 1int map[MaxNode+1][MaxNode+1];void dfs_stack(int start, int n){int visited[MaxNode],s_top;for(int i = 0;i <= MaxNode; i++){visited[i] = 0;}visited[start] = 1;stack <int> s;cout<<start<<"";for(int i = 1; i <= n; i++){if(map[i][start] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}while(!s.empty()){s_top = s.top();visited[s_top] = 1;cout<<s_top<<"";s.pop();for(int i = 1; i <= n; i++){if(map[i][s_top] == 1 && !visited[i] ){visited[i] = 1;s.push(i);}}}}int main(int argc, const char * argv[]) {int num_edge,num_node;int x,y;cout<<"Input number of nodes and edges >"<<endl;cin>>num_node>>num_edge;for(int i =0;i<num_node;i++){for(int j=0;j<num_node;j++){map[i][j] = 0;}}for(int i = 1; i <= num_edge; i++){cin>>x>>y;map[x][y] = map[y][x] = 1;}dfs_stack(StartNode, num_node);return0;}。

数据结构中的图的遍历算法

数据结构中的图的遍历算法

数据结构中的图的遍历算法图是一种非常重要且广泛应用的数据结构,它由顶点和边组成,可以用来表示各种实际问题,如社交网络、路线规划等。

图的遍历算法是对图中的所有顶点进行系统访问的方法,它可以用来查找、遍历和搜索图中的元素。

本文将介绍图的遍历算法的基本概念和常用的实现方法。

一、图的遍历算法概述图的遍历算法是指按照某种规则遍历图中的所有顶点,以便于查找、遍历和搜索图中的元素。

常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)两种。

深度优先搜索(DFS)是一种先访问顶点的所有邻接顶点,再递归访问邻接顶点的邻接顶点的算法。

它以深度为优先级,一直向前走到不能继续为止,然后返回到前一个结点,继续向前走,直到遍历完整个图。

广度优先搜索(BFS)是一种先访问顶点的所有邻接顶点,再访问邻接顶点的邻接顶点,以此类推的算法。

它以广度为优先级,先访问离起始顶点最近的顶点,然后依次访问离起始顶点更远的顶点,直到遍历完整个图。

二、深度优先搜索(DFS)深度优先搜索是一种递归的搜索算法,它的基本思想是从图的某个顶点出发,沿着一条路径一直深入直到不能继续为止,然后返回到前一个结点,继续向前走。

具体实现时,可以使用递归或栈来保存需要访问的顶点。

以下是深度优先搜索的基本步骤:1. 选择一个起始顶点作为当前顶点,将其标记为已访问。

2. 访问当前顶点,并将其加入遍历结果。

3. 从当前顶点的未访问邻接顶点中选择一个作为下一个当前顶点,重复步骤2。

4. 如果当前顶点的所有邻接顶点都已访问,则返回到前一个顶点,重复步骤3。

5. 重复步骤4,直到遍历完整个图。

三、广度优先搜索(BFS)广度优先搜索是一种迭代的搜索算法,它的基本思想是从图的某个顶点出发,依次访问其所有未访问过的邻接顶点,然后再依次访问这些邻接顶点的未访问过的邻接顶点,直到遍历完整个图。

具体实现时,可以使用队列来保存需要访问的顶点。

以下是广度优先搜索的基本步骤:1. 选择一个起始顶点作为当前顶点,将其标记为已访问,并将其加入遍历结果。

dfs经典例题

dfs经典例题

选择题:深度优先搜索(DFS)算法在遍历图时,采用的是哪种数据结构?A. 队列B. 栈(正确答案)C. 链表D. 数组在使用DFS进行图的遍历时,若图中存在环,则算法会如何?A. 陷入无限循环B. 正确遍历所有节点,每个节点只访问一次(正确答案)C. 报错并停止执行D. 遍历部分节点后停止DFS算法的时间复杂度主要取决于什么?A. 图中节点的数量(正确答案)B. 图中边的数量C. 图中环的数量D. 图的存储结构在进行DFS遍历时,若需要标记已访问的节点,通常采用什么方法?A. 使用一个与节点数量相等的布尔数组(正确答案)B. 使用一个与边数量相等的布尔数组C. 在节点对象中增加一个布尔字段D. 使用哈希表存储已访问的节点DFS算法在解决迷宫问题时,通常用于寻找什么?A. 最短路径B. 所有路径C. 一条从起点到终点的路径(正确答案)D. 迷宫的面积在使用DFS进行图的遍历时,若图不是连通的,则算法会如何?A. 只遍历连通的部分B. 遍历所有节点,但每个连通部分只访问一次(正确答案)C. 报错并停止执行D. 需要对每个连通部分分别调用DFSDFS算法相比于广度优先搜索(BFS)的主要区别是什么?A. 使用的数据结构不同(正确答案)B. 遍历的顺序不同C. 适用的场景不同D. 时间复杂度不同在使用DFS进行图的遍历时,若需要按照特定的顺序访问节点,应该如何做?A. 修改DFS算法的实现B. 在遍历过程中加入排序操作C. 在遍历前对节点进行排序,并按照排序后的顺序进行遍历(正确答案)D. 无法实现特定的访问顺序DFS算法在解决一些问题时,为什么有时需要回溯?A. 为了撤销上一次的选择,尝试其他可能性(正确答案)B. 为了节省空间复杂度C. 为了提高时间复杂度D. 为了简化算法的实现。

