最新精选七年级上册数学数轴类动点问题压轴题专题练习(二)

合集下载

专题02数轴上的动点问题 期中专题复习(含解析)2023年秋人教版数学七年级上册

专题02数轴上的动点问题 期中专题复习(含解析)2023年秋人教版数学七年级上册

运动时间问题(1)求的值;a b ,点表示的数(1)请你在数轴上表示出A,B,C三点的位置;(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│参考答案:1.A【分析】根据数轴,按题目叙述的移动方法即可得到点前五次移动后在数轴上表示的数;根据移动的规律即可得移动第158次后到达的点在数轴上表示的数.【详解】解:设向右为正,向左为负,则表示的数为+1,表示的数为+3表示的数为0表示的数为-4表示的数为+1……由以上规律可得,每移动四次相当于向左移动4个单位长度.所以当移动156次时,156=39×4相当于向左移动了39次四个单位长度.此时表示的数为.则第157次向右移动157个单位长度,;第158次还是向右,移动了158个单位长度,所以.故在数轴上表示的数为159.故选A .【点睛】本题考查了数轴上点的运动规律,正确理解题意,找出点在数轴上的运动次数与对应点所表示的数的规律是解题的关键.2.①②④【分析】“前进3步后退2步”这5秒组成一个循环结构,先根据题意列出几组数据,从数据找寻规律:第一个循环节结束的数即x 5=1,第二个循环节结束的数即x 10=2,第三个循环节结束的数即x 15=3,…,第m 个循环节结束的数就是第5m 个数,即x 5m =m .然后再根据“前进3步后退2步”的运动规律来求取对应的数值.【详解】根据题意可知:x 1=1,x 2=2,x 3=3,x 4=2,x 5=1,x 6=2,x 7=3,x 8=4,x 9=3,x 10=2,x 11=3,x 12=4,x 13=5,x 14=4,x 15=3,1P 2P 3P 4P 5P ()39-4156⨯=-1571P =1581+158=159P =158P②如图2所示,当N在A点左侧,M在A点右侧时,③(2)817 =1+(2)=33 CA--17。

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(含答案)

2023-2024年人教版七年级上册数学期末动点问题压轴题专题训练(1) ______, ______(1)若点P 到A 、B 两点的距离都相等,请直接写出点P 对应的数(2)数轴上是否存在点P ,使点P 到点A ,点B 的距离之和为10=a b =(1)___________,___________.(2)若在数轴上有两动点、分别从同时出发向右运动,点的速度为2个单位长度/秒,点的速度为1个单位长度秒,当点在点追上了点,求点对应的数为多少?=a c =P Q A B ,P Q P D Q D(1)写出数轴上点B 表示的数 ;(2)表示5与3之差的绝对值,实际上也可理解为(1)求出线段的长度;(1)点表示的数为________,点|53|-AB A(1)请直接写出a 、b 、c 的值. ______,设点P 运动时间为t 秒.(1)若M ,N ,P 三点同时出发,=a(1)数轴上点B 表示的数是 ;当点P 运动到(1)则______,______. A =a b =(1)A 点所表示的数是___________,C 点所表示的数是___________;(2)若动点P 从点C 出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一动点Q 恰好从点A 出发,以每秒2个单位长度的速度沿数轴向右移动,设点P 和点Q 在数轴上的点M 相遇,求点M所表示的数是多少?(3)若动点P 从C 点出发,以每秒3个单位长度的速度沿数轴向左运动,另一动点Q 恰好从A 点出发,以每秒2个单位长度的速度沿数轴也向左运动,是否存在时间t ,使得P ,Q 到原点的距离相等,并求出此时点P 和点Q 所表示的数.13.如图,点在线段上,,,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动;同时,动点从点出发,沿线段以每秒个单位长度的速度向终点匀速运动.当点到达终点时,点也随之停止运动.设点的运动时间为秒.(1)线段的长为______.(2)当点与点相遇时,求的值.(3)当点与点之间的距离为个单位长度时,求的值.(4)当时,直接写出的值.14.如图,在数轴上点A 、C 、B 表示的数分别是、1、12.动点P 从点A 出发,沿数轴以每秒3个单位长度的速度向终点B 匀速运动;同时,点Q 从点B 出发,沿数轴以每秒2个单位长度的速度向终点A 匀速运动,设点Q 的运动时间为t 秒.C AB 3AC =11BC =P A AB 3B Q B BA 2A P Q P t AB P Q t P Q 9t 2.5PC QB +=t 8-(1)的长为________;AB(2)当点P与点Q相遇时,求t的值;(1)点A表示的数为___________,点B表示的数为(1)OA=__________cm,OB=__________cm参考答案:。

部编数学七年级上册期中难点特训(二)数轴上册的动点与整式加减相结合的压轴题(解析版)含答案

部编数学七年级上册期中难点特训(二)数轴上册的动点与整式加减相结合的压轴题(解析版)含答案

期中难点特训(二)数轴上的动点与整式加减相结合的压轴题1.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a=_____ ,b=______ ,c=______(2)a、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB 的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值【答案】(1) -1;1;5;(2) 4x+10或2x+12;(3)不变, BC-AB=2【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数都是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x-1,x+5的符号,然后根据绝对值的意义即可化简;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】(1)∵b是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x)+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12.(3)不变.理由如下:t秒时,点A对应的数为-1-t,点B对应的数为2t+1,点C对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB的值不随着时间t的变化而改变,BC-AB=2.【点睛】本题考查了数轴与绝对值,整式的加减,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题:(Ⅰ)请直接写出a、b、c的值:a=_______;b=______;c=_______.(Ⅱ)a、b、c所对应的点分别为A、B、C,已知数轴上两点间的距离为这两点所表示的数的差的绝对值(或用这两点所表示数中较大的数减去较小的数),若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC-AB的值.(Ⅲ)在(Ⅰ)(Ⅱ)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动,则经过t秒钟时,请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请直接写出它的值.422BC AB -=-=;故答案为2(Ⅲ)经过t 秒后,、、A B C 三点分别表示的数为1t --,13t +,57t+57(13)44BC t t t =+-+=+,13(1)24AB t t t=+---=+2BC AB -=答:不变,值为2.【点睛】此题考查了有理数及整式的混合运算,以及数轴,正确理解AB ,BC 的变化情况是关键.3.探究与发现:|a ﹣b |表示 a 与 b 之差的绝对值,实际上也可理解为 a 与 b 两数 在数轴上所对应的两点之间的距离.如|x ﹣3|的几何意义是数轴上表示有理数 x 的点与表示有理数 3 的点之间的距离.(1)如图,已知数轴上点 A 表示的数为 8,B 是数轴上位于点 A 左侧一点,且 AB =20,则数轴上点 B 表示的数 ;(2)若|x ﹣8|=2,则 x = .拓展与延伸:在(1)的基础上,解决下列问题:(3)动点 P 从 O 点出发,以每秒 5 个单位长度的速度沿数轴向右匀速运动,设运动时 间为 t (t >0)秒.求当 t 为多少秒时?A ,P 两点之间的距离为 2;(4)数轴上还有一点 C 所对应的数为 30,动点 P 和 Q 同时从点 O 和点 B 出发分别以每 秒 5 个单位长度和每秒 10 个单位长度的速度向 C 点运动,点 Q 到达 C 点后,再立即以 同样的速度返回,点 P 到达点 C 后,运动停止.设运动时间为 t (t >0)秒.问当 t 为多 少秒时?P ,Q 之间的距离为 4.4.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,c满足|a+3|+(c﹣9)2=0,b=1.(1)a= ,c= ;(2)若将数轴折叠,使得A点与点C重合,则点B与数 表示的点重合.(3)在(1)的条件下,若点P为数轴上一动点,其对应的数为x,求当x取何值时代数式|x﹣a|﹣|x﹣c|取得最大值,并求此最大值.(4)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点C处以2个单位/秒的速度也向左运动,在点Q到达点B后,以原来的速度向相反的方向运动,设运动的时间为t(秒),求第几秒时,点P、Q之间的距离是点C、Q之间距离的2倍?5.已知代数式M=(a﹣16)x3+20x2+10x+9是关于x的二次多项式,且二次项系数为b.如图,在数轴上有A、B、C三个点,且A、B、C三点所表示的数分别是a、b、c,已知AC=6AB.(1)直接依次写出a、b、c的值: , , ;(2)若动点P、Q分别从C、O两点同时出发,向右运动,且点Q不超过点A.在运动过程中,E 为线段AP的中点,F为线段BQ的中点,若动点P的速度为每秒2个单位长度,动点Q的速度为每秒3个单位长度,则BP AQEF-的值是 ;(3)若动点P、Q分别从A、B两点同时出发,都以每秒2个单位长度的速度向左运动,动点M 从点C出发,以每秒6个单位长度的速度沿数轴向右运动,设运动时间为t秒,若动点P、Q分别从C、O两点同时出发,3<t72<时,数轴上有一点N与点M的距离始终为2个单位长度,且点N在点M的左侧,T为线段MN上的一点(点T不与M、N重合),在运动的过程中,若满足MQ﹣NT =3PT(点T不与点P重合),求出此时线段PT的长度.6.新规定:点C为线段AB上一点,当CA=3CB或CB=3CA时,我们就规定C为线段AB的“三倍距点”.如图,在数轴上,点A所表示的数为﹣3,点B所表示的数为5.(1)确定点C所表示的数为 ;(2)若动点P从点B出发,沿射线BA方向以每秒2个单位长度的速度运动,设运动时间为t 秒.①当点P与点A重合时,则t的值为 ;②求AP的长度(用含t的代数式表示);③当点A为线段BP的“三倍距点”时,直接写出t的值.7.【背景知识】数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b ,则可简化为AB =a ﹣b :线段AB 的中点M 表示的数为2a b +.【问题情境】已知数轴上有A 、B 两点,分别表示的数为﹣10,8,点P ,Q 分别从A ,B 同时出发,点P 以每秒5个单位长度的速度沿数轴向右匀速运动,点Q 以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒(t >0).【综合运用】(1)A 、B 两点的距离为 ,线段AB 的中点C 所表示的数 ;(2)点P 所在的位置的点表示的数为 ,点Q 所在位置的点表示的数为 (用含t 的代数式表示);(3)P 、Q 两点经过多少秒会相遇?8.如图,以O 为原点的数轴上有A ,B 两点,它们对应的数分别为a ,b ,且(a ﹣10)2+(2b +8)2=0.(1)直接写出结果:a= ,b= .(2)设点P,Q分别从点A,B同时出发,在数轴上相向运动,且在原点O处相遇.设它们运动的时间为t秒,点P运动的速度为每秒2.5个单位长度.①用含t的式子表示:t秒后,点P,Q在数轴上所对应的数(直接写出结果),点P对应的数是 ,点Q对应的数是 .②当P,Q两点间的距离恰好等于A,B两点间距离的一半时,求t的值.9.数轴上,把点A表示的数记为a,点B表示的数记为b.在学习绝对值时,我们知道了绝对值的几何含义:数轴上点A,B之间的距离记作|AB|.例如:当a=1,b=3时,点A,B之间的距离|AB|=|1﹣3|=2;当a=﹣1,b=﹣3时,点A,B之间的距离|AB|=|﹣1﹣(﹣3)|=2;当a=﹣1,b=3时,点A,B之间的距离|AB|=|﹣1﹣3|=4;由此我们知道,一般情况下,点A,B之间的距离|AB|=|a﹣b|.已知a=﹣6,b=2.(1)直接写出|AB|的值为 ;(2)若点M从点A出发,以4个单位/秒的速度沿数轴向右移动,同时点N从点B出发,以2个单位/秒的速度向右移动,设移动时间为t秒.①移动过程中点M表示的数为 ,点N表示的数为 ,点M,N之间的距离|MN|为 (用含t的式子表示);②在移动过程中,若点M,N之间相距3个单位长度,求t的值;(3)在的(2)条件下,在点M,N移动的同时点P从点O出发,以1个单位/秒的速度沿数轴向右移动,在三个点移动的过程中,|MN|+2|PN|或|MN|﹣2|PN|在某种条件下是否会为定值,请分析并说明理由.10.已知数轴上A、B两点对应的数分别为a、b,且|a+1|+|b﹣3|=0(1)求点A、B两点对应的有理数是 、 ;A、B两点之间的距离是 .(2)若点C到点A的距离刚好是6,求点C所表示的数应该是多少?(3)若点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,经过多少秒时,P到A的距离刚好等于P到B的距离的2倍?(4)若点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向右运动,若运动的时间为t秒,2PA﹣mPB的值不随时间t的变化而改变,求m的值.11.如图,数轴上有两条可以左右移动的线段OB和CD.已知OB=m,CD=n,且m,n满足|m﹣4|+(n﹣8)2=0.(1)m= ,n= ;(2)如图1,线段OB的中点为M,线段CD中点为N,线段OB以每秒4个单位长度向右运动,同时线段CD以每秒1个单位长度也向右运动,若运动6秒后,MN=8,求线段CD在向右运动前,点C在数轴上所对应的数;(3)如图2,已知BC=24,线段CD固定不动,M,N分别为OB,CD中点,线段OB以每秒4个单位长度向右运动t秒,若始终有MN+OD为定值.求出这个定值,并直接写出对应t的取值范围.当9t ³时,430436866MN OD t t t +=-+-=-;综上可得:当7.59t £<时,6MN OD +=,此时7.59t £<.【点睛】题目主要考查数轴上两点间的距离、绝对值及平方的非负性质,理解题意,列出相应的方程及找出各线段间的关系是解题关键.12.在数轴上,点A 表示的数为a ,点B 表示的数为b ,且a 、b 满足()2570a b ++-=,其中O 为原点,如图:(1)直接写出:=a _____,b =______,A ,B 两点之间的距离为______.(2)在数轴上有一动点M ,若点M 到点A 的距离是点M 到点B 的距离的2倍,求点M 对应的数.(3)在数轴上有一动点P ,动点P 从点A 出发第一次向左运动1个单位长度;然后在此位置进行第二次运动,向右运动2个单位长度;然后在此位置进行第三次运动,向左运动3个单位长度……;按照如此规律不断地进行左右运动,当运动到2021次时,求此时点P 所对应的有理数.解得19m =(舍去),当点M 在AB 之间时,57m -££,5MA m =+,7MB m =-,∴()527m m +=-,解得:3m =,当点M 在点B 的右侧时,7m >,5MA m =+,7MB m =-,∴()527m m +=-,解得:19m =综上所述:点M 对应的数为3或19.(3)根据题意,设点P 对应的数为p ,51234201920202021p =--+-+-+-L ,()()()12342019202052021=-++-++-+--L ,101052021=--1016=-,故点P 所对应的有理数为1016-.【点睛】本题考查了一元一次方程的应用,非负数的性质,数轴,两点间的距离公式.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程再求解.13.点A 对应数a ,点B 对应数b ,点C 对应数c .(1)已知6c a x y 与202b x y +-的和是106x y -,那么=a ,b = ,c =;(2)点P 为数轴上一点,且满足31PA PB =+,请求出点P 所表示的数;(3)点M 为数轴上点A 右侧一点,甲、乙两点分别从A 、M 出发,相向而行,2分钟后在途中相遇,相遇后,两点的速度都提高了l 单位长度/分,当甲到达M 点后立刻按原路向A 返行,当乙到达A 点后也立刻按原路向M 点返行.甲、乙两点在第一次相遇后3分36秒又再次相遇,则A 、M 两点的距离是 单位长度.(4)当甲以4单位长度/分的速度从A 出发,向右运动,乙同时从点C 出发,以6单位长度/分的速度向左运动,当甲到A 、B 、C 的距离之和为40个单位长度时,甲立即掉头返行,请问甲、乙还能碰面吗?若能,求出碰面的地点对应的数;若不能,请说明理由.14.如图,点A和点B在数轴上分别对应数a和b,其中a和b满足(a+4)2=﹣|8﹣b|,原点记作O.(1)求a和b;(2)数轴有一对动点A1和B1分别从点A和B出发沿数轴正方向运动,速度分别为1个单位长度/秒和2个单位长度/秒.①经过多少秒后满足AB1=3A1B?②另有一动点O1从原点O以某一速度出发沿数轴正方向运动,始终保持在1A与1B之间,且满足11 111 2AO B O =,运动过程中对于确定的m值有且只有一个时刻t满足等式:AO1+BO1=m,请直接写出符合条件m的取值范围.()\=+=--+=+-=+-4,44,82, AO vt A O vt t vt t B O t vt BO。

