专题03 拐点压轴专题(1)——拐点在平行线间-七年级数学下册重点题型通关训练(人教版)(原卷版)
人教版七年级下册数学第五章相交线与平行线专题复习--拐点问题

课后思考
1、如图,AB∥CD,∠ABE=125°,∠DCE=35°, 则∠BEC 的度数为
.
2、如图,1 ∥2 , ∠A=115°,∠B=95°,∠1 + ∠2 的度数为
.
3、已知:MN∥EF,C为两直线之间的一点,∠MAC与∠EBC的
平分线相交于点D.若∠ACB=110°,则∠ADB 的度数为
= (∠CAB-∠EAB)+(∠DBF-∠FBA)
=(∠CAB+∠DBF)- (∠EAB+∠FBA)
=(115° +95°)- 180°
=30°
C
1
E┈┈┈┈ A
l1
F┈┈┈┈┈2 B
l2
D
课后思考
3.已知:MN∥EF,C为两直线之间的一点,∠MAC与∠EBC的平
分线相交于点D.若∠ACB=110°,则∠ADB 的度数为: 55° .
)
∠BEF
∠DEF
∴∠两直线平行,内错角相等
B=
,∠D=
.
∠BEF + ∠DEF )
(
等式的性质
∴∠B+
∠D=
.
(
) ∠BED
∵ ∠BEF + ∠DEF=
.
等量代换
∴∠B +∠D=∠BED.(
)
E
┈┈┈F
Z 型 A
B
C
D
∠D =∠B+∠BED
如图,过点E作EF∥AB
∵AB∥CD.
∴CD∥AB∥EF. (平行公理的推论)
又∵ ∠MAC与∠EBC的平分线相交于点D.
1
1
∴ ∠MAD= ∠MAC ,∠EBD= ∠EBC (角平分线的定义)
专题:巧解平行线中的拐点问题(原卷版)

七年级下册数学《第五章 相交线与平行线》专题 巧解平行线中的拐点问题【例题1】(2022春•内乡县期末)如图,AB ∥CD ,∠1=45°,∠2=30°,则∠3的度数为( )A .55°B .75°C .80°D .105°【变式1-1】(2022春•香洲区校级期中)如图,已知AB∥DE,∠B=150°,∠D=145°,则∠C= 度.【变式1-2】(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )A.360°B.300°C.270°D.180°【变式1-3】(2022春•信都区期末)为增强学生体质,某学校将“抖空竹”引入阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°.求∠AEC的度数.小明在解决过程中,过E点作EF∥CD,则可以得到EF∥AB,其理由是 ,根据这个思路可得∠AEC= .【变式1-4】如图,已知AB∥DE,∠1=120°,∠2=110°,求∠3的度数.【变式1-5】如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.【变式1-6】(2021秋•南召县期末)课堂上老师呈现一个问题:下面提供三种思路:思路一:过点F作MN∥CD(如图(1));思路二:过点P作PN∥EF,交AB于点N;思路三:过点O作ON∥FG,交CD于点N.解答下列问题:(1)根据思路一(图(1)),可求得∠EFG的度数为 ;(2)根据思路二、思路三分别在图(2)和图(3)中作出符合要求的辅助线;(3)请你从思路二、思路三中任选其中一种,试写出求∠EFG的度数的解答过程.【例题2】如图,直线l 1∥l 2,∠A =125°,∠B =85°,则∠1+∠2等于( )A .40°B .35°C .36°D .30°【变式2-1】(2022春•新洲区期末)如图,AB ∥EF ,则∠A ,∠C ,∠D ,∠E 满足的数量关系是( )A .∠A +∠C +∠D +∠E =360°B .∠A +∠D =∠C +∠E C .∠A ﹣∠C +∠D +∠E =180°D .∠E ﹣∠C +∠D ﹣∠A =90°【变式2-2】如图所示,若AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6的度数是 .【变式2-3】(2022春•金湖县期末)如图,AB∥CD,E、F分别是AB、CD上的点,EH、FH分别是∠AEG 和∠CFG的角平分线.若∠G=110°,则∠H= °.【变式2-4】(2022春•潜山市月考)如图,AB∥CD,点E,F分别是AB,CD上的点,点M位于AB与CD之间且在EF的右侧.(1)若∠M=90°,则∠AEM+∠CFM= ;(2)若∠M=n°,∠BEM与∠DFM的角平分线交于点N,则∠N的度数为 .(用含n的式子表示)【变式2-5】(1)填空:如图1,MA1∥NA2,则∠A1+∠A2= °.如图2,MA1∥NA3,则∠A1+∠A2+∠A3= °.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4= °.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5= °.(2)归纳:如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n= °.(3)应用:如图6,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=80°,求∠BFD的度数.【例题3】小华在学习“平行线的性质”后,对图中∠B ,∠D 和∠BOD 的关系进行了探究:(1)如图1,AB ∥CD ,点O 在AB ,CD 之间,试探究∠B ,∠D 和∠BOD 之间有什么关系?并说明理由;小华添加了过点O 的辅助线OM ,并且OM ∥CD 请帮助他写出解答过程;(2)如图2,若点O 在CD 的上侧,试探究∠B ,∠D 和∠BOD 之间有什么关系?并说明理由;(3)如图3,若点O 在AB 的下侧,试探究∠B ,∠D 和∠BOD 之间有什么关系?请直接写出它们的关系式.【变式3-1】如图,已知∠1=70°,∠2=30°, EF平分∠BEC,∠BEF=50°,求证:AB∥CD.【变式3-2】如图,点E在线段AC上,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.【变式3-3】(2022春•阳江期末)如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.【变式3-4】(2022秋•驿城区校级期末)问题情境:如图1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC 度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【变式3-5】阅读下面内容,并解答问题在学习了平行线的性质后,老师请同学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,C于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.(1)直线EG,FG有何关系?请补充结论:求证:“ ”,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择 题,并写出解答过程.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,求∠EMF的度数.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,请猜想∠EOF与∠EPF满足的数量关系,并证明它.【例题4】(2022秋•小店区校级期末)(1)问题背景:如图1,已知AB∥CD,点P的位置如图所示,连结PA,PC,试探究∠APC与∠A、∠C之间的数量关系,以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点P作PE∥AB∵AB∥CD(已知),∴PE∥CD( ),∴∠A=∠APE,∠C=∠CPE( ),∴∠A+∠C= + (等式的性质).即∠APC,∠A,∠C之间的数量关系是 .(2)类比探究:如图2,已知AB∥CD,线段AD与BC相交于点E,点B在点A右侧.若∠ABC=41°,∠ADC =78°,则∠AEC= .(3)拓展延伸:如图3,若∠ABC与∠ADC的角平分线相交于点F,请直接写出∠BFD与∠AEC之间的数量关系 .【变式4-1】(2021秋•长春期末)小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.请你参考小亮的思考问题的方法,解决问题:直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.【变式4-2】(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为 ;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF =100°时,请直接写出∠OEA与∠OFC的数量关系.【变式4-3】(2021春•安徽月考)(1)如图1,直线AB∥CD.点P在直线AB,CD之间,试说明:∠BAP+∠APC+∠PCD=360°.小明说明的过程是这样的:“过点P作PE∥AB,…”请按照小明的思路写出完整的解答说明过程.(2)①直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的同侧,如图2,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由;②直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的两侧.如图3,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由.请在①②任选一个问题进行解答.(3)如图4,若a∥b,直接写出图中x的度数(不用说理).【变式4-4】(2022春•兴国县期末)【感知】(1)如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF 的度数.小乐想到了以下方法,请帮忙完成推理过程.解:如图①,过点P作PM∥AB,【探究】(2)如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数;【应用】(3)如图③,在以上【探究】条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.(4)已知直线a∥b,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接AD,BC,∠ABC的平分线与∠ADC的平分线所在的直线交于点E,设∠ABC=α,∠ADC=β(α≠β),请画出图形并求出∠BED的度数(用含α,β的式子表示).。
专题 平行线间的拐点问题(解析版)--七年级数学下册

专题01平行线间的拐点问题类型一:“猪蹄”模型类型二:“铅笔”模型类型三:“鹰嘴”模型平行线间的拐点问题均过拐点作平行线的平行线,有多少个拐点就作多少条平行线。
一.选择题1.(2023•新城区校级一模)如图,直线m∥n,含有45°角的三角板的直角顶点O在直线m上,点A在直线n上,若∠1=20°,则∠2的度数为()A.15°B.25°C.35°D.45°【分析】过B作BK∥m,推出BK∥n,由平行线的性质得到∠OBK=∠1=20°,∠2=∠ABK,求出∠ABK=∠ABO﹣∠OBK=25°,即可得到∠2=25°.【解答】解:过B作BK∥m,∵m∥n,∴BK∥n,∴∠OBK=∠1=20°,∠2=∠ABK,∵∠ABO=45°,∴∠ABK=∠ABO﹣∠OBK=45°﹣20°=25°,∴∠2=∠ABK=25°.故选:B.2.(2023•海南)如图,直线m∥n,△ABC是直角三角形,∠B=90°,点C在直线n上.若∠1=50°,则∠2的度数是()A.60°B.50°C.45°D.40°【分析】根据平行线的性质可以得到∠1=∠BDC,然后直角三角形的性质,即可求得∠2的度数.【解答】解:延长AB交直线n于点D,∵m∥n,∠1=50°,∴∠1=∠BDC=50°,∵∠ABC=90°,∴∠CBD=90°,∴∠2=90°﹣∠BDC=90°﹣50°=40°,故选:D.3.(2023秋•渝中区校级期中)如图,直线AB∥CD,GE⊥EF于点E.若∠EFD=32°,则∠BGE的度数是()A.62°B.58°C.52°D.48°【分析】过点E作AB的平行线HI,利用平行线的性质即可求解.【解答】解:过点E作直线HI∥AB.∵AB∥CD,AB∥HI,∠EFD=32°,∴CD∥HI,∴∠HEF=∠EFD=32°,∵GE⊥EF于点E,∴∠GEF=90°,∴∠GEH=∠GEF﹣∠HEF=90°﹣32°=58°,∵AB∥HI,∴∠BGE=∠GEH=58°.故选:B.4.(2022秋•杜尔伯特县期末)如图,已知AB∥CD,BE,DE分别平分∠ABF和∠CDF,且交于点E,则()A.∠E=∠F B.∠E+∠F=180°C.2∠E+∠F=360°D.2∠E﹣∠F=180°【分析】过点E作EM∥AB,利用平行线的性质可证得∠BED=(∠ABF+∠CDF),可以得到∠BED 与∠BFD的关系.【解答】解:过点E作EM∥AB,如图:∵AB∥CD,EM∥AB∴CD∥EM,∴∠ABE=∠BEM,∠CDE=∠DEM,∵∠ABF的平分线与∠CDF的平分线相交于点E,∴∠ABE=∠ABF,∠CDE=∠CDF,∴∠BED=∠BEM+∠DEM=(∠ABF+∠CDF),∵∠ABF+∠BFD+∠CDF=360°,∴∠ABF+∠CDF=360°﹣∠BFD,∴∠BED=(360°﹣∠BFD),整理得:2∠BED+∠BFD=360°.故选:C.5.(2022秋•榆树市期末)如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是()A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2D.∠1+∠3=∠2【分析】首先过点E作EF∥AB,由AB∥CD,可得EF∥AB∥CD,然后根据两直线平行,内错角相等,即可求得∠AEF=∠1,∠CEF=∠3,继而可得∠1+∠3=∠2.【解答】解:过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠AEF=∠1,∠CEF=∠3,∵∠2=∠AEF+∠CEF=∠1+∠3.故选:D.6.(2023秋•湖北月考)将含有30°角的直角三角板在两条平行线中按如图所示摆放.若∠1=120°,则∠2为()A.120°B.130°C.140°D.150°【分析】过A作AB∥l1,得到AB∥l2,推出∠3=∠1=120°,∠2=∠BAC,即可求出∠2=∠3+∠4=30°+120°=150°.【解答】解:过A作AB∥l1,∵l1∥l2,∴AB∥l2,∴∠3=∠1=120°,∠2=∠BAC,∴∠2=∠3+∠4=30°+120°=150°.故选:D.二.填空题7.(2023•江油市开学)如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,则∠1=30°.【分析】过P作PQ∥AB,得到PQ∥CD,推出∠CPQ=∠2=28°,∠BPQ=∠1,求出∠BPQ=∠BPC ﹣∠CPQ=30°,即可得到∠1的度数..【解答】解:过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠CPQ=∠2=28°,∠BPQ=∠1,∵∠BPQ=∠BPC﹣∠CPQ=58°﹣28°=30°,∴∠1=30°.故答案为:30°.8.(2023秋•南岗区校级期中)如图,已知DE∥BC,∠ABC=105°,点F在射线BA上,且∠EDF=125°,则∠DFB的度数为20°.【分析】过F作FM∥DE,推出FM∥BC,得到∠ABC+∠MFB=180°,∠D+∠MFD=180°,求出∠MFB=75°,∠MFD=55°,即可得到∠DFB=∠MFB﹣∠MFD=20°.【解答】解:过F作FM∥DE,∵DE∥BC,∴FM∥BC,∴∠ABC+∠MFB=180°,∠D+∠MFD=180°,∵∠ABC=105°,∠EDF=125°,∴∠MFB=75°,∠MFD=55°,∴∠DFB=∠MFB﹣∠MFD=20°.故答案为:20°.9.(2023秋•道里区校级期中)为增强学生体质,望一观音湖学校将“跳绳”引入阳光体育一小时活动.图1是一位同学跳绳时的一个瞬间.数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=70°,∠ECD=105°,则∠AEC=35°.【分析】过E作EF∥AB,则EF∥AB∥CD,利用平行线的性质求得∠FEA=110°,∠FEC=75°,进而可求解.【解答】解:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠EAB+∠FEA=180°,∠ECD+∠FEC=180°,∵∠EAB=70°,∠ECD=105°,∴∠FEA=110°,∠FEC=75°,∴∠AEC=∠FEA﹣∠FEC=35°,故答案为:35°.10.(2022秋•雅安期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=60°,则∠E=100°.【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E﹣∠F=60°,即可得到∠E的度数.【解答】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°﹣β,∠BFC=∠BFH﹣∠CFH=α﹣β,∴四边形BFCE中,∠E+∠BFC=360°﹣α﹣(180°﹣β)=180°﹣(α﹣β)=180°﹣∠BFC,即∠E+2∠BFC=180°,①又∵∠E﹣∠BFC=60°,∴∠BFC=∠E﹣60°,②∴由①②可得,∠E+2(∠E﹣60°)=180°,解得∠E=100°,故答案为:100°.11.(2023秋•南岗区校级期中)已知:如图,AB∥CD,∠ABG的平分线与∠CDE的平分线交于点M,∠M=45°,∠F=64°,∠E=66°,则∠G=88°°.【分析】过点G,F、E、M分别作GH∥AB,FQ∥AB,EP∥AB,MN∥AB,根据平行线的传递性得出AB∥CD∥GH∥FQ∥EP∥MN,再根据两直线平行内错角相等以及角平分线的定义即可求解;【解答】解:过点G、F、E、M分别作GH∥AB,FQ∥AB,EP∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥GH∥FQ∥EP∥MN,∴∠BNN=∠1,∠NMD=∠4,∵BM平分∠ABG,MD平分∠CDE,∴,∵∠BMD=45°,∴2∠1+2∠3=90°,∴∠5=2∠1,∠10=2∠3,∠6=∠7,∠8=∠9,∴∠GFE=∠7+∠8=∠6+∠9=64°,∠FED=∠9+∠D=∠9+2∠3=66°,∴2∠3﹣∠6=2°,∴2∠1+∠6=90°﹣2°=88°,∴∠BGF=∠5+∠6=2∠1+∠6=88°.故答案为:88°.三.解答题12.(2022秋•宝丰县期末)已知直线MN、PQ,点A、B为分别在直线MN、PQ上,点C为平面内一点,连接AC、BC,且∠C=∠NAC+∠CBQ.(1)求证:MN∥PQ;(2)如图2,射线AE、BD分别平分∠MAC和∠CBQ,AE交直线PQ于点E,BD与∠NAC内部的一条射线AD交于点D,若∠C=2∠D,求∠EAD的度数.【分析】(1)过C作CS∥MN,由已知可以得到PQ∥CS,从而得到MN∥PQ;(2)连接DC并延长交AE于点F,由已知可以得到∠DAC=∠NAC,再由∠EAD=∠EAC+∠CAD及平角的意义可以得到解答.【解答】(1)证明:过C作CS∥MN,如图,∵CS∥MN,∴∠NAC=∠ACS,∵∠ACB=∠ACS+∠BCS=∠NAC+∠CBQ,∴∠BCS=∠CBQ,∴PQ∥CS,∴MN∥PQ;(2)解:如图,连接DC并延长交AE于点F,则:∠ACF=∠DAC+∠ADC,∠BCF=∠DBC+∠BDC,∴∠ACB=∠DAC+∠DBC+∠ADB=2∠ADB,∴∠ADB=∠DAC+∠DBC,∴2∠ADB=2∠DAC+2∠DBC=2∠DAC+∠QBC,又∠ACB=∠NAC+∠CBQ=2∠ADB.∴∠NAC+∠CBQ=2∠DAC+∠QBC,即∠NAC=2∠DAC,∴∠DAC=∠NAC,∴∠EAD=∠EAC+∠CAD=∠MAC+∠NAC=(∠MAC+∠NAC)=90°.13.(2022秋•莘县期末)综合与实践如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F.(1)当所放位置如图①所示时,∠PFD与∠AEM的数量关系是∠PFD+∠AEM=90°;(2)当所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.【分析】(1)作PH∥AB,根据平行线的性质得到∠AEM=∠HPM,∠PFD=∠HPN,根据∠MPN=90°解答;(2)根据平行线的性质得到∠PFD+∠BHN=180°,根据∠P=90°解答;(3)根据平行线的性质、对顶角相等计算.【解答】解:(1)如图①,作PH∥AB,则∠AEM=∠HPM,∵AB∥CD,PH∥AB,∴PH∥CD,∴∠PFD=∠HPN,∵∠MPN=90°,∴∠PFD+∠AEM=90°,故答案为:∠PFD+∠AEM=90°;(2)猜想:∠PFD−∠AEM=90°;理由如下:如图②,∵AB∥CD,∴∠PFD+∠BHN=180°,∵∠BHN=∠PHE,∴∠PFD+∠PHE=180°,∵∠P=90°,∴∠PHE+∠PEB=90°,∵∠PEB=∠AEM,∴∠PHE+∠AEM=90°,∴∠PFD−∠AEM=90°;(3)如图②,∵∠P=90°,∠PEB=15°,∴∠PHE=∠P−∠PEB=90°−15°=75°,∴∠BHF=∠PHE=75°,∵AB∥CD,∴∠DFH+∠BHF=180°,∴∠DFH=180°−∠BHF=105°,∴∠OFN=∠DFH=105°,∵∠DON=20°,∴∠N=180°−∠DON−∠OFN=55°.14.(2022秋•洛宁县期末)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP =∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【解答】(1)解:∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当P在BA延长线时,∠CPD=∠β﹣∠α;当P在AB延长线时,∠CPD=∠α﹣∠β.15.(2023春•鼎城区期末)已知直线AB∥CD,点P为直线AB,CD所确定的平面内的一点.问题提出:(1)如图1,∠A=120°,∠C=130°,求∠APC的度数;问题迁移:(2)如图2,写出∠APC,∠A,∠C之间的数量关系,并说明理由;问题应用:(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD上,作∠BEG的平分线EH交PC于点H,若∠APC=20°,∠PAB=150°,求∠PEH的度数.【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可求得∠APQ=60°,∠CPQ=50°,最后可以求出∠APC=110°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A﹣∠C;(3)由(2)知,∠APC=∠PAB﹣∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG﹣∠GEH可得答案.【解答】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵∠A=120°,∴∠APQ=180°﹣∠A=180°﹣120°=60°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∵∠C=130°,∴∠CPQ=180°﹣∠C=180°﹣130°=50°,∴∠APC=∠APQ+∠CPQ=60°+50°=110°;(2)∠APC=∠A﹣∠C,理由如下:如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ﹣∠CPQ,∴∠APC=∠A﹣∠C;(3)由(2)知,∠APC=∠PAB﹣∠PCD,∵∠APC=20°,∠PAB=150°,∴∠PCD=130°,∵AB∥CD,∴∠PQB=∠PCD=130°,∵EF∥PC,∴∠BEF=∠PQB=130°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG﹣∠GEH=∠FEG﹣∠BEG=∠BEF=65°.16.(2023秋•南岗区校级期中)已知:如图,AB∥CD,直线EF分别交AB,CD于点G,H,点P为直线EF上的点,连接AP,CP.(1)如图1,点P在线段GH上时,请你直接写出∠BAP,∠DCP,∠APC的数量关系;(2)如图2,点P在HG的延长线上时,连接CP交AB于点Q,连接HQ,AC,若∠ACP+∠PHQ=∠CQH,求证:AC∥EF;(3)在(2)的条件下,如图3,CK平分∠ACP,GK平分∠AGP,GK与CK交点K,连接AK,若∠PQH=4∠PCK+2∠PHQ,∠CKG=∠CHQ,∠AKC+∠KAC=159°,求∠BAC的大小.【分析】(1)过P作PN∥AB,根据平行线的传递性得出PN∥CD,再根据两直线平行,内错角相等即可解答;(2)过点Q作QN∥AC,证出∠PHQ=∠2,根据平行线的传递性即可证明;(3)根据三角形内角和即可算出∠1=21°,再根据角平分线定义以及已知条件即可得出∠PQH=4∠2+2∠5=84°+2∠5,结合(2)即可解出∠5=18°,过K作KM∥AC,证出∠CKG=∠1+∠3=21°+∠3,根据平行线性质得出∠EGA=∠EHC,即可得∠3=∠5°+21°=18°+21°=39°,即可求解;【解答】解:(1)过P作PN∥AB,∴∠BAP=∠1,∵AB∥CD,∴PN∥CD,∴∠DCP=∠2,∴∠APC=∠1+∠2=∠BAP+∠DCP;(2)过点Q作QN∥AC,∴∠ACP=∠1,∵∠ACP+∠PHQ=∠CQH,∠1+∠2=∠CQH,∴∠PHQ=∠2,∴QN∥EF,∴AC∥EF;(3)∵CK平分∠ACP,GK平分∠AGP,∴∠1=∠2,∠3=∠4,∵∠AKC+∠KAC=159°,∵∠1=180°﹣159°=21°,∴∠PQH=4∠PCK+2∠PHQ=4∠2+2∠5=84°+2∠5,由(2)知∠ACP+∠PHQ=∠CQH,即42°+∠5=180°﹣∠PQH,∴180°﹣42°﹣∠5=84°+2∠5,∴∠5=18°,过K作KM∥AC,∵AC∥EF,∴KM∥AC∥EF,∴∠CKM=∠1,∠GKM=∠3.∴∠CKG=∠1+∠3=21°+∠3.∵AB∥CD,∠CKG=∠CHQ,∴∠EGA=∠EHC,即2∠3=∠5+∠CHQ=∠5+∠CKG=∠5+∠3+21°,∴∠3=∠5°+21°=18°+21°=39°,∵AC∥EF,∴∠BAC=∠EGA=2∠3=78°.17.(2023秋•道里区校级期中)已知:直线AB与直线CD内部有一个点P,连接BP.(1)如图1,当点E在直线CD上,连接PE,若∠B+∠PEC=∠P,求证:AB∥CD;(2)如图2,当点E在直线AB与直线CD的内部,点H在直线CD上,连接EH,若∠ABP+∠PEH=∠P+∠EHD,求证:AB∥CD;(3)如图3,在(2)的条件下,BG、EF分别是∠ABP、∠PEH的角平分线,BG和EF相交于点G,EF和直线AB相交于点F,当BP⊥PE时,若∠BFG=∠EHD+10°,∠BGE=36°,求∠EHD的度数.【分析】(1)过点P作PF∥AB,推出∠PEC=∠EPF,进而得PF∥CD,根据平行公理的推论即可得证;(2)分别过点P和点E作PF∥AB,EM∥CD,推出∠PEM=∠FPE,进而得PF∥EM,根据平行公理的推论即可得证;(3)过点E作EN∥AB,根据(1)(2)的思路证∠FEN+∠NEH=∠BFE+∠EHD,设∠EHD=α,∠PBG =β,PEG=γ,则∠BFG=α+10°,结合角平分线的定义及(2)的条件得2β+2γ=90°+α,接着分别用含α的式子代替β和γ,代入2β+2γ=90°+α求出α的值即可.【解答】解:(1)证明:过点P作PF∥AB,∴∠B=∠BPF,∵∠B+∠PEC=∠BPE=∠BPF+∠EPF,∴∠PEC=∠EPF,∴PF∥CD,∴AB∥CD;(2)证明:如图2,分别过点P和点E作PF∥AB,EM∥CD,∴∠ABP=∠BPF,∠MEH=∠EHD,∵∠ABP+∠PEH=∠P+∠EHD,即∠ABP+∠PEM+∠MEH=∠BPF+∠FPE+∠EHD,∴∠PEM=∠FPE,∴PF∥EM,∴EM∥AB,∴AB∥CD;(3)如图3,过点E作EN∥AB,由(2)得AB∥CD,∴EN∥CD,∠BFE=∠FEN,∠NEH=∠EHD,∴∠FEH=∠FEN+∠NEH=∠BFE+∠EHD,设∠EHD=α,∠PBG=β,PEG=γ,则∠BFG=α+10°,∵BG、EF分别是∠ABP、∠PEH的角平分线,∴∠ABP=2β,∠PEH=2γ,∵BP⊥PE,∴∠P=90°,由(2)得∠ABP+∠PEH=∠P+∠EHD,∴2β+2γ=90°+α,∵∠FEH=∠FEN+∠NEH=∠BFE+∠EHD,∴γ=α+10°+α=2α+10°,∵∠BGE=36°,∠FGB=180°﹣(∠BFG+∠FBG),∠FGB=180°﹣∠BGE,∴∠BFG+∠FBG=∠BGE=36°,∴α+10°+β=36°,∴β=26°﹣α,∴2(26°﹣α)+2(2α+10°)=90°+α,∴α=18°.18.(2023秋•南岗区校级期中)已知,过∠ECF内一点A作AD∥/EC交CF于点D,作AB∥/CF交CE于点B.(1)如图1,求证:∠ABE=∠ADF;(2)如图2,射线BM,射线DN分别平分∠ABE和∠ADF,求证:BM∥DN;(3)如图3,在(2)的条件下,点G,Q在线段DF上,连接AG,AQ,AC,AQ与DN交于点H,反向延长AQ交BM于点P,如果∠GAC=∠GCA,AQ平分∠GAD,∠QAC=50°,求∠MPA+∠PQF的度数.【分析】(1)由平行线的性质得出∠A=∠ABE,∠A=∠ADF,即可得出结论;(2)过点A作AG平分∠BAD,由角平分线定义得出∠DAG=∠BAG=∠BAD,∠ABM=∠ABE,∠ADN=∠ADF,证出∠ABM=∠DAG=∠BAG=∠ADN,得出BM∥AG,DN∥AG,即可得出结论;(3)设∠GAQ=∠QAD=x,则∠DAC=50°﹣x,∠GAC=50°+x=∠GCA,得出∠BAD=100°,∠BAQ=100°+x,由平行线的性质得出∠BAC=∠GCA=50°+x,求出∠BAP=180°﹣∠BAQ=80°﹣x,过点P作PH∥AB,过点Q作QI∥AC,由平行线的性质得出∠MPH=∠ABM=50°,∠HPA=∠PAB =80°﹣x,∠QAC=∠IQA=50°,∠FQI=∠FCA=50°+x,求出∠MPA=∠MPH+∠HPA=50°+8°﹣x=130°﹣x,∠PQF=∠IQA+∠FQI=50°+50°+x=100°+x,即可得出答案.【解答】(1)证明:∵AD∥EC,AB∥CF,∴∠A=∠ABE,∠A=∠ADF,∴∠ABE=∠ADF;(2)证明:过点A作AG平分∠BAD,如图2所示:则∠DAG=∠BAG=∠BAD,∵射线BM,射线DN分别平分∠ABE和∠ADF,∴∠ABM=∠ABE,∠ADN=∠ADF,∵∠ABE=∠ADF=∠BAD,∴∠ABM=∠DAG=∠BAG=∠ADN,∴BM∥AG,DN∥AG,∴BM∥DN;(3)解:∵AQ平分∠GAD,∴∠GAQ=∠QAD,设∠GAQ=∠QAD=x,则∠DAC=50°﹣x,∠GAC=50°+x=∠GCA,∴∠BAD=100°,∴∠BAQ=100°+x,∵AB∥CF,∴∠BAC=∠GCA=50°+x,∵∠BAP+∠BAQ=180°,∴∠BAP=180°﹣∠BAQ=80°﹣x,过点P作PH∥AB,过点Q作QI∥AC,如图3所示:∵AD∥EC,∴∠BAD=∠ABE=100°,∠ABM=∠ABE=50°,∴∠MPH=∠ABM=50°,∠HPA=∠PAB=80°﹣x,∠QAC=∠IQA=50°,∠FQI=∠FCA=50°+x,∴∠MPA=∠MPH+∠HPA=50°+80°﹣x=130°﹣x,∠PQF=∠IQA+∠FQI=50°+50°+x=100°+x,∴∠MPA+∠PQF=130°﹣x+100°+x=230°.19.(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【分析】(1)过点E作EH∥AB,证明∠A=∠AEF,再根据已知条件证明∠D=∠DEF,从而证明EF ∥CD,最后根据平行公理的推论证明结论即可;(2)先根据平行线的性质证明∠A=∠EHG,再根据外角性质证明∠A=∠D+∠AED,通过变换得出结论即可;(3)设AE与CD交于点H,∠EAI=x,把∠BAI和∠EAB都用x表示出来,然后根据已知条件,找出角与角之间的关系,最后得出∠CHE=∠CDE+∠AED,列出关于x的方程,求出x,最后根据∠EKD=∠AKI=180°﹣∠EAI﹣∠I,求出答案即可.【解答】(1)证明:如图所示:过点E作EH∥AB,∴∠A=∠AEF,∵∠A+∠D=∠AED,∠AED=∠AEF+∠DEF,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(2)证明:∵AB∥CD,∴∠A=∠EHG,∵∠EHG=∠D+∠AED,∴∠A=∠D+∠AED,∴∠A﹣∠D=∠AED;(3)解:设AE与CD交于点H,∠EAI=x,则∠BAI=,,∵AB∥CD,∴∠EHC=∠EAB=,∵∠I=∠AED=25°,∠EKI=∠EAI+∠I=∠EDI+∠AED,∴x+25°=∠EDI+25°,∴∠EDI=x,∵∠EDI=∠CDE,∴∠CDI=,∵∠CHE=∠CDE+∠AED,∴,解得:x=60°,∴∠EKD=∠AKI=180°﹣∠EAI﹣∠I=180°﹣60°﹣25°=95°.20.(2023春•栾城区校级期中)【问题解决】:如图①,AB∥CD,点E是AB,CD内部一点,连接BE,DE.若∠ABE=40°,∠CDE=60°,求∠BED 的度数;嘉琪想到了如图②所示的方法,请你帮她将完整的求解过程补充完整;解:过点E作EF∥AB∴∠ABE=∠BEF(两直线平行,内错角相等);∵EF∥AB,AB∥CD(已知);∴EF∥CD(平行于同一条直线的两直线平行);∴∠CDE=(∠DEF)(两直线平行,内错角相等);又∵∠BED=∠BEF+∠DEF(角的和与差);∴∠BED=∠ABE+∠CDE(等量代换);∵∠ABE=40°,∠CDE=60°(已知);∴∠BED=∠ABE+∠CDE=100°(等量代换);【问题迁移】:请参考嘉琪的解题思路,解答下面的问题:如图③,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,连接AP,CP,设∠BAP=α,∠DCP=β.(1)如图③,当点P在B,D两点之间运动时(点P不与点B,D重合),写出α,和∠APC之间满足的数量关系,并说明理由;(2)当点P在B,D两点外侧运动时(点P不与点B,D重合),请画出图形,并直接写出α,β和∠APC 之间满足的数量关系.【分析】问题解决:两直线平行,内错角相等;平行于同一条直线的两直线平行;∠DEF;两直线平行,内错角相等;角的和与差;等量代换;问题迁移:(1)∠APC=a+β,理由见解析;(2)∠APC=α﹣β或∠APC=β﹣α【分析】问题解决:根据过程填写依据即可;问题迁移:(1)过点P作PQ∥AB,可证∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC=∠APQ+∠CPQ 即可求解;(2)①当P在BN上时,过点P作PQ∥AB,同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC =∠CPQ﹣∠APQ,即可求解;②当P在OD上时,过点P作PQ∥CD,同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC=∠APQ﹣∠CPQ,即可求解.【解答】问题解决:解:过点E作EF∥AB,∴∠ABE=∠BEF(两直线平行,内错角相等),∵AB∥CD(已知),∴EF∥CD(平行于同一条直线的两直线平行),∴∠CDE=∠DEF(两直线平行,内错角相等),又∵∠BED=∠BEF+∠DEF(角的和与差),∴∠BED=∠ABE+∠CDE(等量代换),∵∠ABE=40°,∠CDE=60°(已知),∴∠BED=∠ABE+∠CDE=100°(等量代换),问题迁移:(1)解:∠APC=a+β,理由:过点P作PQ∥AB,∴∠APQ=∠BAP(两直线平行,内错角相等),∵AB∥CD(已知),∴PQ∥CD(平行于同一直线的两直线平行),∴∠CPQ=∠DCP(两直线平行,内错角相等),又∵∠APC=∠APQ+∠CPQ(角的和与差),∴∠APC=∠BAP+∠DCP(等量代换),∵∠BAP=α,∠DCP=β(已知),∴∠APC=α+β(等量代换),(2)如图所示:解:①如图,当P在BN上时,∠APC=β﹣α,理由:过点P作PQ∥AB,由(1)同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,∵∠APC=∠CPQ﹣∠APQ,∴∠APC=∠DCP﹣∠BAP,∵∠BAP=α,∠DCP=β,∴∠APC=β﹣α;②如图,当P在OD上时,∠APC=α﹣β,理由:过点P作PQ∥CD,由(1)同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,∵∠APC=∠APQ﹣∠CPQ,∴∠APC=∠BAP﹣∠DCP,∵∠BAP=α,∠DCP=β,∴∠APC=α﹣β.。
七年级数学下册平行线中的“拐点”问题专题练习