JAVA实现图的邻接表以及DFS

JAVA实现图的邻接表以及DFS

JAVA实现图的邻接表以及DFS ⼀:定义邻接表结构储存图package 图的遍历;//邻接表实现图的建⽴//储存边class EdgeNode {int index; // 习惯了⽤index,其实标准写法是(adjVertex)int value; // 权值EdgeNode nextArc; // 指向下⼀条弧}// 邻接表节点的类型class VertexNode {String name;EdgeNode firstArc = new EdgeNode(); // 指向第⼀条弧}public class Graph {VertexNode[] adjList; // 保存邻接表的头节点int e; // 图的边数int v; // 图的顶点数boolean[] visit;public Graph(int v, int e) {this.v = v;this.e = e;adjList = new VertexNode[e + 1]; // 学习Java养成的好习惯,动态分配空间,创建顶点表数组visit = new boolean[e + 1]; //标记for (int i = 0; i < e; i++) {visit[i] = false;}}} ⼆:DFS过程package 图的遍历;public class DFSGraph {public static void DFS(Graph G, int k) {System.out.println(G.adjList[k].name);G.visit[k] = true;EdgeNode p = new EdgeNode();p = G.adjList[k].firstArc;while(p!=null){if(G.visit[p.index]!=true){DFS(G,p.index);}p=p.nextArc;}}} 三:建⽴图package 图的遍历;import java.util.Scanner;public class CreateGraph {private static Graph G;public static Graph getGraph(){return G;}public static void createGraph() {Scanner sc = new Scanner(System.in);System.out.println("请输⼊顶点数v和边数e:");int v = sc.nextInt();int e = sc.nextInt();G = new Graph(v, e);System.out.println("请输⼊各顶点信息:");for (int i = 0; i < G.v; i++) {G.adjList[i] = new VertexNode();G.adjList[i].name = sc.next();G.adjList[i].firstArc = null; // 不可或缺}System.out.println("请输⼊各边信息(⽤空格隔开):");for (int i = 0; i < G.e; i++) {EdgeNode en1 = new EdgeNode();// 保证e1,e2都是合法输⼊String e1 = sc.next();String e2 = sc.next();int v1 = Index(e1);int v2 = Index(e2);en1.index = v1; // en1的下标是v1en1.nextArc = G.adjList[v2].firstArc;G.adjList[v2].firstArc = en1;EdgeNode en2 = new EdgeNode();en2.index = v2; // en2的下标是v2en2.nextArc = G.adjList[v1].firstArc;G.adjList[v1].firstArc = en2;}}public static void outputGraph() { //不知道为何空指针异常 try {System.out.println("输出邻接表存储情况:");EdgeNode en = new EdgeNode();for (int i = 0; i < G.e; i++) {System.out.print(G.adjList[i].name);en = G.adjList[i].firstArc;while (en != null) {System.out.print("->" + G.adjList[en.index].name);en = en.nextArc;}System.out.println();}} catch (NullPointerException e) {}}private static int Index(String e1) {for (int i = 0; i < G.v; i++) {if (G.adjList[i].name.equals(e1)){return i;}}return -1;}} 四:测试package 图的遍历;public class GraphDemo {public static void main(String[] args) {CreateGraph.createGraph();CreateGraph.outputGraph();System.out.println("DFS图的过程如下:");DFSGraph.DFS(CreateGraph.getGraph() , 0);}}/** 请输⼊顶点数v和边数e: 4 5* 请输⼊各顶点信息: a b c d* 请输⼊各边信息(⽤空格隔开):* a b* a c* a d* b c* b d*/ 五,测试结果。

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。

图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。

图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。

本文将详细讲解图的遍历算法及其应用。

二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。

(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。

(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。

(4)重复步骤(2)和(3),直到栈为空。

2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。

(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。

(3)重复步骤(2),直到队列为空。

三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。

1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。

图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。

具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。

(2)重复步骤(1),直到所有顶点都被访问。

2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。

图的深度优先遍历实验报告

图的深度优先遍历实验报告

一.实验目的熟悉图的存储结构,掌握用单链表存储数据元素信息和数据元素之间的关系的信息的方法,并能运用图的深度优先搜索遍历一个图,对其输出。

二.实验原理深度优先搜索遍历是树的先根遍历的推广。

假设初始状态时图中所有顶点未曾访问,则深度优先搜索可从图中某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,直至图中所有与v有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中一个未曾访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。

图的邻接表的存储表示:#define MAX_VERTEX_NUM 20#define MAXNAME 10typedef char VertexType[MAXNAME];typedef struct ArcNode{int adjvex;struct ArcNode *nextarc;}ArcNode;typedef struct VNode{VertexType data;ArcNode *firstarc;}VNode,AdjList[MAX_VERTEX_NUM];typedef struct{AdjList vertices;int vexnum,arcnum;int kind;}ALGraph;三.实验内容编写LocateVex函数,Create函数,print函数,main函数,输入要构造的图的相关信息,得到其邻接表并输出显示。

四。

实验步骤1)结构体定义,预定义,全局变量定义。

#include"stdio.h"#include"stdlib.h"#include"string.h"#define FALSE 0#define TRUE 1#define MAX 20typedef int Boolean;#define MAX_VERTEX_NUM 20#define MAXNAME 10typedef char VertexType[MAXNAME];typedef struct ArcNode{int adjvex;struct ArcNode *nextarc;}ArcNode;typedef struct VNode{VertexType data;ArcNode *firstarc;}VNode,AdjList[MAX_VERTEX_NUM];typedef struct{AdjList vertices;int vexnum,arcnum;int kind;}ALGraph;ALGraph G;Boolean visited[MAX];int degree[MAX_VERTEX_NUM];//定义一个数组求每一个顶点的总度数(无向图)或出度(有向图)。