七年级数学上册数轴上的动点压轴题专题练习

七年级数学上册数轴上的动点压轴题专题练习

七年级数学上册数轴上的动点压轴题专题练习1.已知,在数轴上点 A 表示数 a,点B 表示数 b,且 a,b 满足a + 2 +b - 4 = 0 .(1)点A 表示的数为,点B 表示的数为;(2)设点A 与点C 之间的距离表示为AC,点B 与点C 之间的距离表示为BC.若在数轴上存在一点C,使BC=2AC,则点C 表示的数为;(3)若在原点处放一挡板,一小球甲从点 A 处以每秒 2 个单位长度的速度向左运动;同时另一小球乙从点 B 以每秒2 个单位长度的速度也向左运动,在碰到挡板后(忽略球的大小,可看做一点)以原来速度的两倍向相反的方向运动.设运动的时间为 t 秒,请用含 t 的代数式分别表示出甲、乙两小球到原点的距离.2.已知:c=10,且a,b 满足(a+26)2+|b+c|=0,请回答问题:(1)请直接写出a,b,c 的值:a= ,b=;(2)在数轴上a、b、c 所对应的点分别为A、B、C,记A、B 两点间的距离为AB,则AB=,AC=;(3)在(1)(2)的条件下,若点 M 从点A 出发,以每秒 1 个单位长度的速度向右运动,当点 M 到达点 C 时,点 M 停止;当点 M 运动到点B 时,点N 从点A 出发,以每秒 3 个单位长度向右运动,点 N 到达点 C 后,再立即以同样的速度返回,当点 N 到达点 A 时,点N 停止.从点 M 开始运动时起,至点 M、N 均停止运动为止,设时间为t 秒,请用含t 的代数式表示 M,N 两点间的距离.3.如图,点A、B 和线段MN 都在数轴上,点A、M、N、B 对应的数字分别为-1、0、2、11.线段MN 沿数轴的正方向以每秒1 个单位的速度移动,移动时间为t 秒.(1)用含有t 的代数式表示AM 的长为.(2)当t=秒时,AM+BN=11.(3)若点A、B 与线段MN 同时移动,点A 以每秒2 个单位的速度向数轴的正方向移动,点B 以每秒1 个单位的速度向数轴的负方向移动,在移动过程中,AM 和BN 可能相等吗?若相等,请求出t 的值,若不相等,请说明理由.A M N B-102114.如图,已知数轴上点A 表示的数为-7,点 B 表示的数为5,点 C 到点A,点 B 的距离相等,动点P 从点A 出发,以每秒2 个单位长度的速度沿数轴向右匀速运动,设运动的时间(>0)秒(1)点C 表示的数是.(2)求等于多少秒时,点P 到达点B 处.(3)点P 表示的数是(用含的代数式表示).(4)求当t 等于多少秒时,PC 之间的距离为2 个单位长度(只列式,不计算).5.已知:a 、b、c 满足 a=-b,|a+1|+(c-4)2=0,请回答问题:(1)请求出 a 、b、c 的值;(2)a、b、c 所对应的点分别为A、B、C ,P 为数轴上一动点,其对应的数为x,若点P 在线段BC 上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);(3)若点 P 从A 点出发,以每秒2 个单位长度的速度向右运动,试探究当点 P 运动多少秒时,PC=3PB? 6.如图,点A、B 和线段MN 都在数轴上,点A、M、N、B 对应的数字分别为﹣1、0、2、11.线段MN 沿数轴的正方向以每秒1 个单位的速度移动,移动时间为t 秒.(1)用含有t 的代数式表示AM 的长为(2)当t=秒时,AM+BN=11.(3)若点A、B 与线段MN 同时移动,点A 以每秒2 个单位速度向数轴的正方向移动,点B 以每秒1 个单位的速度向数轴的负方向移动,在移动过程,AM 和BN 可能相等吗?若相等,请求出t 的值,若不相等,请说明理由.7.数轴上对应的数,对应的数,为数轴上一动点.(1)AB 的距离是.(2)①若到的距离比到的距离大1,对应的数为.②若其对应的数,数轴上是否存在,使到,的距离之和为8?若存在,请求的值;若不存在,请说明理由.(3)当以每秒个单位长度从原向右运动时,以每秒个单位长度的速度从向左运动,以每秒钟个单位长度的速度从点向右运动,问它们同时出发秒钟时,(直接写出答案即可).8.如图,在数轴上点 A 表示的有理数为﹣6,点 B 表示的有理数为 6,点 P 从点A 出发以每秒 4 个单位长度的速度在数轴上由A 向 B 运动,当点 P 到达点 B 后立即返回,仍然以每秒 4 个单位长度的速度运动至点 A 停止运动,设运动时间为 t(单位:秒).(1)求 t=1 时点 P 表示的有理数;(2)求点P 与点 B 重合时的 t 值;(3)在点P 沿数轴由点A 到点B 再回到点A 的运动过程中,求点P 与点A 的距离(用含t 的代数式表示);(4)当点P 表示的有理数与原点的距离是 2 个单位长度时,请求出所有满足条件的 t 值.9.阅读理解:已知Q、K、R 为数轴上三点,若点K 到点Q 的距离是点K 到点R 的距离的2 倍,我们就称点K 是有序点对[Q,R]的好点.根据下列题意解答问题:(1)如图1,数轴上点Q 表示的数为−1,点P 表示的数为0,点K 表示的数为1,点R表示的数为2.因为点K 到点Q 的距离是2,点K 到点R 的距离是1,所以点K 是有序点的好点,但点K 不是有序点的好点.同理可以判断:点P 有序点的好点,点R 有序点的好点(填“是”或“不是”);(2)如图2,数轴上点M 表示的数为-1,点N 表示的数为5,若点X 是有序点的好点,求点X 所表示的数,并说明理由?(3)如图3,数轴上点A 表示的数为−20,点 B 表示的数为10.现有一只电子蚂蚁C 从点B 出发,以每秒2 个单位的速度向左运动t 秒.当点A、B、C 中恰有一个点为其余两有序点对的好点,求t 的所有可能的值.10.如图,在一条不完整的数轴上从左到右有A、B、C 三个点,其中AB=3,BC=4,设点A、B、C 所对应的数的和是p.(1)若以B 为原点,写出点A、C 所对应的数,并计算p 的值;若以C 为原点,p 的值为.(2)若原点O 在图中数轴主点A 的左侧,且BO=22,求p 的值;(3)若原点O 在图中数轴上点B 的右侧,且CO=a(a>0),求p 的值(用含a 的代数式表示).11.已知数轴上有 A、B、C 三点,分别表示有理数-26、-10、10,动点 P 从A 出发,以每秒 1 个单位的速度向终点 C 移动,设点P 移动时间为 t 秒.(1)用含t 的代数式表示P 到点A 和点C 的距离:PA=,PC=(2)当点 P 运动到 B 点时,点Q 从A 点出发,以每秒 3 个单位的速度向 C 点运动,Q 点到达 C 点后,再立即以同样的速度返回点 A,当点 Q 开始运动后,请用 t 的代数式表示 P、Q 两点间的距离。

七年级数学上册数轴上的动点问题专题训练(二)

七年级数学上册数轴上的动点问题专题训练(二)

七年级数学上册数轴上的动点问题专题训练(二)前言:数轴上的动点问题进阶是熟练描述点与点的位置关系以后,深入探讨点与线段、线段与线段之间的关系,而由于点的数量的多少和数据呈现的不同,题目又会出现一些不同的类别.一、例题解析【例1】已知点A、B在数轴上表示的数分别为a、b且满足|a-2|与(b-90)2互为相反数.(1)a值为,b值为.(2)一只电子狗P从点A出发,向右匀速运动,速度为每秒1个单位长度:另一电子狗Q从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q比P先运动2秒,已知在原点O处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P经过多长时间,有P、Q两只电子狗相距20个单位长度?【例2】数轴上两个点A、B所对应的数为-8、4,A、B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;O BA4-8(2)A、B两点同时以(1)中的速度同时出发,向数轴正方向运动,几秒后原点恰好在两动点中间;(3)A、B两点以(1)中的速度同时出发,几秒种时两者相距6个单位长度?【例3】如图,在数轴上每相邻两点间的距离为一个单位长度,点A 、B 、C 、D 对应的数分别是a 、b 、c 、d ,且d -2a =14.DC AB(1)那么a = ,b = ;(2)点A 以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B 以4个单位/秒的速度也沿着数轴的正方向运动,当点A 到达D 点处立刻返回,与点B 数轴某点处相遇,求这个点对应的数;(3)如果A 、B 两点以(2)中的速度同时向数轴的负方向运动,点C 从图上的位置出发也向数轴的负方向运动,且始终保持AB =23AC ,当点C 运动到-6时,点A 对应的数是多少?【例4】如图,数轴上点A 、C 对应的数分别为a 、c ,且满足|a +4|+(c -1)2018=0,点B 对应的数为-3.COB A(1)求数a 、c ;(2)点A 、B 沿数轴同时出发向右匀速运动,点A 速度为2个单位长度/秒,点B 速度为1个单位长度/秒,若运动时间为t 秒,运动过程中,当A 、B 两点到原点O 的距离相等时,求t 的值;(3)在(2)的条件下,若点B 运动至点C 处后立即以原速返回,到达自己的出发点后停止运动;点A 运动至点C 处后也立即原速返回,到达自己的出发点后又折向点C 运动,当点B 停止运动时,点A 随之停止运动,求在运动过程中,A ,B 两点同时到达的点在数轴上表示的数.【例5】已知点A 在数轴上对应的数为a ,点B 对应的数为b ,A 、B 之间的距离记作|AB |,定义:|AB |=|a -b |,且|a +2|+(b -5)2=0. (1)求线段AB 的长;(2)设点P 在数轴对应的数为x ,当|AP |+|PB |=10时,求x 的值;(3)如图,M 、N 两点分别从O 、B 出发以v 1、v 2的速度同时沿数轴负方向运动(M 在线段AO 上,N 在线段BO 上,当M 运动到A 点或N 运动到O 点时,另一点N 或M 即停止运动),P 是线段AN 的中点,若M 、N 运动到任一时刻时,总有|PM |为定值,下列结论:①12v v 的值不变;②v 1+v 2的值不变.其中只有一个结论是正确的,请你找出正确的结论,并求值.O A MBN P【例6】如图1,已知点A 、C 、E 、F 、B 为直线l 上的点,且AB =12,CE =6,F 为AE 的中点. (1)如图1,若CF =2,则BE = ,若CF =m ,BE 与CF 的数量关系是 .图1F EBCA(2)当点E 沿直线l 向左运动至图2的位置时,(1)中BE 、CF 的数量关系是否仍然成立?请说明理由.图2A C BE F(3)如图3,在(2)的条件下,在线段BE 上,是否存在点D ,使得BD =7,且DF =3DE ?若存在,请求出10DFCF值;若不存在,请说明理由. D FE BC A 图3二、课后练习1.数轴上点A 对应的数为-5,点B 在点A 右边,电子蚂蚁甲、乙在B 分别以2个单位/秒、1个单位/秒的速度向右运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动. (1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;-5BA(2)若它们同时出发,若丙在遇到乙后1秒遇到甲,求点B 表示的数是:-5BA(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.-5BA2.已知:数轴上A 、B 、C 三点对应有理数a 、b 、C 、a 、b 、c 在数轴上的位置如图所示,且|c |>|a |.ba c 0(1)化简:|b -c |-|c -2a |+|2a +b |+|a +c |;(2)若|a +10|=30,b 2=900,c 是|x +40|-30取最小值时x 的值,求a ,b ,c 的值;(3)在(2)的条件下,数轴上是否存在一点P ,使得P 点到C 点的距离加上P 点到A 点的距离减去P 点到B 点的距离为60,即PC +P A —PB =60,若存在,求出P 点在数轴上所对应的数;若存在,请说明理由.3.如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a ,b 满足|a +3|+(b +3a )2=0.ba c 0(1)求点C 表示的数; (2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t ;(3)若点P 以3个单位秒从A 点向右运动 ,点M 为AP 的中点,在P 点到达点B 之前①PA PBPC的值不变;②2BM -BP 的值不变其中只有一个正确,请你找出正确的结论并求出.4.已知:如图1,M 是定长线段AB 上一定点,C 、D 两点分别从M 、B 出发以1c m/s 、3cm/s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上) (1)若AB =10cm ,当点C 、D 运动了2s ,求AC +MD 的值.(2)若点C 、D 运动时,总有MD =3AC ,直接填空:AM = AB . (3)在(2)的条件下,N 是直线AB 上一点,且AN -BN =MN ,求MNAB的值. BDMC A 图1图2AMB5.如图1,已知数轴上有三点A 、B 、C ,AB =12AC ,点C 对应的数是200. (1)若BC =300,求点A 对应的数;(2)如图2,在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC AM 的值是否发生变化?若不变,求其值;若不变,请说明理由.图1CB A图2RPQ200QR P图3-800C D E A200。

七年级数学上册数轴类动点问题压轴题专题提高练习(二) (2)

七年级数学上册数轴类动点问题压轴题专题提高练习(二) (2)