七年级数学下册平行线中的“拐点”问题专题练习模型1M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=度.小专题(二)利用平行线的性质求角的度数类型1直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( ) A.52°B.54°C.64°D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是( )A.20°B.25°C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.类型2借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( ) A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( )A.75° B.90° C.105° D.120°类型3折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是.类型4抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB 平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC =∠ODE.则∠DEB的度数是度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是.小专题(三)平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=.∵DF∥CA,∴∠A=.∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD( ),∴∠C=.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=(垂直的定义).②所以(同位角相等,两直线平行).③所以∠1+∠2=(两直线平行,同旁内角互补).④又因为∠2+∠3=180°( ),⑤所以∠1=∠3( ).⑥所以AB∥DG( ).⑦所以∠GDC=∠B( ).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD∥BC.4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF与AB的位置关系吗?请说明理由.5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.参考答案:小专题(一)平行线中的“拐点”问题模型1M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠E n=∠B+∠F1+∠F2+…+∠F n-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°.∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二)利用平行线的性质求角的度数类型1直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( C ) A.52°B.54°C.64°D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF的度数是( D )A.20°B.25°C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( D ) A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( B )A.75° B.90° C.105° D.120°类型3折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB 平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC =∠ODE.则∠DEB的度数是76度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.小专题(三)平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等).∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等).∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD(对顶角相等),∴∠C=∠D.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=90°(垂直的定义).②所以AD∥EF(同位角相等,两直线平行).③所以∠1+∠2=180°(两直线平行,同旁内角互补).④又因为∠2+∠3=180°(已知),⑤所以∠1=∠3(同角的补角相等).⑥所以AB∥DG(内错角相等,两直线平行).⑦所以∠GDC=∠B(两直线平行,同位角相等).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.证明:∵DF∥AB(已知),∴∠D=∠BHM(两直线平行,同位角相等).又∵∠B=75°,∠D=105°(已知),∴∠B+∠BHM=75°+105°=180°.∴DE∥BC(同旁内角互补,两直线平行).∴∠AME=∠AGC(两直线平行,同位角相等).3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD∥BC.证明:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).又∵∠1=∠2(已证),∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF与AB的位置关系吗?请说明理由.解:DF∥AB.理由:∵BE是∠ABC的平分线,∴∠1=∠2(角平分线的定义).∵∠E=∠1(已知),∴∠E=∠2(等量代换).∴AE∥BC(内错角相等,两直线平行).∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∵∠3+∠ABC=180°(已知),∴∠A=∠3(等量代换).∴DF∥AB(同位角相等,两直线平行).5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.证明:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的性质).∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2).∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=180°.∴AB∥CD(同旁内角互补,两直线平行).∴∠B+∠D=180°(两直线平行,同旁内角互补).∴∠D=180°-∠B(等式的性质).∵AB⊥BD(已知),∴∠B=90°(垂直的定义).∴∠D=90°,即CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°(两直线平行,内错角相等).由折叠,知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠2=110°.∴∠1=180°-∠2=70°(两直线平行,同旁内角互补).7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.解:(1)证明:∵BC∥GE,∴∠E=∠1=50°.∵∠AFG=∠1=50°,∴∠E=∠AFG=50°.∴AF∥DE.(2)过点A作AP∥GE,∵BC∥GE,∴AP∥GE∥BC.∴∠FAP=∠AFG=50°,∠PAQ=∠Q=15°.∴∠FAQ=∠FAP+∠PAQ=65°.∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.∴∠CAP=80°.∴∠ACQ=180°-∠CAP=100°.。
七年级数学下册平行线中 “拐点”问题专题培优训练 含解析

平行线中“拐点”问题专题培优训练一.选择题1.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于()A.35°B.45°C.50°D.55°2.如图,BA∥DE,∠B=30°,∠D=40°,则∠C的度数是()A.10°B.35°C.70°D.80°3.如图,AB∥DE,BC⊥CD,则以下说法中正确的是()A.α,β的角度数之和为定值B.α,β的角度数之积为定值C.β随α增大而增大D.β随α增大而减小4.如图,AB∥CD,EMNF是直线AB、CD间的一条折线.若∠1=40°,∠2=60°,∠3=70°,则∠4的度数为()A.55°B.50°C.40°D.30°5.已知,如图,AB∥CD,则∠α、∠β、∠γ之间的关系为()A.∠α+∠β+∠γ=360°B.∠α﹣∠β+∠γ=180°C.∠α+∠β﹣∠γ=180°D.∠α+∠β+∠γ=180°二.填空题6.如图,a∥b,∠2=95°,∠3=150°,则∠1的度数是.7.如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E的度数是.8.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=度.9.如图,AB∥CD,∠A=75°,∠C=30°,∠E的度数为.10.如图,AB∥CD,∠A=20°,∠CDP=145°,则∠P=°.11.如图,已知AB∥CD,∠AFC=120°,∠EAF=∠EAB,∠ECF=∠ECD,则∠AEC =度.三.解答题12.看图填空:如图,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.解:过E点作EF∥CD∴∠CDE+=180°∴∠DEF=又∵AB∥CD,∴EF∥∴∠ABE+=180°,∴∠BEF=∴∠BED=∠BEF+∠DEF=.13.如图,已知直线AB∥CD,∠ABE=60°,∠CDE=20°,求∠BED的度数.14.如图:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于F.(1)如图1,若∠E=80°,求∠BFD的度数.(2)如图2:若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系并证明你的结论.15.先阅读下面的解题过程,再解答问题:如图①,已知AB∥CD,∠B=40°,∠D=30°,求∠BED的度数.解:过点E作EF∥AB,则AB∥CD∥EF,因为EF∥AB,所以∠1=∠B=40°又因为CD∥EF,所以∠2=∠D=30°所以∠BED=∠1+∠2=40°+30°=70°.如图②是小军设计的智力拼图玩具的一部分,现在小军遇到两个问题,请你帮他解决:(1)如图②∠B=45°,∠BED=75°,为了保证AB∥CD,∠D必须是多少度?请写出理由.(2)如图②,当∠G、∠GFP、∠P满足什么关系时,GH∥PQ,请直接写出满足关系的式子,并在如图②中画出需要添加的辅助线.16.如图(1)所示,AB∥CD,根据平行线的性质可知内错角∠B与∠C相等,观察图(2),(3)与(4),回答下列问题.①如图(2)所示,AB∥CD,试问∠E+∠C与∠B+∠F哪个大?请说明理由;②如图(3)所示,AB∥CD,试问∠E+∠G+∠C与∠B+∠H+∠F哪个大?(直接写出答案,不必说明理由)③根据第①,②小题的结论,在图(4)中,若AB∥CD,你又能得到什么结论?17.如图所示,直线AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF、∠DFE的平分线相交于点K.(1)求∠EKF的度数;(2)如图(2)所示,作∠BEK、∠DFK的平分线相交于点K1,问∠K1与∠K的度数是否存在某种特定的等量关系?写出结论并证明.(3)在图(2)中作∠BEK1、∠DFK1的平分线相交于点K2,作∠BEK2、∠DFK2的平分线相交于点K3,依此类推,……,请直接写出∠K4的度数.参考答案一.选择题1.解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.2.解:过点C作FC∥AB,∵BA∥DE,∴BA∥DE∥FC,∴∠B=∠BCF,∠D=∠DCF,∵∠B=30°,∠D=40°,∴∠BCF=30°,∠DCF=40°,∴∠BCD=70°,故选:C.3.解:过C点作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠α=∠BCF,∠β+∠DCF=180°,∵BC⊥CD,∴∠BCF+∠DCF=90°,∴∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,∴β随α增大而增大,故选:C.4.解:如图2,过M作OM∥AB,PN∥AB,∵AB∥CD,∴AB∥OM∥PN∥CD,∴∠1=∠EMO,∠4=∠PNF,∠OMN=∠PNM,∴∠EMN﹣∠MNF=(∠1+∠MNP)﹣(∠MNP+∠4)=∠1﹣∠4,∴60°﹣70°=40°﹣∠4,∴∠4=50°.故选:B.5.解:过点E作EF∥AB,则EF∥CD.∵EF∥AB∥CD,∴∠α+∠AEF=180°,∠FED=∠γ,∴∠α+∠β=180°+∠γ,即∠α+∠β﹣∠γ=180°.故选:C.二.填空题6.解:过点C作CD∥a,∵a∥b,∴CD∥a∥b,∴∠1+∠ECD=180°,∠3+∠DCF=180°,∵∠2=95°,∠3=150°,∴∠1+∠2+∠3=360°,∴∠1=360°﹣∠2﹣∠3=360°﹣150°﹣95°=115°,故答案为:115°.7.解:如图,根据题意可知:AB∥EF,分别过点C,D作AB的平行线CG,DH,所以AB∥CG∥DH∥EF,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故答案为540°.8.解:如图,连接BF,BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠1=30°,∠2=90°,∴∠ABC=∠1+∠2=120°.故答案为:120.9.解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,EF∥CD,∴∠AEF=∠A=75°,∠CEF=∠C=30°,∴∠AEC=∠AEF﹣∠CEF=75°﹣30°=45°.故答案为:45°.10.解:如图,过点P作PE∥AB,∴∠APE=∠A=20°,∵AB∥CD,∴PE∥CD,∴∠EPD=180°﹣∠CDP=35°,∴∠APD=∠APE+∠EPD=20°+35°=55°.故答案为:55.11.解:过点E作EM∥AB,过点F作FN∥AB,如图所示.∵EM∥AB,AB∥CD,∴EM∥CD,∴∠AEM=∠EAB,∠CEM=∠ECD.同理,可得:∠AFN=∠F AB,∠CFN=∠FCD.又∵∠EAF=∠EAB,∠ECF=∠ECD,∴∠EAB=∠F AB,∠ECD=∠FCD.∴∠AEC=∠AEM+∠CEM=∠EAB+∠ECD=(∠F AB+∠FCD)=(∠AFN+∠CFN)=∠AFC=90°.故答案为:90.三.解答题12.解:过E点作EF∥CD∴∠CDE+∠DEF=180°,∴∠DEF=180°﹣152°=28°,又∵AB∥CD,∴EF∥AB,∴∠ABE+∠BEF=180°,∴∠BEF=180°﹣130°=50°,∴∠BED=∠BEF+∠DEF=27°+50°=77°.故答案为:∠DEF,180°﹣152°=28°,CD,∠BEF,180°﹣130°=50°,28°+50°=78°.13.解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠1=∠ABE,∠2=∠CDE,∴∠BED=∠1+∠2=60°+20°=80°.14.解:(1)如图1,作EG∥AB,FH∥AB,∴EG∥AB∥FH∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∠ABE+∠BEG=180°,∠GED+∠CDE=180°,∴∠ABE+∠BEG+∠GED+∠CDE=360°∵∠BED=∠BEG+∠DEG=80°,∴∠ABE+∠CDE=280°,∵∠ABF和∠CDF的角平分线相交于E,∴∠ABF+∠CDF=140°,∴∠BFD=∠BFH+∠DFH=140°;(2)∵∠ABM=∠ABF,∠CDM=∠CDF,∴∠ABF=3∠ABM,∠CDF=3∠CDM,∵∠ABE与∠CDE两个角的角平分线相交于点F,∴∠ABE=6∠ABM,∠CDE=6∠CDM,∴6∠ABM+6∠CDM+∠E=360°,∵∠M=∠ABM+∠CDM,∴6∠M+∠E=360°.15.解:(1)∠D=30°,理由如下:过E作EM∥AB,如图,则∠B=∠2=45°,∴∠1=∠BED﹣∠2=30°,∴∠1=∠D,∴EM∥CD,又∵EM∥AB,(2)当∠G+∠GFP+∠P=360°时,GH∥PQ,理由如下:过F作FN∥GH,如图,则∠G+∠4=180°,又∵∠G+∠GFP+∠P=360°∴∠3+∠P=180°,∴FN∥PQ,∴GH∥PQ.16.解:①如图,分别过E,F作AB的平行线EM,FN,∵AB∥CD,∴AB∥CD∥EM∥NF,∴∠ABE=∠BEM,∠MEF=∠EFN,∠NFC=∠FCD,∴∠BEF+∠C=∠B+∠EFC,∴∠E+∠C=∠B+∠F;②分别过E,F,G,H作AB的平行线EM,NF,GP,QH,和①的方法一样可得∠E+∠G+∠C=∠B+∠H+∠F;③∠E1+∠E2+…+∠E n+∠C=∠F1+∠F2+…+∠F n+∠B(开口朝左的所有角度之和与开口朝右的所有角度之和相等).17.解:(1)如图(1),过K作KG∥AB,交EF于G,∵AB∥CD,∴∠BEK=∠EKG,∠GKF=∠KFD,∵EK、FK分别为∠BEF与∠EFD的平分线,∴∠BEK=∠FEK,∠EFK=∠DFK,∵AB∥CD,∴∠BEK+∠FEK+∠EFK+∠DFK=180°,即2(∠BEK+∠DFK)=180°,∴∠BEK+∠DFK=90°,则∠EKF=∠EKG+∠GKF=90°;(2)∠K=2∠K1,理由为:∵∠BEK、∠DFK的平分线相交于点K1,∴∠BEK1=∠KEK1,∠KFK1=∠DFK1,∵∠BEK+∠FEK+∠EFK+∠DFK=180°,即2(∠BEK+∠KFD)=180°,∴∠BEK+∠KFD=90°,即∠BEK1+∠DFK1=45°,同理得∠K1=∠BEK1+∠DFK1=45°,则∠K=2∠K1;(3)如图(3),根据(2)中的规律可得:∠K2=∠K1=22.5°,∠K3=∠K2=11.25°,∠K4=∠K3=5.625°.。
初中初二七年级数学下学期下册《平行线间的拐点问题》专项练习题+答案