c语言邻接表的深度优先遍历

c语言邻接表的深度优先遍历

c语言邻接表的深度优先遍历深度优先遍历(Depth First Search,DFS)是一种常用的图遍历算法,适用于有向图或无向图。

在深度优先遍历算法中,从图中的某个节点开始,沿着一条路径走到底,直到无法再继续下去,然后回溯到上一个节点,再选择另一条路径继续遍历,直到所有节点都被访问过为止。

邻接表是一种常用的图的存储方式,它使用一个数组来存储图的所有顶点,每个顶点对应一个链表,链表中存储了该顶点的所有邻接点。

邻接表的优点是可以节省存储空间,适用于稀疏图;缺点是查找某个顶点的邻接点时需要遍历链表,效率较低。

深度优先遍历邻接表的实现可以采用递归或者非递归的方式。

下面以递归方式为例,介绍深度优先遍历邻接表的算法实现。

我们需要定义一个辅助数组visited,用来标记每个顶点是否被访问过。

初始时,visited数组所有元素均为false。

接下来,我们从某个起始顶点开始进行递归遍历。

具体的递归函数可以定义如下:```cvoid dfs(int v) {visited[v] = true; // 标记当前顶点为已访问// 输出当前顶点的值或进行其他操作printf("%d ", v);// 遍历当前顶点的邻接点for (Node* p = adjList[v]; p != NULL; p = p->next) {if (!visited[p->vertex]) {dfs(p->vertex); // 递归遍历邻接点}}}```在dfs函数中,首先将当前顶点标记为已访问,并输出其值。

然后遍历当前顶点的邻接点,如果邻接点未被访问过,则递归调用dfs 函数进行遍历。

我们可以从任意一个未被访问的顶点开始调用dfs函数进行深度优先遍历:```cvoid dfsTraversal() {for (int i = 0; i < numVertices; i++) {if (!visited[i]) {dfs(i); // 从未被访问的顶点开始深度优先遍历}}}```在dfsTraversal函数中,我们遍历所有顶点,如果某个顶点未被访问过,则调用dfs函数进行深度优先遍历。

数据结构-实验6图的存储和遍历

数据结构-实验6图的存储和遍历

实验6.1实现图的存储和遍历一,实验目的掌握图的邻接矩阵和邻接表存储以及图的邻接矩阵存储的递归遍历。

二,实验内容6.1实现图的邻接矩阵和邻接表存储编写一个程序,实现图的相关运算,并在此基础上设计一个主程序,完成如下功能:(1)建立如教材图7.9所示的有向图G的邻接矩阵,并输出。

(2)由有向图G的邻接矩阵产生邻接表,并输出。

(3)再由(2)的邻接表产生对应的邻接矩阵,并输出。

6.2 实现图的遍历算法(4)在图G的邻接矩阵存储表示基础上,输出从顶点V1开始的深度优先遍历序列(递归算法)。

(5)利用非递归算法重解任务(4)。

(6)在图G的邻接表存储表示基础上,输出从顶点V1开始的广度优先遍历序列。

三,源代码及结果截图#include<stdio.h>#include<stdlib.h>#include<string.h>#include<iostream.h>#include<malloc.h>#define MAX_VERTEX_NUM 20typedef char VRType;typedef int InfoType; // 存放网的权值typedef char VertexType; // 字符串类型typedef enum{DG,DN,AG,AN}GraphKind; // {有向图,有向网,无向图,无向网}/*建立有向图的邻接矩阵*/typedef struct ArcCell{VRType adj;//VRType是顶点关系类型,对无权图用1或0表示是否相邻;对带权图则为权值类型InfoType *info; //该弧相关信息的指针(可无)}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];typedef struct{VertexType vexs[MAX_VERTEX_NUM];//顶点向量AdjMatrix arcs;//邻接矩阵int vexnum,arcnum;;//图的当前顶点数和弧数GraphKind kind;//图的种类标志}MGraph;/* 顶点在顶点向量中的定位*/int LocateVex(MGraph &M,VRType v1){int i;for(i=0;i<M.vexnum;i++)if(v1==M.vexs[i])return i;return -1;}void CreateGraph(MGraph &M)//建立有向图的邻接矩阵{int i,j,k,w;VRType v1,v2;M.kind=DN;printf("构造有向网:\n");printf("\n输入图的顶点数和边数(以空格作为间隔):");scanf("%d%d",&M.vexnum,&M.arcnum);printf("输入%d个顶点的值(字符):",M.vexnum);getchar();for(i=0;i<M.vexnum;i++) //输入顶点向量{scanf("%c",&M.vexs[i]);}printf("建立邻接矩阵:\n");for(i=0;i<M.vexnum;i++)for(j=0;j<M.vexnum;j++){M.arcs[i][j].adj=0;M.arcs[i][j].info=NULL;}printf("请顺序输入每条弧(边)的权值、弧尾和弧头(以空格作为间隔):\n");for(k=0;k<M.arcnum;++k)// 构造表结点链表{cin>>w>>v1>>v2;i=LocateVex(M,v1);j=LocateVex(M,v2);M.arcs[i][j].adj=w;}}//按邻接矩阵方式输出有向图void PrintGraph(MGraph M){int i,j;printf("\n输出邻接矩阵:\n");for(i=0; i<M.vexnum; i++){printf("%10c",M.vexs[i]);for(j=0; j<M.vexnum; j++)printf("%2d",M.arcs[i][j].adj);printf("\n");}}// 图的邻接表存储表示typedef struct ArcNode{int adjvex; // 该弧所指向的顶点的位置struct ArcNode *nextarc; // 指向下一条弧的指针InfoType *info; // 网的权值指针)}ArcNode; // 表结点typedef struct VNode{VertexType data; // 顶点信息ArcNode *firstarc; // 第一个表结点的地址,指向第一条依附该顶点的弧的指针}VNode,AdjList[MAX_VERTEX_NUM];// 头结点typedef struct{AdjList vertices;int vexnum,arcnum; // 图的当前顶点数和弧数int kind; // 图的种类标志}ALGraph;void CreateMGtoDN(ALGraph &G,MGraph &M){//由有向图M的邻接矩阵产生邻接表int i,j;ArcNode *p;G.kind=M.kind;G.vexnum=M.vexnum;G.arcnum=M.arcnum;for(i=0;i<G.vexnum;++i){//构造表头向量G.vertices[i].data=M.vexs[i];G.vertices[i].firstarc=NULL;//初始化指针}for(i=0;i<G.vexnum;++i)for(j=0;j<G.vexnum;++j)if(M.arcs[i][j].adj){p=(ArcNode*)malloc(sizeof(ArcNode));p->adjvex=j;p->nextarc=G.vertices[i].firstarc;p->info=M.arcs[i][j].info;G.vertices[i].firstarc=p;}}void CreateDNtoMG(MGraph &M,ALGraph &G){ //由邻接表产生对应的邻接矩阵int i,j;ArcNode *p;M.kind=GraphKind(G.kind);M.vexnum=G.vexnum;M.arcnum=G.arcnum;for(i=0;i<M.vexnum;++i)M.vexs[i]=G.vertices[i].data;for(i=0;i<M.vexnum;++i){p=G.vertices[i].firstarc;while(p){M.arcs[i][p->adjvex].adj=1;p=p->nextarc;}//whilefor(j=0;j<M.vexnum;++j)if(M.arcs[i][j].adj!=1)M.arcs[i][j].adj=0;}//for}//输出邻接表void PrintDN(ALGraph G){int i;ArcNode *p;printf("\n输出邻接表:\n");printf("顶点:\n");for(i=0;i<G.vexnum;++i)printf("%2c",G.vertices[i].data);printf("\n弧:\n");for(i=0;i<G.vexnum;++i){p=G.vertices[i].firstarc;while(p){printf("%c→%c(%d)\t",G.vertices[i].data,G.vertices[p->adjvex].data,p->info);p=p->nextarc;}printf("\n");}//for}int visited[MAX_VERTEX_NUM]; // 访问标志数组(全局量)void(*VisitFunc)(char* v); // 函数变量(全局量)// 从第v个顶点出发递归地深度优先遍历图G。

