人教版高中数学必修三 第三章 概率概率导学案3.3 几何概型
高中数学教案 必修3教案 第三章 概率 3.3几何概型
几何概型一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法;(6)会利用均匀随机数解决具体的有关概率的问题.2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、 情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
二、重点与难点:1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法与教学用具:1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。
例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.3、 例题分析:课本例题略例1 判下列试验中事件A 发生的概度是古典概型,还是几何概型。
人教版高中数学必修三 第三章 概率 《几何概型》备课资料
《几何概型》备课资料教学内容的分析1.从教材的地位和作用来看本课选自人教A 版(必修3)第三章《概率》中3.3几何概型的第一课时,是在学习古典概型情况下教学的。
它是对古典概型内容的进一步拓展,使等可能事件的概念从有限向无限延伸,此节内容也是新课本中增加的,反映了《新课标》对数学知识在实际应用方面的重视.同时也暗示了它在概率论中的重要作用,以及在高考中的题型的转变。
2.从学生学习角度来看从学生的思维特点看,很容易将本节内容与古典概型进行类比,这是积极因素,应因势利导.不利因素是:基本事件个数由有限向无限过渡,以及对实际背景的转化上还存在一定的认知困难。
3.教学重难点重点:几何概型概念及计算公式的形成过程.难点:将实际问题转化为数学问题,建立几何概率模型,并求解。
教学目标1.知识与技能以学生动手试验为主要形式,通过解决具体问题来感知用图形解决概率问题的思路,体会几何概型计算公式及几何意义.2.过程与方法通过多个问题的分析及模拟试验让学生理解几何概型的特征,归纳总结出几何概型的概率计算公式,渗透有限到无限,转化与化归及数形结合的思想。
3.情感、态度与价值观教会学生用数学方法去研究不确定现象的规律,帮助学生获取认识世界的初步知识和科学方法。
教学过程:引入1:复习古典概型的特点及其概率公式:(1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。
古典概型包含基本事件的个数、事件的概率公式:基本事件的总数 对比练习:1.(赌博游戏):甲乙两赌徒掷骰子,规定掷一次谁掷出6点朝上则谁胜,请问甲掷一次获胜(事件A )的概率?2. (转盘游戏):如图转盘.甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.求甲获胜(事件A )的概率是多少?思考:⑴两个问题概率的求法一样吗?若不一样,请问可能是什么原因导致的?赌博游戏分析:骰子的六个面上的数字是有限个的,且每次都是等可能性的,因而可以利用古典概型;所以P (A )=61 转盘游戏分析:指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型; ⑵你是如何解决这些问题的?利用模拟实验得到概率探究归纳(模拟实验):1.转盘游戏引导:先分析,做示范。
高中数学第三章概率第3节几何概型教学案新人教版
第3节 几何概型[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 135~P 136,回答下列问题.(1)教材问题中甲获胜的概率与什么因素有关?提示:与两图中标注B 的扇形区域的圆弧的长度有关.(2)教材问题中试验的结果有多少个?其发生的概率相等吗? 提示:试验结果有无穷个,但每个试验结果发生的概率相等.2.归纳总结,核心必记(1)几何概型的定义与特点①定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.②特点:(ⅰ)可能出现的结果有无限多个;(ⅱ)每个结果发生的可能性相等.(2)几何概型中事件A 的概率的计算公式P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积. [问题思考](1)几何概型有何特点? 提示:几何概型的特点有:①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等.(2)古典概型与几何概型有何区别?提示:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的.[课前反思]通过以上预习,必须掌握的几个知识点:(1)几何概型的定义: ;(2)几何概型的特点: ;(3)几何概型的计算公式: .某班公交车到终点站的时间可能是11∶30-12∶00之间的任何一个时刻.往方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.[思考1] 这两个试验可能出现的结果是有限个,还是无限个?提示:无限多个.[思考2] 古典概型和几何概型的异同是什么?名师指津:古典概型和几何概型的异同如表所示:11.取一根长为5 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2 m 的概率有多大?[尝试解答] 如图所示.记“剪得两段绳长都不小于2 m”为事件A.