七年级数学下册《平行线间的拐点问题》专项练习【一】如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是 80°.解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,【二】如图,AB∥CD,∠A=120°,∠1=70°,则∠D的度数为 50°.解:∵AB∥CD,∠A=120°∴∠C=180°-∠A=180°-120°=60°在△CDE中,∠1=70°∴∠D=180°-∠C-∠1=180°-60°-70°=50°【三】如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,∠1的度数为 10°.解:∵a∥b,∴∠1+30°+∠2+90°=180°.∵∠2=50°,∴∠1=10°.【四】如图,已知AB∥DE,∠ABC=70°,∠CDE =140°,则∠BCD的度数为 30°.解:如图,过C作CF∥DE,∴∠CDE+∠DCF=180°.∵∠CDE=140°,∴∠DCF=40°.∵AB∥DE,∴CF∥AB,∴∠FCB=∠ABC=70°,∴∠BCD=70°-40°=30°.【五】小柯同学平时学习善于自己动手操作,以加深对知识的理解和掌握.学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两角,并使∠1=115°,AB⊥CB于B,那么∠2的度数是多少呢?请你帮他计算出来.解:过点B向左作BE∥AD.∵AD∥CF,∴AD∥BE∥CF,∴∠1+∠ABE=180°,∠2+∠CBE=180°∴∠1+∠2+∠ABC=360°.∵∠1=115°,∠ABC=90°,∴∠2=360°-∠1-∠ABC=155°.【六】如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2= 30°.解:如图,作AC∥l1,BD∥l2,∴∠1=∠3,∠2=∠4.∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°-180°=30°,∴∠1+∠2=30°.【七】如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= 140° .解:如图,延长AE交l2于点B.∵l1∥l2,∴∠3=∠1=40°.∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.【八】如图,如果AB∥CD,则∠α,∠β,∠γ之间的关系为∠α+∠β-∠γ=180°.解:如图,过点E作EF∥AB,∴∠α+∠AEF=180°.∵AB∥CD,∴EF∥CD,∴∠FED=∠γ,∴∠AEF=∠β-∠FED=∠β-∠γ,∴∠α+∠β-∠γ=180°.。
专题03 平行线中的拐点问题(解析版)-2020-2021学年七年级数学寒假温故知新汇编(苏科版)

2020-2021学年七年级数学寒假温故知新汇编(苏科版)专题03 平行线中的拐点问题【专题训练】一、选择题1.(2020·河南周口市·七年级期中)如图,已知AB ∥CD ,∥A =120°,∥C =130°,那么∥APC 的度数是( )A .100°B .110°C .120°D .130°【答案】B2.(2020·浙江杭州市·七年级其他模拟)如图://AB DE ,50B ∠=︒,110D ∠=︒,BCD ∠的度数为( )A .160︒B .115︒C .110︒D .120︒【答案】D3.(2020·重庆市万州第二高级中学九年级期中)如图,直线//40AB CD C E ︒∠=∠,,为直角,则1∠等于( )A .140︒B .130︒C .135︒D .120︒【答案】B4.(2021·全国九年级专题练习)如图,将一块带有 60° 角的直角三角板放置在一组平行线上,若∥1=35°,则 ∥2 的度数应该是( )A .60°B .35°C .30°D .25°【答案】D5.(2020·沙坪坝区·重庆南开中学八年级月考)如图,直线//AB CD ,AP 平分BAC CP AP ∠⊥,于点P ,若149︒∠=,则2∠的度数为( )A .40︒B .41︒C .50︒D .51︒【答案】B二、填空题6.(2020·辽宁抚顺市·九年级三模)如图,直线a∥b,∥1=120°,∥2=105°,则∥3的度数为____【答案】135°7.(2020·江苏连云港市·七年级期末)如图,l1∥l2,AB∥l1,垂足为O,BC交l2于点E,若∥ABC=125°,则∥1=_____°.【答案】35.8.(2019·河南洛阳市·洛阳地矿双语学校七年级月考)如图所示,AB∥CD,∥1=115°,∥3=140°,则∥2=__________.【答案】75°9.(2020·江苏南京市·七年级期中)如图,AB∥DE,∥ABC=80°,∥CDE=150°,则∥BCD的度数为_____°.【答案】5010.(2020·北京海淀区·海淀实验中学八年级开学考试)如图,AB∥ED, ∥CAB=135°,∥ACD=75°,则∠CDE=_____度【答案】30三、解答题11.(2020·河南商丘市·七年级期末)如图,AB∥CD,分别探讨下面四个图形中∥APC与∥P AB、∥PCD的关系,请你从所得到的关系中任选一个加以说明.........(适当添加辅助线,其实并不难)【答案】如图:(1)∥APC=∥P AB+∥PCD;证明:过点P作PF∥AB,则AB∥CD∥PF,∥∥APC=∥P AB+∥PCD(两直线平行,内错角相等).(2)∥APC+∥P AB+∥PCD=360°;(3)∥APC=∥P AB-∥PCD;(4)∥APC=∥PCD-∥P AB证明第(4)个结论:∥AB ∥CD , ∥∥POB =∥PCD , ∥∥POB 是∥AOP 的外角, ∥∥APC +∥P AB =∥POB , ∥∥APC =∥POB -∥P AB , ∥∥APC =∥PCD -∥P AB .【点睛】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.12.(2020·浙江金华市·七年级期中)如图(1)所示是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么请你深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.(1)如图(2)所示,已知//AB CD ,请问B ,D ∠,E ∠有何关系并说明理由; (2)如图(3)所示,已知//AB CD ,请问B ,E ∠,D ∠又有何关系并说明理由;(3)如图(4)所示,已知//AB CD ,请问E G +∠∠与B F D ++∠∠∠有何关系并说明理由.【答案】(1)E B D ∠=∠+∠,理由如下:如图所示,过点E 作直线a ,使得////a AB CD , 则1B ∠=∠,D 2∠=∠,(两直线平行,内错角相等), ∥12BED B D ∠=∠+∠=∠+∠, 即:E B D ∠=∠+∠;(2)360B D E ∠+∠+∠=︒,理由如下:如图所示,过点E 作直线b ,使得////b AB CD ,则3180B ∠+∠=︒,4180D ∠+∠=︒,(两直线平行,同旁内角互补), ∥34360B D ∠+∠+∠+∠=︒, ∥34BED ∠=∠+∠,∥360B D BED ∠+∠+∠=︒, 即:360B D E∠+∠+∠=︒;(3)B F D E G ∠+∠+∠=∠+∠,理由如下:如图所示,过点E ,F ,G 作直线c ,d ,e ,使得////////c d e AB CD ,则5B ∠=∠,67∠=∠,89∠=∠,10D ∠=∠,(两直线平行,内错角相等), ∥65BEF BEF B ∠=∠-∠=∠-∠,910FGD FGD D ∠=∠-∠=∠-∠, ∥7869EFG BEF B FGD D ∠=∠+∠=∠+∠=∠-∠+∠-∠, ∥EFG B D BEF FGD ∠+∠+∠=∠+∠, 即:B F D E G ∠+∠+∠=∠+∠.【点睛】本题考查平行线性质的运用,准确掌握平行线的性质并灵活运用是解题关键.13.(2020·吉林长春市·七年级期末)(感知)如图①,//AB CD ,130PAB ∠=︒ ,120PCD ∠=︒.求APC ∠的度数.(提示:过点P 作直线//PQ AB )(探究)如图②,//AD BC ,点P 在射线OM 上运动,ADP a ∠=∠ ,BCP β∠=∠.(1)当点P 在线段AB 上运动时,CPD ∠,α∠,β∠之间的数量关系为_______________.(2)当点P 在A ,B 两点外侧运动时(点P 与点A ,B ,O 三点不重合),直接写出CPD ∠,a ∠,β∠ 之间的数量关系为____________________________________________________________.【答案】解:过点P 作直线//PQ AB ,∥//AB CD ,∥//PQCD .∥180PAB APQ ∠+∠=︒,180QPC PCD ∠+∠=︒,∥130PAB ∠=︒,120PCD ∠=︒,∥50APQ ∠=︒,60CPQ ∠=︒,∥5060110APC ∠=︒+︒=︒.∥APC ∠的度数为110︒.探究(1)CPD αβ∠=∠+∠.如图②:作//PQ BC ,∥//AD BC ,∥////PQ BC AD ,∥∥DPQ =∥α,∥CPQ =∥β ,∥DP C Q PD CPQ αβ∠+∠=∠=∠+∠;(2)CPD αβ∠=∠-∠或CPD βα∠=∠-∠.如图③:当P 在AM 上时,作//PQ BC ,∥//AD BC ,∥////PQ BC AD ,∥∥DPQ =∥α,∥CPQ =∥β ,∥CP C Q PD DPQ βα∠-∠=∠=∠-∠; 当P 在OB 上时,同理:CPD αβ∠=∠-∠.综上所述,CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】此题主要考查平行线的性质:两直线平行,内错角相等,同旁内角互补等结合等量代换进行证明,做辅助线进行转化是关键.14.(2020·陕西省西安市育才中学七年级月考)下列各图中的MA 1与NA n 平行.(1)图①中的∥A1+∥A2= 度,图②中的∥A1+∥A2+∥A3= 度,图③中的∥A1+∥A2+∥A3+∥A4= 度,图④中的∥A1+∥A2+∥A3+∥A4+∥A5= 度,…,第⑩个图中的∥A1+∥A2+∥A3+…+∥A10= 度(2)第n个图中的∥A1+∥A2+∥A3+…+∥A n= .【答案】解:(1)图①中,∥MA1∥NA2,∥∥A1+∥A2=180°,如图,分别过A2、A3、A4作MA1的平行线,图②中的∥A1+∥A2+∥A3=360°,图③中的∥A1+∥A2+∥A3+∥A4=540°,图④中的∥A1+∥A2+∥A3+∥A4+∥A5=720°,…,第⑩个图中的∥A1+∥A2+∥A3+…+∥A10=1620°;(2)第n个图中的∥A1+∥A2+∥A3+…+∥A n=180°(n﹣1).故答案为180,360,540,720,1620;180°(n﹣1).【点睛】本题考查了两直线平行,同旁内角互补的性质,过拐点作辅助线利用平行线的性质是解题的关键.15.(2020·佛山市顺德区杏坛梁銶琚初级中学七年级月考)问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∥B,∥P,∥D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∥B,∥P,∥D之间满足关系.(直接写出结论)问题情境2如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∥B,∥P,∥D之间满足关系.(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB∥CD,∥ABE与∥CDE两个角的角平分线相交于点F(1)如图4,若∥E=80°,求∥BFD的度数;(2)如图5中,∥ABM=13∥ABF,∥CDM=13∥CDF,写出∥M与∥E之间的数量关系并证明你的结论.(3)若∥ABM=1n∥ABF,∥CDM=1n∥CDF,设∥E=m°,用含有n,m°的代数式直接写出∥M=.【答案】问题情境1:如图2,∥B+∥BPD+∥D=360°,理由是:过P作PE∥AB,∥AB∥CD,PE∥AB,∥AB∥PE∥CD,∥∥B+∥BPE=180°,∥D+∥DPE=180°,∥∥B+∥BPE+∥D+∥DPE=360°,即∥B+∥BPD+∥D=360°,故答案为∥B+∥P+∥D=360°;问题情境2如图3,∥P=∥B+∥D,理由是:过点P作EP∥AB,∥AB∥CD,∥AB∥CD∥EP,∥∥B=∥BPE,∥D=∥DPE,∥∥BPD=∥B+∥D,即∥P=∥B+∥D;故答案为∥P=∥B+∥D;问题迁移:(1)如图4,∥BF、DF分别是∥ABE和∥CDE的平分线,∥∥EBF=12∥ABE,∥EDF=12∥CDE,由问题情境1得:∥ABE+∥E+∥CDE=360°,∥∥E=80°,∥∥ABE+∥CDE=280°,∥∥EBF+∥EDF=140°,∥∥BFD=360°﹣80°﹣140°=140°;(2)如图5,16∥E+∥M=60°,理由是:∥设∥ABM=x,∥CDM=y,则∥FBM=2x,∥EBF=3x,∥FDM=2y,∥EDF=3y,由问题情境1得:∥ABE+∥E+∥CDE=360°,∥6x+6y+∥E=360°,16∥E=60﹣x﹣y,∥∥M+∥EBM+∥E+∥EDM=360°,∥6x+6y+∥E=∥M+5x+5y+∥E,∥∥M=x+y,∥16∥E+∥M=60°;(3)如图5,∥设∥ABM=x,∥CDM=y,则∥FBM=(n﹣1)x,∥EBF=nx,∥FDM=(n﹣1)y,∥EDF=ny,由问题情境1得:∥ABE+∥E+∥CDE=360°,∥2nx+2ny+∥E=360°,∥x+y=360m2n︒︒-,∥∥M+∥EBM+∥E+∥EDM=360°,∥2nx+2ny+∥E=∥M+(2n﹣1)x+(2n﹣1)y+∥E,∥∥M=360m2n︒︒-;故答案为∥M=360m2n︒︒-.【点睛】本题主要考查了平行线的性质和角平分线、n等分线及四边形的内角和的运用,解决问题的关键是作辅助线构造同旁内角以及内错角,依据平行线的性质进行推导计算,解题时注意类比思想的运用.16.(2020·忠县乌杨初级中学校七年级月考)如图,已知直线l1//l2,l3、和l1、l2分别交于点A、B、C、D,点P在直线l3或上且不与点A、B、C、D重合.记∥AEP=∥1,∥PFB=∥2,∥EPF=∥3.(1)若点P在图(1)位置时,求证:∥3=∥1+∥2;(2)若点P在图(2)位置时,请直接写出∥1、∥2、∥3之间的关系;(3)若点P在图(3)位置时,写出∥1、∥2、∥3之间的关系并给予证明;(4)若点P在线段DC延长线上运动时,请直接写出∥1、∥2、∥3之间的关系.【答案】解:(1)如图(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∥1=∥QPE、∥2=∥QPF;∥∥EPF=∥QPE+∥QPF,∥∥EPF=∥1+∥2.(2)∥3=∥2﹣∥1;证明:如图2,过P作直线PQ∥l1∥l2,则:∥1=∥QPE、∥2=∥QPF;∥∥EPF=∥QPF﹣∥QPE,∥∥EPF=∥2﹣∥1.(3)∥3=360°﹣∥1﹣∥2.证明:如图(3),过P作PQ∥l1∥l2;∥∥EPQ+∥1=180°,∥FPQ+∥2=180°,∥∥EPF=∥EPQ+∥FPQ;∥∥EPQ +∥FPQ +∥1+∥2=360°,即∥EPF=360°﹣∥1﹣∥2;(4)点P在线段DC延长线上运动时,∥3=∥1﹣∥2.证明:如图(4),过P作PQ∥l1∥l2;∥∥1=∥QPE、∥2=∥QPF;∥∥QPE﹣∥QPF=∥EPF;∥∥3=∥1﹣∥2.【点睛】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.。
专题03 拐点压轴专题(1)——拐点在平行线间七年级数学下册重点题型通关训练(人教版)(解析版)