DFS和BFS算法比较

DFS和BFS算法比较

DFS和BFS算法比较深度优先搜索(Depth First Search,简称DFS)和广度优先搜索(Breadth First Search,简称BFS)是图遍历中常用的两种算法。

它们在问题求解、图搜索和路径查找等领域都有广泛的应用。

本文将对DFS和BFS算法进行比较,并讨论它们在不同场景中的适用性和特点。

一、DFS算法DFS是一种用于图遍历和搜索的算法,它从起始节点开始,递归地探索图中的每个可能的路径,直到不能再继续下去为止。

在DFS过程中,若遇到未被访问过的节点,则以该节点为起点开始另一轮的递归搜索。

DFS具有以下特点:1. 深度搜索:DFS以深度探索图中的路径,沿着每条路径尽可能深入搜索,直到无法继续为止。

2. 栈结构:DFS通常使用栈来保存待访问的节点,通过在栈中进行出栈和入栈操作来实现深度遍历。

3. 可能会陷入局部最优解:由于DFS的搜索策略,可能会陷入局部最优解而无法找到全局最优解。

4. 适合解决路径搜索问题:DFS在寻找图中的路径、回溯和连通性等问题上表现出色,特别适合解决有向无环图(DAG)和迷宫等问题。

二、BFS算法BFS是一种用于图遍历和搜索的算法,它从起始节点开始,按照广度顺序逐层扩展,直到遍历完整个图。

在BFS过程中,将当前节点的所有相邻节点加入到队列中,并按照入队的顺序进行遍历。

BFS具有以下特点:1. 广度搜索:BFS按照广度优先的原则进行遍历,先访问离起始节点最近的节点,然后再逐渐扩展到离起始节点更远的节点。

2. 队列结构:BFS通常使用队列来保存待访问的节点,通过在队列中进行出队和入队操作来实现广度遍历。

3. 保证最短路径:由于BFS的搜索策略,可以保证在无权图中找到的路径是最短路径。

4. 适合解决连通性和最短路径问题:BFS在寻找图中的连通性和最短路径等问题上表现出色,特别适合解决无权图中的路径查找问题。

三、比较与应用1. 时间复杂度:DFS和BFS在最坏情况下的时间复杂度都是O(V +E),其中V为顶点数,E为边数。

深度优先遍历的算法

深度优先遍历的算法

深度优先遍历的算法
深度优先遍历(Depth-FirstSearch,简称DFS)是一种常见的图遍历算法。

该算法以深度为优先级,先访问一个结点的所有子结点,再依次访问每个子结点的所有子结点,直到遍历完整个图。

DFS算法通常使用递归实现,在访问一个结点时,先将该结点标记为已访问,并对其所有未访问过的子结点进行深度优先遍历。

这一过程会一直持续下去,直到所有结点都被遍历过。

在实际应用中,DFS算法常用于解决以下问题:
1. 图的连通性问题:使用DFS算法可以判断一个图是否为连通图。

2. 寻找图中能够到达某一个结点的所有路径:在DFS算法的递归过程中,可以记录下所有访问过的结点,从而得到到达目标结点的所有路径。

3. 拓扑排序:DFS算法可以实现拓扑排序,即对图中的所有结点进行排序,使得对于任意的有向边(u, v),u在排序结果中都排在v的前面。

4. 最短路径问题:DFS算法可以用于解决最短路径问题,例如在无权图中,可以通过DFS算法找到从起点到目标结点的最短路径。

总之,DFS算法是一种非常重要的图遍历算法,在各种实际应用中都具有广泛的运用价值。

- 1 -。

dfs通用步骤-概述说明以及解释

dfs通用步骤-概述说明以及解释

dfs通用步骤-概述说明以及解释1.引言1.1 概述DFS(深度优先搜索)是一种常用的图遍历算法,它通过深度优先的策略来遍历图中的所有节点。

在DFS中,从起始节点开始,一直向下访问直到无法继续为止,然后返回到上一个未完成的节点,继续访问它的下一个未被访问的邻居节点。

这个过程不断重复,直到图中所有的节点都被访问为止。

DFS算法的核心思想是沿着一条路径尽可能深入地搜索,直到无法继续为止。

在搜索过程中,DFS会使用一个栈来保存待访问的节点,以及记录已经访问过的节点。

当访问一个节点时,将其标记为已访问,并将其所有未访问的邻居节点加入到栈中。

然后从栈中取出下一个节点进行访问,重复这个过程直到栈为空。

优点是DFS算法实现起来比较简单,而且在解决一些问题时具有较好的效果。

同时,DFS算法可以用来解决一些经典的问题,比如寻找图中的连通分量、判断图中是否存在环、图的拓扑排序等。

然而,DFS算法也存在一些缺点。

首先,DFS算法不保证找到最优解,有可能陷入局部最优解而无法找到全局最优解。

另外,如果图非常庞大且存在大量的无效节点,DFS可能会陷入无限循环或者无法找到解。

综上所述,DFS是一种常用的图遍历算法,可以用来解决一些问题,但需要注意其局限性和缺点。

在实际应用中,我们需要根据具体问题的特点来选择合适的搜索策略。

在下一部分中,我们将详细介绍DFS算法的通用步骤和要点,以便读者更好地理解和应用该算法。

1.2 文章结构文章结构部分的内容如下所示:文章结构:在本文中,将按照以下顺序介绍DFS(深度优先搜索)通用步骤。

首先,引言部分将概述DFS的基本概念和应用场景。