把绳子五等分,当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的15,所以事件A发生的概率P(A)=15.求解与长度有关的几何概型的关键点在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到不会影响事件A的概率.练一练1.(2016·全国乙卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34解析:选B 如图,7:50至8:30之间的时间长度为40 分钟,而小明等车时间不超过10 分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20 分钟,由几何概型概率公式知所求概率为P =2040=12.故选B.讲一讲2.(2014·辽宁高考)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是()A.π2B.π4C.π6D.π8[尝试解答] 由几何概型的概率公式可知,质点落在以AB 为直径的半圆内的概率P =半圆的面积长方形的面积=12π·121×2=π4,故选B. 答案:B解与面积相关的几何概型问题的三个关键点(1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积;(3)套用公式,从而求得随机事件的概率.练一练2.如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A .1-π4 B.π2-1 C .2-π2 D.π4解析:选A 由几何概型知所求的概率P =S 图形DEBF S 矩形ABCD =2×1-14×π×12×22×1=1-π4. 讲一讲3.如图,在棱长为2的正方体ABCD A 1B 1C 1D 1 中,点O 为底面ABCD 的中心,在正方体ABCD A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[尝试解答] 点P 到点O 的距离大于1的点位于以O 为球心,以1为半径的半球外.记点P 到点O 的距离大于1为事件A ,则P (A )=23-12×4π3×1323=1-π12. 答案:1-π12如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.练一练3.如图所示,有一瓶2升的水,其中含有1个细菌.用一小水杯从这瓶水中取出0.1升水,求小杯水中含有这个细菌的概率.解:记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵小水杯中有0.1升水,原瓶中有2升水,∴由几何概型求概率的公式得P (A )=0.12=0.05. ——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是了解几何概型的意义,会求几何概型的概率.难点是理解几何概型的特点和计算公式.2.本节课要掌握以下几类问题:(1)理解几何概型,注意与长度有关的几何概型的求解关键点,见讲1.(2)求解与面积相关的几何概型问题的三个关键点,见讲2.(3)注意与体积有关的几何概型的求解策略,见讲3.3.本节课的易错点:不能正确求出相关线段的长度或相关区域的面积或相关空间的体积,如讲1,2,3.课下能力提升(十九)[学业水平达标练]题组1 与长度有关的几何概型1.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( )A.45B.35C.25D.15解析:选B 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35. 2.已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.18解析:选A 试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1min ,故P (A )=110. 3.在区间[-2,4]上随机取一个数x ,若x 满足|x |≤m 的概率为56,则m =________. 解析:由|x |≤m ,得-m ≤x ≤m ,当m ≤2时,由题意得2m 6=56,解得m =2.5,矛盾,舍去.当2<m <4时,由题意得m --6=56,解得m =3. 答案:3 4.如图所示,在单位圆O 的某一直径上随机地取一点Q ,求过点Q 且与该直径垂直的弦长长度不超过1的概率.解:弦长不超过1,即|OQ |≥32,而Q 点在直径AB 上是随机的,记事件A ={弦长超过1}.由几何概型的概率公式得P (A )=32×22=32. ∴弦长不超过1的概率为1-P (A )=1-32. 题组2 与面积、体积有关的几何概型5.在如图所示的正方形中随机撒入 1 000粒芝麻,则撒入圆内的芝麻数大约为________(结果保留整数).解析:设正方形边长为2a ,则S 正=4a 2,S 圆=πa 2.因此芝麻落入圆内的概率为P =πa 24a 2=π4,大约有1 000×π4≈785(粒). 答案:7856.一个球型容器的半径为3 cm ,里面装有纯净水,因为实验人员不小心混入了一个H 7N 9 病毒,从中任取1 mL 水,含有H 7N 9 病毒的概率是________. 解析:水的体积为43πR 3=43×π×33=36π(cm 3)=36π(mL).故含有病毒的概率为P =136π. 答案:136π 7.(2015·西安质检)如图,在正方体ABCD A 1B 1C 1D 1 内随机取点,则该点落在三棱锥A 1ABC 内的概率是________.