七年级数学上册数轴类动点问题压轴题专题提高练习1.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+2|+(b﹣3)2=0.(1)求点A,B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解,①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?若存在,求出点P对应的数;若不存在,请说明理由.2.如图,在数轴上有四个点A、B、C、D,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15,AB长2个单位长度,CD长1个单位长度.(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC =.(2)若点B以1个单位长度/秒的速度向右运动,同时点C以2个单位长度/秒的速度向左运动设运动时间为t秒,若BC长6个单位长度,求t的值;(3)若线段AB以1个单位长度/秒的速度向左运动,同时线段CD以2个单位长度/秒的速度也向左运动.设运动时间为t秒.①用含有t的式子分别表示点A、B、C、D,则A是,B是,C是,D是.②若0<t<24时,设M为AC中点,N为BD中点,试求出线段MN的长.3.如图,数轴上有A、B、C、D四个点,分别对应a,b,c,d四个数,其中a=﹣10,b=﹣8,(c﹣14)2与|d﹣20|互为相反数,(1)求c,d的值;(2)若线段AB以每秒3个单位的速度,向右匀速运动,当t=时,点A与点C 重合,当t=时,点B与点D重合;(3)若线段AB以每秒3个单位的速度向右匀速运动的同时,线段CD以每秒2个单位的速度向左匀速运动,则线段AB从开始运动到完全通过CD所需时间多少秒?(4)在(3)的条件下,当点B运动到点D的右侧时,是否存在时间t,使点B与点C 的距离是点A与点D的距离的4倍?若存在,请求出t值,若不存在,请说明理由.4.如图,数轴上点A对应的有理数为12,点P以每秒1个单位长度的速度从点A出发,点Q以每秒2个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动.设运动时间为t秒.(1)填空:当t=2时,P,Q两点对应的有理数分别为,,PQ=.(2)当PQ=8时,求t的值.5.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC=,BE=;(2)当线段CE运动到点A在C、E之间时,求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以同样速度返回,同时点Q从A出发,以每秒1个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤16),求t为何值时,P、Q两点间的距离为1个单位长度.6.如图,一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端与数轴上的点A 重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为24;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得到木棒长为cm;(2)由(1)的启发,请你借助“数轴”这个工具解决下列问题:一天,小丽问马老师年龄时,马老师说:“我像你这么大时,你只是1岁;等你到我这个年龄的时候,我已经52岁了.”请求出小丽和马老师现在多少岁了?7.已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R 同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.8.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,运动时间为t秒(t>0),M为AP的中点.(1)当点P在线段AB上运动时,①当t为多少时,PB=2AM?②求2BM﹣BP的值.(2)当P在AB延长线上运动时,N为BP的中点,证明线段MN的长度不变,并求出其值.(3)在(2)的条件下,在P点的运动过程中,是否存在这样的t的值,使M、N、B三点中的一个点是以其余两点为端点的线段的中点,若有,请求出t的值;若没有,请说明理由.9.如图1,在长方形ABCD中,AB=12厘米,BC=6厘米.点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)DQ=厘米,AP=厘米(用含t的代数式表示)(2)如图1,当t=秒时,线段AQ与线段AP相等?(3)如图2,P、Q到达B、A后继续运动,P点到达C点后都停止运动.当t为何值时,线段AQ的长等于线段CP的长的一半.10.如图,在射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以3cm/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.(1)当P在线段AB上时,且PA=2PB,点Q运动到的位置恰好是线段AP的中点,求点Q的运动速度.(2)若点Q运动速度为5cm/s,经过多长时间P、Q两点相距70cm.(3)当点P运动到线段AB上时,分别取OP和OC的中点E、F,求的值.参考答案1.解:(1)∵|a+2|+(b﹣3)2=0,∴a+2=0,b﹣3=0,解得a=﹣2,b=3,即点A,B所表示的数分别为﹣2,3;(2)①2x+1=x﹣8,解得x=﹣6,即点C表示的数为﹣6,∵点B表示的数为3,∴BC=3﹣(﹣6)=3+6=9,即线段BC的长为9;②存在点P,使PA+PB=BC,设点P表示的数为m,当m<﹣2时,(﹣2﹣m)+(3﹣m)=9,解得m=﹣4,即当点P表示的数为﹣4时,使得PA+PB=BC;当﹣2≤m≤3时,[m﹣(﹣2)]+(3﹣m)=m+2+3﹣m=5≠9,故当﹣2≤m≤3时,不存在点P使得PA+PB=BC;当m>3时,[m﹣(﹣2)]+(m﹣3)=9,解得m=5,即当点P表示的数为5时,使得PA+PB=BC;由上可得,点P表示的数为﹣4或5时,使得PA+PB=BC.2.解:(1)∵AB长2个单位长度,点A在数轴上表示的数是﹣12 ∴点B在数轴上表示的数为﹣10;∵CD长1个单位长度,点D在数轴上表示的数是15 ∴点C在数轴上表示的数为14∴BC=14﹣(﹣10)=24故答案为:﹣10;14;24.(2)当B、C相遇前:t+2t=24﹣6;解得:t=6.当B、C相遇后:t+2t=24+6;解得:t=10.∴t的值为:6或10.(3)①∵移动前,点A在数轴上表示的数是﹣12,∴运动t秒后,A是﹣12﹣t;∵移动前,点B在数轴上表示的数为﹣10∴运动t秒后,B是﹣10﹣t;∵移动前,点C在数轴上表示的数为14,∴运动t秒后,点C是14﹣2t;∵移动前,点D在数轴上表示的数是15∴运动t秒后,点D是15﹣2t.故答案为:﹣12﹣t;﹣10﹣t;14﹣2t;15﹣2t.②∵0<t<24,∴点B一直在点C的左侧.∵M为AC中点,N为BD中点,∴点M表示的数为,点N表示的数为,∴MN=.3.解:(1)由题意得:∵(c﹣14)2+|d﹣20|=0,∴c﹣14=0,d﹣20=0,∴c=14,d=20;(2)[14﹣(﹣10)]÷3=8;[20﹣(﹣8)]÷3=.故答案为:8;;(3)t秒后,A点表示的数为﹣10+3t,D点表示的数为20﹣2t,∵AD重合,∴﹣10+3t=20﹣2t,解得t=6.∴线段AB从开始运动到完全通过CD所需要的时间是6秒;(4)①当点A在D的左侧时AD=(20﹣2t)﹣(﹣10+3t)=30﹣5t,BC=(﹣8+3t)﹣(14﹣2t)=5t﹣22,∵BC=4AD,∴5t﹣22=4(30﹣5t),解得;②当点A在D的右侧时AD=(﹣10+3t)﹣(20﹣2t)=5t﹣30,BC=(﹣8+3t)﹣(14﹣2t)=5t﹣22,∵BC=4AD,∴5t﹣22=4(5t﹣30),解得:.所以当或时,BC=4AD.4.解:(1)∵2×2=4,12+2×1=14,∴当t=2时,P,Q两点对应的有理数分别是14,4,∴PQ=14﹣4=10.故答案为:14;4;10.(2)当运动t秒时,P、Q两点对应的有理数分别为12+t,2t.①当点P在点Q右侧时:∵PQ=8,∴(12+t)﹣2t=8,解得t=4.②当点P在点Q的左侧时:∵PQ=8,∴2t﹣(12+t)=8,解得t=20.综上所述,当PQ=8时,t的值为4或20.5.(1)∵数轴上A、B两点对应的数分别是﹣4、12,∴AB=16;∵CE=8,CF=1,∴EF=7∵点F是AE的中点.∴AF=EF=7∴AC=AF﹣CF=7﹣1=6BE=AB﹣AE=16﹣7×2=2故答案为:16,6,2;(2)∵点F是AE的中点∴AF=EF设AF=FE=x,∴CF=8﹣x∴BE=16﹣2x=2(8﹣x)∴BE=2CF(3)①当0<t≤6时,P对应数:﹣6+3t,Q对应数﹣4+tPQ=|﹣4+t﹣(﹣6+3t)|=|﹣2t+2|依题意得:|﹣2t+2|=1解得:t=或②当6<t≤12时,P对应数12﹣3(t﹣6)=30﹣3t,Q对应数﹣4+tPQ=|30﹣3t﹣(﹣4+t)|=|﹣4t+34|依题意得:|﹣4t+34|=1解得:t=或∴t为秒,秒,秒,秒时,两点距离是1.6.解:(1)由数轴观察知三根木棒长是24﹣6=18(cm),则此木棒长为:18÷3=6cm,故答案为:6.(2)设马老师今年x岁,因为马老师和小丽的年龄和是:52+1=53(岁),则小丽的岁数是53﹣x岁;所以,x﹣(53﹣x)+x=523x﹣53=52,x=35,小丽的年龄是:53﹣35=18(岁)答:小丽现在18岁,马老师现在35岁.7.解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.8.解:(1)①∵M是线段AP的中点,∴AM=AP=t,PB=AB﹣AP=24﹣2t.∵PB=2AM,∴24﹣2t=2t,解得t=6;②∵AM=t,BM=24﹣t,PB=24﹣2t,∴2BM﹣BP=2(24﹣t)﹣(24﹣2t)=24;(2)当P在AB延长线上运动时,点P在B点右侧.∵M是线段AP的中点,∴PM=AP=t,∵N是线段BP的中点,∴PN=BP=(2t﹣24)=t﹣12.∴MN=PM﹣PN=t﹣(t﹣12)=12;(3)由题意可知,N不能是BM的中点.①如果M是NB的中点,那么BM=MN=BN,∴t﹣24=12,解得t=36,符合题意;②如果B是MN的中点,那么BM=BN=MN,∴24﹣t=×12,解得t=18,符合题意.综上,在P点的运动过程中,存在这样的t的值,使M、N、B三点中的一个点是以其余两点为端点的线段的中点,此时t为36或18.9.解:(1)DQ=t厘米,AP=2t厘米;(2)由题意,得AQ=(6﹣t)cm,当AQ=AP时,6﹣t=2t解得:t=2故当t=2秒时,线段AQ与线段AP相等;(3)由题意,得AQ=(t﹣6)cm,CP=(18﹣2t)cm,∴t﹣6=(18﹣2t),解得:t=7.5.答:当t行7.5秒时,线段AQ的长等于线段CP的长的一半.故答案为:t,2t;2.10.解:(1)当P在线段AB上时,∵PA=2PB,AB=60cm,OA=20cm,∴PA=40cm,PB=20cm,∴OP=60cm,∴点P运动时间为:60÷3=20(秒),∵当P在线段AB上时,且PA=2PB,点Q运动到的位置恰好是线段AP的中点,BC=10cm,∴BQ=40cm,CQ=50cm,∴点Q的运动速度为:50÷20=(cm/s);(2)设运动时间为t秒,则3t+5t=90±70,解得,t1=,t2=20,∵点Q运动到O点时停止运动,∴点Q最多运动的时间是:(10+60+20)÷5=18(秒),∴当点Q运动18秒到点O时,PQ=OP=3×18=54cm,之后点P继续运动的时间为:(70﹣54)÷3=秒,∴PQ=OP=70cm时,此时t=18+=秒,由上可得,故经过秒或秒两点相距70cm;(3)如右图所示,设设运动时间为t秒,OP=3t,点P在线段AB上,∵点E为OP的中点,∴OE=1.5t,∵OA=20cm,AB=60cm,BC=10cm,点F为OC的中点,∴OC=90cm,OF=45cm,∴EF=OF﹣OE=45﹣1.5t,OC﹣OP=90﹣3t,∴.。

七上压轴题数轴动点问题,代数式表示动点 七年级数学心算训练

七上压轴题数轴动点问题,代数式表示动点  七年级数学心算训练

七上压轴题数轴动点问题,代数式表示动点七年级数学心算训练七上压轴题数轴动点问题,代数式表示动点| 七年级数学心算训练 -数轴上动点问题,解题步骤如下(一)用代数式表示动点(二)根据等量关系列方程(根据题目可能需要先分类讨论)(三)解方程,检验今天我们主要练习第一步:用代数式表示动点,表示方法如下数轴上的运动,在数轴上一个点表示的数为a,向左运动b(b>0)个单位后表示的数为a-b;若向右运动b(b>0)个单位后所表示的数为a+b数轴上两点间距离公式,两个点表示的数是a、b,则它们的距离可以表示成|a-b|。

用绝对值表示可以省去分类讨论以下是代数式表示动点的心算练习题,限时 5 分钟(禁用草纸,心算后直接写答案)①点A在数轴上对应的数是-3,如果点A以2单位长度/秒的速度沿数轴的一个方向运动,那么t秒后点A与-3的距离是( )。

②点A在数轴上对应的数是-3,如果点A以2单位长度/秒的速度沿数轴的负方向运动,那么t秒后点A与原点的距离是( )。

③数轴上动点P的起始位置是-8,如果点P以3单位长度/秒的速度向数轴正方向运动,那么t秒后点P表示的数是( )。

④数轴上动点A的起始位置是15,如果点A以2单位长度/秒的速度向数轴负方向运动,那么t秒后点A与原点的距离是( )。

⑤点A在数轴上对应的数是-6,O是原点,如果点A以2单位长度/秒的速度向数轴负方向运动,那么t秒后线段AO的中点表示的数是( )。

⑥点A、B在数轴上对应的数分别是-3、9,如果点A以3单位长度/秒的速度向数轴正方向运动,点B同时以1单位长度/秒的速度向数轴负方向运动,t秒后AB中点表示的数是( )。

⑦点A、B在数轴上同时从原点出发向左运动,点A的速度是6单位长度/秒,点B的速度是8单位长度/秒,那么t秒后AB 中点代表的数是( )。

⑧点A、B同时从原点出发反向运动,如果点A的速度是3单位长度/秒,点B的速度是2单位长度/秒,那么t秒后点A、B的距离是( )。

人教版七年级上册期末点对点攻关训练:一元一次方程应用—数轴动点问题(二)

人教版七年级上册期末点对点攻关训练:一元一次方程应用—数轴动点问题(二)