其次,正文部分将详细解释DFS通用步骤的两个要点。

最后,结论部分将总结本文的主要内容并展望未来DFS的发展趋势。

通过这样的结构安排,读者可以清晰地了解到DFS算法的基本原理和它在实际问题中的应用。

接下来,让我们开始正文的介绍。

1.3 目的目的部分的内容可以包括对DFS(Depth First Search,深度优先搜索)的应用和重要性进行介绍。

实验四图的实现及遍历

实验四图的实现及遍历

实验四图的实现及遍历题目:(1)采用邻接矩阵作为图的存储结构,完成有向图和无向图的DFS和BFS操作;(2)采用邻接链表作为图的存储结构,完成有向图和无向图的DFS和BFS操作。

班级:0421001 姓名:杨欢学号:2010211971 完成日期:2011.12.3一、需求分析掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS 及BFS对图的遍历操作;了解图结构在人工智能、工程等领域的广泛应用。

实验要求:1、分析、理解程序。

2、调试程序。

设计一个有向图和一个无向图,任选一种存储结构,完成有向图和无向图的DFS(深度优先遍历)和BFS(广度优先遍历)的操作。

二、概要设计1,分析理解,调试程序2 ,设计一个无向图G,如右图所示3,设计一个有向图K,如右下图所示4,分别对无向图G和有向图K进行邻接矩阵存储和邻接链表存储,再分别进行深度优先遍历和广度优先遍历。

附加程序代码邻接矩阵作为存储结构的程序示例#include"stdio.h"#include"stdlib.h"#define MaxVertexNum 100 //定义最大顶点数typedef struct{char vexs[MaxVertexNum]; //顶点表int edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,可看作边表int n,e; //图中的顶点数n和边数e}MGraph; //用邻接矩阵表示的图的类型//=========建立邻接矩阵=======void CreatMGraph(MGraph *G){int i,j,k;char a;printf("Input VertexNum(n) and EdgesNum(e): ");scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数scanf("%c",&a);printf("Input Vertex string:");for(i=0;i<G->n;i++){scanf("%c",&a);G->vexs[i]=a; //读入顶点信息,建立顶点表}for(i=0;i<G->n;i++)for(j=0;j<G->n;j++)G->edges[i][j]=0; //初始化邻接矩阵printf("Input edges,Creat Adjacency Matrix\n");for(k=0;k<G->e;k++) { //读入e条边,建立邻接矩阵scanf("%d%d",&i,&j); //输入边(Vi,Vj)的顶点序号G->edges[i][j]=1;G->edges[j][i]=1; //若为无向图,矩阵为对称矩阵;若建立有向图,去掉该条语句 }}//=========定义标志向量,为全局变量=======typedef enum{FALSE,TRUE} Boolean;Boolean visited[MaxVertexNum];//========DFS:深度优先遍历的递归算法======void DFSM(MGraph *G,int i){ //以Vi为出发点对邻接矩阵表示的图G进行DFS搜索,邻接矩阵是0,1矩阵int j;printf("%c",G->vexs[i]); //访问顶点Vivisited[i]=TRUE; //置已访问标志for(j=0;j<G->n;j++) //依次搜索Vi的邻接点if(G->edges[i][j]==1 && ! visited[j])DFSM(G,j); //(Vi,Vj)∈E,且Vj未访问过,故Vj为新出发点}void DFS(MGraph *G){int i;for(i=0;i<G->n;i++)visited[i]=FALSE; //标志向量初始化for(i=0;i<G->n;i++)if(!visited[i]) //Vi未访问过DFSM(G,i); //以Vi为源点开始DFS搜索}//===========BFS:广度优先遍历=======void BFS(MGraph *G,int k){ //以Vk为源点对用邻接矩阵表示的图G进行广度优先搜索int i,j,f=0,r=0;int cq[MaxVertexNum]; //定义队列for(i=0;i<G->n;i++)visited[i]=FALSE; //标志向量初始化for(i=0;i<G->n;i++)cq[i]=-1; //队列初始化printf("%c",G->vexs[k]); //访问源点Vkvisited[k]=TRUE;cq[r]=k; //Vk已访问,将其入队。