专题03 拐点压轴专题(1)——拐点在平行线间【专题导入】经过了《拐点专题(初步引入)》后,面对压轴题形式的平行线——拐点题时,我们只需要把握住两点.①抓住平分线(出现相等角或比例角,能通过一个未知角度表示图中出大部分的角度)1.如图,若直线BE∥GF,A,C分别为BE,GF上两点,连接AC,∠BAC的平分线交GF于点D.若设∠1=α,试用含α的代数式表示出图中的角.∠2=____,∠3=____,∠4=_____,∠5=_____,∠6=____,∠7=_____.【答案】αα 180°-2α 180°-2α 180°-α 2α②观察得出题中的拐点,并且能熟练的得出拐角与两条平行线中哪些角相关,结合条件与所得的代数式关系进行求解.2.如图,m∥l,A,B分别在直线m,l上,P为两平行线中任意一点,连接AP,BP,∠DAP的平分线和∠EBP的平分线相交于点C.若设∠2=α,∠4=β,试用含α的代数式表示出∠C和∠P.【解析】∠C=∠1+∠3=∠2+∠4=α+β,∠P=∠5+∠6=(180°-2∠2)+(180°-2∠4)=360°-2(α+β).【例1】如图(1)所示:已知MN∥PQ,点B在MN上,点C在PQ上,点A在点B的左侧,点D在点C的右侧,∠ADC、∠ABC的平分线交于点E(不与B、D点重合),∠CBN=110°.(1)若∠ADQ=140°,则∠BED的度数为______(直接写出结果即可);(2)若∠ADQ=m°,将线段AD沿DC方向平移,使点D移动到点C的左侧,其它条件不变,如图(2)所示,求∠BED的度数(用含m的式子表示).【解析】(1)要求∠BED ,只需要得出∠EDC 和∠EBM.如图(1). 根据题意可得∠EDC=180°−∠ADQ 2=20°,(角平分线) ∠EBM=180°−CBN2=35°,(角平分线)∠BED=∠EDC+∠EBM=55°.(2)同理,要求∠BED ,只需要得出∠EDC 和∠EBM.如图(2).如图(2),过点E 作EF ∥PQ .∵∠CBN=110°,∴∠CBM=70°.∵∠CDE=∠ADE ,∠ABE=∠CBE ,∴∠EBM=35°,∠EDQ=12m°.∵EF ∥PQ ,∴∠DEF=180°-∠EDQ=180°-12m°. ∵EF ∥PQ ,MN ∥PQ ,∴EF ∥MN ,∴∠FEB=∠EBM=35°,∴∠BED=∠DEF+∠FEB=180°-12m°+35°=215°-12m°.同步训练1. 已知E 、F 分别是AB 、CD 上的动点,P 也为一动点.其中AB ∥CD ,移动E 、F ,使∠EPF=90°,作∠PEG=∠BEP ,求∠AEG∠PFD 的值.【解析】易得∠BEP+∠DFP=∠P=90°.又∠GEP=∠BEP,设∠BEP=x,则∠DFP=90°-x. ∠AEG=180°-2∠BEP=180°-2x.∠AEG ∠PFD =180°−2x90°−x=2.【过关练习】1. 如图,AB∥CD,点E是在AB、CD之间,且在BD的左侧平面区域内一点,连结BE,DE.作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F,∠ABE,∠CDE之间的关系,并证明你的猜想.【解析】如图,FB,FD分别是∠EBD和∠EDB的平分线,不妨设∠1=∠2=x ,∠3=∠4=y.∵AB ∥CD ,∴∠5+∠2+∠1+∠3+∠4+∠6=180°,∠5+∠6=180°-2(x+y ).∠F=∠5+∠2+∠4+∠6=180°-(x+y )(拐角).故2∠F-∠5-∠6=180°.即2∠F-(∠ABE+∠CDE )=180°.2. 如图,若∠AEP=25∠AEF ,∠CFP=25∠EFC ,且FP 的延长线交∠AEP 的角平分线于点M ,EP 的延长线交∠CFP 的角平分线于点N ,猜想∠M+∠N 的结果并且证明你的结论.【解析】如图,可得∠M=∠1+∠3+∠4,∠N=∠1+∠2+∠4(拐角).又∠1=∠2,∠3=∠4,不妨设∠1=∠2=x,∠3=∠4=y.则∠M=x+2y,∠N=2x+y.∠M+∠N=3(x+y).又可得∠AEF=5x,∠CFE=5y,且∠AEF+∠CFE=180°,即x+y=36°,∠M+∠N=3×36°=108°.3. 已知,AB∥CD.点M在AB上,点N在CD上.如图中,∠BME=60°,EF平分∠MEN,NP 平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【解析】看到角平分线,不妨设∠2=∠3=x.又QE∥NP,则∠4=∠3=x.∠MEN=∠BME+∠END(拐角),=60°+2x.∠MEN=30°+x.∠FEN=∠1=12∠FEQ=∠FEN-∠4=30°+x-x=30°.4. 如图,已知EM∥BN,∠AEM与∠ABN的角平分线相交于点F.试探究∠EFD与∠A的数量关系,并说明你的理由.【解析】如图,∵EF和BF分别是∠AEM和∠ABN的平分线,所以不妨设∠1=∠2=x,∠3=∠4=y.∠A=360°-(∠1+∠2)-(∠3+∠4)=360°-2(x+y)=2[180°-(x+y)].∠EFB=∠1+∠4=x+y.∠EFD=180°-∠EFB=180°-(x+y).故可得∠A=2∠EFD.【专题提高】5. 如图,已知AB∥CD,点E在直线AB,CD之间.若AH平分∠BAE,将线段CE沿CD平移至FG.(1)如图1,若∠AEC=90°,HF平分∠DFG,求∠AHF的度数;(2)如图2,若HF平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由.【解析】(1)如图1,根据题意,不妨设∠1=∠2=x,∠4=∠5=y.∵CE∥FG,∴∠3=∠4+∠5=2y.∠AEC=∠1+∠2+∠3=2x+2y=90°(拐角),即x+y=45°.∠AHF=∠1+∠5=x+y=45°(拐角).(2)如图2,根据题意,不妨设∠1=∠2=x,∠3=∠4=2y.则∠AEC=∠1+∠2+∠3=2(x+y)(拐角).∵CE∥GF,∴∠4=∠3=2y.∠5=∠6=180°−∠4=90°-y.2∠AHF=∠1+(180°-∠5)=x+y+90°.故2∠AHF-∠AEC=180°.6. 如图,已知AB∥CD,直线AB、CD被直线EF截,分别交AB于点G,交CD于点H,点P在直线AB、CD内部直线EF上,点M、N分别在直线AB、CD上,连接PM、PN,∠PMB和∠PNC 的平分线交于点K,点O为AB上一点,连接ON、MN,MN平分∠PNO,若∠MNK∶∠PMK=2∶7,2∠MKN-∠PNO=180°,求∠NOM的度数.【解析】根据题意,∠MNK∶∠PMK=2∶7不妨设∠1=2x,则∠PMK=∠2=7x(角平分线).设∠3=y,则∠PNK=∠3+∠1=y+2x,∠KNC=∠PNK=y+2x(角平分线).∠MKN=∠2+∠KNC=y+9x(拐角).∠PNO=2∠PNM=2y(角平分线)∵2∠MKN-∠PNO=180°,即2(y+9x)-2y=180°,解得x=10°.∠ONK=∠MNO-∠1=∠3-∠1=y-20°,∠ONC=∠CNK-∠ONK=(y+20°)-(y-20°)=40°. ∠NOM=∠ONC=40°.(两直线平行,内错角相等).。
七年级数学下册平行线中的“拐点”问题专题培优训练(解析版)

七年级数学下册平行线中的“拐点”问题专题培优训练典例题型一内凹型1.(2020•福州三模)如图,已知AB∥DE,∠A=40°,∠ACD=100°,则∠D的度数是()A.40°B.50°C.60°D.80°【点睛】首先过C作CF∥AB,再证明AB∥FC∥DE,根据平行线的性质可得∠A=∠ACF=40°,∠D =∠FCD,进而得到答案.【解析】解:过C作CF∥AB,∵AB∥DE,∴AB∥FC∥DE,∴∠A=∠ACF=40°,∠D=∠FCD,∵∠ACD=100°,∴∠FCD=100°﹣40°=60°,∴∠D=60°.故选:C.2.(2020•覃塘区期末)如图,直线12∥12,∠A=125°,∠B=85°,则∠1+∠2=30°.【点睛】过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.【解析】解:如图,过点A作l1的平行线,过点B作l2的平行线,∴∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故答案为30°.3.(2020•濉溪期末)如图所示,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=115°,那么∠BFD的度数是()A.62°B.64°C.57.5°D.60°【点睛】过E作E G∥AB,过F作FH∥AB,依据平行线的性质,即可得到∠ABE+∠CDE=115°,再根据角平分线的定义以及平行线的性质,即可得出∠BFD的度数.【解析】解:如图,过E作EG∥AB,过F作FH∥AB,∵AB∥CD,∴EG∥CD,FH∥CD,∴∠ABE=∠GEB,∠CDE=∠GED,∴∠BED=∠ABE+∠CDE=115°,又∵BF平分∠ABE,DF平分∠CDE,∴∠ABF∠ABE,∠CDF∠CDE,∴∠ABF+∠CDF(∠ABE+∠CDE)=57.5°,∵AB∥FH∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∴∠BFD=∠BFH+∠DFH=∠ABF+∠CDF=57.5°,故选:C.典例题型二外凹型4.(2020•沙坪坝区校级月考)如图,a∥b,∠1=55°,∠2=130°,则∠3=()A.100°B.105°C.110°D.115°【点睛】作平行线,构建平行线的性质可得∠5的度数,由平角的定义可得∠4的度数,从而得结论.【解析】解:过A作c∥a,∴∠3+∠4=180°,∵a∥b,∴b∥c,∴∠2+∠5=180°,∵∠2=130°,∴∠5=50°,∵∠1=55°,∴∠4=180°﹣55°﹣50°=75°,∴∠3=180°﹣75°=105°,故选:B.5.(2020•黄冈期末)某小区地下停车场入口了栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD 平行于地面AE,若∠BCD=150°,则∠ABC=120°.【点睛】过点B作BF∥CD,则CD∥B F∥AE,得出∠CBF+∠BCD=180°,∠FBA+∠BAE=180°,由∠BCD=150°,∠BAE=90°,得出∠CBF=30°,∠FBA=90°,即可得出结果.【解析】解:过点B作BF∥CD,如图所示:∵CD∥AE,∴CD∥BF∥AE,∴∠CBF+∠BCD=180°,∠FBA+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠CBF=30°,∠FBA=90°,∴∠ABC=∠CBF+∠FBA=120°;故答案为:120.6.(2020•梁子湖区期末)如图,如果AB∥CD,那么角α,β,γ之间的关系式为()A.α+β+γ=360°B.α﹣β+γ=180°C.α+β+γ=180°D.α+β﹣γ=180°【点睛】首先过点E作EF∥A B,由AB∥CD,即可得EF∥AB∥CD,根据两直线平行,同旁内角互补与两直线平行,内错角相等,即可求得∠α+∠1=180°,∠2=∠γ,继而求得α+β﹣γ=180°.【解析】解:过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠α+∠1=180°,∠2=∠γ,∵∠β=∠1+∠2=180°﹣∠α+∠γ,∴α+β﹣γ=180°.故选:D.典例题型三外错型7.(2020•凉山州)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【点睛】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解析】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.8.(2020•襄汾期末)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是()A.110°B.115°C.120°D.125°【点睛】直接利用平行线的性质结合三角形外角的性质得出答案.【解析】解:延长FE交DC于点N,∵AB∥EF,∴∠BCD=∠FND=100°,∵∠CDE=15°,∴∠DEF=∠CDE+∠DNF=115°.故选:B.9.(2020•鸡东期末)如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°【点睛】过A作AB∥a,可得a∥AB∥b,依据平行线的性质,即可得到∠1+∠BAD=180°,∠2=∠BAC =∠3+∠BAD,进而得出∠1+∠2﹣∠3=180.【解析】解:如图,过A作AB∥a,∵a∥b,∴AB∥b,∴∠1+∠BAD=180°,∠2=∠BAC=∠3+∠BAD,∴∠BAD=∠2﹣∠3,∴∠1+∠2﹣∠3=180°,故选:B.典例题型四综合型10.(2020•文登区期末)如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为()A.97°B.117°C.125°D.152°【点睛】过B作BE∥m,过C作CF∥n,依据平行线的性质,即可得到∠DCF=∠2=62°,∠BCF=∠EBC=55°,进而得到∠BCD的度数.【解析】解:如图,过B作BE∥m,过C作CF∥n,∵m∥n,∴m∥BE∥CF∥n,∴∠ABE=∠1=35°,∠DCF=∠2=62°,又∵AB⊥BC,∴∠ABC=90°,∴∠EBC=90°﹣35°=55°,∴∠BCF=∠EBC=55°,∴∠BCD=∠BCF+∠DCF=55°+62°=117°,故选:B.11.(2020•北碚区期末)如图,一条公路修到湖边时需绕道,第一次拐角∠B=120°,第二次拐角∠C=140°,为了保持公路AB与DE平行,则第三次拐角∠D的度数应为()A.130°B.140°C.150°D.160°【点睛】先延长BC,E D交于点F,根据平行线的性质,得出∠F=∠B=120°,再根据∠BCD=140°,可得∠DCF=40°,根据∠CDE=∠F+∠DCF进行计算即可.【解析】解:如图,延长BC,ED交于点F,∵AB∥EF,∴∠F=∠B=120°,∵∠BCD=140°,∴∠DCF=40°,∴∠CDE=∠F+∠DCF=120°+40°=160°,故选:D.12.(2020•潜江期末)如图,AB∥CD,∠BED=60°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB的度数是150°.【点睛】过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以及角平分线的定义可得“∠FBE+∠EDF(∠ABE+∠CDE)”,再依据四边形内角和为360°结合角的计算即可得出结论.【解析】解:如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=60°,∴∠ABE+∠CDE=300°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF(∠ABE+∠CDE)=150°,∵四边形的BFDE的内角和为360°,∴∠BFD=360°﹣150°﹣60°=150°.故答案为:150°.巩固练习1.(2020•新乡二模)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°【点睛】根据平行线性质求出∠A,根据三角形外角性质得出∠2=∠1﹣∠A,代入求出即可.【解析】解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.2.(2020•高明区期末)如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【点睛】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【解析】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.3.(2020•宿豫区期中)如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB =65°,则∠AEN等于()A.25°B.50°C.65°D.70°【点睛】根据平行线的性质可得∠DEF=65°,再由折叠可得∠NEF=∠DEF=65°,再根据平角定义可得答案.【解析】解:∵∠EFB=65°,AD∥CB,∴∠DEF=65°,由折叠可得∠NEF=∠DEF=65°,∴∠AEN=180°﹣65°﹣65°=50°,故选:B.4.(2020•稷山校级一模)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°【点睛】由直线a∥b,利用“两直线平行,内错角相等”可得出∠4的度数,结合对顶角相等可得出∠5的度数,再利用三角形内角和定理可求出∠3的度数.【解析】解:给图中各角标上序号,如图所示.∵直线a∥b,∴∠4=∠2=45°,∴∠5=45°.∵∠1+∠3+∠5=180°,∴∠3=180°﹣32°﹣45°=103°.故选:C.5.(2020•温岭市一模)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°【点睛】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解析】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.6.(2020•遂宁期末)如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°【点睛】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解析】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=95°,∴∠1+∠2=∠α+180°﹣∠β=95°,∴∠β﹣∠α=85°.故选:D.7.(2020•河南模拟)如图,将矩形ABCD沿GH折叠,点C路在点Q处,点D落在AB边上的点E处,若∠AGE=34°.则∠BHQ等于()A.73°B.34°C.45°D.30°【点睛】由折叠可得,∠DGH=∠EGH∠DGE=73°,再根据AD∥BC,即可得到∠BHG=∠DGH=73°,根据EG∥QH,即可得到∠QHG=180°﹣∠EGH=107°,再根据角的和差关系即可求解.【解析】解:∵∠AGE=34°,∴∠DGE=146°,由折叠可得,∠DGH=∠EGH∠DGE=73°,∵AD∥BC,∴∠BHG=∠DGH=73°,∵EG∥QH,∴∠QHG=180°﹣∠EGH=107°,∴∠BHQ=∠QHG﹣∠BHG=107°﹣73°=34°.故选:B.8.(2020•孟津期末)如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°【点睛】过C作CM∥AB,延长C D交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【解析】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.9.(2020•福州期末)如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=43°,则∠B=()A.43°B.57°C.47°D.45°【点睛】利用平行线的性质和三角形内角和定理计算即可.【解析】解:∵BC⊥AE,∴∠ACB=90°,∵CD∥AB,∴∠ECD=∠A=43°,∴∠B=90°﹣∠A=47°,故选:C.10.(2020•沙坪坝区校级期末)将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1=28°.【点睛】由折叠的性质可得,∠DEF=∠GEF,根据平行线的性质可得,∠DEF=∠EFG=55°,根据平角的定义即可求得∠1,再由平行线的性质求得∠2,从而求解.【解析】解:∵AD∥BC,∠EFG=52°,∴∠DEF=∠FEG=52°,∠1+∠2=180°,由折叠的性质可得∠GEF=∠DEF=52°,∴∠1=180°﹣∠GEF﹣∠DEF=180°﹣52°﹣52°=76°,∴∠2=180°﹣∠1=104°,∴∠2﹣∠1=104°﹣76°=28°.故答案为:28.11.(2020•泉州期末)如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2等于58°.【点睛】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【解析】解:如图,∵AB∥CD,∴∠1=∠BAC=116°,由折叠可得,∠BAD∠BAC=58°,∵AB∥CD,∴∠2=∠BAD=58°,故答案为:58°.12.(2020•开远市二模)如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为55°.【点睛】先根据角平分线的定义,得出∠ABE=∠CBE∠ABC,∠ADE=∠CDE∠ADC,再根据三角形内角和定理,推理得出∠BAD+∠BCD=2∠E,进而求得∠E的度数.【解析】解:∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠CBE∠ABC,∠ADE=∠CDE∠ADC,∵∠ABE+∠BAD=∠E+∠ADE,∠BCD+∠CDE=∠E+∠CBE,∴∠ABE+∠BAD+∠BCD+∠CDE=∠E+∠ADE+∠E+∠CBE,∴∠BAD+∠BCD=2∠E,∵∠BAD=70°,∠BCD=40°,∴∠E(∠BAD+∠BCD)(70°+40°)=55°.故答案为:55°.。
课件七年级数学人教版下册平行线中的拐点(拐角)问题专题

∴A.∠A1E2C0°=∠C-∠BA.130° C.140° D.150°
83.如图,所直示线,a若∥AbB,∥则CD∠,AB则D∠的A度,数∠D是,(∠E之)间的度数关系是( )
3(.3)如图利所用示上,述若结论AB解∥决CD问,题则:∠如A,图∠④D,,A∠BE∥之C间D,的∠度A数BE关和系∠是CD(E的平)分线相交于点F,∠E=140°,求∠BFD的度数.
10.如图,桌面上有木条b、c固定,木条a在桌面上绕点O旋转n°(0<n<90)后与b平行,则n=( )
过点E作EF,使得EF∥AB
如图②,MA1∥NA3,则∠A1+∠A2+∠A3=
,请你说明理由;
3.如图所示,若AB∥CD,则∠A,∠D,∠E之间的度数关系是( )
A.72° B.68° C.63° D.18°
(A.2)340如°.图③如,BM.图A315∥°,NA4A,CD则.∠∥4A01°C+∠BA2+,D∠.A34∠+5∠°DA4==43°; ,∠B=25°,则∠DEB的度数为(
)
7.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )
如图AB∥CD,∠1=140°,∠2=90°,则∠3的度数是( )
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
小结
问题1:关于平行线中“拐角”问题,如何添加辅助线? 问题2:如何寻找动角之间的数量关系?
课后检测
1.如图,已知AB∥DE,∠B=20°,∠D=130°,那么∠BCD等于( ) A.60° B.70° C.80° D.90° 2.如图AB∥CD,∠1=140°,∠2=90°,则∠3的度数是( )
模型2:平行线间的“铅笔”模型(子弹头)
七年级下册数学-平行线中的拐点问题压轴题三种模型全攻略

平行线中的拐点问题压轴题全攻略模型一:锯齿模型【锯齿模型基础】已知AB ∥DE ,则 证明:【锯齿模型变形】变式一:已知AB ∥DE ,则 证明:变式二:若a ∥b ,则【典题1】如图,将直角三角板放置在矩形纸片上,若148∠=︒,则2∠的度数为( )A .42°B .48°C .52°D .60°巩固练习1.( )如图,直线l 1//l 2,120∠=︒,则23∠+∠=_______ .2.( )已知:如图,AB //,CD BFE FEC ∠=∠.求证:ABF DCE ∠=∠. (1)下面是小明同学的推理过程,请按先后顺序.....填写空格: 解:连接BC .∵BFE FEC ∠=∠(已知)∵___________//___________(内错角相等,两直线平行) ∵FBC ECB ∠=∠(___________) ∵AB //CD (已知)∵ABC DCB ∠=∠(两直线平行,内错角相等)∵ABC FBC DCB ∠-∠=∠-___________(___________) 即ABF DCE ∠=∠.(2)试用其他方法进行推理,并书写证明过程.3. 已知:直线AB CD ∥.(1)如图,点E 在直线BD 的左侧,则∵B ,∵D 和∵E 之间的数量关系是 .(2)如图,点E 在直线BD 的左侧,BF 、DF 分别平分∵ABE 、∵CDE ,试探究∵BFD 和∵BED 的数量关系,并说明理由.(3)如图,点E 在直线BD 的右侧,BF 、DF 分别平分∵ABE 、∵CDE ,请直接写出∵BFD 和∵BED 的数量关系.模型二:铅笔头模型【铅笔头模型基础】已知AB ∥DE ,结论: 证明:【铅笔头模型变形】变式一:已知AB ∥DE ,则∠B+∠M+∠N+∠E=证明:变式二:若a ∥b ,则∠A 1+∠A 2+...+∠An-1+∠An=180°×(n-1)=【典题1】如图,已知//AB CD ,140A ∠=︒,120E ∠=︒,则C ∠的度数是( ) A .80° B .120° C .100° D .140°巩固练习1.(↓↓)如图所示,若AB∵EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++-2.(↓↓)如图,如果AB ∥CD ,那么∵B +∵F +∵E +∵D =___°.3.(↓)如图,已知AB ∵CD . (1)如图1所示,∵1+∵2= ;(2)如图2所示,∵1+∵2+∵3= ;并写出求解过程. (3)如图3所示,∵1+∵2+∵3+∵4= ;(4)如图4所示,试探究∵1+∵2+∵3+∵4+∵+∵n = .4.(↓↓)问题情境:如图①,直线AB CD ∥,点E ,F 分别在直线AB ,CD 上.(1)猜想:若1130∠=︒,2150∠=︒,试猜想P ∠=______°;(2)探究:在图①中探究1∠,2∠,P ∠之间的数量关系,并证明你的结论; (3)拓展:将图①变为图②,若12325∠+∠=︒,75EPG ∠=︒,求PGF ∠的度数.5.(↓↓)(1)如图(1)AB ∵CD ,猜想∵BPD 与∵B 、∵D 的关系,说出理由. (2)观察图(2),已知AB ∵CD ,猜想图中的∵BPD 与∵B 、∵D 的关系,并说明理由.(3)观察图(3)和(4),已知AB ∵CD ,猜想图中的∵BPD 与∵B 、∵D 的关系,不需要说明理由.【过关检测】 一、选择题1.如图,AB ∥CD ,∵1=30°,∵2=40°,则∵EPF 的度数是( )A .110°B .90°C .80°D .70°2.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示,已知//AB CD ,77BAE ∠=︒,131DCE ∠=︒,则E ∠的度数是 ( )A .28︒B .54︒C .26︒D .56︒3.如图,某沿湖公路有三次拐弯,若第一次的拐角∵A =110°,第二次的拐角∵B =140°,第三次的拐角为∵C ,第三次拐弯后的道路恰好和第一次拐弯之前的道路平行,则∵C 的度数是( )A .130°B .140°C .145°D .150°二、填空题4.如图,AB ∥CD ,E 为平行线间一点,若40B ∠=︒,60D ∠=︒,则E ∠=______度.5.如图,某县积极推进“乡村振兴计划”,要对一段水渠进行扩建.如图,已知现有水渠从A 地沿北偏东50°的方向到B 地,又从B 地沿北偏西20°的方向到C 地.现要从C 地出发修建一段新渠CD ,使CD AB ∥,则∵BCD 的度数为_____度.6.如图,AB CD ,DCE ∠的角平分线CG 的反向延长线和ABE ∠的角平分线BF 交于点F ,33F ∠E-∠=︒,则E ∠的度数为_________︒.三、解答题7.根据下列叙述填依据.(1)已知如图1,AB CD ∥,求∵B +∵BFD +∵D 的度数.解:过点F 作FE AB ∥所以∵B +∵BFE =180°( ) 因为AB CD ∥、FE AB ∥(已知)所以 ( ) 所以∵D +∵DFE =180°( ) 所以∵B +∵BFE +∵D =∵B +∵BFE +∵EFD +∵D =360°(2)根据以上解答进行探索.如图(2)(3)AB EF 、∵D 与∵B 、∵F 有何数量关系(请选其中一个简要证明) 备用图:(3)如图(4)AB EF ,∵C =90°,∵α与∵β、∵γ有何数量关系(直接写出结果,不需要说明理由)8.已知直线12l l ∥,3l 和1l ,2l 分别交于C ,D 点,点A ,B 分别在线1l ,2l 上,且位于3l 的左侧,点P 在直线3l 上,且不和点C ,D 重合.(1)如图1,有一动点P 在线段CD 之间运动时,求证:12APB ∠=∠+∠;(2)如图2,当动点P 在C 点之上运动时,猜想APB ∠、1∠、2∠有何数量关系,并说明理由.【课后巩固】 1. 探究:(1)如图①,已知AB CD ,图中∠1,∠2,∠3之间有什么关系? (2)如图②,已知AB CD ,图中∠1,∠2,∠3,∠4之间有什么关系?(3)如图③,已知AB CD ,请直接写出图中∠1,∠2,∠3,∠4,∠5之间的关系;2.已知:AB∥EF,在平面内任意选取一点C.利用平行线的性质,探究∵B、∵F、∵C满足的数量关系.(1)将探究∵B、∵C、∵F之间的数量关系填写下表:(2)请选择其中一个图形进行说明理由.3.问题情境:如图1,AB CD∥,∵P AB=130°,∵PCD=120°,求∵APC的度数.小明的思路是:如图2,过P 作PE AB∥,通过平行线性质,可得∵APC=50°+60°=110°问题迁移:(1)如图3,AD BC∥,点P 在射线OM 上运动,当点P 在A、B两点之间运动时,∵ADP=∵α,∵BCP=∵β,∵CPD、∵α、∵β之间有何数量关系?请说明理由(2)在(1)的条件下,如果点P在A、B两点外侧运动时,点P 与点A、B、O三点不重合,请你直接写出∵CPD、,αβ∠∠间的数量关系.图形∵B、∵F、∵C满足的数量关系图(1)图(2)图(3)图(4)图(5)图(6)。
专题03 平行线中的拐点问题期末真题汇编(原卷版)-23-2024学年七年级数学下学期期末(人教版)