七年级上册期末点对点攻关训练:一元一次方程应用之数轴动点问题(二)1.如图,数轴上A,B两点对应的数分别为10和﹣3,点P和点Q同时从原点出发,点P 以每秒1个单位长度的速度沿数轴正方向运动,点Q以每秒3个单位长度的速度先沿数轴负方向运动,到达点B后再沿数轴正方向运动,当点P到达点A后,两个点同时结束运动.设运动时间为t秒.(1)当t=1时,求线段PQ的长度;(2)通过计算说明,当t在不同范围内取值时,线段PQ的长度如何用含t的式子表示?(3)当点Q是BP的中点时直接写出t的值.2.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒,则:(1)动点P从点A运动至点C需要时间多少秒?(2)若P,Q两点在点M处相遇,则点M在折线数轴上所表示的数是多少(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.3.已知b是最小的正整数,且a,b,c满足(c﹣5)2+|a+b|=0.(1)填空:a=,b=,c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,点P为数轴上一动点,其对应的数为x,点P在1到2之间运动时(即1≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x﹣5|(请写出化简过程);.(3)在(1),(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒m(m<5)个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.若BC﹣AB的值保持不变,求m的值.4.一辆出租车从甲地出发,在一条东西走向的街道上行驶,每次行驶的路程记录如下表(规定向东为正,其中x是小于5的正数,单位:km):第1次第2次第3次第4次x x﹣6 2(8﹣x)(1)通过计算,求出这辆出租车每次行驶的方向;(2)如果出租车行驶每千米耗油0.1升,当x=2时,求这辆出租车在这四次的行驶中总共耗油多少升?5.某出租车从车站出发在东西方向上营运.若规定向东为正,向西为负,一天的行车情况依先后序记录如下(单位:km):+8,﹣2,﹣4,+4,﹣8,+5,﹣3,﹣6,﹣4,+7.(1)将最后一名乘客送到目的地,出租车离车站多远?在车站什么方向?(2)若每千米的营运费为3元,求出司机一天的营运额是多少?6.阅读下面材料,回答问题距离能够产生美.唐代著名文学家韩愈曾赋诗:“天街小雨润如酥,草色遥看近却无.当代印度著名诗人泰戈尔在《世界上最遥远的距离》中写道:“世界上最遥远的距离不是瞬间便无处寻觅而是尚未相遇便注定无法相聚”距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.已知点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB.(1)当A,B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|﹣|a|=b﹣a=|a﹣b|.(2)当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A,B都在原点的左边,AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|;③如图4,点A,B在原点的两边,AB=OA+OB=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|.综上,数轴上A,B两点的距离AB=|a﹣b|.利用上述结论,回答以下三个问题:(1)若数轴上表示x和﹣2的两点之间的距离是4,则x=;(2)若代数式|x+1|+|x﹣2|取最小值时,则x的取值范围是;(3)若未知数x,y满足(|x﹣1|+|x﹣3|)(|y﹣2|+|y+1|)=6,则代数式x+2y的最大值是,最小值是.7.如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.8.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x 为;(3)当代数式|x+1|+|x﹣2|取最小值时,此时符合条件的整数x为;(4)若点A表示的数为x,则当x为时,|x+1|与|x﹣2|的值相等.9.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?10.已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a﹣b|=15.(1)若b=﹣6,则a的值为.(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.参考答案1.解:(1)当t=1时,P点对应的有理数为1,Q点对应的有理数为﹣3×1=﹣3,所以PQ=1﹣(﹣3)=4;(2)①当0<t<1时,P点对应的有理数为t,Q点对应的有理数为﹣3t,PQ=t﹣(﹣3t)=4t;②当1≤t<3时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=t﹣(3t﹣6)=﹣2t+6;③当3≤t≤10时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=3t﹣6﹣t=2t﹣6.综上所述,PQ=;(3)①当0<t<1时,则﹣3t×2=﹣3+t,解得t=;②当1≤t<3时,则(3t﹣6)×2=﹣3+t,解得t=.故t的值是或.2.解:(1)动点P从点A运动至点C需要时间t=[0﹣(﹣12)]÷2+(20﹣10)÷2+10÷1=21(秒).答:动点P从点A运动至点C需要时间为21秒;(2)由题意可得t>10s,∴(t﹣6)+2(t﹣10)=10,解得t=12,∴点M在折线数轴上所表示的数是6;(3)当点P在AO上,点Q在CB上时,OP=12﹣2t,BQ=10﹣t,∵OP=BQ,∴12﹣2t=10﹣t,解得t=2;当点P在OB上时,点Q在CB上时,OP=t﹣6,BQ=10﹣t,∵OP=BQ,∴t﹣6=10﹣t,解得t=8;当点P在OB上时,点Q在OB上时,OP=t﹣6,BQ=2(t﹣10),∵OP=BQ,∴t﹣6=2(t﹣10),解得t=14;当点P在BC上时,点Q在OA上时,OP=10+2(t﹣16),BQ=10+(t﹣15),∵OP=BQ,∴10+2(t﹣16)=10+(t﹣15)a,解得t=17.当t=2,8,14,17时,OP=BQ.3.解:(1)∵(c﹣5)2+|a+b|=0,∴c﹣5=0,a+b=0,b是最小的正整数,∴a=﹣1,b=1,c=5;故答案为:﹣1;1;5;(2)|x+1|﹣|x﹣1|+2|x﹣5|=(x+1)﹣(x﹣1)+2(5﹣x)=x+1﹣x+1+10﹣2x=﹣2x+12,故答案为﹣2x+12;(3)根据题意得,BC=(5+5t)﹣(1+mt)=4+5t﹣mt,AB=(1+mt)﹣(﹣1﹣t)=2+mt+t,∴BC﹣AB=(4+5t﹣mt)﹣(2+mt+t)=2+4t﹣2mt=2+(4﹣2m)t,若BC﹣AB的值保持不变,则4﹣2m=0,∴m=2.4.解:(1)第1次,向东行驶x千米,第2次,向西行驶x千米,第3次,向西行驶(6﹣x)千米,第4次,向东行驶2(8﹣x)千米;(2)行驶的总路程为:x+x+6﹣x+2(8﹣x)=22﹣x,当x=2时,原式=22﹣3=19,0.1×19=1.9升,答:这辆出租车在这四次的行驶中总共耗油1.9升.5.解:(1)8﹣2﹣4+4﹣8+5﹣3﹣6﹣4+7=﹣3,答:将最后一名乘客送到目的地,出租车离车站出发点3千米,在车站西方;(2)(|+8|+|﹣2|+|﹣4|+|+4|+|﹣8|+|+5|+|﹣3|+|﹣6|+|﹣4|+|+7|)×3=153(元),答:若每千米的营运费为3元,求出司机一天的营运额是153元.6.解:(1)若数轴上表示x和﹣2的两点之间的距离是4,则|x+2|=4解得x=﹣6或x=2故答案为:﹣6或2;(2)若代数式|x+1|+|x﹣2|取最小值时,表示在数轴上找一点x,到﹣1和2的距离之和最小,显然这个点x在﹣1和2之间故答案为:﹣1≤x≤2;(3)∵(|x﹣1|+|x﹣3|)(|y﹣2|+|y+1|)=6又∵|x﹣1|+|x﹣3|的最小值为2,|y﹣2|+|y+1|的最小值为3∴1≤x≤3,﹣1≤y≤2∴代数式x+2y的最大值是7,最小值是﹣1故答案为:7;﹣1.7.解:(1)AB的中点所表示的数为=2,此时点Q表示的数为2,点Q移动的时间为(6﹣2)÷4=1秒,因此,点P表示的数为﹣2+2×1=0,∴PQ=2﹣0=2,(2)设点Q移动的时间为t秒,则移动后点Q所表示的数为6﹣4t,移动后点P所表示的数为﹣2+2t,当Q为PB的中点时,有=6﹣4t,解得,t=,此时.点P表示的数为﹣2+2×=﹣.8.解:(1)由题意得:|5﹣2|=3;|﹣2﹣(﹣5)|=|﹣2+5|=3;|1﹣(﹣3)|=|1+3|=4;故答案为:3,3,4;(2)数轴上表示x和﹣1的两点A和B之间的距离是:|x﹣(﹣1)|=|x+1|;∵|AB|=2,∴|x+1|=2,∴x+1=2或x+1=﹣2,∴x=1或x=﹣3;故答案为:1或﹣3;(3)∵当代数式|x+1|+|x﹣2|取最小值时,数x表示的点在﹣1和2之间的线段上,∴﹣1≤x≤2,∴整数x为﹣1或0或1或2.故答案为:﹣1或0或1或2;(4)由题意得:|x+1|=|x﹣2|,∴x+1=x﹣2或x+1=2﹣x,∴1=﹣2,无解或x=.故答案为:.9.解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为或8时,OP=OQ.10.解:(1)∵b=﹣6,|a﹣b|=15,∴|a+6|=15,∴a+6=15或﹣15,∴a=9或﹣21,∵点A和点B分别位于原点O两侧,b=﹣6,∴a>0,∴a=9,故答案为:9;(2)∵OA=2OB,∴|a|=|2b|,∵点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,∴b=﹣a,∵|a﹣b|=15,∴|a+a|=15,∴a=±10;(3)满足条件的C两种情况:①如图,设BC=x,则OC=OA=2x,则有x+2x+2x=15,解得:x=3,∴C对应6②如图,设BC=x,则OB=3x,OA=OC=4x,则有3x+4x=15,解得,x=,则C对应,综上所得:C点对应6或.。

数轴动点问题压轴专题(二)2021-2022学年人教版七年级数学上册第一章 有理数

数轴动点问题压轴专题(二)2021-2022学年人教版七年级数学上册第一章  有理数

第一章《有理数》——数轴动点问题压轴专题(二)1.如图,在数轴上的A点表示数a,B点表示数b,a、b满足(a+2)2+|b﹣4|=0.(1)点A表示的数为,点B表示的数为.(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①t=1时,甲小球到原点的距离=;乙小球到原点的距离=.当t=3时,甲小球到原点的距离=;乙小球到原点的距离=.②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由;若能,请举例说明.2.阅读下面的材料并解答问题:A点表示数a,B点表示数b,C点表示数c,且点A到点B的距离记为线段AB的长,线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.若b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)b=,c=.(2)若将数轴折叠,使得A与C点重合:①点B与数表示的点重合;②若数轴上P、Q两点之间的距离为2018(P在Q的左侧),且P、Q两点经折叠后重合,则P、Q两点表示的数是、.(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为t秒,试探索:3AC﹣5AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值.3.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且PA+PB+PC=7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.4.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB=10呢?5.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a、c满足|a+3|+(c﹣5)2=0.(1)a=,b=,c=.(2)若将数轴折叠,使得点A与点C重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C 分别以每秒2个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)请问:3BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.6.已知:数轴上的点A、B分别表示﹣1和3.5.(1)在数轴上画出A、B两点;(2)若点C与点A距离4个单位长度,则点C表示的数是.(3)若折叠纸面,使数轴上﹣1表示的点与3表示的点重合,则10表示的点与数表示的点重合.7.如图,在数轴上点A所表示的数是﹣5,点B在点A的右侧,AB=6;点C在AB之间,AC=2BC.(1)在数轴上描出点B;(2)求点C所表示的数,并在数轴上描出点C;(3)已知在数轴上存在点P,使PA+PC=PB,求点P所表示的数.8.如图,半径为1个单位的圆片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,结果保留π的形式)(1)把圆片沿数轴向右滚动1周,点Q到达数轴上点A的位置,点A表示的数是;(2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣5,﹣1①第几次滚动后,Q点距离原点最远?②当圆片结束运动时,Q点运动的路程共有多少?此时点Q所表示的数是多少?9.某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向东方向为正,向西方向为负,当天行驶情况记录如下(单位:千米):+10,﹣8,+6,﹣14,+4,﹣2.(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升?10.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,式子|x﹣2|的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上x所对应的点与﹣1所对应的点之间的距离.(1)发现问题:代数式|x+1|+|x﹣2|的最小值是多少?(2)探究问题:如图,点A、B、P分别表示数﹣1、2、x,AB=3.∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,∴当点P在线段AB上时,PA+PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3.∴|x+1|+|x﹣2|的最小值是3.(3)解决问题:①|x+3|+|x﹣1|的最小值是多少?并利用下面所给数轴说明理由;②填空:当a为时,代数式|x+a|+|x﹣3|的最小值是2.11.已知:|b|=1,b>0,且a,b,c满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a,b,c的值(2)a,b,c在数轴上所对应的点分别为A、B、C,在上标出A、B、C(3)点P为一移动的点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(写出化简过程).12.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)如果点A表示数5,将点A先向左移动4个单位长度,再向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是;(2)数轴上表示x和﹣3的两点之间的距离可以表示为;(3)若x表示一个有理数,则|x﹣1|+|x+3|有无最小值,若有,最小值是?(4)若x表示有理数,则|x﹣1|+|x+3|=8时,x的值是?13.如图,数轴上每相邻两点的相距一个单位长度,点A、B、C、D是这些点中的四个,且对应的位置如图所示,它们对应的数分别是a,b,c,d.(1)当ab=﹣1,则d=.(2)若|d﹣2a|=7,求点C对应的数.(3)若abcd<0,a+b>0,化简|a﹣b|﹣|b+c﹣5|﹣|c﹣5|﹣|d﹣a|+|8﹣d|.14.如图,数轴上点A、B表示的有理数分别为﹣10、5,点P是射线AB上的一个动点(不与点A、B重合),点M是线段AP靠近点A的三等分点,点N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为;若点P表示的有理数是1,那么MN的长为.(2)点P在射线AB上运动(不与点A、B重合)的过程中,MN的长是否发生改变?若不改变,请求出MN的长;若改变,请说明理由.15.数轴上,点M表示﹣2,现从M点开始先向右移动3个单位到达P点,再从P点向左移动5个单位到达Q点.(1)点P、Q各表示什么数?(2)到达Q点后,再向哪个方向移动几个单位,才能回到原点?16.已知数轴上有A,B,C三点,它们分别表示数a,b,c,且|a+24|+|b+10|=0,又b,c互为相反数.(1)求a,b,c的值.(2)若有两只电子蚂蚁甲、乙分别从A,C两点同时出发相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒,当两只蚂蚁在数轴上点m处相遇时,求点m表示的数.(3)若电子蚂蚁丙从A点出发以4个单位/秒的速度向右爬行,问多少秒后蚂蚁丙到A,B,C的距离和为40个单位?17.邮递员骑车从邮局出发,先向南骑行2km,到达A村,继续向南骑行3km到达B村,然后向北骑行9km 到达C村,最后回到邮局.(1)以邮局为原点,以向北为正方向,用0.5cm示1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置.(2)C村离A村有多远?(3)邮递员一共骑了多少千米?18.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.19.如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示,设点B所表示的数为m.(1)求m的值;(2)求|m﹣1|+(m﹣6)2的值.。

专题02 数轴上的四种动点问题(解析版)-七年级数学上册压轴题攻略(北师大版,成都专用)

专题02 数轴上的四种动点问题(解析版)-七年级数学上册压轴题攻略(北师大版,成都专用)