图的遍历技巧

图的遍历技巧

图的遍历技巧
图的遍历是指按照一定的规则,从图的某个顶点出发,沿着边遍历图中的所有顶点,使得每个顶点都被访问一次且仅一次的过程。

常用的图的遍历技巧有以下两种:
1. 深度优先遍历(Depth First Search, DFS):从图的某个顶点出发,先访问该顶点,然后依次访问与该顶点相邻的未被访问过的顶点,并以此递归地进行遍历。

当不存在未被访问的相邻顶点时,回溯到上一个顶点,继续遍历其他未被访问的相邻顶点,直至所有顶点都被访问完。

2. 广度优先遍历(Breadth First Search, BFS):从图的某个顶点出发,先访问该顶点,然后依次访问与该顶点相邻的未被访问过的顶点,并将这些顶点按照入队的顺序加入队列中。

接下来再从队列中取出一个顶点,重复前述操作,直至队列为空。

这两种遍历技巧可以分别应用于不同场景的图问题。

深度优先遍历一般适用于需要探索整个图中某一支路径的问题,而广度优先遍历一般适用于需要确定最短路径或者按层遍历的问题。

dfs和bfs的遍历方法

dfs和bfs的遍历方法

dfs和bfs的遍历方法DFS和BFS的遍历方法一、引言在计算机科学中,图是一种非常重要的数据结构。

图由节点(顶点)和边组成,节点表示对象,边表示节点之间的关系。

图可以用来解决很多实际问题,例如路线规划、社交网络分析等。

在图的遍历中,DFS(深度优先搜索)和BFS(广度优先搜索)是两种常用的方法。

它们分别从图中的一个节点出发,按照不同的顺序遍历图中的所有节点。

本文将详细介绍DFS和BFS的遍历方法,包括其原理、算法实现和应用场景。

二、DFS的遍历方法DFS是一种先序遍历的方法,其基本原理是从图中的一个节点开始,沿着一条路径尽可能深地遍历,直到无法继续深入为止,然后回溯到上一个节点,选择另一条路径继续遍历,直到所有节点都被访问过为止。

DFS的算法实现可以使用递归或者栈。

下面是使用递归实现DFS的伪代码:```function DFS(node):if node is visited:returnvisit(node)mark node as visitedfor each adjacent node of node:DFS(adjacent node)```在DFS的遍历过程中,需要一个visited数组用于记录节点是否被访问过,避免重复访问。

DFS的时间复杂度为O(V+E),其中V为节点数,E为边数。

DFS的应用场景包括图的连通性判断、拓扑排序等。

例如,在社交网络中,可以使用DFS遍历用户之间的关系,找出两个用户之间的最短路径。

三、BFS的遍历方法BFS是一种层次遍历的方法,其基本原理是从图中的一个节点开始,先访问其所有的邻居节点,然后再依次访问邻居节点的邻居节点,直到所有节点都被访问过为止。

BFS的算法实现可以使用队列。

下面是使用队列实现BFS的伪代码:```function BFS(start_node):create an empty queueenqueue start_node into the queuemark start_node as visitedwhile the queue is not empty:current_node = dequeue from the queuevisit(current_node)for each adjacent node of current_node:if adjacent node is not visited:mark adjacent node as visitedenqueue adjacent node into the queue```在BFS的遍历过程中,同样需要一个visited数组用于记录节点是否被访问过。