解析:设正方体的棱长为a ,则所求概率P =VA 1ABC VABCD A 1B 1C 1D 1=13×12a 2·a a 3=16. 答案:168.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.解析:设长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h h +h +=14,解得h =3或h =-12(舍去),故长方体的体积为1×1×3=3.答案:39.在街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小圆板.规则如下:每掷一次交5角钱,若小圆板压在边上,可重掷一次;若掷在正方形内,需再交5角钱才可玩;若压在正方形塑料板的顶点上,可获得一元钱.试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?解:(1)如图(1)所示,因为O 落在正方形ABCD 内任何位置是等可能的,小圆板与正方形塑料板ABCD 的边相交接是在圆板的中心O 到与它靠近的边的距离不超过1 cm 时,所以O 落在图中阴影部分时,小圆板就能与塑料板ABCD 的边相交接,这个范围的面积等于92-72=32(cm 2),因此所求的概率是3292=3281.(2)小圆板与正方形的顶点相交接是在圆心O 与正方形的顶点的距离不超过小圆板的半径1 cm 时,如图(2)阴影部分,四块合起来面积为π cm 2,故所求概率是π81. [能力提升综合练]1.下列关于几何概型的说法中,错误的是( )A .几何概型是古典概型的一种,基本事件都具有等可能性B .几何概型中事件发生的概率与它的位置或形状无关C .几何概型在一次试验中可能出现的结果有无限多个D .几何概型中每个结果的发生都具有等可能性解析:选A 几何概型和古典概型是两种不同的概率模型,故选A.2.已有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 利用几何概型的概率公式,得P (A )=38,P (B )=28,P (C )=26,P (D )=13, ∴P (A )>P (C )=P (D )>P (B ),故选A.3.如图,在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S 4的概率是( )A.14B.12C.34D.23解析:选C 因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S 4”等价于事件“|BP |∶|AB |>14”.即P (△PBC 的面积大于S 4)=|PA ||BA |=34. 4.已知事件“在矩形ABCD 的边CD 上随机地取一点P ,使△APB 的最大边是AB ”发生的概率为12,则AD AB =( )A.12B.14C.32D.74解析:选D 依题可知,设E ,F 是CD 上的四等分点,则P 只能在线段EF 上且BF =AB .不妨设CD =AB =a ,BC =b ,则有b 2+⎝ ⎛⎭⎪⎫3a 42=a 2,即b 2=716a 2,故b a =74.5.(2016·石家庄高一检测)如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.解析:记“射线OA 落在∠xOT 内”为事件A .构成事件A 的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P (A )=60°360°=16. 答案:166.一个多面体的直观图和三视图如图所示,其中M 是AB 的中点.一只苍蝇在几何体ADF BCE 内自由飞行,求它飞入几何体F AMCD 内的概率.解:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF ,DF =AD =DC =a .因为V F AMCD =13S 四边形AMCD ×DF =13×12(12a +a )·a ·a =14a 3, V ADF BCE =12a 2·a =12a 3,所以苍蝇飞入几何体F AMCD 内的概率为14a 312a 3=12. 7.在长度为10 cm 的线段AD 上任取两点B ,C .在B ,C 处折此线段而得一折线,求此折线能构成三角形的概率.解:设AB ,AC 的长度分别为x ,y ,由于B ,C 在线段AD 上,因而应有0≤x ,y ≤10,由此可见,点对(B ,C )与正方形K ={(x ,y )|0≤x ≤10,0≤y ≤10}中的点(x ,y )是一一对应的,先设x <y ,这时,AB ,BC ,CD 能构成三角形的充要条件是AB +BC >CD ,BC +CD >AB ,CD +AB >BC ,注意AB =x ,BC =y -x ,CD =10-y ,代入上面三式,得y >5,x <5,y -x <5,符合此条件的点(x ,y )必落在△GFE 中(如图).同样地,当y <x 时,当且仅当点(x ,y )落在△EHI 中,AC ,CB ,BD 能构成三角形, 利用几何概型可知,所求的概率为S △GFE +S △EHI S 正方形=14.。
人教A版高中数学必修3第三章概率3.3几何概型教案(2)
1.设 x 是[0,1] 内的一个均匀随机数 ,经过变换 y=2x+ 3,则 x=0.5 对应变换成的均匀随机数是
A.0
B.2
C.4
D.5
【知识点:随机模拟方法】
解 C :当 x=0.5 时,y=2×0.5+3= 4. 2. 在线段 [0,3]上任投一点,则此点坐标小于 1 的概率为 ( )
1
1
1
A. 2
(2)经过伸缩变换, a=a1*12 得到 [0, 12]内的均匀随机数.