专题02数轴上的四种动点问题【知识点梳理】1.数轴上两点间的距离数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.类型一、求动点表示的数例.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移3个单位长度得到点C.若CO BO=,则a的值为()A.5-B.1-C.5-或1-D.3-【答案】C【解析】∵CO=BO,B点表示2,∴点C表示的数为±2,∴a=-2-3=-5或a=2-3=-1,故选:C.【变式训练1】在数轴上,点P从某点A开始移动,先向右移动5个单位长度,再向左移动4个单位长度,-,则点A表示的数是()最后到达1A.3B.1-C.2-D.6-【答案】C【解析】由题意可得:-1+4-5=-2,故选C.【变式训练2】如图,将一个半径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A到达点A'的位置,则点A'表示的数是_______;若起点A开始时是与—1重合的,则滚动2周后点A'表示的数是______.【答案】2π或2π-41π-或41π--【解析】因为半径为1的圆的周长为2π,所以每滚动一周就相当于圆上的A 点平移了2π个单位,滚动2周就相当于平移了4π个单位;当圆向左滚动一周时,则A'表示的数为2π-,当圆向右滚动一周时,则A'表示的数为2π;当A 点开始时与1-重合时,若向右滚动两周,则A'表示的数为41π-,若向左滚动两周,则A'表示的数为41π--;故答案为:2π①或2π-;41π-②或41π--.【变式训练3】已知数轴上点A 对应的数为6-,点B 在点A 右侧,且,A B 两点间的距离为8.点P 为数轴上一动点,点C 在原点位置.(1)点B 的数为____________;(2)①若点P 到点A 的距离比到点B 的距离大2,点P 对应的数为_________;②数轴上是否存在点P ,使点P 到点A 的距离是点P 到点B 的距离的2倍?若存在,求出点P 对应的数;若不存在,请说明理由;(3)已知在数轴上存在点P ,当点P 到点A 的距离与点P 到点C 的距离之和等于点P 到点B 的距离时,点P 对应的数为___________;【答案】(1)2;(2)①-1;②23-或10;(3)-8和-4【解析】(1)∵点A 对应的数为-6,点B 在点A 右侧,A ,B 两点间的距离为8,∴-6+8=2,即点B 表示的数为2;(2)①设点P 表示的数为x ,当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2-x +2,解得:x =-1;当点P 在点B 右侧,PA -PB =AB =8,不符合;故答案为:-1;②当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2(2-x ),解得:x =23-;当点P 在点B 右侧,x -(-6)=2(x -2),解得:x =10;∴P 对应的数为23-或10;(3)当点P 在点A 左侧时,-6-x +0-x =2-x ,解得:x =-8;当点P 在A 、O 之间时,x -(-6)+0-x =2-x ,解得:x =-4;当点P 在O 、B 之间时,x -(-6)+x -0=2-x ,解得:x =43-,不符合;当点P 在点B 右侧时,x -(-6)+x -0=x -2,解得:x =-8,不符合;综上:点P 表示的数为-8和-4.类型二、求动点的速度例.已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为()A .34B .14或34C .14或32D .32【答案】C【解析】∵多项式x 3-3xy 2-4的常数项是a ,次数是b ,∴a=-4,b=3,设B 速度为v ,则A 的速度为2v ,3秒后点A 在数轴上表示的数为(-4+6v ),B 点在数轴上表示的数为3+3v ,且OB=3+3v当A 还在原点O 的左边时,OA=0-(-4+6v )=4-6v ,由32OA OB =可得3(46)332v v -=+,解得14v =;当A 还在原点O 的右边时,OA=(-4+6v )-0=6v-4,由32OA OB =可得3(64)332v v -=+,解得32v =.故B 的速度为14或32,选C.故答案为:C类型三、求动点运动的时间例.如图所示,A 、B 是数轴上的两点,O 是原点,AO=10,OB=15,点P 、Q 分别从A 、B 同时出发,点P 以每秒2个单位长度的速度沿数轴向左匀速运动,点Q 以每秒4个单位长度的速度沿数轴向左匀速运动,M 为线段AP 的中点,设运动的时间为t (t≥0)秒,M 、Q 两点到原点O 的距离相等时,t 的值是()A .1t s =或252t s =B .2t s =或253t s =C .1t s =或253t s =D .2t s =或252t s =【答案】C【解析】∵O是原点,AO=10,OB=15,∴点A表示的数是-10,点B表示的数是15,∵点P以每秒2个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,∴OM=|-10-t|,∵点Q以每秒4个单位长度的速度沿数轴向左匀速运动,∴OQ=|15-4t|,∵M、Q两点到原点O的距离相等,∴|-10-t|=|15-4t|,∴-10-t=15-4t或-10-t=-(15-4t),解得:t=253或t=1,故选:C.【变式训练1】如图,点A在数轴上表示的数是16-,B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动,问:当8AB=时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒【答案】C【解析】设当AB=8时,运动时间为t秒,①当点A在点B的左边时,由题意得6t+2t+8=8-(-16),解得:t=2②当点A在点B的右边时,6t+2t=8-(-16)+8,解得:t=4.故选:C.【变式训练2】如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O A O→→以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t不超过10秒).若点P在运动过程中,当2PB=时,则运动时间t的值为()A.32秒或72秒B.32秒或72秒或132或172秒C.3秒或7秒D.3秒或132或7秒或172秒【答案】B【解析】∵数轴上的点O和点A分别表示0和10,∴OA=10∵B是线段OA的中点,∴OB=AB=15 2OA=①当点P由点O向点A运动,且未到点B时,如下图所示,2PB=此时点P 运动的路程OP=OB -PB=3,∴点P 运动的时间为3÷2=32s ;②当点P 由点O 向点A 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程OP=OB+PB=7,∴点P 运动的时间为7÷2=72s ;③当点P 由点A 向点O 运动,且未到点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB -PB=13,∴点P 运动的时间为13÷2=132s ;④当点P 由点A 向点O 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB +PB=17,∴点P 运动的时间为17÷2=172s ;综上所述:当2PB =时,则运动时间t 的值为32秒或72秒或132或172秒故选B .【变式训练3】已知数轴上有,,A B C 三点,分别表示数24,10--,10,若两只电子蚂蚁甲、乙分别从,A C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒,(1)甲、乙两点在数轴上哪个点相遇?(2)多少秒后甲到,,A B C 三点的距离之和是40个单位长度?【答案】(1)-10.4;(2)2秒或5秒【解析】(1)设x 秒后甲与乙相遇,则4x +6x =34,解得x =3.4,4×3.4=13.6,-24+13.6=-10.4.故甲、乙在数轴上的-10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4y+(14-4y)+(14-4y+20)=40解得y=2;②BC之间时:4y+(4y-14)+(34-4y)=40,解得y=5,综上:2秒或5秒后甲到,,A B C三点的距离之和是40个单位长度.类型四、综合问题例.如图,在数轴上点A、B表示的数分别为﹣2、4.(1)若点M到点A、点B的距离相等,那么点M所对应的数是.(2)若点M从点B出发,以1个单位/秒的速度向左运动,同时点N恰好从点A出发,以2个单位/秒的速度向右运动,设M、N两点在数轴上的点E相遇,则点E对应的数是.(3)若点D是数轴上一动点,当动点D到点A的距离与到点B的距离之和等于10时,则点D对应的数是.(4)若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过多少秒后,M、N两点间的距离为24个单位长度.【答案】(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M、N两点间的距离为24个单位长度【解析】(1)∵点A、B对应的数分别为﹣2、4,∴AB=4-(-2)=6,∵点M到点A、点B的距离相等,∴MA=3,∴点M对应的数是-2+3=1;故答案为:1;(2)t秒后,点M表示4﹣t,点N表示﹣2+2t,若两点相遇则4﹣t=﹣2+2t,解得t=2,4﹣2=2,所以点E对应的数是2.故答案为:2;(3)设点D对应的数是x,∵AB=6,∴点D不可能在线段AB上.①点D在A的左边时,DA=﹣2﹣x,DB=4﹣x,(﹣2﹣x)+(4﹣x)=10,解得x=﹣4;②点D在B的右边时,DA=2+x,DB=x﹣4,(2+x)+(x﹣4)=10,解得x=6;故答案为:﹣4或6;(4)①若点N 向右运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4+4t ,MN =|(5t ﹣2)﹣(4+4t )|=|t ﹣6|=24,解得t =30或﹣18(舍去);②若点N 向左运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4﹣4t ,MN =|(5t ﹣2)﹣(4﹣4t )|=|9t ﹣6|=24,解得t =103或﹣2(舍去);答:经过30秒或103秒后,M 、N 两点间的距离为24个单位长度.故答案为:(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M 、N 两点间的距离为24个单位长度【变式训练1】已知若数轴上点A 、点B 表示的数分别为,a b ,则AB a b =-∣∣,线段AB 的中点表示的数为2a b+.如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.(1)填空:①,A B 两点间的距离AB =______,线段AB 的中点表示的数为_____;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为______.(2)求当t 为何值时,,P Q 两点相遇,并写出相遇点所表示的数.(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【答案】(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【解析】(1)①AB =8-(-2)=10,AB 中点为282-+=3,故答案为:10,3;②t 秒后,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ,故答案为:-2+3t ,8-2t ;(2)∵当P 、Q 两点相遇时,P 、Q 表示的数相等∴-2+3t =8-2t ,解得:t =2,∴当t =2时,P 、Q 相遇,此时,-2+3t =-2+3×2=4,∴相遇点表示的数为4;(3)∵点M 表示的数为()2233222t t-+-+=-,点N 表示的数为()8233322t t+-+=+,∴MN =333222t t ⎛⎫+-- ⎪⎝⎭=5.故答案为:(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【变式训练2】如图,数轴上原点为O ,A ,B 是数轴上的两点,点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足2(2)40a b -++=,动点M ,N 同时从A ,B 出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x 秒(x >0).(1)A 、B 两点间的距离是;动点M 对应的数是(用含x 的代数式表示);动点N 对应的数是;(用含x 的代数式表示)(2)几秒后,线段OM 与线段ON 恰好满足3OM =2ON ?(3)若M ,N 开始运动的同时,R 从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R 与M 不重合时,求MB NBRM-的值.【答案】(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【解析】(1)∵a ,b 满足2(2)40a b -++=,∴a ﹣2=0,b +4=0,∴a =2,b =﹣4,∵点A 对应的数是a ,点B 对应的数是b ,AB =2﹣(﹣4)=6.当运动时间为x 秒时,动点M 对应的数是x +2,动点N 对应的数是3x ﹣4.故答案为:6;x +2;3x ﹣4.(2)由(1)中M ,N 所对的数得OM =x +2,ON =3x ﹣4,∵3OM =2ON ,∴|32|(2)34x x+=﹣,①3(2+x )=2(3x ﹣4),解得x =143;②3(2+x )=﹣2(3x ﹣4),解得x =29;综上,143或29秒后,线段OM 与线段ON 恰好满足3OM =2ON ;(3)由题意得动点R 所对的数为﹣1+2x ,|12)((|3||2)RM x x x +-+--==,(2)(4)6MB x x =+--=+,(43)(4)3NB x x =-+--=,∴MB﹣NB =6+x ﹣3x =6﹣2x ,∵2+x =﹣4+3x ,解得x =3,∴M 与N 相遇时时间为3s ,。

初中数学七年级数轴上的动点问题专题(压轴题练习)

初中数学七年级数轴上的动点问题专题(压轴题练习)

数轴上的动点问题专题【例1】1.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?【练】2.已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=,b=;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向左运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?【练】5.如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为,点P、Q之间的距离是个单位;(2)经过秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.6.已知数轴上点A、B表示的数分别为﹣1、3、P为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.【练】8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?9.已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.【练】11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?12.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)当x=时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么秒钟时点P到点M,点N的距离相等.【练】13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?14.如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?15.已知A、B、C是数轴上从左至右的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.17.如图,数轴上A,B,C,D四点,分别对应的数为a、b、c、d,且满足a、b是|x+5|=1的两个解(a<b),(c﹣6)2与|d﹣10|互为相反数.(1)直接写出a,b,c,d的值;(2)若A,B两点以4个单位长度/秒的速度向右匀速运动,设运动时间为t秒,问t为时,点B运动到点C,D的中点上;(3)在(2)中,A,B继续运动,当B运动到D的右侧时,问是否存在时间t,使B与C 的距离是A与D的距离的2倍?若存在,求时间t;若不存在,请说明理由.18.已知数轴上两点A,B对应的数分别用a和b表示,且a,b满足|a+1|+(b﹣3)2=0,点P为数轴上一动点,其对应的数为x.(1)请直接写出求a和b的值;(2)若点P到点A,点B的距离相等,请直接写出点P对应的数x;(3)数轴上是否存在点P,使点P到点A,点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(4)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【例6】19.如图,数轴上有两点A,B,点A表示的数为4,点B在点A的左侧,且AB=10,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0).(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示:.(2)设点M是AP的中点,点N是PB的中点.点P在线段AB上运动过程中,线段MN的长度是否发生变化?若变化,请说出理由;若不变,求线段MN的长度.(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,R同时出发,问点P运动多少秒与点R距离为2个单位长度.【练】20.已知数轴上A,B两点所表示的数分别为a,b,且满足ab<0,|a|=2,|b|=7,(1)求线段AB的长度;(2)若a<b,P为射线上的一点(点P不与A、B两点重合),M为P A的中点,N为PB 的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请求出线段MN的长;若改变,请说明理由.21.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是P A,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.22.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长,试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,问:当t为多少时P、Q两点相距6个单位长度?23.已知:A、B、C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A、B、C三点运动的速度;(2)若A、B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?(3)如图,若一把长16cm的直尺一端始终与C重合(另一端D在C的右边),且M、N 分别为OD、OC的中点,在C点运动过程中,试问:MN的值是否变化?若变化,求出其取值范围;若不变,请求出其值.24.阅读下面的内容并用此结论(或变形式)解答下面题目的三个问题: (1)若点P 为线段MN 的中点,则MP =PN =12MN(2)若点P 为线段MN 上任一点,则:MP =MN ﹣PN如图①,已知数轴上有三点A ,B ,C ,点B 为AC 的中点,C 对应的数为200. ①若BC =300,求点A 对应的数.②在①的条件下,如图②,动点P 、Q 分别从两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10个单位长度每秒,5个单位长度每秒,2个单位长度每秒,点M 为线段PR 的中点,点N 为RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 和点Q 相遇之后的情形).③在①的条件下,如图③,若点E 、D 对应的数分别为﹣800,0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10个单位长度每秒,5个单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC ﹣AM 的值是否发生变化?若不变,求其值,若变,请说明理由.25.如图1,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上的一动点,其对应的数为x .(1)P A = ;PB = (用含x 的式子表示)(2)在数轴上是否存在点P ,使P A +PB =5?若存在,请求出x 的值;若不存在,请说明理由.(3)如图2,点P 以1个单位/s 的速度从点D 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB -OPMN的值是否发生变化?请说明理由.26.(2014秋•江岸区期中)如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0. (1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①P A +PBPC 的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.27.如图1,点A 、B 分别在数轴原点O 的左右两侧,且13OA +50=OB ,点B 对应数是90.(1)求A 点对应的数;(2)如图2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离; (3)如图3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求22RQ ﹣28RO ﹣5PN 的值.28.如图,在数轴上有A ,B 两点,所表示的数分别为a ,a +4,A 点以每秒32个单位长度的速度向正方向运动,同时B 点以每秒1个单位的速度也向正方向运动,设运动时间为t 秒.(1)运动前线段AB 的长为_____,t 秒后,A 点运动的距离可表示为_____,B 点运动距离可表示为_____; (2)当t 为何值时,A 、B 两点重合,并求出此时A 点所表示的数(用含a 与t 的式子表示); (3)在上述运动的过程中,若P 为线段AB 的中点,O 为数轴的原点,当a =﹣8时,是否存在这样的t 值,使得线段PO =5?若存在,求出符合条件的t 值;若不存在,请说明理由.动点问题补充训练1、(2016江岸区期中)已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足0)10(10242=-++++c b a ;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.2、(2016二十五中期中)已知:数轴上A 、B 两点表示的有理数为a 、b ,且(a -1)2+|b +2|=0(1) 求a 、b 的值(2) 点C 在数轴上表示的数是c ,且与A 、B 两点的距离和为9,求值:a (bc +3)-|3(a -31b 2)-b 2|(3) 蚂蚁甲以2个单位长度/秒的速度从点B 出发向其左边30个单位长度处的食物M 爬去,10秒后位于点A 的蚂蚁乙收到它的信号,以3个单位长度/秒的速度也迅速爬向食物.蚂蚁甲到达M 后用了2秒时间背上食物,立即返回,速度降为1个单位长度/秒,与蚂蚁乙在数轴上D 点相遇,求点D 表示的有理数是多少?从出发到此时,蚂蚁甲共用去时间为多少?3、(2016东湖高新区期中)如图,若数轴上的A 、B 两点对应的数分别为a 、b ,且a 、b 满足|a +3|+(b +3a )2=0,请回答下列问题: (1)求a 和b 的值.(2)若数轴上有一点C ,满足点C 到点B 的距离为点C 到点A 的距离的2倍,求点C 在数轴上所对应的数.(3)若数轴上有一点P 从A 点向B 点运动(只在A 、B 两点之间运动),同时,数轴上的点M 是线段AP 的中点,数轴上的点N 是线段BP 的中点,请问:当点P 运动时,点M 、N 之间的距离是否发生变化,若不变化,求出该距离;若变化,说明理由.4、(2016外校期中)已知点A 、点B 在数轴上分别对应有理数a ,b ,其中a ,b 满足:()2112602a b -++=. (1)求a ,b 的值;(2)如图所示,在点A 、点B 之间存在一点C (点C 不与A 、B 重合),现有一个小球从A 出发向左匀速运动,经过一秒到达AC 的中点,又经过三秒之后到达BC 的中点,试求点C 所对应的有理数;OCAB(3)在(2)的条件下,现在我们在C 、A 两个位置各放一块挡板,有两个小球P 和Q 分别从点C 出发,P 以2个单位长度每秒的速度向右运动,Q 以4个单位长度每秒的速度向左运动,其中,小球P 在运动的过程中会碰到挡板,每次碰到挡板后按照原速度反弹(不考虑碰撞中能量的损失),按照此规律运动下去,试问:是否存在一个时间t ,使得PB =2QB ?若存在,求出所有满足条件的时间t ;若不存在,请说明理由.5、(2016武珞路期中)已知点A 、B 在数轴上表示的数分别为a ,b ,且满足()22900a b -+-=.(1) a 的值为_______,b 的值为________;(2) 一只电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q 比P 先运动2秒,已知在原点O 处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P 经过多长时间,有P 、Q 两只电子狗相距70个单位长度?(3) 求()()2222221912716189362114910329b x a x a x x ⎛⎫⎛⎫--+++--++ ⎪ ⎪⎝⎭⎝⎭的最大值.AB6、(2016洪山区期中)已知多项式2234x xy --的常数项是a ,次数是b .(1)直接写出a =________,b =________;并将这两数在数轴上所对应的点A 、B 表示出来;(2)数轴上A 、B 之间的距离定义记作AB,定义AB =a b -,设P 在数轴上对应的数为x ,当PA +PB =13时,直接写出x 的值_______________________;(3)若点A ,点B 同时沿数轴向正方向运动.点A 的速度是点B 的2倍,且3秒后,32OA=OB ,求点B 的速度.点为===秒或秒时,(2010秋•武昌区期末)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A 在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是4或16;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.)存在关系式,即<,即时,有==时,有=当时,时,有=参考答案与试题解析一.解答题(共27小题)1.(2014秋•滕州市期末)如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?2.(2014秋•宝安区校级期末)已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.(2013秋•江北区校级月考)已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=﹣2,b=1;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.(2013秋•泰兴市校级期中)如图A、B两点在数轴上分别表示﹣10和20,动点P从点A 出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?,,为秒或5.(2014秋•滨湖区期中)如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t 秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为﹣4,点P、Q之间的距离是10个单位;(2)经过4或12秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.;,,秒时,6.(2014秋•徐州期末)已知数轴上点A、B表示的数分别为﹣1、3、p为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=1;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.(2014秋•成都期末)如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.;.8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?.9.(2014秋•西城区校级期中)已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是6单位长度/秒,此时点Q表示的有理数是60;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过1秒,点P,Q到数轴上表示有理数20的点的距离相等.×=10.(2013秋•江都市期末)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.=综上,运动s11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?;答:经过12.(2014秋•商丘期末)已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是﹣1;(2)当x=﹣3.5或1.5时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么或2秒钟时点P到点M,点N的距离相等.或)13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?=分钟时点=分钟时点分钟或分钟时点14.(2014春•万州区校级期中)如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?=分钟时点15.已知A、B、C是数轴上的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?=答:经过16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.=。