C语言DFS(深度优先搜索算法)详解

C语言DFS(深度优先搜索算法)详解

C语言DFS(深度优先搜索算法)详解DFS(深度优先)是一种用于遍历或图形或树结构的算法。

它从起点开始,沿着一条路径尽可能远地遍历图形,直到无法继续前进为止,然后返回到上一个节点,探索其他路径。

DFS基本上是一个递归的过程,它使用栈来实现。

DFS的基本思想是递归地遍历图形。

算法通过维护一个visited数组来跟踪已经访问过的节点,以避免无限循环。

首先,我们访问起点节点,并将其标记为已访问。

然后,对于起点的每个未访问的邻居节点,我们递归地调用DFS。

这样,我们沿着一条路径一直走到无法继续为止,然后返回上一个节点继续探索其他未访问的邻居。

我们重复这个过程,直到我们访问了所有的节点。

在实现DFS时,我们需要用到一个栈来存储节点。

首先,将起点节点入栈。

然后,当栈不为空时,我们将栈顶节点出栈,并将其标记为已访问。

接下来,我们将栈顶节点的所有未访问邻居入栈。

重复这个过程,直到栈为空。

需要注意的是,在使用栈时,我们应该按照相反的顺序将邻居节点入栈,这样在出栈时才能按照正确的顺序进行访问。

DFS可以用来解决很多问题,例如图的连通性、寻找路径、生成所有可能的子集等。

对于连通性问题,如果我们可以从起点节点访问到所有的节点,那么该图是连通的。

对于寻找路径问题,我们可以使用DFS来找到从起点到终点的路径。

对于生成所有可能的子集问题,我们可以使用DFS来枚举所有的子集。

下面是一个用C语言实现的DFS的示例代码:```c#include <stdio.h>#define MAX_SIZE 10int graph[MAX_SIZE][MAX_SIZE];int visited[MAX_SIZE];void dfs(int node)visited[node] = 1;printf("%d ", node);for (int i = 0; i < MAX_SIZE; i++) if (graph[node][i] && !visited[i]) dfs(i);}}int mai//初始化图for (int i = 0; i < MAX_SIZE; i++) for (int j = 0; j < MAX_SIZE; j++) graph[i][j] = 0;}}//添加边graph[0][1] = 1;graph[1][0] = 1;graph[1][2] = 1;graph[2][1] = 1;graph[2][3] = 1;graph[3][2] = 1;graph[3][4] = 1;graph[4][3] = 1;// 初始化visited数组for (int i = 0; i < MAX_SIZE; i++) visited[i] = 0;}//从节点0开始进行DFSdfs(0);return 0;```在这个示例代码中,我们使用一个10x10的二维数组表示图形,其中1表示两个节点之间有连接,0表示没有连接。

《图的存储结构》PPT课件

《图的存储结构》PPT课件

(4)网的邻接矩阵
网的邻接矩阵可定义为:
wi,j 若<vi, vj>或(vi, vj) ∈VR A[i][j] =
∞ 反之
例如,下图列出了一个有向网和它的邻接矩阵。
V1
5
V2
5 7
3
84
4
V6
79
V3
8 9 5 6
1
6
V5
5
5
5
V4
3 1
(a) 网N
精选ppt (b) 邻接矩阵
7
(5)图的构造
01

2 1∧
精选ppt
2 0∧∧
0 2∧∧
19
(3)C语言描述
#define MAX_VERTEX_NUM 20
typedef struct ArcBox {
int
tailvex, headvex;
//该弧的尾和头顶点的位置
struct ArcBox * hlink, * tlink;
//分别为弧头相同和弧尾相同的弧的链域
精选ppt
14
在无向图的邻接表中, 顶点Vi的度恰为第i个
B
链表中的结点数。
A
0A 1 4
1B 0 4 5
F
2C 3 5
3D 2 5
4E 0 1
5F
1
2 3 精选ppt
C D
E
15
有向图的邻接表
A
B
E 0A
CF
1B
可见,在有向图的 2 C 邻接表中不易找到 3 D 指向该顶点的弧 4 E
精选ppt
精选ppt
9
7.2.2邻接表表示法(Adjacency List)

深度优先搜索算法数据结构中的遍历方法

深度优先搜索算法数据结构中的遍历方法

深度优先搜索算法数据结构中的遍历方法深度优先搜索(Depth First Search,DFS)是一种常用的图遍历算法,它具有简单、易实现的特点,在很多问题中都有广泛的应用。

本文将介绍深度优先搜索算法数据结构中的遍历方法,包括递归实现和迭代实现两种方式。

一、递归实现深度优先搜索算法递归实现深度优先搜索算法十分简洁,基本思路是从起始节点开始,以深度优先的方式遍历整个图。

具体步骤如下:1. 定义一个标记数组visited,用于记录每个节点是否被访问过。

初始时,visited数组的所有元素都设置为false。

2. 从起始节点开始,对未被访问过的相邻节点进行递归访问。

在递归访问一个节点时,标记该节点为已访问。

3. 重复步骤2,直到所有节点都被访问过。

递归实现深度优先搜索算法的伪代码如下:```void DFS(int node, bool[] visited) {visited[node] = true;for (int i = 0; i < adj[node].length; i++) {int nextNode = adj[node][i];if (!visited[nextNode]) {DFS(nextNode, visited);}}}```二、迭代实现深度优先搜索算法除了递归实现外,深度优先搜索算法还可以通过迭代的方式来实现。

迭代实现的基本思路是使用栈(Stack)来辅助遍历,具体步骤如下:1. 定义一个标记数组visited,用于记录每个节点是否被访问过。

初始时,visited数组的所有元素都设置为false。

2. 创建一个空栈,并将起始节点入栈。

3. 循环执行以下操作,直到栈为空:- 出栈一个节点,并将其标记为已访问。

- 遍历该节点的所有未被访问过的相邻节点,将其入栈。

迭代实现深度优先搜索算法的伪代码如下:```void DFS(int startNode, bool[] visited) {Stack<int> stack = new Stack<int>();stack.Push(startNode);while (stack.Count > 0) {int node = stack.Pop();visited[node] = true;for (int i = 0; i < adj[node].length; i++) {int nextNode = adj[node][i];if (!visited[nextNode]) {stack.Push(nextNode);}}}}```三、总结深度优先搜索算法是一种重要且常用的图遍历算法,通过递归或迭代的方式可以实现节点的深度优先遍历。