(3)统计试验总次数 N 和[6 ,9] 内随机数个数 N1
(4)计算频率 N1 . N
记事件 A={ 面积介于 36cm2 与 81cm2 之间 }={ 长度介于 6cm 与 9cm 之间 } ,则 P(A )的近似
值为 fn(A)= N1 . N
B.3
C.4
D.1
【知识点:几何概型】 解: B 3. 若将一个质点随机投入如图所示的长方形 ABCD 中,其中 AB= 2, BC= 1, 则质点落在以 AB 为直径的半圆内的概率是 ( )
π
π
π
A. 2
B.4
C.6
π D.8
【知识点:几何概型】
阴影面积
12π·2 1π
解 B:设质点落在以 AB 为直径的半圆内为事件 A,则 P(A)= 长方形面积 = 1×2 = 4.
在古典概型中, 涉及到用随机模拟的方法求随机事件的概率, 那么能否用随机模拟的方 法解一些几何概型问题呢?
例 4. 取一根长度为 3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于 概率有多大? 【知识点:几何概型,随机模拟方法;数学思想:数学抽象,数学建模】 详解 1:(1)利用计算器或计算机产生一组 0 到 1 区间的均匀随机数 a1=RAND . (2)经过伸缩变换, a=a1*3 . (3)统计出 [1 ,2]内随机数的个数 N1 和 [0,3] 内随机数的个数 N.
人教版高中数学必修三 第三章 概率3.3.1 几何概型(第1课时)
3.3.1 几何概型(第1课时)一、教学目标:1.知识与技能:(1)通过等公交车和转盘游戏,引入几何概型定义和几何概型中概率计算公式,明确几何概型与古典概型的区别.(2)通过例题教学,使学生进一步理解几何概型的使用条件,学会利用几何概型的概率计算公式解决问题.(3)在几何概型下进一步理解“不可能事件的概率为0,必然事件的概率为1;而概率为0的事件不一定是不可能事件,概率为1的事件不一定是必然事件”的含义.2.过程与方法:发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.3.情感、态度与价值观:本节课的主要特点是现实问题多,需要将现实问题转化为数学问题来解决,加强数学知识与现实世界的联系,学习时养成勤学严谨的学习习惯.二、教学重点与难点:重点:掌握几何概型的判断及几何概型中概率的计算公式.难点:准确确定全部几何区域和与事件A对应的区域,并求出它们的长度、面积或体积.三、教法与教具:教学方式:启发、探究式教学辅助:多媒体课件四、教学基本流程:五、教学过程(一)知识回顾复习古典概型创设情境,引入课题通过转盘游戏猜想相应的概率几何概型的概念、特点、与古典概型的区别例题讲解及变式,明确几何概型的计算步骤练习和小结作业和课后思考1、古典概型的特点是什么?在古典概型下,如何计算随机事件A 出现的概率?2、当随机试验的基本事件有无限个时,事件的概率应该如何求呢?(二)新知探究当随机试验的基本事件有无限个时,事件的概率应该如何求呢?1、创设情境情境1: 公共汽车站每隔15分钟有一辆1路汽车通过,乘客到达车站的任一时刻是等可能的,那么乘客等车不超过10分钟的概率是多少?情境2:图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.如果你是甲,你会选择那一个转盘进行游戏?你为何作此选择?你获胜的可能性是多少?思考讨论: 1. 指针指向B 区域的机会(概率)与什么有关?2.指针指向B 区域的机会(概率)与圆的大小有关吗?3.把转盘②变成③图, 指针指向B 区域的机会(概率)会不会改变?情境3:在500ml 的水中有一个草履虫,现从中随机取出2ml 水样放到显微镜下观察,那么发现草履虫的概率是多少? 2、探究(1)你是如何计算概率的?(2)它们的共同特征是什么?(3)以上3个问题是否属于古典概型问题?为什么?3、几何概率模型的定义及计算公式(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)几何概型的概率公式:()A P A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)(强调:求几何概型的概率时考虑试验的结果个数失去意义.)(3)几何概型的特点:(类比古典概型,说出异同点)1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.(三)应用举例1、判断下列概率类型并求其概率:(1)在区间[0,9]上任取一个整数,恰好取在区间[1,3]上的概率为多少?(2)在区间[0,9]上任取一个实数,恰好取在区间[1,3]上的概率为多少?2、例题及变式例1:某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.