专题03平行线中的拐点问题期末真题汇编之五大模型平行线中的拐点模型在初中数学几何模块中属于基础工具类问题,也是学生必须掌握的一块内容,熟悉这些模型可以快速得到角的关系,求出所需的角.本专题就平行线中的拐点模型进行梳理及对应试题分析,方便掌握.拐点(平行线)模型的核心是一组平行线与一个点,然后把点与两条线分别连起来,就构成了拐点模型,这个点叫做拐点,两条线的夹角叫做拐角.通用解法:见拐点作平行线;基本思路:和差拆分与等角转化.模型一:猪蹄模型或锯齿模型【模型解读】图1图2图3如图1,①已知:AM∥BN,结论:∠APB=∠A+∠B;②已知:∠APB=∠A+∠B,结论:AM∥BN.如图2,已知:AM∥BN,结论:∠P1+∠P3=∠A+∠B+∠P2.如图3,已知:AM∥BN,结论:∠P1+∠P3+...+∠P2n+1=∠A+∠B+∠P2+...+∠P2n.【模型证明】(1)∠APB=∠A+∠B这个结论正确,理由如下:如图1,过点P作PQ∥AM,∵PQ∥AM,AM∥BN,∴PQ∥AM∥BN,∴∠A=∠APQ,∠B=∠BPQ,∴∠A+∠B=∠APQ+∠BPQ=∠APB,即:∠APB=∠A+∠B.(2)根据(1)中结论可得,∠A+∠B+∠P2=∠P1+∠P3,故答案为:∠A+∠B+∠P2=∠P1+∠P3,(3)由(2)的规律得,∠A+∠B+∠P2+…+P2n=∠P1+∠P3+∠P5+…+∠P2n+1故答案为:∠A+∠B+∠P2+…+P2n=∠P1+∠P3+∠P5+…+∠P2n+1模型二:铅笔头模型图1图2图3如图1,①已知:AM∥BN,结论:∠1+∠2+∠3=360°;②已知:∠1+∠2+∠3=360°,结论:AM∥BN.如图2,已知:AM∥BN,结论:∠1+∠2+∠3+∠4=540°如图3,已知:AM∥BN,结论:∠1+∠2+…+∠n=(n-1)180°.【模型证明】在图1中,过P作AM的平行线PQ,∵AM∥BN,∴PQ∥BN,∴∠1+∠APQ=180°,∠3+∠BPQ=180°,∴∠1+∠2+∠3=360°;在图2中,过P1作AM的平行线P1C,过点P2作AM的平行线P2D,∵AM∥BN,∴AM∥P1C∥P2D∥BN,∴∠1+∠AP1C=180°,∠P2P1C+∠P1P2D=180°,∠BP2D+∠4=180°,∴∠1+∠2+∠3+∠4=540°;在图3中,过各角的顶点依次作AB的平行线,根据两直线平行,同旁内角互补以及上述规律可得:∠1+∠2+∠3+…+∠n=(n﹣1)180°.模型三:牛角模型图1图2如图1,已知AB∥CD,结论:∠1=∠2+∠3如图2,已知AB∥CD,结论:∠1+∠3-∠2=180°【模型证明】在图1中,过E作AB的平行线EF,∴∠1+∠FEB=180°图1图2∵AB∥CD,∴EF∥CD,∴∠3+=180°,即:∠3+∠2+∠FEB=180°,∴∠1=∠2+∠3.在图2中,过E作AB的平行线EF,∴∠1+∠FEB=180°∵AB∥CD,∴EF∥CD,∴∠3=∠FEC,即:∠3-∠2=∠FEB,∴∠1+∠3-∠2=180°.注意;牛角模型的证明也可添加其他辅助线,如:延长AB交DE于点F,或延长EB交CD于点F 等.模型四:羊角模型图1图2如图1,已知:AB ∥DE ,结论:αγβ=-.如图2,已知:AB ∥DE ,结论:180αβγ++=︒.【模型证明】在图1中,过C 作AB 的平行线CF ,∴∠β=∠FCB图1图2∵AB ∥DE ,∴CF ∥DE ,∴∠γ=∠FCD ,∵∠α=∠FCD-∠FCB ,∴∠α=∠γ-∠β.在图2中,过C 作AB 的平行线CF ,∴∠β=∠FCB∵AB ∥DE ,∴CF ∥DE ,∴∠γ+∠FCD=180°,∵∠FCD=∠α+∠FCB ,∴∠α+∠β+∠γ-∠=180°.模型五:蛇形模型基本模型:如图,AB ∥CD ,结论:∠1+∠3-∠2=180°.图1图2如图1,已知:AB ∥DE ,结论:180αγβ+=+︒.如图2,已知:AB ∥DE ,结论:180αβγ+=+︒.【模型证明】在图1中,过C 作AB 的平行线CF ,∴∠β=∠FCB.∵AB ∥DE ,∴CF ∥DE ,∴∠γ+∠FCD=180°,∵∠α=∠FCD +∠FCB ,∴∠α+∠γ=∠β+180°在图2中,过C 作AB 的平行线CF ,∴∠β+∠FCB=180°,∵AB ∥DE ,∴CF ∥DE ,∴∠γ=∠FCD ,∵∠α=∠FCD+∠FCB ,∴∠α+∠β=∠γ+180°平行线中的拐点问题之猪蹄模型或锯齿模型例题:(22-23七年级下·广西崇左·期末)如图:AB CD ,28B ∠=︒,60E ∠=︒,则D ∠=.【变式训练】1.(22-23七年级下·重庆彭水·期末)如图,已知直线AB CD ∥,点E 在AB 和CD 之间,连接AE CE ,,若255∠=︒,335∠=︒,则1∠=︒.2.(22-23七年级下·浙江杭州·期末)如图,AB CD ∥,射线FE ,FG 分别与AB ,CD 交于点M ,N ,若3F FND EMB ∠=∠=∠,则F ∠的度数是.平行线中的拐点问题之铅笔头模型例题:(22-23七年级下·湖南永州·期末)如图所示,已知AB CD ∥,135A ∠=︒,140C ∠=︒,则P ∠的度数是.【变式训练】1.(22-23七年级下·黑龙江绥化·期末)如图,已知AE DF ∥,则A B C D ∠+∠+∠+∠=.2.(23-24七年级上·四川宜宾·期末)如图,已知直线AB CD ∥,点M ,N 分别在直线AB ,CD 上,点E 为AB ,CD 之间一点,且点E 在线段MN 的右侧,128MEN ∠=︒.若BME ∠与DNE ∠的平分线相交于点1E ,1BME ∠与1DNE ∠的平分线相交于点2E ,2BME ∠与2DNE ∠的平分线相交于点3E ,……以此类推,若4n ME N ∠=︒,则n 的值是.3.(22-23七年级下·河北石家庄·期末)下列各图中的1MA 与n NA 平行.图1中的12180A A ∠+∠=︒,图2中的123360A A A ∠+∠+∠=︒,图3中的1234540A A A A ∠+∠+∠+∠=︒,图4中的12345A A A A A ∠+∠+∠+∠+∠=︒,⋯据此推测,图10中的1231011A A A A A ∠+∠+∠+⋯+∠+∠=.︒平行线中的拐点问题之牛角模型例题:(23-24八年级上·辽宁阜新·期末)如图,已知AB CD ∥,100ABE ∠=︒,40BEC ∠=︒,则ECD∠的度数为.【变式训练】1.(22-23七年级下·湖北武汉·期末)如图,80AEC ∠=︒,在AEC ∠的两边上分别过点A 和点C 向同方向作射线AB 和CD ,且AB CD ,若EAB ∠和ECD ∠的角平分线所在的直线交于点P (P 与C 不重合),则APC ∠的大小为.平行线中的拐点问题之羊角模型例题:(21-22七年级下·黑龙江哈尔滨·期末)有一天李小虎同学用“几何画板”画图,他先画了两条平行线AD ,BC ,然后在平行线间画了一点E ,连接CE ,DE 后(如图①),他用鼠标左键点住点E ,拖动后,分别得到如图②,③,④等图形,这时他突然一想,C ∠,D ∠与DEC ∠之间的度数有没有某种联系呢?接着小虎同学通过利用“几何画板”的“度量角度”和“计算”功能,找到了这三个角之间的关系.(1)请直接写出图①到图④各图中的C ∠,D ∠与DEC ∠之间的关系吗?(2)请从图③④中,选一个说明它成立的理由.【变式训练】1.(23-24七年级上·河南南阳·期末)【课题学习】平行线的“等角转化”.如图1,已知点A 是BC 外一点,连接AB ,AC .求BAC B C ∠+∠+∠的度数.解:过点A 作ED BC ∥,B ∴∠=,C ∠=,又180EAB BAC DAC ∠+∠+∠=︒ .B BAC C ∴∠+∠+∠=.【问题解决】(1)阅读并补全上述推理过程.【解题反思】从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ∠,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.【方法运用】(2)如图2所示,已知AB CD ∥,BE 、CE 交于点E ,80BEC ∠=︒,在图2的情况下求B C ∠-∠的度数.(3)如图3,若AB CD ∥,点P 在AB ,CD 外部,请直接写出B ∠,D ∠,BPD ∠之间的关系.2.(23-24七年级上·福建莆田·期末)如图,已知AB CD ∥,分别探索下列四个图形中APC ∠与A ∠,C ∠的关系.(1)如图①,A APC C ∠+∠+∠=_______;如图②,APC ∠=_______;如图③,APC ∠=______;如图④,APC ∠=______.(2)得到图②结论的过程如下:(补足理由)过P 点作PQ AB ∥,又∵AB CD ∥,∴PQ CD ∥(同平行于第三条直线的两直线平行)∵PQ AB ∥,PQ CD∥∴APQ ∠=_______,CPQ ∠=________()∵APC APQ CPQ =+∠∠∠(图形性质)∴APC ∠=_______(等量代换)(3)仿照(2),在图③、④中,选一个写出得到结论的过程(给出理由).平行线中的拐点问题之蛇形模型例题:(2021-23七年级下·河南周口·期末)如图,若AB CD ,则1∠=.【变式训练】1.(23-24八年级上·陕西西安·期末)如图,AB CD ∥,点,E F 为AB 与CD 之间两点,AE EF ⊥,若36A ∠=︒,70F ∠=︒,则D ∠的度数为.2.(23-24八年级上·四川成都·期末)如图a b ,则图中A ∠,B ∠,1∠,2∠的数量关系是.一、单选题1.(23-24九年级上·重庆渝北·期末)如图,已知AB CD ∥,33BAP ∠=︒,21DCP ∠=︒,则P ∠的度数为()A .52︒B .53︒C .54︒D .55︒2.(23-24七年级上·山西长治·期末)如图,AB CD ,130PAB ∠=︒,120PCD ∠=︒,则APC ∠的度数为()A .140︒B .130︒C .120︒D .110︒二、填空题3.(22-23七年级下·江苏苏州·期末)如图,已知AB CD ∥,22,33EAF BAF ECF DCF ∠=∠∠=∠,记AEC m AFC ∠=∠,则m 的值为.4.(23-24七年级上·四川乐山·期末)如图是一盏可调节台灯,如图为示意图.固定支撑杆AO ⊥底座MN 于点O ,AB 与BC 是分别可绕点A 和B 旋转的调节杆,台灯灯罩可绕点C 旋转调节光线角度,在调节过程中,最外侧光线CD 、CE 组成的DCE ∠始终保持不变.现调节台灯,使外侧光线∥CD MN ,CE BA ∥,若158BAO ∠=︒,则DCE ∠=.三、解答题5.(23-24七年级上·吉林长春·期末)【感知探究】如图①,已知,AB CD ∥,点M 在AB 上,点N 在CD 上.求证:MEN BME DNE ∠=∠.【类比迁移】如图②,F ∠、BMF ∠、DNF ∠的数量关系为.(不需要证明)【结论应用】如图③,已知AB DE ∥,120BAC ∠=︒,80D ∠=︒,则ACD ∠=°.6.(23-24七年级上·云南昆明·期末)(1)如图①,12MA NA ∥,则12A A ∠+∠=_______;如图②,13MA NA ∥,则123A A A ∠+∠+∠=_______;(2)如图③,14MA NA ∥,则1234A A A A ∠+∠+∠+∠=_______;(3)利用上述结论解决问题:如图④,AB CD ∥,ABE ∠和CDE ∠的平分线相交于点F ,80E ∠=︒,求BFD ∠的度数.7.(23-24八年级上·陕西咸阳·期末)如图,已知AB CD ,点E ,F 分别为AB ,CD 之间的点.(1)如图1,若100E ∠=︒,求B D ∠∠+的度数;(2)若36,108B D ∠=︒∠=︒.①如图2,请探索F E ∠-∠的度数是否为定值,请说明理由;②如图3,已知EP 平分BEF ∠,FG 平分EFD ∠,反向延长FG 交EP 于点P ,求P ∠的度数.8.(23-24八年级上·陕西榆林·期末)综合与探究某学习小组发现一个结论:已知直线a b ,若直线a c P ,则b c P .他们发现这个结论运用很广、请你利用这个结论解决以下问题.已知直线AB CD ,点E 在AB ,CD 之间,点P ,Q 分别在直线AB ,CD 上,连接PE ,EQ .(1)如图1,作EH AB ∥,运用上述结论,探究PEQ ∠与APE CQE ∠+∠的数量关系,并说明理由.(2)如图2,3EPF BPF ∠=∠,3EQF DQF ∠=∠,求出F ∠与E ∠之间的数量关系.(3)如图3,直接写出1∠,2∠,E ∠,F ∠,G ∠之间的数量关系:__________.9.(23-24七年级下·贵州黔南·期末)(1)问题情境:图①中,AB CD ∥,120BAP ∠=︒,130DCP ∠=︒,求APC ∠的度数.小明的思路是:过P 作PE AB ∥,通过平行线性质来求APC ∠.按小明的思路,易求得APC ∠的度数为_________;(直接写出答案)(2)问题探究:图②中,AB CD ∥,P 为AB CD ,之间一点,连接PA PC ,,试探究APC ∠与BAP ∠,PCD ∠之间的数量关系;(3)图③中,AB CD ∥,52AEP ∠=︒,122PFC ︒∠=,求EPF ∠的度数.10.(23-24七年级上·湖南衡阳·期末)问题情境1:如图1,AB CD ∥,P 是ABCD 内部一点,P 在BD 的右侧,探究B ∠,P ∠,D ∠之间的关系?(1)如图2,过P 作PE AB ,可得B ∠,P ∠,D ∠之间满足______关系.(直接写出结论)问题情境2如图3,AB CD ∥,P 是AB ,CD 内部一点,P 在BD 的左侧,(2)得B ∠,P ∠,D ∠之间满足______关系.(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB CD ∥,ABE ∠与CDE ∠两个角的角平分线相交于点F .(3)如图4,若80E ∠=︒,求BFD ∠的度数;(写证明过程)(4)如图5中,13ABM ABF ∠=∠,13CDM CDF ∠=,写出M ∠与E ∠之间数量关系并证明结论.11.(22-23七年级下·新疆乌鲁木齐·期末)如图,AB CD ∥,定点E ,F 分别在直线AB CD ,上,平行线AB CD ,之间有动点P ,Q .(1)如图1,当点P 在EF 的左侧时,AEP EPF PFC ∠∠∠,,满足数量关系为______;如图2,当点P 在EF 的右侧时,AEP EPF PFC ∠∠∠,,满足数量关系为______;(2)如图3,若点P ,Q 都在EF 的左侧,且EP FP ,分别平分AEQ CFQ ∠∠,,则EPF ∠和EQF ∠的数量关系为______.(3)如图4,若点P 在EF 的左侧,点Q 在EF 的右侧且EP FP ,分别平分AEQ CFQ ∠∠,,则EPF ∠和EQF ∠有怎样的数量关系?请说明理由.12.(23-24七年级上·四川宜宾·期末)如图,AB CD ∥,点E 、F 分别在直线AB ,CD 上,P 为直线AB 和CD 之间的一个动点,且满足0180EPF ︒<∠<︒.(1)如图1,EPF ∠、AEP ∠、PFC ∠之间的数量关系为.(2)如图2,EPF ∠、AEP ∠、PFC ∠之间的数量关系为.(3)如图3,QE ,QF 分别平分PEB ∠和PFD ∠,点P 在EF 左侧,点Q 在EF 右侧.①若60EPF ∠=︒,求EQF ∠的度数.②猜想规律:EPF ∠与EQF ∠的数量关系可表示为.③如图4,若BEQ ∠与DFQ ∠的角平分线交于点1Q ,1BEQ ∠与1DFQ ∠的角平分线交于点2Q ,2BEQ ∠与2DFQ ∠的角平分线交于点3Q ,……依此类推,则EPF ∠与2023EQ F ∠的数量关系是.。
七年级数学下册-解题技巧专题:平行线中有关拐点的模型专题问题(4类热点题型讲练)(解析版)