七年级上册数轴上的动点压轴题专练

七年级上册数轴上的动点压轴题专练

七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。

在数轴上,数与点是一一对应的关系。

2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。

例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。

3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。

二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。

(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。

解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。

又因为公式,所以公式。

当公式时,方程无解。

当公式时,公式,公式,解得公式。

所以点公式对应的数为公式。

(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。

解析:因为公式,公式,且公式,所以公式。

因为点公式在公式、公式之间,即公式,所以公式。

去括号得公式。

移项得公式。

合并同类项得公式,解得公式。

所以点公式对应的数为公式。

(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。

问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。

根据公式,公式。

当公式时,即公式。

当公式时,公式,公式,解得公式。

当公式时,公式,公式,公式,解得公式。

2. 数轴上点公式表示的数为公式,点公式表示的数为公式。

(1)求线段公式的长。

解析:根据两点间距离公式公式。

(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。

七年级上册数学动点问题压轴题

七年级上册数学动点问题压轴题

七年级上册数学动点问题压轴题一、数轴上的动点问题。

1. 已知数轴上A、B两点对应的数分别为 1、3,点P为数轴上一动点,其对应的数为x。

(1)若点P到点A、点B的距离相等,求点P对应的数。

解析:因为点P到点A、点B的距离相等,所以PA = PB。

根据数轴上两点间的距离公式d=| a b|(d为两点间距离,a、b为两点对应的数),则| x-(-1)|=| x 3|,即| x + 1|=| x-3|。

当x≥3时,x + 1=x 3,方程无解。

当-1时,x + 1=-(x 3),x+1=-x + 3,2x=2,解得x = 1。

当x≤-1时,-(x + 1)=-(x 3),方程无解。

所以点P对应的数为1。

(2)数轴上是否存在点P,使PA+PB = 5?若存在,请求出x的值;若不存在,请说明理由。

解析:根据距离公式PA=| x+1|,PB=| x 3|,则| x + 1|+| x-3| = 5。

当x≥3时,x + 1+x 3=5,2x-2 = 5,2x=7,解得x=(7)/(2)。

当-1时,x + 1-(x 3)=5,x + 1-x + 3=5,4 = 5,方程无解。

当x≤-1时,-(x + 1)-(x 3)=5,-x-1-x + 3 = 5,-2x+2 = 5,-2x=3,解得x=-(3)/(2)。

所以存在点P,x=(7)/(2)或x =-(3)/(2)。

2. 点A在数轴上对应的数为 2,点B对应的数为1,点P在数轴上对应的数为x。

(1)若点P到点A、点B的距离之和为5,求x的值。

解析:由题意得| x-(-2)|+| x 1|=5,即| x + 2|+| x-1| = 5。

当x≥1时,x + 2+x 1=5,2x+1 = 5,2x = 4,解得x = 2。

当-2时,x + 2-(x 1)=5,x + 2-x + 1=5,3 = 5,方程无解。

当x≤-2时,-(x + 2)-(x 1)=5,-x-2-x + 1 = 5,-2x-1 = 5,-2x = 6,解得x=-3。

初中数学七年级数轴上的动点问题专题(压轴题练习)

初中数学七年级数轴上的动点问题专题(压轴题练习)

数轴上的动点问题专题【例1】1.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?【练】2.已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=,b=;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向左运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?【练】5.如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q 以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为,点P、Q之间的距离是个单位;(2)经过秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.6.已知数轴上点A、B表示的数分别为﹣1、3、P为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.【练】8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?9.已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.【练】11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?12.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是;(2)当x=时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么秒钟时点P到点M,点N的距离相等.【练】13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?14.如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?15.已知A、B、C是数轴上从左至右的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.17.如图,数轴上A,B,C,D四点,分别对应的数为a、b、c、d,且满足a、b是|x+5|=1的两个解(a<b),(c﹣6)2与|d﹣10|互为相反数.(1)直接写出a,b,c,d的值;(2)若A,B两点以4个单位长度/秒的速度向右匀速运动,设运动时间为t秒,问t为时,点B运动到点C,D的中点上;(3)在(2)中,A,B继续运动,当B运动到D的右侧时,问是否存在时间t,使B与C 的距离是A与D的距离的2倍?若存在,求时间t;若不存在,请说明理由.18.已知数轴上两点A,B对应的数分别用a和b表示,且a,b满足|a+1|+(b﹣3)2=0,点P为数轴上一动点,其对应的数为x.(1)请直接写出求a和b的值;(2)若点P到点A,点B的距离相等,请直接写出点P对应的数x;(3)数轴上是否存在点P,使点P到点A,点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(4)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?【例6】19.如图,数轴上有两点A,B,点A表示的数为4,点B在点A的左侧,且AB=10,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0).(1)写出数轴上点B表示的数,点P表示的数用含t的代数式表示:.(2)设点M是AP的中点,点N是PB的中点.点P在线段AB上运动过程中,线段MN的长度是否发生变化?若变化,请说出理由;若不变,求线段MN的长度.(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P,R同时出发,问点P运动多少秒与点R距离为2个单位长度.【练】20.已知数轴上A,B两点所表示的数分别为a,b,且满足ab<0,|a|=2,|b|=7,(1)求线段AB的长度;(2)若a<b,P为射线上的一点(点P不与A、B两点重合),M为P A的中点,N为PB 的中点,当点P在射线BA上运动时,线段MN的长度是否发生改变?若不变,请求出线段MN的长;若改变,请说明理由.21.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b﹣1)2=0,A,B之间的距离记作|AB|.(1)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(2)若点P在A的左侧,M,N分别是P A,PB的中点,当点P在A的左侧移动时,式子|PN|﹣|PM|的值是否发生改变?若不变,请求其值;若发生变化,请说明理由.22.如图,已知数轴上有A、B、C三个点,它们表示的数分别是﹣24,﹣10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t,用含t的代数式表示BC和AB的长,试探索:BC﹣AB的值是否随着时间t的变化而改变?请说明理由.(3)现有动点P、Q都从A点出发,点P以每秒1个单位长度的速度向终点C移动;当点P移动到B点时,点Q才从A点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达C点时,点Q就停止移动.设点P移动的时间为t秒,问:当t为多少时P、Q两点相距6个单位长度?23.已知:A、B、C为数轴上三个运动的点,速度分别为a个单位/秒、b个单位/秒和c个单位/秒(a、b、c为正整数),且满足|5﹣a|+(b﹣3)2=1﹣c.(1)求A、B、C三点运动的速度;(2)若A、B两点分别从原点出发,向数轴正方向运动,C从表示+20的点出发同时向数轴的负方向运动,几秒后,C点恰好为AB的中点?(3)如图,若一把长16cm的直尺一端始终与C重合(另一端D在C的右边),且M、N 分别为OD、OC的中点,在C点运动过程中,试问:MN的值是否变化?若变化,求出其取值范围;若不变,请求出其值.24.阅读下面的内容并用此结论(或变形式)解答下面题目的三个问题: (1)若点P 为线段MN 的中点,则MP =PN =12MN(2)若点P 为线段MN 上任一点,则:MP =MN ﹣PN如图①,已知数轴上有三点A ,B ,C ,点B 为AC 的中点,C 对应的数为200. ①若BC =300,求点A 对应的数.②在①的条件下,如图②,动点P 、Q 分别从两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10个单位长度每秒,5个单位长度每秒,2个单位长度每秒,点M 为线段PR 的中点,点N 为RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 和点Q 相遇之后的情形).③在①的条件下,如图③,若点E 、D 对应的数分别为﹣800,0,动点P 、Q 分别从E 、D 两点同时出发向左运动,点P 、Q 的速度分别为10个单位长度每秒,5个单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32QC ﹣AM 的值是否发生变化?若不变,求其值,若变,请说明理由.25.如图1,已知数轴上两点A 、B 对应的数分别为﹣1、3,点P 为数轴上的一动点,其对应的数为x .(1)P A = ;PB = (用含x 的式子表示)(2)在数轴上是否存在点P ,使P A +PB =5?若存在,请求出x 的值;若不存在,请说明理由.(3)如图2,点P 以1个单位/s 的速度从点D 向右运动,同时点A 以5个单位/s 的速度向左运动,点B 以20个单位/s 的速度向右运动,在运动过程中,M 、N 分别是AP 、OB 的中点,问:AB -OPMN的值是否发生变化?请说明理由.26.(2014秋•江岸区期中)如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0. (1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①P A +PBPC 的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.27.如图1,点A 、B 分别在数轴原点O 的左右两侧,且13OA +50=OB ,点B 对应数是90.(1)求A 点对应的数;(2)如图2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离; (3)如图3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求22RQ ﹣28RO ﹣5PN 的值.28.如图,在数轴上有A ,B 两点,所表示的数分别为a ,a +4,A 点以每秒32个单位长度的速度向正方向运动,同时B 点以每秒1个单位的速度也向正方向运动,设运动时间为t 秒.(1)运动前线段AB 的长为_____,t 秒后,A 点运动的距离可表示为_____,B 点运动距离可表示为_____; (2)当t 为何值时,A 、B 两点重合,并求出此时A 点所表示的数(用含a 与t 的式子表示); (3)在上述运动的过程中,若P 为线段AB 的中点,O 为数轴的原点,当a =﹣8时,是否存在这样的t 值,使得线段PO =5?若存在,求出符合条件的t 值;若不存在,请说明理由.动点问题补充训练1、(2016江岸区期中)已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足0)10(10242=-++++c b a ;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.2、(2016二十五中期中)已知:数轴上A 、B 两点表示的有理数为a 、b ,且(a -1)2+|b +2|=0(1) 求a 、b 的值(2) 点C 在数轴上表示的数是c ,且与A 、B 两点的距离和为9,求值:a (bc +3)-|3(a -31b 2)-b 2|(3) 蚂蚁甲以2个单位长度/秒的速度从点B 出发向其左边30个单位长度处的食物M 爬去,10秒后位于点A 的蚂蚁乙收到它的信号,以3个单位长度/秒的速度也迅速爬向食物.蚂蚁甲到达M 后用了2秒时间背上食物,立即返回,速度降为1个单位长度/秒,与蚂蚁乙在数轴上D 点相遇,求点D 表示的有理数是多少?从出发到此时,蚂蚁甲共用去时间为多少?3、(2016东湖高新区期中)如图,若数轴上的A 、B 两点对应的数分别为a 、b ,且a 、b 满足|a +3|+(b +3a )2=0,请回答下列问题: (1)求a 和b 的值.(2)若数轴上有一点C ,满足点C 到点B 的距离为点C 到点A 的距离的2倍,求点C 在数轴上所对应的数.(3)若数轴上有一点P 从A 点向B 点运动(只在A 、B 两点之间运动),同时,数轴上的点M 是线段AP 的中点,数轴上的点N 是线段BP 的中点,请问:当点P 运动时,点M 、N 之间的距离是否发生变化,若不变化,求出该距离;若变化,说明理由.4、(2016外校期中)已知点A 、点B 在数轴上分别对应有理数a ,b ,其中a ,b 满足:()2112602a b -++=. (1)求a ,b 的值;(2)如图所示,在点A 、点B 之间存在一点C (点C 不与A 、B 重合),现有一个小球从A 出发向左匀速运动,经过一秒到达AC 的中点,又经过三秒之后到达BC 的中点,试求点C 所对应的有理数;OCAB(3)在(2)的条件下,现在我们在C 、A 两个位置各放一块挡板,有两个小球P 和Q 分别从点C 出发,P 以2个单位长度每秒的速度向右运动,Q 以4个单位长度每秒的速度向左运动,其中,小球P 在运动的过程中会碰到挡板,每次碰到挡板后按照原速度反弹(不考虑碰撞中能量的损失),按照此规律运动下去,试问:是否存在一个时间t ,使得PB =2QB ?若存在,求出所有满足条件的时间t ;若不存在,请说明理由.5、(2016武珞路期中)已知点A 、B 在数轴上表示的数分别为a ,b ,且满足()22900a b -+-=.(1) a 的值为_______,b 的值为________;(2) 一只电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B 出发,向左匀速运动,速度为每秒3个单位长度,且Q 比P 先运动2秒,已知在原点O 处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动,问电子狗P 经过多长时间,有P 、Q 两只电子狗相距70个单位长度?(3) 求()()2222221912716189362114910329b x a x a x x ⎛⎫⎛⎫--+++--++ ⎪ ⎪⎝⎭⎝⎭的最大值.AB6、(2016洪山区期中)已知多项式2234x xy --的常数项是a ,次数是b .(1)直接写出a =________,b =________;并将这两数在数轴上所对应的点A 、B 表示出来;(2)数轴上A 、B 之间的距离定义记作AB,定义AB =a b -,设P 在数轴上对应的数为x ,当PA +PB =13时,直接写出x 的值_______________________;(3)若点A ,点B 同时沿数轴向正方向运动.点A 的速度是点B 的2倍,且3秒后,32OA=OB ,求点B 的速度.点为===秒或秒时,(2010秋•武昌区期末)如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A 在数轴上表示的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B在数轴上表示的数是4或16;(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式=3,若存在,求线段PD的长;若不存在,请说明理由.)存在关系式,即<,即时,有==时,有=当时,时,有=参考答案与试题解析一.解答题(共27小题)1.(2014秋•滕州市期末)如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)写出数轴上点B表示的数﹣6,点P表示的数8﹣5t(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?2.(2014秋•宝安区校级期末)已知:如图在数轴上有A,B两点,它们分别对应着﹣12和8.A、B两点同时出发,B点以每秒2个单位的速度向右运动,A点则已每秒4个单位的速度向右运动.(1)A点在多少秒后追上B点;(2)A点在什么坐标位置追上B点.3.(2013秋•江北区校级月考)已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=﹣2,b=1;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,请问经过多少秒甲追上乙?4.(2013秋•泰兴市校级期中)如图A、B两点在数轴上分别表示﹣10和20,动点P从点A 出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?,,为秒或5.(2014秋•滨湖区期中)如图,点P、Q在数轴上表示的数分别是﹣8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t 秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为﹣4,点P、Q之间的距离是10个单位;(2)经过4或12秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.;,,秒时,6.(2014秋•徐州期末)已知数轴上点A、B表示的数分别为﹣1、3、p为数轴上一动点,其表示的数为x.(1)若P到A、B的距离相等,则x=1;(2)是否存在点P,使P A+PB=6?若存在,写出x的值;若不存在,请说明理由;(3)若点M、N分别从A、B同时出发,沿数轴正方向分别以2个单位/秒、1个单位/秒的速度运动,则经过多长时间,M、N两点相距1个单位长度?7.(2014秋•成都期末)如图,数轴上点A,C对应的数分布是a,c,且a,c满足|a+4|+(c﹣1)2=0,点B对应的数是﹣3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.;.8.已知点P、Q是数轴上的两个动点,且P、Q两点的速度比是1:3.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴负方向运动,同时,动点Q也从原点出发向数轴正方向运动,4秒时,两点相距16个单位长度.求两个动点的速度,并在数轴上标出P、Q两点从原点出发运动4秒时的位置.(2)如果P、Q两点从(1)中4秒时的位置同时向数轴负方向运动,那么再经过几秒,点P、Q到原点的距离相等?.9.(2014秋•西城区校级期中)已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是6单位长度/秒,此时点Q表示的有理数是60;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过1秒,点P,Q到数轴上表示有理数20的点的距离相等.×=10.(2013秋•江都市期末)如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,OB=2O A.=综上,运动s11.已知在数轴上有两个动点A、B,动点A从﹣1位置出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后两点相距25个单位长度,已知动点A、B的速度比是1:5(速度单位:1单位长度/秒).(1)求A、B两点从起始位置出发运动4秒后在数轴上分别对应的数是多少;(2)若A、B两点分别从(1)中所在的位置同时向数轴负方向运动,保持原来的速度不变,问经过几秒,点B到原点的距离恰好是点A到原点的距离的2倍?;答:经过12.(2014秋•商丘期末)已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M、点N的距离相等,那么x的值是﹣1;(2)当x=﹣3.5或1.5时,使点P到点M、点N的距离之和是5;(3)如果点P以每秒钟3个单位长度的速度从点O向左运动时,点M和点N分别以每秒钟1个单位长度和每秒钟4个单位长度的速度也向左运动,且三点同时出发,那么或2秒钟时点P到点M,点N的距离相等.或)13.数轴上两点A、B对应的数分别为﹣1,4,点P为数轴上一动点,其对应的数为x(1)如点P到点A,点B的距离相等,求点P在数轴上对应的数?(2)数轴上是否存在点P,使P到点A,点B的距离之和为7?若存在,请求出来x的值;若不存在,说明理由;(3)当点P以每分钟1个单位长度的速度从O点向左运动时点A以每分钟4个单位长度的速度向左运动,点B以每分钟12个单位的长度的速度向左运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?=分钟时点=分钟时点分钟或分钟时点14.(2014春•万州区校级期中)如图:数轴上有A、B两点,分别对应的数为a,b,已知(a+1)2与|b﹣3|互为相反数.点P为数轴上一动点,对应为x.(1)若点P到点A和点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A和点B的距离之和为5?若存在,请求出x的值;若不存在,说明理由;(3)当点P以每分钟一个单位长度的速度从O点向左运动,点A以每分钟5各单位长度向左运动,问几分钟时点P到点A、点B的距离相等?=分钟时点15.已知A、B、C是数轴上的三点,点C表示的数是6,BC=4,AB=12,点P为数轴上一动点,其对应的数为x.(1)数轴上是否存在一点P,使点P到A、B的距离和为13?若存在,请求出x的值.若不存在,请说明理由;(2)当点P以每分钟1个长度单位的速度从C点向左运动时,点Q以每分钟2个长度单位的速度从点给A出发向左运动,点R从B点出发以每分钟5个长度单位的速度向右运动,向它们同时出发,几分钟后P点到点Q,点R的距离相等?=答:经过16.已知数轴上两个点A、B所对应的数为a、b,且a、b满足|a+3|+(b﹣4)2=0.(1)求AB的长;(2)若甲、乙分别从A、B两点同时在数轴上运动,甲的速度是2个单位/秒,乙的速度比甲的速度快3个单位/秒,求甲乙相遇点所表示的数;(3)若点C对应的数为﹣1,在数轴上A点的左侧是否存在一点P,使P A+PB=3PC?若存在,求出点P所对应的数;若不存在,请说明理由.=。