c语言dfs函数

c语言dfs函数

c语言dfs函数DFS(Depth First Search)是图遍历的一种算法,它以深度优先的方式进行搜索。

在计算机科学中,图是由节点(顶点)和连接节点的边组成的抽象数据类型。

DFS算法通过递归的方式遍历图中的节点,并记录已经访问过的节点,以避免重复访问。

在DFS算法中,首先选择一个起始节点作为根节点,然后从该节点开始向下遍历,直到达到最深的节点。

在遍历的过程中,如果遇到已经访问过的节点或者无法继续向下遍历的节点,则回溯到上一个节点,继续遍历其他路径。

这种遍历方式可以通过递归或者栈来实现。

DFS算法的核心思想是尽可能深入地探索图中的路径,直到找到目标节点或者无法继续深入为止。

它与BFS(Breadth First Search)算法相对应,BFS算法是以广度优先的方式进行搜索,先遍历当前节点的所有相邻节点,再依次遍历下一层的节点。

在实际应用中,DFS算法被广泛应用于解决各种问题,如寻找图中的连通分量、解决迷宫问题、生成括号序列等。

以下是几个应用DFS算法的具体例子:1. 寻找图中的连通分量:通过DFS算法可以遍历图中的所有节点,并将属于同一个连通分量的节点标记为已访问。

这样可以快速找到图中的所有连通分量,用于分析网络结构、社交关系等。

2. 解决迷宫问题:迷宫问题可以看作是一个由节点和连接节点的边构成的图。

通过DFS算法可以从起始节点开始遍历迷宫,直到找到终点或者无法继续深入为止。

这种方式可以找到从起点到终点的最短路径。

3. 生成括号序列:给定一个整数n,表示括号的对数,通过DFS算法可以生成所有有效的括号序列。

在生成序列的过程中,需要满足左括号的数量不能超过n,右括号的数量不能超过左括号的数量,这样才能保证生成的序列是有效的。

除了上述几个例子,DFS算法还可以应用于解决其他问题,如求解图的最小生成树、求解图的割点和桥等。

在实际应用中,选择使用DFS算法还是BFS算法取决于具体的问题需求和图的结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include<windows.h>
#include<stdio.h>
#define INFINITY INT_MAX
#define max_vertex_num 20
typedef enum {DG,DN,UDG,UDN}GraphKind;
typedef struct ArcCell{
int adj;
char * info;
}ArcCell,AdjMatrix[max_vertex_num][max_vertex_num]; typedef struct {
char vexs[max_vertex_num];
AdjMatrix arcs;
int vexnum,arcnum;
GraphKind kind;
}MGraph;
bool visited[max_vertex_num];
void (*visitfunc)(int v);
int Create_MGraph(MGraph &G);
int LocateVex(MGraph &G,char v);
int CreateDN(MGraph &G);
int CreateUDN(MGraph &G);
int CreateUDG(MGraph &G);
int CreateDG(MGraph &G);
void DFSTraverse(MGraph G,void (*visitfunc)(int v));
void DFS(MGraph G,int v);
void visit(int v);
int FirstAdjVex(MGraph G,int v);
int NextAdjVex(MGraph G,int v,int w);
int DFSex(MGraph G,int v);
main(){
MGraph G;
Create_MGraph(G);
int v;
printf("please input the v's vaule\n");
scanf("%d",&v);
DFSex(G,v);
}
int Create_MGraph(MGraph &G){
printf("please input graph kind(dg-0,dn-1,udg-2,udn-3)\n");
scanf("%d",&G.kind);
//getchar();
switch(G.kind){
case DG:return CreateDG(G);
case DN:return CreateDN(G);
case UDG:return CreateUDG(G);
case UDN:return CreateUDN(G);
default:return ERROR;
}
}
int CreateUDN(MGraph &G){
printf("please input graph's vexnum,arcnum\n");
scanf("%d%d",&G.vexnum,&G.arcnum);
getchar();
for(int l=0;l<G.vexnum;++l)visited[l]=FALSE;
for(int i=0;i<G.vexnum;++i) {
printf("please input %d vexter\n",i+1);
scanf("%c",&G.vexs[i]);
getchar();
}
for(int i=0;i<G.vexnum;++i){
for(int j=0;j<G.vexnum;++j)
G.arcs[i][j].adj=INFINITY;
}
for(int k=0;k<G.arcnum;++k){
int w;
//char v1,v2;
int m;//=LocateVex(G,v1);
int n;//=LocateVex(G,v2);
printf("please input vex-weight,vex1,vex2\n");
scanf("%d%d%d",&w,&m,&n);
getchar();
printf("m=%d,n=%d,w=%d\n",m,n,w);
G.arcs[m][n].adj=w;
G.arcs[n][m]=G.arcs[m][n];
printf("%d\n",G.arcs[m][n].adj);
}
for(int i=0;i<G.vexnum;++i){
for(int j=0;j<G.vexnum;++j)
{ if(G.arcs[i][j].adj!=INFINITY)
printf("%d\t",G.arcs[i][j].adj);
else
printf("0\t");
}
printf("\n");
}
return 0;
}
int CreateDN(MGraph &G){
}
int CreateUDG(MGraph &G){
}
int CreateDG(MGraph &G){
}
int LocateVex(MGraph &G,char v){
for(int i=0;i<G.vexnum;++i){
if(v==G.vexs[i]){
return i;
}
}
return ERROR;
}
void DFSTraverse(MGraph G,void (*visitfunc)(int v)){ visitfunc=visit;
int v;
for(v=0;v<G.vexnum;++v)visited[v]=FALSE;
for(v=0;v<G.vexnum;++v)
if(!visited[v]) DFS(G,v);
}
void DFS(MGraph G,int v){
visited[v]=TRUE;
visitfunc(v);
int w;
for(w=FirstAdjVex(G,v);w>=0;w=NextAdjVex(G,v,w)) if(!visited[w]) DFS(G,w);
}
void visit(int v){
printf("%c\n",v);
}
int FirstAdjVex(MGraph G,int v){
char data;
int i;
for(i=0;i<=G.vexnum;i++){
if(G.arcs[v][i].adj!=INFINITY){
data=G.vexs[i];
return i;
}
return -1;
}
int NextAdjVex(MGraph G,int v,int w){
char data;
int i;
for(i=w+1;i<=G.vexnum;i++){
if(G.arcs[v][i].adj!=INFINITY){
data=G.vexs[i];
return i;
}
}
return -1;
}
int DFSex(MGraph G,int v){
visited[v]=TRUE;
printf("%c\n",G.vexs[v]);
int w;
for(w=FirstAdjVex(G,v);w>=0;w=NextAdjVex(G,v,w)) if(!visited[w]) DFSex(G,w);
}。

相关文档
最新文档