第03讲解题技巧专题:平行线中有关拐点的模型专题问题(4类热点题型讲练)目录【考点一平行线中含一个拐点问题】 (1)【考点二平行线中含两个拐点问题】 (11)【考点三平行线中含多个拐点问题】 (21)【考点四平行线中在生活上含拐点问题】 (27)【考点一平行线中含一个拐点问题】例题:(2023上·广东揭阳·八年级统考期末)如图,直线【答案】134︒/134度【分析】本题主要考查利用平行线的性质求解相关角度,两直线平行内错角相等,直接过点∠进行分割转移,最后利用邻补角的概念,直接求出线把E【详解】见试题解答内容∴C FEC ∠=∠,BAE FEA ∠=∠,∵44C ∠=︒,90AEC ∠=︒;∴44FEC ∠=︒,904446BAE AEF ∠=∠=︒-︒=︒,∴118018046134BAE ∠=︒-∠=︒-︒=︒;故答案为:134︒.【变式训练】【答案】180APD A ∠=︒+∠-【分析】过点P 作PM AB ∥,从而可得PM CD ∥,然后利用平行线的性质可得A APM ∴∠=∠,AB CD ∥ ,PM CD ∴∥,【答案】25︒/25度【分析】本题主要考查等边三角形的性质,平行线的判定与性质,过点平行线的性质可得结论.【详解】解:过点B 作BF ∴35,ABF α∠=∠=︒∵ABC 是等边三角形,∴60,ABC ∠=︒∴FBC ABC ABF ∠=∠-∠∵12l l ∥,【答案】(1)见解析;(2)F BMF DNF ∠=∠-∠;(3)20【分析】本题主要考查平行线的判定和性质,作辅助线是解题的关键.(1)过点E作EF AB∥,根据平行线的性质可求解;∥,根据平行线的性质即可得到结论;(2)如图②,过F作FH AB∥,根据平行线的性质即可得到结论.(3)如图③,过C作CG AB【详解】(1)证明:如图①,过点E作EF AB∥,则MEF BME∠=∠,∥,又∵AB CD∥,∴EF CD∴∠=∠,NEF DNE∴∠=∠+∠,MEN MEF NEF∠=∠+∠;即MEN BME DNE(2)解:BMF MFN FND∠=∠+∠.,证明:如图②,过F作FK AB∴∠=∠,BMF MFK∥,∵AB CD,∴FK CD∴∠=∠,FND KFN∴∠=∠-∠=∠-∠,MFN MFK KFN BMF FND即:BMF MFN FND∠=∠+∠.故答案为:BMF MFN FND∠=∠+∠;∥,(3)如图③,过C作CG AB18060∴∠=︒-∠=︒,GCA BAC∥,∵AB DE∥,∴CG DEGCD CDE∴∠=∠=︒,80∴∠=︒,20ACD故答案为:20.4.(2023上·七年级课时练习)已知AB CD ,点E 为,AB CD 之外任意一点.(1)如图1,探究BED ∠与,B D ∠∠之间的数量关系,并说明理由;(2)如图2,探究CDE ∠与,B BED ∠∠之间的数量关系,并说明理由.【拓展变式】如图,“抖空竹”是国家级非物质文化遗产.在“抖空竹”的一个瞬间如图1所示,将图1抽象成一个数学问题:如图2,若,70,110AB CD EAB ECD ︒∠=∠=︒∥,则E ∠=_______________.【答案】(1)B BED D ∠=∠+∠,理由见解析;(2)CDE B BED ∠=∠+∠,理由见解析;[拓展变式]40︒.【分析】(1)过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质可得,BEF B D DEF ∠=∠∠=∠,进而得出结论;(2)理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质可得B BEF ∠=∠,CDE DEF ∠=∠,进而得出结论;(3)过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质得出180110AEF EAB ∠=︒-∠=︒,18070CEF ECD ∠=︒-∠=︒,进而即可求解.【详解】解:(1)B BED D ∠=∠+∠.理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥.,BEF B D DEF ∴∠=∠∠=∠.BEF BED DEF ∠=∠+∠ ,B BED D ∴∠=∠+∠.(2)CDE B BED ∠=∠+∠.理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥.B BEF ∴∠=∠,CDE DEF ∠=∠.DEF BEF BED ∠=∠+∠ ,CDE B BED ∴∠=∠+∠.【拓展变式】过点E 作EF AB ∥,则AB CD EF ∥∥.70,110EAB ECD ︒︒∠=∠= 180110AEF EAB ∠=︒-∠=︒,18070CEF ECD ∠=︒-∠=︒11070AEC AEF CEF ∴∠=∠-∠=︒-︒=40︒,故答案为:40︒.【点睛】本题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.5.(2023上·吉林长春·七年级统考期末)如图,AB CD ∥,点E 、F 分别在直线AB 、CD 上,点P 是AB 、CD 之间的一个动点.【感知】如图①,当点P 在线段EF 左侧时,若50AEP ∠=︒,70PFC ∠=︒,求EPF ∠的度数.分析:从图形上看,由于没有一条直线截AB 与CD ,所以无法直接运用平行线的性质,这时需要构造出“两条直线被第三条直线所截”的基本图形,过点P 作PG AB ∥,根据两条直线都和第三条直线平行,那么这两条直线也互相平行,可知PG CD ∥,进而求出EPF ∠的度数.【探究】如图②,当点P 在线段EF 右侧时,AEP ∠、EPF ∠、PFC ∠之间的数量关系为______.【答案】感知:120︒探究:360AEP EPF PFC ∠+∠+∠=︒【分析】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.感知:过点P 作PG AB ∥,根据猪脚模型,即可解答;探究:过点P 作PG AB ∥,根据铅笔模型,即可解答.【详解】感知:解:过点P 作PG AB ∥,50EPG AEP ∴∠=∠=︒,AB CD ∥ ,PG CD ∴∥,70GPF PFC ∴∠=∠=︒,5070120EPF EPG GPF ∴∠=∠+∠=︒+︒=︒,EPF ∠∴的度数为120︒;探究:解:过点P 作PG AB ∥,180EPG AEP ∴∠+∠=︒,AB CD ∥ ,PG CD ∴∥,180GPF PFC ∴∠+∠=︒,360AEP EPG FPG PFC ∴∠+∠+∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒,【答案】(1)90;(2)①56︒②见解析;(3)12290∠+∠=︒,理由见解析.【分析】(1)利用角平分线的定义可得,112PAC BAC ∠=∠=∠,122PCA ∠=∠=性质,求解即可;(2)①根据垂直可得90ACP ∠=︒,从而得到ACD ∠的度数,利用平行线的性质得到求解;②利用角平分线的定义和平行线的性质,求解即可;(3)根据角平分线的定义可得22ACD ∠=∠,再根据平行线的性质可得ACD ∠+∠∠=∠+∠.(完成下面的填空部分)(1)【基础问题】如图1,试说明:AGD A D证明:过点G作直线MN AB∥,∵72∠=︒AFC ,∴18072108GAB ∠=︒-︒=∵AH 平分GAB ∠,∴1122HAB GAB ∠=∠=【考点二平行线中含两个拐点问题】例题:如图所示,AB CD ∥、BEFD 是AB 、CD 之间的一条折线,则∠1+∠2+∠3+∠4=_____.【答案】540︒【分析】连接BD ,根据平行线的性质由AB ∥CD 得到∠ABD +∠CDB =180°,根据四边形的内角和得到∠2+∠3+∠EBD +∠FBD =360°,于是得到结论.【详解】解:连接BD ,如图,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∵∠2+∠3+∠EBD +∠FBD =360°,∴∠2+∠3+∠EBD +∠FDB +∠ABD +∠CDB =540°,即∠1+∠2+∠3+∠4=540°.故答案为:540°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【变式训练】【答案】34︒/34度【分析】过E 作EG AB ∥BED BEG DEG ∠=∠+∠AB CD ∥ ,AB EG FH CD ∴∥∥∥ABE BEG ∴∠=∠,DEG ∠DFH CDF ∠=∠,BFH ∠【答案】②③④【分析】①过点E作EF∥AB,由平行线的性质即可得出结论;②过点点E作EF∥AB,由平行线的性质即可得出结论;③如图3,过点C作CD∥AB,延长AB到G,由平行线的性质可得出180④过点P作PF∥AB,由平行线的性质可得出∠A=∠CPF+∠APC=∠C+②如图2,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠A =∠AEF ,∠C =∠CEF ,∴∠A +∠C =∠CEF +∠AEF =∠AEC ,则②正确;③如图3,过点C 作CD ∥AB ,延长AB 到G ,∵AB ∥EF ,∴AB ∥EF ∥CD ,∴∠DCF =∠EFC ,由②的结论可知∠GBH +∠HCD =∠BHC ,又∵180GBH ABH =︒-∠∠,∠HCD =∠HCF -∠DCF∴180°-∠ABH +∠HCF -∠DCF =∠BHC ,∴180°-∠ABH +∠HCF -∠EFC =∠BHC ,∴180x αβγ︒-+-=∠∠∠∠,故③正确;④如图4,过点P 作PF ∥AB ,∵AB ∥CD ,∴AB ∥PF ∥CD ,∴∠A =∠APF ,∠C =∠CPF ,∴∠A =∠CPF +∠APC =∠C +∠APC ,则④正确;故答案为:②③④.【点睛】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.3.(23·24八年级上·广东江门·阶段练习)(1)如图①,如果AB CD ∥,求证:APC A C ∠=∠+∠.(2)如图②,AB CD ∥,根据上面的推理方法,直接写出A P Q C ∠+∠+∠+∠=___________.(3)如图③,AB CD ∥,若ABP x BPQ y PQC z QCD m ∠=∠=∠=∠=,,,,则m =___________(用x 、y 、z 表示).【答案】(1)见解析;(2)540︒;(3)x z y+-【分析】(1)过P 作PM AB ∥,利用平行线的判定与性质证明即可;(2)过点P 作PE AB ∥,过点Q 作QF AB ∥,根据平行线的性质即可求解;(3)过点P 作PN AB ∥,过点Q 作QM AB ∥,根据平行线的性质求解即可.【详解】(1)证明:过P 作PM AB ∥,如图,∴A APM ∠=∠,∵PM AB AB CD ∥,∥(已知),∴PM CD ∥,∴C CPM ∠=∠,∵APC APM CPM ∠=∠+∠,∴APC A C ∠=∠+∠;(2)如图,过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴180A APE ∠+∠=︒,180EPQ PQF ∠+∠=︒,=180FQC QCD ∠+∠︒,∴=540A APQ PQC C ∠+∠+∠+∠︒,故答案为:540︒;(3)过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴B BPE ∠=∠,QPE PQF ∠=∠,=FQC C ∠∠,∴=B PQC C BPQ ∠+∠∠+∠,即=x z m y ++,∴=m x z y +-,故答案为:x z y +-.【点睛】本题考查平行线的判定与性质,灵活运用平行线的性质和判定是解题的关键.4.(2023下·海南省直辖县级单位·七年级统考期末)如图1,AB CD ∥,点P 为直线AB CD ,间一点,点E ,F 分别是直线AB CD ,上的点,连接EP FP ,.(1)【证明推断】求证:EPF AEP CFP ∠=∠+∠,请完善下面的证明过程,并在()内填写依据.证明:过点P 作直线MN AB ∥,MN AB ∥ (已作),AEP EPN ∴∠=∠(______),又MN AB ∥ ,AB CD ∥(已知)∴______,(______)CFP FPN ∴∠=∠,AEP CFP EPN FPN ∴∠+∠=∠+∠=______.(2)如图2,若AEP ∠的平分线与PFC ∠的平分线交于点Q .①【类比探究】试猜想EPF ∠与EQF ∠之间的关系,并说明理由;②【结论运用】若240BEP DFP ∠+∠=︒,求EQF ∠的度数.(3)【拓展认知】如图3,直线AB CD ∥,点P ,H 为直线AB CD 、间的点,请直接写出AEP ∠,PHF ∠,EPH ∠,HFD ∠的数量关系:______.【答案】(1)两直线平行,内错角相等;MN CD ∥;平行于同一直线的两直线平行;EPF∠(3)过点P、H作m∥【点睛】本题考查平行的性质,角平分线的定义,添加合适的辅助线是解题关键.5.(2023上·重庆九龙坡·八年级重庆市育才中学校考开学考试)如图CD 上,点O 在直线AB 、CD 之间,且(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN ∠-(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线FH 分别于点M 、N ,且80FMN ENM ∠-∠=︒,直接写出m 的值.【答案】(1)280︒(2)50︒(2)解:如图2,过点M ,AB CD∥∴∥∥∥,AB MK NI CD∠∴∠=∠,KMN BEM EMK∴∠-∠=∠EMN FNM EMK(3)解:如图3,设直线FH∥,AB CD∴∠=∠,AHF DFHAHF EPH PEH∠=∠+∠=∴∠=∠+∠,DFH EPH AEG【点睛】本题考查了平行线的性质,角平分线的性质及三角形的外角性质,熟练掌握平行线的性质、角平分线的性质及三角形的外角性质并正确作出辅助线是解题关键.【考点三平行线中含多个拐点问题】例题:如图,直线AB CD ∥,则23415∠+∠+∠-∠-∠的度数为___________°.【答案】360【分析】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,根据平行线的判定得出EF ∥GH ∥MN ∥AB ∥CD ,根据平行线的性质得出即可.【详解】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,如图所示:∵CD ∥AB ,∴EF ∥GH ∥MN ∥AB ∥CD ,∴∠1=∠BEF ,∠GEF +∠EGH =180°,∠HGM +∠GMN =180°,∠NMC =∠5,∵∠2=∠BEF +∠GEF ,∠3=∠EGH +∠HGM ,∠4=∠GMN +∠NMC ,∴23415∠+∠+∠-∠-∠BEF GEF EGH HGM GMN NMC BEF NMC=∠+∠+∠+∠+∠+∠-∠-∠360GEF EGH HGM GMN =∠+∠+∠+∠=︒.故答案为:360.【点睛】本题考查了平行线的性质,能灵活运用平行线的性质进行推理是解此题的关键.【变式训练】【答案】88︒/88度【分析】本题考查平行线的性质、角平分线的定义等,解题的关键是会添加常用辅助线(即过2.(2023上·七年级课时练习)观察图形:已知a b ,在图1中,可得12∠+∠=_______________度,在图度……按照以上规律,则112n P P ∠+∠+∠++∠= _______________【答案】180,360,()1801n +.【详解】解:如图1,∵a b ,∴12180∠+∠= ;如图2,过1P 作11PQ a ,∵a b ,∴11PQ a b ,∴111180APQ ∠+∠=︒,112180BPQ ∠+∠=︒,∴112360APB ∠+∠+∠=;同理可得:112180(1)n P P n ∠+∠+∠++∠=+ ;故答案为:180,360,()1801n +.【点睛】本题考查平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.3.如图:(1)如图1,1l ∥2l ,若65P ∠= ,计算并直接写出A B ∠∠+的大小.(2)如图2,在图1的基础上,将直线PB 变成折线PQB ,证明:180A B Q P ∠∠∠∠++=+(3)如图3,在图2的基础上,继续将且线BQ 变成折现BMQ .请你写出一条关于1∠、2345∠∠∠∠,,,的数量关系(无需证明直接写出)【答案】(1)65°(2)见解析(3)∠1+∠3+∠5=∠2+∠4【分析】(l )过P 作PE ∥l 1,根据平行线的性质和角的和差即可得到结论;(2)过点P 、Q 分别作l 1和l 2的平行线分别记为l 3和l 4,根据平行线的性质和等量代换即可得到结论;(3)分别过P ,Q ,M 作PC ∥l 1,QD ∥l 1,ME ∥l 1,根据平行线的性质和角的和差即可得到结论.(1)解:过P作PE∥l1∵l1∥l2∴PE∥l2∥l1∴∠A=∠1,∠B=∠2∴∠APB=∠1+∠2=∠A+∠B=65°即∠A+∠B=65°;(2)证明:过点P、Q分别作l1和l2的平行线分别记为l3和l4∵l1∥l2∴l1∥l2∥l3∥l4∵l1∥l3(已知)∴∠A=∠1(两直线平行,内错角相等)∵l3∥l4(已知)∴∠2=∠3(两直线平行,内错角相等)∵l2∥l4(已知)∴∠4+∠B=180°(两直线平行,同旁内角互补)∴∠A+∠3+∠4+∠B=∠1+∠2+180°又∵∠1+∠2=∠P,∠3+∠4=∠Q∴∠A+∠B+∠Q=∠P+180°.(3)解:如图,分别过P,Q,M作PC∥l1,QD∥l1,ME∥l1,∵12l l ∥,∴12////////PC QD ME l l ∴∠1=∠APC ,∠QPC =∠PQD ∴∠2=∠1+∠PQD ,∠4=∠∴∠2+∠4=∠1+∠PQD +∠5∴∠1+∠3+∠5=∠2+∠4.【点睛】本题考查了平行线的性质及平行公理的推论,熟练掌握平行线的性质是解题的关键.4.猜想说理:(1)如图,AB CD EF ∥∥形说明理由:拓展应用:(2)如图4,若AB CD ,则A C AFC ∠+∠+∠=(3)在图5中,若1n A B A D ∥,请你用含n 的代数式表示【答案】(1)A C AFC ∠∠∠+=;A C AFC ∠-∠∠=;∠(2)360(3)-1180n ⨯︒()【分析】(1)根据平行线的性质可直接得到结论;度数;通过前面的计算,找出规律.利用规律得到有n 个折点的结论;【详解】解:(1)如图1:A C AFC ∠∠∠+=,如图2:A C AFC ∠-∠∠=,如图3:C A AFC ∠-∠∠=,如图1说明理由如下:∵AB CD EF ∥∥,∴A AFE C EFC ∠∠∠∠=,=,∴A C AFE EFC ∠∠∠∠+=+,即A C AFC ∠∠∠+=;(2)如下图:过F 作FH AB ∥,∴180A AFH ∠∠︒+=,又∵AB CD ∥,∴CD FH ∥,∴180C CFH ∠∠︒+=,∴360A AFH C CFH ∠∠∠∠︒+++=,即360A C AFC ∠∠∠︒++=;故答案为:360;(3)如下图:AB CD ∥,过E 作EG AB ∥,过F 作FH AB ∥,∵AB CD ∥,∴AB EG FH CD ∥∥∥,∴180A AEG ∠∠︒+=,180GEF EFH ∠∠︒+=,180HFC C ∠∠︒+=,∴1803A AEG GEF EFH HFC C ∠∠∠∠∠∠︒⨯+++++=,即540A AEF EFC C ∠∠∠∠︒+++=;综上所述:由当平行线AB 与CD 间没有点的时候,180A C ∠∠︒+=,当A 、C 之间加一个折点F 时,2180A AFC C ∠∠∠⨯︒++=;当A 、C 之间加二个折点E 、F 时,则3180A AEF EFC C ∠∠∠∠⨯︒+++=;以此类推,如图5,1n A B A D ∥,当1A 、5A 之间加三个折点234A A A 、、时,则123454180A A A A A ∠+∠∠∠∠⨯︒+++=;…当1A 、n A 之间加n 个折点231n A A A -⋯、、时,则123-1180n A A A A n ∠∠∠⋯∠⨯︒+++=(),即1234n ∠∠∠∠∠+++++L 的度数是-1180n ⨯︒().【点睛】本题是探索型试题,主要考查了平行线的性质,根据题意作出辅助线,利用平行线的性质及三角形外角的性质等知识求解是解答此题的关键.【考点四平行线中在生活上含拐点问题】例题:(2023·广东深圳·校考模拟预测)“绿水青山,就是金山银山”在两个景区之间建立上的一段观光索道如图所示,索道支撑架均为互相平行(AM CN ∥),且每两个支撑架之间的索道均是直的,若65MAB ∠=︒,55NCB ∠=︒,则ABC ∠=()A .110︒B .115︒C .120︒D .125︒【答案】C 【分析】过点B 作∥BD AM ,则BD AM CN ∥∥,由平行线的性质可得65ABD MAB ∠=∠=︒,55CBD NCB ∠=∠=︒,由此进行计算即可得到答案.【详解】解:如图,过点B 作∥BD AM ,,AM CN ∥,A BD M CN ∴∥∥,65MAB ∠=︒,55NCB ∠=︒,65ABD MAB ∴∠=∠=︒,55CBD NCB ∠=∠=︒,6555120ABC ABD CBD ∴∠=∠+∠=︒+︒=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握两直线平行,内错角相等是解此题的关键.【变式训练】1.(2023下·山西临汾·七年级统考期中)图①是某种青花瓷花瓶,图②是其抽象出来的简易轮廓图,已知AG EF ,AB DE ∥,若120DEF ∠=︒,则A ∠的度数为()A .60°B .65°C .70°D .75°【答案】A 【分析】连接CF ,根据AB CF ,AG EF 可得出CFE BAG ∠=∠,再由平行线的性质即可得出结论.【详解】解:连接CF ,延长AG 交CF 于点H ,作MN AG ,如图AB CF DE ∥∥,120DEF ∠=︒18012060CEF ∴∠=︒-︒=︒,AHF BAG∠=∠∵AG EF ,AG MN∥∴AHF MNF ∴∠=∠,EF MN∥60CFE FNM BAG ∴∠=∠=∠=︒.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解题的关键.2.(2023下·浙江台州·七年级统考期末)如图是路政工程车的工作示意图,工作篮底部AB 与支撑平台CD 平行.若130∠=︒,3150∠=︒,则2∠=()A .60︒B .50︒【答案】C 【分析】过2∠顶点作直线l 【详解】解:如图所示,过∠∵工作篮底部与支撑平台平行、直线∴直线l 支撑平台 工作篮底部,∴1430∠=∠=︒,53180∠+∠=︒∴230∠=︒,∴24560∠=∠+∠=︒,故选:C .【答案】100︒/100度【分析】过点D 作DG AB ∥,过点【详解】解:过点D 作DG ∥∵EF MN ⊥,∴90MFE ∠=︒,∵AB MN ∥,∴AB DG EH MN ∥∥∥,∴180ACD CDG ∠+∠=︒,DEH GDE ∠=∠,90HEF MFE ∠=∠=︒∵120,110DEF BCD ∠=︒∠=︒,∴30GDE DEH ︒∠=∠=,18011070CDG ∠︒=︒-︒=,∴100CDE CDG GDE =∠+∠=︒∠.故答案为:100︒【点睛】本题考查了平行线的判定和性质,解题的关键是过拐点构造平行线.。
七年级(下)数学重难点专题训练:平行线中拐点问题模型汇总(40道经典题)