七年级数学上册数轴类动点问题综合题专题练习(二)

七年级数学上册数轴类动点问题综合题专题练习(二)

七年级数学上册数轴类动点问题综合题专题提高练习1.(请阅读下面的文字解题)如图1,在数轴上A点表示的数为a,B点表示的数为b,则线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.请用这个知识解答下面的问题.已知数轴上A、B两点对应数分别为﹣2和4,P为数轴上一点,对应的数为x.(1)如图2,P为线段AB的三等分点,求P点对应的数.(2)如图3,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由.(3)如图4,若P点表示的数为﹣0.5,点A、点B和P点同时向左运动,它们的速度分别是1、2、1个长度单位/分,则第几分钟时,P为AB的中点?并求出此时P点所对应的数.2.如图,在数轴上点A、B、C表示的数分别为﹣2、1、6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC(1)请直接写出AB、BC、AC的长度;(2)若点D从A点出发,以每秒1个单位长度的速度向左运动,点E从B点出发以每秒2个单位长度的速度向右运动,点F从C点出发以每秒5个单位长度的速度向右运动.设点D、E、F同时出发,运动时间为t秒,试探索:EF﹣DE的值是否随着时间t 的变化而变化?请说明理由.(3)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从C 点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒后,点M、N两点间的距离为14个单位.3.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.(1)A、B间的距离是.(2)若电子蚂蚁P从B点出发,以8个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从A点出,以4个单位长度/秒向左运动.请问:多少秒后两只电子蚂蚁之间的距离是610个单位长度?(3)若点C是数轴上原点左侧的点,C到B的距离是C到原点O的距离的3倍,求点C对应的数是多少?4.若A、B两点在数轴上所表示的数分别为a、b,则A、B两点间的距离可记为|a﹣b|:(1)如图:若A、B两点在数轴上所表示的数分别为﹣2、4,求A、B两点的距离为;(2)若A、B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴正方向运动,设运动时间为t秒,解答下列问题:①运动t秒后,A点所表示的数为,B点所表示的数为;(答案均用含t的代数式表示)②当t为何值时,A、B两点的距离为4?5.已知:如图1,数轴上有两点A、B,点C,D分别从原点O与点B出发,以1cm/s、3cm/s 的速度沿BA方向同时向左运动,运动方向如箭头所示.(1)若点A表示的数为﹣3,点B表示的数为9.①当点C、D运动了2秒时,点C表示的数为,点D表示的数为;②点C、D运动多长时间,C、D两点运动到原点的距离相等?(2)如图2,点C在线段OA上,点D在线段OB上运动,在点C、D运动的过程中,满足OD=3AC.①探究OA与AB满足的数量关系:OA=AB(直接写出结果);②利用上述结论解决问题:若N是直线AB上一点,且AN﹣BN=ON,求的值.6.如图,已知数轴上点A,B是数轴上的一点,AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数为,经t秒后点P走过的路程为(用含t 的代数式表示);(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多少时间点P就能追上点Q?(3)若M为AP的中点,N为BP的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.7.在同一直线上的三点A、B、C,若满足点C到另两个点A、B的距离之比是2,则我们就称点C是其余两点的亮点(或暗点).具体地,(1)当点C在线段AB上时,若=2,则称点C是【A,B】的亮点;若=2,则称点C是【B,A】的亮点;(2)当点C在线段AB的延长线上时,若=2,称点C是【A,B】的暗点.例如:如图1,数轴上,点A、B、C、D分别表示数﹣1、2、1、0,则点C是【A,B】的亮点,又是【A,D】的暗点;点D是【B,A】的亮点,又是【B,C】的暗点.(1)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.【M,N】的亮点表示的数是;【N,M】的亮点表示的数是;【M,N】的暗点表示的数是;【N,M】的暗点表示的数是.(2)如图3,数轴上,点A所表示的数为﹣20,点B所表示的数为40.一只电子蚂蚁P从点B出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t秒.①求当t为何值时,P是【B,A】的暗点.②求当t为何值时,P、A、B三个点中恰有一个点为其余两点的亮点.(友情提醒:注意P是【A,B】的亮点与P是【B,A】的亮点不一样哦!)8.如图,点A从原点出发沿数轴向左运动,同时点B从原点出发沿数轴向右运动,4秒钟后,两点相距16个单位长度,已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、点B运动的速度,并在数轴上标出点A、B两点运动4秒后所在的位置.(2)若A、B两点从(1)中位置开始,仍以原来的速度同时沿数轴向左运动,几秒时原点恰好处在点A点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,几秒后两个点之间的距离是10个单位长度?9.如图,一只蜗牛A从原点出发向数轴负方向运动,同时另一只蜗牛B也从原点出发向数轴正方向运动,已知蜗牛A的速度为1个单位长度/秒,蜗牛B的速度为4个单位长度/秒.(1)在数轴上(图1)标出蜗牛A、B从原点出发运动3秒时的位置;(2)若蜗牛A、B从(1)中的位置同时向数轴负方向运动,爬行2秒时,①两蜗牛在数轴上所处的位置所对应的数分别是多少?②两蜗牛相距多少个单位长度?(3)若蜗牛A、B从(1)中的位置同时向数轴负方向运动时,则爬行多少秒时B蜗牛刚好追上A蜗牛?10.已知AB两地相距50单位长度,小明从A地出发去B地,以每分钟2个单位长度的速度行进,第一次他向左1单位长度,第二次他向右2单位长度,第三次再向左3单位长度,第四次又向右4单位长度…,按此规律行进,如果A地在数轴上表示的数为﹣16.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第八次行进后小明到达点P,此时点P与点B相距几个单位长度?八次运动完成后一共经过了几分?(3)若经过n次(n为正整数)行进后,小明到达的点Q,在数轴上点Q表示的数应如何表示?参考答案1.解:(1)设P点表示的数为x,由题意得①x﹣(﹣2)=×[4﹣(﹣2)],x+2=2,x=0;②4﹣x=×[4﹣(﹣2)]×4,﹣x=2,x=2;所以P点表示的数为0或者2.(2)AB=6,P点到A,B两点的距离和为10,所以P点不可能在AB之间;①当P点在A点的左边时,设P点表示的数为x,则有:﹣2﹣x+4﹣x=10,﹣2x=8,x=﹣4;②当P点在B点的右边时,设P点表示的数为y,则有:y﹣4+y﹣(﹣2)=10,2y﹣2=10,2y=12,y=6;综上所述,P表示的数为﹣4或者6(3)A、B、P是同向运动,速度分别为1、2、1个长度单位/分,则B相对于A、P的速度是1个长度单位/分,设运动x分钟后,P是AB的中点,则有:﹣0.5﹣(﹣2)=[4﹣(﹣0.5)]﹣1×x,1.5=4.5﹣x,x=3,﹣0.5﹣3×1=﹣3.5;则3分钟后,P是AB的中点,此时P点表示的数为﹣3.5.2.解:(1)∵在数轴上点A、B、C表示的数分别为﹣2、1、6,∴AB=1﹣(﹣2)=3,BC=6﹣1=5,AC=6﹣(﹣2)=8;(2)不变,点D、E、F同时出发,运动t秒时,D点表示的数为﹣2﹣t,E点表示的数为1+2t,F 点表示的数为6+5t,则EF=(6+5t)﹣(1+2t)=5+3t,DE=(1+2t)﹣(﹣2﹣t)=3+3t,EF﹣DE=(5+3t)﹣(3+3t)=2,故EF﹣DE的值不随着时间t的变化而改变;(3)①点M、N同时向左出发,依题意有4t﹣3t=14﹣8,解得t=6;②点M向左出发,点N向右出发,依题意有4t+3t=14﹣8,解得t=;③点M向右出发、点N向左出发,依题意有4t+3t=14+8,解得t=;④点M、N同时向右出发,依题意有4t﹣3t=14+8,解得t=22.故经过6秒或秒或秒或22秒后,点M、N两点间的距离为14个单位.3.解:(1)由题意知:AB=100﹣(﹣30)=130.故答案为130;(2)设t秒后两只电子蚂蚁间的距离为610,由题意得:130+12t=610,解得:t=40.答:40秒后两只电子蚂蚁之间的距离是610.(3)设C对应的数为x(x<0),根据题意得|x﹣100|=3|x|,解得x=﹣50或25(舍去),故C对应的数为﹣50.4.解:(1)AB=|4﹣(﹣2)|=|6|=6;故答案为:6.(2)①点A表示的数为﹣2+3×t=3t﹣2,点B表示的数为4+1×t=4+t;故答案为:3t﹣2;4+t.②∵A、B两点的距离为4,∴|3t﹣2﹣(t+4)|=4.整理得:2t﹣6=±4.解得:t=1或t=5.当t=1或t=5时,A、B两点的距离为4.5.(1)①当点C、D运动了2s时,OC=2cm,BD=6cm,∴OD=OB﹣BD=9﹣6=3cm,∴C表示的数为:﹣2,D表示的数为:3,故答案为﹣2,3;②设点C、D运动xs,C、D两点运动到原点的距离相等,根据题意:x=9﹣3x或x=3x﹣9,解得x=或,∴点C、D运动s或s,C、D两点运动到原点的距离相等;(2)①∵点C在线段OA上,点D在线段OB上运动,在点C、D运动的过程中,满足OD=3AC.∴3(OA﹣x)=OB﹣3x,∴3OA=OB,∴OA=AB,故答案为;②当点N在线段AB上时,如下图,∵AN﹣BN=ON,又∵AN﹣AO=ON∴BN=AO=AB,∴ON=AB,即=;当点N在线段AB的延长线上时,如下图∵AN﹣BN=ON,又∵AN﹣BN=AB,∴ON=AB,即=1,综上所述,=或1.6.解:(1)设B点表示x,则有AB=8﹣x=12,解得x=﹣4.∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴经t秒后点P走过的路程为6t.故答案为:﹣4;6t.(2)设经t秒后P点追上Q点,根据题意得:6t﹣4t=12,解得t=6.答:经过6秒时间点P就能追上点Q.(3)不论P点运动到哪里,线段MN都等于6.分两种情况分析:①点P在线段AB上时,如图1,MN=PM+PN=PA+PB=(PA+PB)=AB=×12=6;②点P在线段AB的延长线上时,如图2,MN=PM﹣PN=PA﹣PB=(PA﹣PB)=AB=×12=6.综上可知,不论P运动到哪里,线段MN的长度都不变,都等于6.7.解:(1)∵=2,=2,∴【M,N】的亮点表示的数是2;【N,M】的亮点表示的数是0,故答案为2,0;∵=2,=2,∴【M,N】的暗点表示的数是10;【N,M】的暗点表示的数为﹣8,故答案为10,﹣8;(2)①设运动时间为t秒,则PB=2t,易得方程2t=2(2t﹣60).所以t=60.②当P是【A,B】的亮点时,∵PA=2PB,∴2×2t=60﹣2t,解得t=10;当P是【B,A】的亮点时,∵PB=2PA,∴2t=2(60﹣2t),解得t=20;当A是[B、P]的亮点时,∵AB=2AP,∴60=2(2t﹣60)解得t=45;当A是[P、B]的亮点时,∵AP=2AB,∴2t﹣60=2×60,解得t=90;综上所述:当t为10,20,45,90时,P、A、B中恰有一个点为其余两点的亮点.8.解:(1)设点A的速度为每秒x个单位,则点B的速度为每秒3x个单位,由题意,得4x+3×4x=16,解得:x=1,3x=3点A的速度为每秒1个单位长度,则点B的速度为每秒3个单位长度.4秒后A点在﹣4的位置上,B点在12的位置上.如图:(2)设a秒时原点恰好在A、B的中间,由题意,得4+a=12﹣3a,解得:a=2.∴A、B运动2秒时,原点就在点A、点B的中间;(3)设m秒后两个点之间的距离是10个单位长度,当B在A之后10个单位长度,3x+10=x+16,解得x=3;B在A之前10个单位长度,3x﹣10=x+16,解得x=13;答:3秒或13秒后两个点之间的距离是10个单位长度.9.解:(1)∵蜗牛A的速度为1个单位长度/秒,蜗牛B的速度为4个单位长度/秒,∴A、B从原点出发运动3秒时,蜗牛A的位置在﹣3,蜗牛B的位置在12,在图上标注如下:(2)①A蜗牛:﹣3﹣1×2=﹣5,B蜗牛:12﹣4×2=4,答:A蜗牛在数轴上所处位置对应的数是﹣5,B蜗牛在数轴上所处的位置所对应的数是4;②4﹣(﹣5)=9.答:两蜗牛相距9个单位长度;(3)设y秒后蜗牛B追上蜗牛A,依题意得,4y﹣y=15,解得:y=5.答:爬行5秒时B蜗牛刚好追上A蜗牛.10.解:(1)∵AB两地相距50单位长度,A地在数轴上表示的数为﹣16,∴点B表示的数为:﹣16﹣50=﹣66或﹣16+50=34,即B地在数轴上表示的数是﹣66或34;(2)由题意可得,第一次运动到点:﹣16﹣1,第二次为:﹣16﹣1+2=﹣16+1,第三次为:﹣16+1﹣3=﹣16﹣2,第四次为:﹣16﹣2+4=﹣16+2,由上可得,第奇数次运动到点﹣16﹣,第偶数次运动到点:﹣16+,∴第八次运动到点P为:﹣16+,∵B地在原点的右侧,∴点B表示的数为:34,∴点P与点B相距的单位长度为:34﹣(﹣12)=46,∴八次运动完成后经过的时间为:(1+2+3+4+5+6+7+8)÷2=36÷2=18(分钟),即B地在原点的右侧,经过第八次行进后小明到达点P,此时点P与点B相距46个单位长度,八次运动完成后一共经过了18分钟;(3)由题意可得,第一次运动到点:﹣16﹣1,第二次为:﹣16﹣1+2=﹣16+1,第三次为:﹣16+1﹣3=﹣16﹣2,第四次为:﹣16﹣2+4=﹣16+2,由上可得,第奇数次运动到点﹣16﹣=﹣16﹣﹣=﹣16,第偶数次运动到点:﹣16+,即当n为奇数时,在数轴上点Q表示的数为:﹣16;当n为偶数时,在数轴上点Q 表示的数为:﹣16.。