七年级下数学重难点专题训练:平行线拐点问题模型汇总模型一:“M”型(猪蹄模型)例:1.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED=∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.通关训练:2.如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P 的度数.3.如图,AB∥CD,点A,E,B,C不在同一条直线上.(1)如图1,求证:∠E+∠C﹣∠A=180°(2)如图2.直线F A,CP交于点P,且∠BAF=∠BAE,∠DCP=∠DCE.①试探究∠E与∠P的数量关系:②如图3,延长CE交P A于点Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),则∠PQC的度数为(用含α的式子表示)4.如图,已知AB∥CD,现将直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当直角三角形PMN所放位置如图①所示时,∠PFD与∠AEM存在怎样的数量关系?请说明理由.(2)当直角三角形PMN所放位置如图②所示时,请直接写出∠PFD与∠AEM之间存在的数量关系.(3)在(2)的条件下,若MN与CD交于点O,且∠AEM=40°,∠DON=20°,则∠N的度数为.5.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.6.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型﹣﹣﹣“猪蹄模型”.即已知:如图1,AB∥CD,E为AB、CD之间一点,连接AE,CE得到∠AEC.求证:∠AEC=∠A+∠C.小明笔记上写出的证明过程如下:证明:过点E作EF∥AB,∴∠1=∠A.∵AB∥CD,EF∥AB,∴EF∥CD.∴∠2=∠C.∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠C.请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB∥CD,∠E=60°,则∠B+∠C+∠F=.(2)如图3,AB∥CD,BE平分∠ABG,CF平分∠DCG,∠G=∠H+27°,E、B、H 共线,F、C、H共线,则∠H=.7.如图1,已知AB∥CD,BP、DP分别平分∠ABD、∠BDC.(1)∠BPD=°;(2)如图2,将BD改为折线BED,BP、DP分别平分∠ABE、∠EDC,其余条件不变,若∠BED=140°,求∠BPD的度数;(3)如图3,若∠BEF=152°,∠EFD=136°,BP、DP分别平分∠ABE、∠CDF,其余条件不变,那么∠BPD=°.8.已知AB∥CD,点E在AB与CD之间.(1)图1中,试说明:∠BED=∠ABE+∠CDE;(2)图2中,∠ABE的平分线与∠CDE的平分线相交于点F,请利用(1)的结论说明:∠BED=2∠BFD.(3)图3中,∠ABE的平分线与∠CDE的平分线相交于点F,请直接写出∠BED与∠BFD之间的数量关系.9.已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG (1)如图1,AB∥CD,求证:∠AEF+∠FGC=∠EFG;(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD如图2,请探索∠AEF、∠FGC、∠EFG之间的数量关系?并说明理由.10.如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.11.【引入】如图1,已知∠ABC+∠ECB=180°,∠P=∠Q,求证:∠1=∠2.【变式】如图2,AB∥CD,∠1=∠2,求证:∠F=∠M模型二:铅笔模型例:12.模型与应用.【模型】(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.【应用】(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CM n M n﹣1的角平分线M n O 交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n ﹣1的度数.(用含m、n的代数式表示)【分析】(1)过点E作EF∥CD,根据平行线的判定得出EF∥AB,根据平行线的性质得出即可;(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,根据平行线的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根据平行线的性质得出即可;(3)过点O作SR∥AB,根据平行线的性质得出即可;【解答】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN=360°;【应用】(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,∵CD∥AB,∴EQ∥FW∥GR∥HY∥AB∥CD,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,同理∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n﹣1),故答案为:900°,180°(n﹣1);(3)解:过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n﹣1=2∠CM n O,∴∠AM1M2+∠CM n M n﹣1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n﹣1+∠CM n M n﹣1=180°(n﹣1),∠2+∠3+∠4+∠5+∠6+…+∠n﹣1=(180n﹣180﹣2m)°.通关训练:13.如图1,MA1∥NA2,则∠A1+∠A2=度.如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度.从上述结论中你发现了什么规律?如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=度.14.如图,AB∥CD,点F在CE上,∠EAF=∠BAF,若∠AEC=105°,∠DCE=115°,求∠AFC的度数.15.直线AB∥CD,E为直线AB、CD之间的一点,完成以下问题:(1)如图1,若∠B=15°,∠BED=90°,则∠D=;(2)如图2,若∠B=α,∠D=β,求出∠BED的度数(用a、β表示);(3)如图3,若∠B=α,∠C=β,则a、β与∠BEC之间有什么等量关系?请猜想证明.16.问题情境:如图1,AB∥CD,∠P AB=135°,∠PCD=125°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.17.如图,BN∥CD,点A是直线BN上一点,P是直线AB与直线CD之间一点,连接AP,PC.(1)求证:∠BAP+∠C=∠P;(2)过点C作CM平分∠PCD,过点C作CE⊥CM交∠NAP的角平分线于点E,过点P作PF∥AE交CM于点F,探索∠CFP和∠APC的数量关系,并说明理由;(3)在(2)的条件下,若2∠AEC﹣∠CPF=240°,Q是直线CD上一点,请直接写出∠PFQ和∠FQD的数量关系.模型三:钩型(臭脚模型和骨折模型)例:18.(1)如图1,AB∥CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE 的度数;(2)如图2,已知AB∥CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数;(3)如图3,若P是(2)中的射线BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,若∠B=30°,求∠MGN的度数.【分析】根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【解答】解:(1)过E作EM∥AB∵AB∥CD∴CD∥EM∥AB∴∠ABE=∠BEM∠DCE=∠CEM∵CF平分∠DCE∴∠DCE=2∠DCF∵∠DCF=30°∴∠DCE=60°∴∠CEM=60°又∵∠CEB=20°∴∠BEM=∠CEM﹣∠CEB=40°∴∠ABE=40°,(2)过E作EM∥AB,过F作FN∥AB∵∠EBF=2∠ABF∴设∠ABF=x,∠EBF=2x,则∠ABE=3x ∵CF平分∠DCE∴设∠DCF=∠ECF=y,则∠DCE=2y∵AB∥CD∴EM∥AB∥CD∴∠DCE=∠CEM=2y∠BEM=∠ABE=3x∴∠CEB=∠CEM﹣∠BEM=2y﹣3x同理∠CFB=y﹣x∵2∠CFB+(180°﹣∠CEB)=190°∴2(y﹣x)+180°﹣(2y﹣3x)=190°∴x=10°∴∠ABE=3x=30°,(3)过P作PL∥AB∵GM平分∠DGP∴设∠DGM=∠PGM=y,则∠DGP=2y ∵PQ平分∠BPG∴设∠BPQ=∠GPQ=x,则∠BPG=2x∵PQ∥QN∴∠PGN=∠GPQ=x∵AB∥CD∴PL∥AB∥CD∴∠GPL=∠DGP=2y∠BPL=∠ABP=30°∵∠BPL=∠GPL﹣∠BPG∴30°=2y﹣2x∴y﹣x=15°∵∠MGN=∠PGM﹣∠PGN=y﹣x∴∠MGN=15°.通关训练:19.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.20.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间.如图是某同学“抖空竹”时的一个瞬间,王聪把它抽象成如图的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°,求∠E的度数.21.如图,BE∥CF,∠A=30°,∠C=80°,求∠B的度数.22.(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.23.已知AB∥CD,点E在AB上,点G在CD上,点F在直线AB、CD之间,分别连接EF、FG,∠BEF+∠DGF=2∠EFG.(1)如图1,求∠EFG的度数;(2)如图2,若∠BEF的角平分线与FG的延长线交于点M,求证:∠AEF﹣2∠FME =60°;(3)如图3,已知点P在FG的延长线上,点K在CD上,点N在∠PGC内,分别连接NG,NK.若NK∥EF,∠PGN=2∠NGC,请直接写出∠AEF﹣∠GNK的值.24.同一平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,请写出∠BPD、∠B、∠D之间的数量关系(不必说明理由);(2)如图2,将直线AB绕点B逆时针方向转一定角度交直线CD于点Q,利用(1)中的结论求∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;(3)如图3,设BF交AC于点M,AE交DF于点N.已知∠AMB=140°,∠ANF=105°,利用(2)中的结论直接写出∠B+∠E+∠F的度数和∠A比∠F大多少度.25.综合探究:已知,AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =40°,求∠MGN+∠MPN的度数.26.已知直线AB∥CD.(1)如图1,请直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,若∠F =10°,求∠E的度数;(3)如图3,∠BME的角平分线所在的直线与∠CNE的角平分线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论.27.如图,已知直线AB∥CD.(1)在图1中,点M在直线AB上,点N在直线CD上,∠BME、∠E、∠END的数量关系是;(不需证明)(2)如图2,若GN平分∠CNE,FE平分∠AMG,且∠G+∠E=60°,求∠AMG的度数;(3)如图3,直线BM平分∠ABE,直线DN平分∠CDE相交于点F,求∠F:∠E的值;(4)若∠ABM=∠MBE,∠CDN=∠NDE,则=.(用含有n的代数式表示)28.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.(1)求证:∠ABE+∠C﹣∠E=180°.(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.29.如图,平面内的直线有相交和平行两种位置关系(1)如图①,已知AB∥CD,求证:∠BPD=∠B+∠D;(提示;可过点P作PO∥AB)(2)如图②,已知AB∥CD,求证:∠B=∠P+∠D.30.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠A,∠C的关系,请你从所得的关系中任意选取一个加以说明.图(1)结论:;图(2)结论:;图(3)结论:;图(4)结论:.你准备证明的是图,请在下面写出证明过程.31.如图1,将两根笔直的细木条MN,EF用图钉固定并平行摆放,将一根橡皮筋拉直后用图钉分别周定在MN,EF上,橡皮筋的两端点分别记为点A,点B.(1)图1中,点P在AB上,若∠1=110°,则∠2=°;(2)P为橡皮筋上一点,用皮筋的弹性拉动橡皮筋,使A,B,P三点不在同一直线,后用图固定点P.①如图2,若点P在两根细木条所在直线之间,且∠1+∠2=90°,试判断线段AP与BP所在直线的位置关系,并说明理由;②如图3,若点P在两根细木条所在直线的同侧,且∠1+∠2=90°,∠1=31°,试求∠APB的度数;(3)如图4,P1,P2两点在两根细木条所在直线之间,拉动橡皮筋并固定,若∠1+∠2=90°,则∠AP1P2+∠BP1P2=°.32.阅读下面材料:小明遇到这样一个问题:如图1,AC∥BD,点E为直线AC上方一点,连接CE、DE,猜想∠C、∠D、∠E的数量关系,并证明.小明发现,可以过点E作MN∥AC来解决问题,如图2,请你完成解答;用学过的知识或参考小明的方法,解决下面的问题:如图3,AB∥CD,P是平面内一点,连接AP、CP,使AP∥BD,∠APC=100°,BM、CM分别平分∠ABD、∠DCP交于点M,求∠M的度数.33.如图,已知直线MB∥ND,A、C分别为MB、ND上的点,E为直线MB、ND外的一点,连接AE、EC.(1)E在直线MB的上方(如图1),求证:∠AEC+∠ECD=∠EAB;(2)若∠MAE与∠NCE两角的角平分线交于F点,请在图2中将图形补充完整,并直接写出∠AEC与∠AFC之间的数量关系;(3)若∠EAB的角平分线的反向延长线与∠NCE的角平分线交于G点(如图3),且∠AGC比∠AEC的倍多50°,求∠AEC的度数.34.已知直线AB∥CD,E为直线AB、CD外的一点,连接AE、EC.(1)E在直线AB的上方(如图1),求证:∠AEC+∠EAB=∠ECD;(2)∠BAF=2∠EAF,∠DCF=2∠ECF(如图2),求证:∠AEC=∠AFC;(3)若E在直线AB、CD之间,在(2)条件下(如图3),且∠AFC比∠AEC的倍少40°,则∠AEC的度数为(不用写出解答过程).35.如图:已知AB∥DE,若∠ABC=60°,∠CDE=140°,求∠BCD的度数.36.如图,已知AB∥CD,点E在直线AB,CD之间.(1)求证:∠AEC=∠BAE+∠ECD;(2)若AH平分∠BAE,将线段CE沿CD平移至FG.①如图2,若∠AEC=90°,HF平分∠DFG,求∠AHF的度数;②如图3,若HF平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由.37.如图,平面内有两条直线同AB、CD,且AB∥CD,P为一动点.(1)当点P移动到如图(1)的位置时,这时∠APC与∠A,∠C有怎样的关系?并说明理由;(2)当点P移动到如图(2)的位置时,这时∠APC与∠A,∠C又有怎样的关系?说明你的理由;(3)当点P移动到如图(3)的位置时,直接写出∠APC与∠A,∠C的关系式;(4)当点P移动到如图(4)的位置时,直接写出∠APC与∠A,∠C的关系式.38.如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠P AB与∠PCD的关系.39.已知AB∥CD,点P为平面内一点,连接AP、CP.(1)探究:如图(1)∠P AB=145°,∠PCD=135°,则∠APC的度数是;如图(2)∠P AB=45°,∠PCD=60°,则∠APC的度数是.(2)在图2中试探究∠APC,∠P AB,∠PCD之间的数量关系,并说明理由.(3)拓展探究:当点P在直线AB,CD外,如图(3)、(4)所示的位置时,请分别直接写出∠APC,∠P AB,∠PCD之间的数量关系.40.探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?七年级下数学重难点专题训练:平行线拐点问题模型汇总1.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED=∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.2.如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=90°.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P 的度数.【分析】(1)分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM =30°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+30)°,根据角平分线的定义得到∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.【解答】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=15°,∴∠P=15°.3.如图,AB∥CD,点A,E,B,C不在同一条直线上.(1)如图1,求证:∠E+∠C﹣∠A=180°(2)如图2.直线F A,CP交于点P,且∠BAF=∠BAE,∠DCP=∠DCE.①试探究∠E与∠P的数量关系:②如图3,延长CE交P A于点Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),则∠PQC的度数为180°﹣8α(用含α的式子表示)【分析】(1)如图1,过E作EF∥AB,根据平行线的性质即可得到结论;(2)①设∠BAF=x,∠BAE=3x,∠DCP=y,∠DCE=3y,由(1)知,∠E=180°﹣∠C+∠A=180°﹣3(y﹣x),如图2,过P作PG∥CD,根据平行线的性质即可得到结论;②如图3,过P作PG∥CD,根据平行线的性质即可得到结论.【解答】解:(1)如图1,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠AEF=∠A,∠C+∠FEC=180°,∴∠E=∠AEF+∠FEC=∠A+180°﹣∠C,即∠E+∠C﹣∠A=180°;(2)①∵∠BAF=∠BAE,∠DCP=∠DCE,∴设∠BAF=x,∠BAE=3x,∠DCP=y,∠DCE=3y,由(1)知,∠E=180°﹣∠C+∠A=180°﹣3(y﹣x),如图2,过P作PG∥CD,∵AB∥CD,∴AB∥PG,∴∠GP A=∠BAF=x,∠GPC=∠PCD=y,∴∠APC=y﹣x,即∠E=180°﹣3∠P;②如图3,过P作PG∥CD,∵∠BAQ=α,∴∠QAE=2α,∵AE∥PC,∴∠QAE=∠APC=2α,由①知,∠AEC=180°﹣3∠APC=180°﹣6α,∴∠PQC=∠AEC﹣∠QAE=180°﹣6α﹣2α=180°﹣8α,故答案为:180°﹣8α.4.如图,已知AB∥CD,现将直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当直角三角形PMN所放位置如图①所示时,∠PFD与∠AEM存在怎样的数量关系?请说明理由.(2)当直角三角形PMN所放位置如图②所示时,请直接写出∠PFD与∠AEM之间存在的数量关系.(3)在(2)的条件下,若MN与CD交于点O,且∠AEM=40°,∠DON=20°,则∠N的度数为30°.【分析】(1)作PH∥AB,根据平行线的性质得到∠AEM=∠HPM,∠PFD=∠HPN,根据∠MPN=90°解答;(2)根据平行线的性质得到∠PFD+∠BHN=180°,根据∠P=90°解答;(3)根据对顶角相等,直角三角形的性质,平行线的性质以及三角形外角的性质计算即可求解.【解答】解:(1)如图①,作PH∥AB,则∠AEM=∠HPM,∵AB∥CD,PH∥AB,∴PH∥CD,∴∠PFD=∠HPN,∵∠MPN=90°,∴∠PFD+∠AEM=90°,故答案为:∠PFD+∠AEM=90°;(2)猜想:∠PFD﹣∠AEM=90°;理由如下:∵AB∥CD,∴∠PFD+∠BHN=180°,∵∠BHN=∠PHE,∴∠PFD+∠PHE=180°,∵∠P=90°,∴∠PHE+∠PEB=90°,∵∠PEB=∠AEM,∴∠PHE+∠AEM=90°,∴∠PFD﹣∠AEM=90°;(3)∵∠P=90°,∠PEB=∠AEM=40°,∴∠PHE=90°﹣∠PEB=90°﹣40°=50°,∵AB∥CD,∴∠HFO=∠PHE=50°,∵∠DON=20°,∴∠N=∠HFO﹣∠DON=30°.故答案为:30°.5.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:∠BME=∠MEN﹣∠END;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:∠BMF=∠MFN+∠FND;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF﹣∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据培训心得性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【解答】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.6.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型﹣﹣﹣“猪蹄模型”.即已知:如图1,AB∥CD,E为AB、CD之间一点,连接AE,CE得到∠AEC.求证:∠AEC=∠A+∠C.小明笔记上写出的证明过程如下:证明:过点E作EF∥AB,∴∠1=∠A.∵AB∥CD,EF∥AB,∴EF∥CD.∴∠2=∠C.∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠C.请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB∥CD,∠E=60°,则∠B+∠C+∠F=240°.(2)如图3,AB∥CD,BE平分∠ABG,CF平分∠DCG,∠G=∠H+27°,E、B、H 共线,F、C、H共线,则∠H=51°.【分析】(1)由EM∥AB,FN∥EM,FN∥CD分别得∠1=∠B,∠2=∠3,∠4+∠C=180°,由角的和差计算∠B+∠C+∠F的度数为240°;(2)由角平分线得∴∠ABG=2∠1,∠DCG=2∠4,根据直线EF∥AB,EF∥CD得2∠1+∠7=180°,2∠4+∠8=180°,等式的性质得2(∠1+∠4)=∠BGC+180°;直线MN∥AB,MN∥CD得∠1=∠5,∠4=∠6,等量代换2(∠5+∠6)=∠BGC+180°,又因∠BGC=∠BHC+27°求得∠BHC的度数为51°.【解答】解:(1)过点E、F分别作EM∥AB,FN∥AB,如图2所示:∵EM∥AB,∴∠1=∠B,又∵FN∥AB,∴FN∥EM,∴∠2=∠3,又∵AB∥CD,∴FN∥CD,∴∠4+∠C=180°,又∵∠BEF=∠1+∠2,∠EFC=∠3+∠4,∠BEF=60°∴∠B+∠EFC+∠C=∠1+∠3+∠4+∠C=(∠1+∠2)+(∠4+∠C)=60°+180°=240°;(2)过点G、H作EF∥AB,MN∥AB,如图3所示:∵BE平分∠ABG,CF平分∠DCG,∴∠ABG=2∠1,∠DCG=2∠4,又∵EF∥AB,∴2∠1+∠7=180°,又∵AB∥CD,∴EF∥CD,∴2∠4+∠8=180°,∴∠7+∠8=360°﹣2(∠1+∠4),又∵∠7+∠8+∠BGC=180°,∴2(∠1+∠4)=∠BGC+180°,又∵MN∥AB,∴∠1=∠5,又∵AB∥CD,∴MN∥CD,∴∠4=∠6,∴2(∠5+∠6)=∠BGC+180°,又∵∠5+∠6+∠BHC=180°,∴∠BGC+2∠BHC=180°,又∠BGC=∠BHC+27°,∴3∠BHC+27°=180°,∴∠BHC=51°;故答案为:240°,51°.7.如图1,已知AB∥CD,BP、DP分别平分∠ABD、∠BDC.(1)∠BPD=90°°;(2)如图2,将BD改为折线BED,BP、DP分别平分∠ABE、∠EDC,其余条件不变,若∠BED=140°,求∠BPD的度数;(3)如图3,若∠BEF=152°,∠EFD=136°,BP、DP分别平分∠ABE、∠CDF,其余条件不变,那么∠BPD=54°.【分析】(1)先根据平行线的性质得出∠ABD+∠BDC=∠180°,再根据角平分线的定义得出∠PBD+∠PDB的度数,由三角形内角和定理即可得出结论;(2)连接BD,先求出∠EBD+∠EDB的度数,再由平行线的性质得出∠ABD+∠CDB的度数,由角平分线的性质得出∠PBE+∠PDE的度数,根据∠BPD=180°﹣∠PBE﹣PDE﹣∠EBD﹣∠EDB即可得出结论.(3)连接BD,先求出∠EBD+∠FDB的度数,再求出∠PBE+∠PDF的度数,再利用三角形内角和定理即可解决.【解答】解:(1)∵AB∥CD,∴∠ABD+∠BDC=∠180°,∵BP、DP分别平分∠ABD、∠BDC,∴∠PBD+∠PDB=90°,∴∠BPD=180°﹣90°=90°.(2)连接BD,∵∠BED=140°,∴∠EBD+∠EDB=40°,∵AB∥CD,∴∠ABD+∠CDB=180°,∵BP、DP分别平分∠ABE、∠EDC,∴∠PBE=∠ABE,∠PDE=∠CDE,∴∠PBE+∠PDE=×(180°﹣40°)=70°,∴∠BPD=180°﹣∠PBE﹣PDE﹣∠EBD﹣∠EDB=70°.(3)连接BD,∵∠BEF=152°,∠EFD=136°,∴∠EBD+∠FDB=360°﹣(152°+136°)=72°,∵BP、DP分别平分∠ABE、∠FDC,∴∠PBE=∠ABE,∠PDF=∠CDF,∴∠PBE+∠PDF=×(180°﹣72°)=54°,∴∠BPD=180°﹣(∠EBD+∠FDB)﹣(∠PBE+∠PDF)=54°.故答案为:90;54°.8.已知AB∥CD,点E在AB与CD之间.(1)图1中,试说明:∠BED=∠ABE+∠CDE;(2)图2中,∠ABE的平分线与∠CDE的平分线相交于点F,请利用(1)的结论说明:∠BED=2∠BFD.(3)图3中,∠ABE的平分线与∠CDE的平分线相交于点F,请直接写出∠BED与∠BFD之间的数量关系.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE =180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【解答】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°﹣2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°﹣(∠ABE+∠CDE),即∠BED=360°﹣(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°﹣2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°﹣2∠BFD.9.已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG (1)如图1,AB∥CD,求证:∠AEF+∠FGC=∠EFG;(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD如图2,请探索∠AEF、∠FGC、∠EFG之间的数量关系?并说明理由.【分析】(1)过F作FQ∥AB,利用平行线的性质,即可得到∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;(2)延长AB,CD,交于点P,依据∠FEP=180°﹣∠AEF,∠FGP=180°﹣∠FGC,即可得到∠FEP+∠FGP=360°﹣(∠AEF+∠FGC),再根据四边形内角和,即可得到四边形EFGP中,∠F+∠P=360°﹣(∠FEP+∠FGP)=∠AEF+∠FGC,进而得出结论.【解答】解:(1)如图1,过F作FQ∥AB,∵AB∥CD,∴FQ∥CD,∴∠AEF=∠QFE,∠FGC=∠GFQ,∴∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;(2)如图2,延长AB,CD,交于点P,∵EG同时平分∠BEF和∠FGD,∴∠FEG=∠PEG,∠FGE=∠PGE,∴∠F=∠P,∵∠FEP=180°﹣∠AEF,∠FGP=180°﹣∠FGC,∴∠FEP+∠FGP=360°﹣(∠AEF+∠FGC),∵四边形EFGP中,∠F+∠P=360°﹣(∠FEP+∠FGP)=360°﹣[360°﹣(∠AEF+∠FGC)]=∠AEF+∠FGC,即2∠EFG=∠AEF+∠FGC.10.如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为∠BED=2∠BFD.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.【分析】(1)首先连接FE并延长,易得∠BED=∠BFD+∠EBF+∠EDF,又由BF、DF 分别平分∠ABE、∠CDE,以及(1)的结论,易证得∠BED=2∠BFD;(2)过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得AB∥EG∥FH∥CD,根据平行线的性质得到∠ABF=∠BFH,∠CDF=∠DFH,根据已知条件即可得到结论.(3)由(1)(2)即可得出∠F与∠E的等量关系.【解答】解:(1)∠BED=2∠BFD.证明:连接FE并延长,∵∠BEG=∠BFE+∠EBF,∠DEG=∠DFE+∠EDF,∴∠BED=∠BFD+∠EBF+∠EDF,∵BF、DF分别平分∠ABE、∠CDE,∴∠ABE+∠CDE=2(∠EBF+∠EDF),∵∠BED=∠ABE+∠CDE,∴∠EBF+∠EDF=∠BED,∴∠BED=∠BFD+∠BED,∴∠BED=2∠BFD;(2)过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)由(1)(2)可得∠BED=n∠BFD.11.【引入】如图1,已知∠ABC+∠ECB=180°,∠P=∠Q,求证:∠1=∠2.【变式】如图2,AB∥CD,∠1=∠2,求证:∠F=∠M【分析】【引入】先判定AB∥DE,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.【变式】延长EF交CD于G,利用平行线的性质得出∠1=∠EGD,进而得出∠EGD=∠2,再利用平行线的判定方法得出答案.【解答】【引入】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.【变式】证明:延长EF交CD于G,如图:∵AB∥CD,∴∠1=∠EGD∵∠1=∠2,∴∠EGD=∠2∴EF∥MN,∴∠EFM=∠M.12.模型与应用.【模型】(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.【应用】(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为900°.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为180°(n﹣1).(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CM n M n﹣1的角平分线M n O 交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n ﹣1的度数.(用含m、n的代数式表示)【分析】(1)过点E作EF∥CD,根据平行线的判定得出EF∥AB,根据平行线的性质得出即可;(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,根据平行线的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根据平行线的性质得出即可;(3)过点O作SR∥AB,根据平行线的性质得出即可;【解答】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN=360°;【应用】(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,∵CD∥AB,∴EQ∥FW∥GR∥HY∥AB∥CD,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,同理∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n﹣1),故答案为:900°,180°(n﹣1);(3)解:过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n﹣1=2∠CM n O,∴∠AM1M2+∠CM n M n﹣1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n﹣1+∠CM n M n﹣1=180°(n﹣1),∠2+∠3+∠4+∠5+∠6+…+∠n﹣1=(180n﹣180﹣2m)°.13.如图1,MA1∥NA2,则∠A1+∠A2=180度.如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度.从上述结论中你发现了什么规律?如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n﹣1)度.【分析】首先过各点作MA1的平行线,由MA1∥NA2,可得各线平行,根据两直线平行,同旁内角互补,即可求得答案,注意找到规律:MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n﹣1)度是关键.【解答】解:如图1,∵MA1∥NA2,∴∠A1+∠A2=180°.如图2,过点A2作A2C1∥A1M,∵MA1∥NA3,∴A2C1∥A1M∥NA3,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A3=180°,∴∠A1+∠A2+∠A3=360°.如图3,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,∵MA1∥NA3,∴A2C1∥A3C2∥A1M∥NA3,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A4=180°,∴∠A1+∠A2+∠A3+∠A4=540°.如图4,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,过点A4作A4C3∥A1M,∵MA1∥NA5,∴A2C1∥A3C2∥A4C3∥NA5,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A3A4C3=180°∠C3A4A5+∠A5=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=720°.从上述结论中你发现了规律:如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n ﹣1)度.故答案为:180,360,540,720,180(n﹣1).14.如图,AB∥CD,点F在CE上,∠EAF=∠BAF,若∠AEC=105°,∠DCE=115°,求∠AFC的度数.【分析】过点E作EM∥AB,由平行线的性质得到∠MEC=65°,从而得到∠AEM=40°,再根据平行线的性质得到∠EAB=180°﹣∠AEM=140°,进而得到∠EAF=35°,最后根据三角形的外角定理即可求解.【解答】解:如图,过点E作EM∥AB,∵AB∥CD,∴EM∥CD,∴∠MEC+∠DCE=180°,∵∠DCE=115°,∴∠MEC=180°﹣115°=65°,∵∠AEC=∠MEC+∠AEM,∠AEC=105°,∴∠AEM=40°,∵EM∥AB,∴∠AEM+∠EAB=180°,∴∠EAB=180°﹣∠AEM=140°,∵∠EAB=∠EAF+∠BAF,∠EAF=∠BAF,∴∠EAF+3∠EAF=140°,∴∠EAF=35°,∴∠AFC=∠EAF+∠AEC=35°+105°=140°.15.直线AB∥CD,E为直线AB、CD之间的一点,完成以下问题:(1)如图1,若∠B=15°,∠BED=90°,则∠D=75°;(2)如图2,若∠B=α,∠D=β,求出∠BED的度数(用a、β表示);(3)如图3,若∠B=α,∠C=β,则a、β与∠BEC之间有什么等量关系?请猜想证明.【分析】(1)过E作EF∥AB,根据两直线平行,内错角相等进行计算;(2)过E作EF∥AB,根据两直线平行,同旁内角互补进行计算;(3)过点E作EF∥AB,根据两直线平行,内错角相等,以及两直线平行,同旁内角互补进行计算.【解答】解:(1)过E作EF∥AB,∵AB∥CD,∴EF∥CD,∵∠B=15°,∴∠BEF=15°,又∵∠BED=90°,∴∠DEF=75°,∵EF∥CD,∴∠D=75°,故答案为:75°;(2)过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠B+∠BEF+∠DEF+∠D=360°,又∵∠B=α,∠D=β,∴∠BED=∠BEF+∠DEF=360°﹣α﹣β,故答案为:∠BED=360°﹣α﹣β;(3)猜想:∠BEC=180°﹣α+β.证明:过点E作EF∥AB,则∠BEF=180°﹣∠B=180°﹣α,∵AB∥EF,AB∥CD,∴EF∥CD,∴∠CEF=∠C=β,∴∠BEC=∠BEF+∠CEF=180°﹣α+β.16.问题情境:如图1,AB∥CD,∠P AB=135°,∠PCD=125°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】过P作PE∥AB,构造同旁内角,通过平行线性质,可得∠APC=45°+55°=100°.(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【解答】解:过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=45°,∠CPE=180°﹣∠C=55°,∴∠APC=45°+55°=100°;(1)∠CPD=∠α+∠β,理由如下:。
人教版初中数学七下 小专题(一) 平行线中的拐点模型