七年级上册数轴上的动点问题汇总压轴题

七年级上册数轴上的动点问题汇总压轴题

数轴上的动点问题精选汇总1.如图,已知数轴上A 、B 两点所表示的数分别为-2和8.(1)求线段AB 的长;(2)若P 为射线BA 上的一点(点P 不与A 、B 两点重合,M 为PA 的中点,N 为PB 的中点,当点P 在射线BA 上运动时;MN 的长度是否发生改变?若不变,请你画出图形,并求出线段MN 的长;若改变,请说明理由.2.如图,已知P 是线段AB 上一点,AP=32AB,C,D 两点从A,P 同时出发,分别以每秒2厘米,每秒1匣米的速度沿AB 方向运动,当点D 到达终点B 时,点C 也停止运动,设AB=a(厘米),点C,D 的运动时间为t(秒).(1)用含a 和t 的代数式表示线段CP 的长度;(2)当t=5时,CD=21AB ,求线段AB 的长;(3)当CB−AC=PC 时,求AB PD 的值。

3、已知数轴上有A 、B 、C 三点,分别表示有理数-26,-10,10,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设点P 移动时间为t 秒.(1)PA=________,PC=_____________(用含t 的代数式表示)(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,当点P 运动到点C 时,P 、Q 两点运动停止,①当P 、Q 两点运动停止时,求点P 和点Q 的距离;②求当t 为何值时P 、Q 两点恰好在途中相遇。

6.如图,数轴上一点A,点B 从A 出发沿数轴以a 个单位/秒的速度匀速向左运动,同时另一点C 也从A 出发沿数轴以某一速度匀速向右运动,取BC 中点M,AC中点N,关于x 的方程4232=+-a x 的解为a x =.(1)求B 点的运动速度;(2)当MN=5时,B 点对应的数为-6,求A 点对应的数;(3)C 点是否存在某一速度,使得运动过程中始终有34=CM BN ?若不存在,请说明理由;若存在,请说明理由并求出C 点的速度.7、已知数轴上两点A 、B 对应的数分别为-1、3,点P 为数轴上一动点,其对应的数为x.(1)若点P 到点A,点B 的距离相等,求点P 对应的数;(2)数轴上是否存在点P,使点P 到点A 、点B 的距离之和为6?若存在,请求出x 的值;若不存在,说明理由;(3)点A 、点B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以6个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间,求当点A 与点B 重合时,点P 所经过的总路程是多少?(4)当点P 以每分钟1个单位长的速度从坐标原点O 点向左运动时,点A 以每分钟5个单位长的速度向左运动,点B 以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P 点到点A 、点B 的距离相等?8.如图,数轴上有A.B两点,AB=12,原点O是线段AB上的一点,OA=2OB.(1)写出A,B两点所表示的实数;(2)若点C是线段AB上一点,且满足AC=CO+CB,求C点所表示的实数;(3)若动点P、Q分别从A.B同时出发,向右运动,点P的速度为每秒2个单位长,点Q的速度为每秒1个单位长,设运动时间为t秒,当点P与点Q重合时,P、Q两点停止运动。

精选七年级上册数学数轴动点问题压轴题专题练习2

精选七年级上册数学数轴动点问题压轴题专题练习2

精选七年级上册数学数轴动点问题压轴题专题练习1.在一条不完整的数轴上从左到右有点A、B、C,其中点A到点B的距离为4,点C到点B的距离为9,如图所示,设点A、B、C所对应的数的和是m.(1)若以A为原点,则m=;若以B为原点,则m=.(2)若原点O在图中数轴上,且点B到原点O的距离为4,求m的值.(3)动点M从点A出发,以每秒2个单位长度的速度向终点C移动,动点N从点B出发,以每秒1个单位长度的速度向终点C移动,t秒后M,N两点间距离是2,求t的值.2.阅读下面一段文字:在数轴上点A,B分别表示数a,b.A,B两点间的距离可以用符号|AB|表示,利用有理数减法和绝对值可以计算A,B两点之间的距离|AB|.例如:当a=2,b=5时,|AB|=5﹣2=3;当a=2,b=﹣5时,|AB|=|﹣5﹣2|=7;当a =﹣2,b=﹣5时,|AB|=|﹣5﹣(﹣2)|=3.综合上述过程,发现点A、B之间的距离|AB|=|b﹣a|(也可以表示为|a﹣b|).请你根据上述材料,探究回答下列问题:(1)数轴上表示1和3两点之间的距离是;(2)表示数a和﹣2的两点间距离是6,则a=;(3)如果数轴上表示数a的点位于﹣4和3之间,求|a+4|+|a﹣3|的值.(4)是否存在数a,使代数式|a﹣1|+|a﹣2|+|a﹣3|的值最小?若存在,请求出代数式的最小值,并直接写出数a的值或取值范围,若不存在,请简要说明理由.3.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是,点B对应的数是.(2)若数轴上有一点D,且BD=4,则点D表示的数是什么?(3)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.当点P和点Q 间的距离为8个单位长度时,求t的值.4.如图1,已知数轴上A,B两点表示的数分别为﹣9和7.(1)AB=(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t 秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.5.在多项式3x+xy﹣20y2+5y﹣34x3﹣9中,a表示这个多项式的项数,b表示这个多项式中三次项的系数.在数轴上点A与点B所表示的数恰好可以用a与b分别表示.有一个动点P从点A出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)a=,b=,线段AB=个单位长度;(2)点P所表示数是(用含t的多项式表示);(3)求当t为多少时,线段PA的长度恰好是线段PB长度的三倍?6.在数轴上点A表示﹣3,点B表示4.(1)点A与点B之间的距离是;(2)我们知道,在数轴上|a|表示数a所对应的点到原点的距离,你能说明|﹣3+5|在数轴上表示的意义吗?(3)在数轴上点P表示的数为x,是否存在这样的点P,使2PA+PB=12?若存在,请求出相应的x;若不存在,请说明理由.7.在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:图中,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1.那么点C是【A,B】的和谐点;又如,表示数0的点D到点A 的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为﹣4,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为﹣2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?8.阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示有理数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A,B分别表示数a,b,则A,B两点之间的距离为AB=|a﹣b|.反之,可以理解式子|x﹣3|的几何意义是数轴上表示有理数x与有理数3的两点之间的距离.根据上述材料,利用数轴解决下列问题:(Ⅰ)若|x﹣3|=2,则x的值为;若|x﹣5|=|x+1|,则x的值为;(Ⅱ)当x在什么范围时,|x﹣2|+|x﹣5|有最小值?并求出它的最小值;(III)若a<2<b,在数轴上是否存在数x,使得|x﹣a|+2|x﹣2|+|x﹣b|的值最小?若存在,请求出最小值及x的值;若不存在,请说明理由.9.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点.又如,表示0的点D到点A的距离是1,到点B的距离是2.那么点D就不是【A,B】的好点,但点D是【B,A】的好点:知识运用:(1)如图1,点B是【D,C】的好点吗?(填是或不是);(2)如图2,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止当t为何值时,P、A和B中恰有一个点为其余两点的好点?10.如图,数轴上A,B,C三点对应的数分别是a,b,14,满足BC=6,AC=3BC.动点P从A点出发,沿数轴以每秒2个单位长度匀速向右运动,同时动点Q从C点出发,沿数轴以每秒1个单位长度匀速向左运动,设运动时间为t.(1)则a=,b=.(2)当P点运动到数2的位置时,Q点对应的数是多少?(3)是否存在t的值使CP=CQ,若存在求出t值,若不存在说明理由.参考答案1.解:(1)当以A为原点,则点B表示的数为4,点C表示的数13,则m=0+4+13=17;当以B为原点,则点A表示的数为﹣4,点C表示的数9,则m=﹣4+0+9=5;故答案为17,5;(2)当O在B的左边时,A、B、C三点在数轴上所对应的数分别为0、4、13,则m=0+4+13=17;当O在B的右边时,A、B、C三点在数轴上所对应的数分别为﹣8、﹣4、5,则m=﹣8﹣4+5=﹣7,综上所述:m=﹣7或17;(3)假如以A为原点,则A、B、C对应的数为0,4,13,M对应的数是2t,N对应的数是4+t,当M在N的左边时,2t+2=4+t,∴t=2,当M在N的右边时,2t﹣2=4+t,∴t=6,综上所述:t=2或6.2.解:(1)3﹣1=2;∴数轴上表示1和3两点之间的距离是2;故答案为:2;(2)由题意得:|a﹣(﹣2)|=6,解得:a=4,或a=﹣8,故答案为:4或﹣8;(3)∵表示数a的点位于﹣4和3之间,∴|a+4|=a+4,|a﹣3|=3﹣a.∴|a+4|+|a﹣3|=a+4+3﹣a=7.(4)存在数a,使代数式|a﹣1|+|a﹣2|+|a﹣3|的值最小,理由如下:当a=2时,|a﹣1|+|a﹣2|+|a﹣3|=1+0+1=2.存在数a,使代数式|a﹣1|+|a﹣2|+|a﹣3|的值最小为2.3.解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)由于点B对应的数为﹣10,BD=4,所以点D表示的数为﹣14或﹣6;(3)当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.4.解:(1)∵数轴上A,B两点表示的数分别为﹣9和7,∴AB=|﹣9﹣7|=16.故答案为:16.(2)设经过x秒,点P与点Q相遇,依题意,得:4x﹣2x=16,解得:x=8,答:经过8秒,点P与点Q相遇.(3)当运动时间为t秒时,点A表示的数为4t﹣9,点C表示的数为4t﹣9+3=4t﹣6,点B表示的数为﹣2t+7,点D表示的数为﹣2t+7+6=﹣2t+13,∵点M为线段AC的中点,点N为线段BD的中点,∴点M表示的数为=4t﹣,点N表示的数为=﹣2t+10.①∵点B恰好在线段AC的中点M处,∴﹣2t+7=4t﹣,∴t=.答:当t为时,点B恰好在线段AC的中点M处.②∵AC的中点M与BD的中点N距离2个单位,∴|4t﹣﹣(﹣2t+10)|=2,即6t﹣=2或6t﹣=﹣2,∴t=或t=.答:当t为或时,AC的中点M与BD的中点N距离2个单位.5.解:(1)∵在多项式3x+xy﹣20y2+5y﹣34x3﹣9中,a表示这个多项式的项数,b表示这个多项式中三次项的系数,∴a=6,b=﹣34,∴AB=6﹣(﹣34)=40.故答案为:6;﹣34;40.(2)当运动时间为t秒时,点P表示的数为6﹣2t.故答案为:(6﹣2t).(3)∵点A表示的数为6,点B表示的数为﹣34,点P表示的数为6﹣2t,∴PA=6﹣(6﹣2t)=2t,PB=|6﹣2t﹣(﹣34)|=|40﹣2t|.∵PA=3PB,∴2t=3×|40﹣2t|,即2t=3×(40﹣2t)或2t=3×(2t﹣40),解得:x=15或x=30.答:当t为15秒或30秒时,线段PA的长度恰好是线段PB长度的三倍.6.解:(1)AB=|﹣3﹣4|=7.故答案为:7.(2)|﹣3+5|=|﹣3﹣(﹣5)|,∴|﹣3+5|在数轴上表示的意义是数轴上表示﹣3和﹣5的两点之间的距离.(3)∵在数轴上点A表示﹣3,点B表示4,点P表示的数为x,∴PA=|x﹣(﹣3)|=|x+3|,PB=|x﹣4|.∵2PA+PB=12,∴2|x+3|+|x﹣4|=12.当x<﹣3时,2(﹣x﹣3)+(4﹣x)=12,解得:x=﹣;当﹣3≤x≤4时,2(x+3)+(4﹣x)=12,解得:x=2;当x>4时,2(x+3)+(x﹣4)=12,解得:x=(不合题意,舍去).答:存在这样的点P,使2PA+PB=12,相应的x的值为﹣和2.7.解:(1)①点C到点A的距离为4﹣(﹣4)=8,点C到点B的距离为8﹣4=4,∵8=2×4,∴点C是【A,B】的和谐点.故答案为:是.②设点D表示的数为x,则点D到点B的距离为|x﹣8|,点D到点A的距离为|x+4|,依题意,得:|x﹣8|=2|x+4|,即x﹣8=2x+8或x﹣8=﹣2x﹣8,解得:x=﹣16或x=0.故答案为:﹣16或0.(2)设运动时间为t秒,则BC=t,AC=6﹣t.当C是【A,B】的和谐点时,6﹣t=2t,解得:t=2;当C是【B,A】的和谐点时,t=2(6﹣t),解得:t=4;当A是【B,C】的和谐点时,6=2(6﹣t),解得:t=3;当B是【A,C】的和谐点时,6=2t,解得:t=3.答:点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.8.解:(Ⅰ)∵|x﹣3|=2,∴x﹣3=±2,∴x=5或1,∵|x﹣5|=|x+1|,∴x=2,故答案为:5或1;2.(Ⅱ)当2≤x≤5时,|x﹣2|+|x﹣5|有最小值,最小值是3,当x>5时,x﹣2+x﹣5=2x﹣7>3,当2≤x≤5时,x﹣2+5﹣x=3,当x<2时,2﹣x+5﹣x=7﹣2x>3,故当2≤x≤5时,|x﹣2|+|x﹣5|有最小值,最小值是3;(Ⅲ)∵|x﹣a|+2|x﹣2|+|x﹣b|表示数x分别与a、2、b的距离之和,∴x=2时,|x﹣a|+2|x﹣2|+|x﹣b|的值最小,∵a<2<b,∴|x﹣a|+2|x﹣2|+|x﹣b|的最小值是2﹣a+b﹣2=b﹣a.故x=2时,|x﹣a|+2|x﹣2|+|x﹣b|的值最小,最小值是b﹣a.9.解:(1)∵BD=2,BC=1,BD=2BC∴点B是【D,C】的好点.故答案为:是;(2)设点P表示的数为x,分以下几种情况:①P为【A,B】的好点由题意,得x﹣(﹣40)=2(20﹣x),解得x=0,t=20÷2=10(秒);②A为【B,P】的好点由题意,得20﹣(﹣40)=2[x﹣(﹣40)],解得x=﹣10,t=[20﹣(﹣10)]÷2=15(秒);③P为【B,A】的好点由题意,得20﹣x=2[x﹣(﹣40)],解得x=﹣20,t=[20﹣(﹣20)]÷2=20(秒);④A为【P,B】的好点由题意得x﹣(﹣40)=2[20﹣(﹣40)]解得x=80(舍).⑤B为【A,P】的好点20﹣(﹣40)=2(20﹣x)∴x=﹣10t=[20﹣(﹣10)]÷2=15(秒);此种情况点P的位置与②中重合,即点P为AB中点.综上可知,当t为10秒、15秒或20秒,P、A和B中恰有一个点为其余两点的好点.10.解:(1)∵c=14,BC=6,∴b=14﹣6=8;∵AC=3BC,∴AC=18,∴a=14﹣18=﹣4;(2)[2﹣(﹣4)]÷2=3(秒),14﹣1×3=11.故Q点对应的数是11;(3)P在C点的左边,则18﹣2t=t,解得t=6;P在C点的右边,则2t﹣18=t,解得t=18.综上所述,t的值为6或18.故答案为:6;18.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档