模型解读:当两条平行线不是被第三条直线所截,而是被一条折线所截时,通常 过拐点作平行线,将复杂的图形转化成基本模型图(如: “F”“Z”“⊂”“≠”等),再利用平行线的有关性质和判定解决问题.若两条 直线(需证明的平行线)被一条折线所截仍然采取上述方法解决.
基本模型展示
第6题图
7.(2022·咸宁市咸安区期末)如图,把一张长方形纸片ABCD沿EF折叠后,点A
落在CD边上的点A'处,点B落在点B'处.若∠2=40°,则∠1的度数 115°
为
.
8.某学生上学路线如图所示,他总共拐了三次弯,最后行走路线与开始的路线互 相平行.已知第一次转过的角度和第三次转过的角度如图,则第二次拐弯角 (∠1)的度数是 90° .
(2)若∠MAE与∠NCE的平分线交于点F,请在图2中将图形补充完整,并直 接写出∠AEC与∠AFC之间的数量关系;
20°
图2
图3
数是( A )
A.15°
B.30°
C.45°
D.60°
第4题图
5.(2022·宜昌)如图,C岛在A岛的北偏东50°方向,C岛在B岛的北偏西35°方 向,则∠ACB的度数是 85° ∥EF,∠ABC=75°,∠CDF=135°,则∠BCD的度 数为 30° .
1.(2021·随州)如图,将一块含有60°角的直角三角尺放置在两条平行线上.若 ∠1=45°,则∠2的度数为( A )
A.15°
B.25°
第1题图 C.35°
D.45°
2.如图,AB∥CD,∠1=110°,∠2=20°,则∠DEB的度数为( B )
A.80°
B.90°
第2题图 C.100°
平行线的性质 —平行线间的“拐点”问题说课课件 2023-2024学年人教版七年级数学下册

例1:已知:如图,AB//EF,请你猜想 ∠BAC、∠ACE、∠CEF它们之间的数量 关系,并说明理由。
A
B
C
1 2
D
E
F
学生易错点:1.添加辅助线叙 述错误,如:过点C作AB、EF 的平行线CD。 2、推理过程不严谨:如过点C 作CD//AB, 所以∠A+∠1=180° 又因为CD//EF, 所以∠2+∠E=180°。
M
1
a
P 23 N
b
(第1题图)
D
E
(第2题图)
笃行
3. 如图,有一块含有45°角的三角尺放在直尺上,如果∠2=20°, 那么∠1= ( ) A .15°B.20° C.25° D .30°
C
1 2
建模思想
笃行
4.如图,直线AB、EF,点C是直线AB上一点,点D是直线AB外一 点,若∠BCD=95°,∠CDE=25°,则∠DEF=( C )
时间 安排
0 3
从时间分配上来看,由于前面一题 多解上用时有点多,导致后面两种 模型的研究有些匆忙。
设计思路
A
B
C
E
F
7.教学反思
Fresh and simple teacher's lecture
通过一个基本图形,延伸到三种基本图形,启发 学生如何从题目中提炼出基本模型。渗透特殊到 一般、类比、转化等数学思想。引导学生善于观 察分析题目的内在联系,做到做一题、懂一类、 会一片的目的。
设计意图:分层布置作业,A组题让全体学生对今天的学习有练习,有巩固; B组题让学有余力的学生有探究,有提高。同时把数学的研究深入到课后,体
现深度学习的理念。
6.板书设计
七年级下学期期末冲刺专项复习(一)——平行线与拐点问题

七年级下学期期末冲刺专项复习(一)——平行线与拐点问题1. 小明在学习完平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=( )A.22°B.20°C.25°D.30°2. 如图,直线21l l ∥,AB ⊥CD ,∠1=22°,那么∠2=( )A.68°B.58°C.22°D.28°3. 如图,∠BAE=∠MFC=120°,∠AEC=90°,则∠DCE=( )A.60°B.40°C.30°D.20°4. 有下列四个结论:①如图(1),若AB//CD ,则∠A+∠E+∠C=180°;②如图(2),若AB ∥CD ,则∠E=∠A+∠C ;③如图(3),若AB ∥CD ,则∠A+∠E-∠1=180°;④如图(4),若AB ∥CD ,则∠A=∠C+∠P.其中结论正确的个数是( )A.1B.2C.3D.45. 如图,已知EP ⊥EO ,∠EQC+∠APE=90°,求证:AB ∥CD.6. 如图,∠AEC+∠A=∠C,求证:CD∥AB.7. [感知]如图(1),AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF的度数.小明想到了以下方法. 解:如图(1),过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等).∴AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠2+∠PFD=180°(两直线平行,同旁内角互补).∵∠PFD=130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°.[探究]如图(2),AB//CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数.[应用]如图(3),在[探究]的条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.8. 小亮同学遇到这样一个问题.已知:如图(1),AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明过程,请你帮他把证明过程补充完整.证明:如图(1),过点E作EF//AB,则有∠BEF= .∵AB∥CD,∴∥,∴∠FED= .∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:已知:a∥b,点A,B在直线a上,点C,D在直线b上(点D在点C的左侧),连接AD,BC,BE平分∠ABC,DE平分∠ADC.①如图(2),当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图(3),当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含α,β的式子表示).。
2022北师版初中七年级数学下册练习题--专项综合全练(三)过拐点作平行线求角的度数问题

初中数学·北师大版·七年级下册——专项综合全练(三)过拐点作平行线求角的度数问题1.(2020内蒙古呼伦贝尔中考)如图2-6-1,直线AB∥CD,AE∥CE于点E,若∥EAB=120°,则∥ECD的度数是( )图2-6-1A.120°B.100°C.150°D.160°答案C如图,过点E作EF∥AB,∴∥A+∥1=180°,∵∥EAB=120°,∴∥1=180°-120°=60°,∵AE∥CE,∴∥1+∥2=90°,∴∥2=90°-∥1=90°-60°=30°,∵EF∥AB,AB∥CD,∴EF∥CD,∴∥ECD=180°-∥2=150°,故选C.2.如图2-6-2,AB∥EF,则∥A、∥C、∥D、∥E满足的数量关系是( )图2-6-2A.∥A+∥C+∥D+∥E=360°B.∥A+∥D=∥C+∥EC.∥A-∥C+∥D+∥E=180°D.∥E-∥C+∥D-∥A=90°答案C分别过C,D作l1∥AB,l2∥EF,如图,则l1∥l2∥AB∥EF,∴∥A=∥1,∥2=∥3,∥4+∥E=180°,∴(∥CDE-∥3)+∥E=180°,∴(∥CDE-∥2)+∥E=180°,∴[∥CDE-(∥ACD-∥1)]+∥E=180°, ∴∥CDE-∥ACD+∥A+∥E=180°.3.(2017山东威海中考)如图2-6-3,直线l 1∥l 2,∥1=20°,则∥2+∥3= .图2-6-3答案 200°解析 如图,过∥2的顶点作l 2的平行线l,则l ∥l 1∥l 2,∴∥4=∥1=20°,∥2-∥4+∥3=180°, ∴∥2+∥3=180°+20°=200°.4.(2021福建福州屏东中学期中)如图2-6-4,直线AB ∥CD,点E,F 分别在直线AB,CD 上,EP,CP 分别平分∥AEF,∥ACF,且EP,CP 交于点P,∥EAC=110°,∥EFC=m°,则∥EPC 的度数为 .(用含m 的式子表示)图2-6-4答案 (125+12m)°解析 如图,过点P 作PQ ∥AB,则PQ ∥AB ∥CD,∵AB ∥CD,∴∥ACF+∥EAC=180°,∥AEF+∥EFC=180°, ∴∥ACF=180°-∥EAC,∥AEF=180°-∥EFC, ∵EP,CP 分别平分∥AEF,∥ACF,∴∥PCF=12∥ACF=90°-12∥EAC,∥AEP=12∥AEF=90°-12∥EFC,∵PQ ∥AB ∥CD,∴∥CPQ=∥PCF,∥AEP+∥EPQ=180°,∴∥CPQ=90°-12∥EAC,∥EPQ=180°-∥AEP=90°+12∥EFC,∴∥EPC=∥CPQ+∥EPQ=90°-12∥EAC+90°+12∥EFC=180°-12∥EAC+12∥EFC,∵∥EAC=110°,∥EFC=m°,∴∥EPC=180°-12×110°+12·m°=125°+12m°=(125+12m)°. 故答案为(125+12m)°.5.如图2-6-5,∥BEC=95°,∥ABE=120°,∥DCE=35°,则AB 与CD 平行吗?说明理由.图2-6-5解析 AB ∥CD.理由:如图,过点E 在∥BEC 的内部作∥FEC=∥C=35°,则有EF ∥CD.因为∥BEC=95°,所以∥BEF=60°.因为∥ABE=120°,所以∥BEF+∥ABE=180°,所以AB ∥EF.根据“平行于同一条直线的两条直线平行”,可得AB ∥CD.6.如图2-6-6,一条铁路到一个村子边时,需拐弯绕道而过,如果第一次拐的∥A 是105°,第二次拐的∥B 是135°,第三次拐的角是∥C,这时的铁路恰好和第一次拐弯之前的铁路平行,那么∥C 应为多少度?图2-6-6解析 如图,过点B 作BE ∥CD.因为CD ∥AF, 所以BE ∥AF, 所以∥ABE=∥A=105°, 所以∥CBE=∥ABC-∥ABE=30°, 又因为BE ∥CD,所以∥CBE+∥C=180°, 所以∥C=150°.7.如图2-6-7,AB ∥CD,E,F 分别是AB,CD 之间的两点,且∥BAF=2∥EAF,∥CDF=2∥EDF. (1)判断∥BAE,∥CDE 与∥AED 之间的数量关系,并说明理由; (2)求出∥AFD 与∥AED 之间的数量关系.图2-6-7解析 (1)∥AED=∥BAE+∥CDE. 理由如下:过点E 作EG ∥AB,如图. 因为AB ∥CD, 所以AB ∥EG ∥CD.所以∥AEG=∥BAE,∥DEG=∥CDE, 因为∥AED=∥AEG+∥DEG, 所以∥AED=∥BAE+∥CDE.(2)因为∥BAF=2∥EAF,∥CDF=2∥EDF, 所以∥BAF=23∥BAE,∥CDF=23∥CDE, 同(1)可得∥AFD=∥BAF+∥CDF, 所以∥AFD=23(∥BAE+∥CDE)=23∥AED.8.(2019江西师大附中期末)如图2-6-8所示,已知平面内有两条直线AB,CD,且AB ∥CD,P 为一动点. (1)当点P 移动到AB 、CD 之间时,如图2-6-8①所示,∥P 与∥A 、∥C 有怎样的关系?证明你的结论; (2)当点P 移动到图2-6-8②③的位置时,∥P,∥A,∥C 有怎样的关系?写出你的结论.图2-6-8解析 (1)∥APC=∥A+∥C.证明:如图所示,过点P 作PE ∥AB,∵AB∥CD,∴AB∥CD∥PE,∴∥A=∥APE,∥C=∥CPE,∴∥APC=∥APE+∥CPE=∥A+∥C.(2)当点P移动到题图②的位置时,∥APC+∥A+∥C=360°.证明:如图所示,过点P作PE∥AB,∵AB∥CD,∴AB∥CD∥PE,∴∥A+∥APE=180°,∥C+∥CPE=180°,∴∥APC+∥A+∥C=360°.当点P移动到题图③的位置时,∥APC=∥C-∥A.证明:如图所示,过点P作PE∥AB,∵AB∥CD,∴AB∥CD∥PE,∴∥C=∥CPE,∥A=∥APE,∴∥APC=∥CPE-∥APE=∥C-∥A.9.如图2-6-9①,已知AB∥CD,探究∥BED与∥B+∥D的关系:过E作EM∥AB,∴∥1=∥B.∵EM∥AB,AB∥CD,∴EM∥CD,∴∥2=∥D,∴∥1+∥2=∥B+∥D.又∵∥BED=∥1+∥2,∴∥BED=∥B+∥D.(1)如图2-6-9②,已知AB∥CD,试探究∥E+∥G与∥B+∥F+∥D的关系,并写出推理过程;(2)如图2-6-9③,已知AB∥CD,请直接写出你能得到的结论.图2-6-9解析(1)关系:∥E+∥G=∥B+∥EFG+∥D.如图,过F作FN∥AB.由题中的推理可知∥E=∥B+∥1,∥G=∥2+∥D,∴∥E+∥G=∥B+∥1+∥2+∥D,∴∥E+∥G=∥B+∥EFG+∥D.(2)∥E1+∥E2+…+∥E n=∥B+∥F1+∥F2+…+∥F n-1+∥D.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题03 拐点压轴专题(1)——拐点在平行线间
【专题导入】
经过了《拐点专题(初步引入)》后,面对压轴题形式的平行线——拐点题时,我们只需要把握住两点.
①抓住平分线(出现相等角或比例角,能通过一个未知角度表示图中出大部分的角度)
1.如图,若直线BE∥GF,A,C分别为BE,GF上两点,连接AC,∠BAC的平分线交GF于点D.
若设∠1=α,试用含α的代数式表示出图中的角.
∠2=____,∠3=____,∠4=_____,∠5=_____,∠6=____,∠7=_____.
②观察得出题中的拐点,并且能熟练的得出拐角与两条平行线中哪些角相关,结合条件与所得的代数式关系进行求解.
2.如图,m∥l,A,B分别在直线m,l上,P为两平行线中任意一点,连接AP,BP,
∠DAP的平分线和∠EBP的平分线相交于点C.
若设∠2=α,∠4=β,试用含α的代数式表示出∠C和∠P.
【例1】如图(1)所示:已知MN∥PQ,点B在MN上,点C在PQ上,点A在点B的左侧,点D在点C的右侧,∠ADC、∠ABC的平分线交于点E(不与B、D点重合),∠CBN=110°.(1)若∠ADQ=140°,则∠BED的度数为______(直接写出结果即可);
(2)若∠ADQ=m°,将线段AD沿DC方向平移,使点D移动到点C的左侧,其它条件不变,如图(2)所示,求∠BED的度数(用含m的式子表示).
同步训练1. 已知E、F分别是AB、CD上的动点,P也为一动点.其中AB∥CD,移动E、F,使
的值.
∠EPF=90°,作∠PEG=∠BEP,求∠AEG
∠PFD
【过关练习】
1. 如图,AB∥CD,点E是在AB、CD之间,且在BD的左侧平面区域内一点,连结BE,DE.作出∠EBD和∠EDB的平分线,两线交于点F,猜想∠F,∠ABE,∠CDE之间的关系,并证明你的猜想.
2. 如图,若∠AEP=25∠AEF ,∠CFP=2
5∠EFC ,且FP 的延长线交∠AEP 的角平分线于点M ,EP 的延长线交∠CFP 的角平分线于点N ,猜想∠M+∠N 的结果并且证明你的结论.
3. 已知,AB ∥CD .点M 在AB 上,点N 在CD 上.如图中,∠BME=60°,EF 平分∠MEN ,NP 平分∠END ,且EQ ∥NP ,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ 的度数.
4. 如图,已知EM∥BN,∠AEM与∠ABN的角平分线相交于点F.试探究∠EFD与∠A的数量关系,并说明你的理由.
【专题提高】
5. 如图,已知AB∥CD,点E在直线AB,CD之间.若AH平分∠BAE,将线段CE沿CD平移至FG.
(1)如图1,若∠AEC=90°,HF平分∠DFG,求∠AHF的度数;
(2)如图2,若HF平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由.
6. 如图,已知AB∥CD,直线AB、CD被直线EF截,分别交AB于点G,交CD于点H,点P在
直线AB、CD内部直线EF上,点M、N分别在直线AB、CD上,连接PM、PN,∠PMB和∠PNC 的平分线交于点K,点O为AB上一点,连接ON、MN,MN平分∠PNO,若∠MNK∶∠PMK=2∶7,2∠MKN-∠PNO=180°,求∠NOM的度数.。