(假设电台只在整点报时)变式1:求他等待的时间至少20分钟的概率.变式2:求他等待的时间为20至40分钟的概率.变式3:一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?B B N NB(1)红灯;(2)黄灯;(3)不是红灯.3、解决情境14、达标训练1.如右图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率.2.有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.3.取一根长为30厘米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于10厘米的概率有多大?4.(2010湖南文科)在区间[]2,1-上随机取一个数x,则[]1,0∈x的概率为 .5.思考题:在转盘游戏中,当指针指向B区域时,甲获胜.(1)如果在转盘上,区域B缩小为一个点,那么甲获胜的概率是多少? (2)如果在转盘上,区域B扩大为整个转盘扣除一个点,那么甲获胜的概率是多少?结论:概率为0的事件不一定是不可能事件;概率为1的事件不一定是必然事件.(四)课堂小结1、几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限个(2)每个基本事件出现的可能性相等.2、几何概型的概率公式:()AP A=构成事件的区域长度(面积或体积)全部结果所构成的区域长度(面积或体积)几何概型是适用于试验结果无限多且事件是等可能发生的概率类型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概型问题是解决问题的关键. 3、注意理解几何概型与古典概型的区别.(五)作业布置1、课本P142 习题3.2 A组 12、在区间[,]22ππ-上随机取一个数x,求cos x的值介于0到21之间的概率.(09山东高考)(六)课后思考(会面问题)甲乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一个人15分钟,过时即可离去,求两人能会面的概率.。
人教版高中数学必修3第三章概率-《3.3几何概型》教案
几何概型一、教学目标(1)学生能掌握几何概型的特点,明确几何概型与古典概型的区别。
(2)能识别实际问题中概率模型是否为几何概型。
(3)会利用几何概型公式对简单的几何概型问题进行计算。
二、教学重点与难点教学重点:(1)几何概型的特点及与古典概型的区别(2)几何概型概率计算公式及应用。
教学难点:把求未知量的问题转化为几何概型求概率的问题;三、教学方法与手段让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。
感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。
四、教学过程一、 创设情境 引入新课【知识回顾】(1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。
古典概型包含基本事件的个数、事件的概率公式:基本事件的总数 【课前练习】判断下列试验中事件发生的概率是否为古典概型?(1)抛掷两颗骰子,求出现两个“4点”的概率;(学生口答)(2)5本不同的语文书,4本不同的数学书,从中任取2本,取出的书恰好都是数学书的概率;(学生口答)(3)取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m的概率;学生分析:剪刀落在绳子的任意一个位置是等可能的,但剪刀落的位置是无限个的,因而无法利用古典概型;(4)下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黄色区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?(1)(2)学生分析:指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;(5)有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.学生分析:细菌在1升水的杯中任何位置的机会是等可能的,但细菌所在的位置却是无限多个的,因而不能利用古典概型。
人教A版高中数学必修3《三章概率3.3几何概型阅读与思考概率与密码》优质课教案_6
几何概型教案一、教材分析1. 教材内容:高中人教A版(必修3)3.31几何概型2. 教材所处的地位和作用:本章主要的研究对象是日常生活中我们无法事先预测结果的事情,对我们的生活是很有意义的。
本节课是在古典概型基础上的发展,是等可能事件的概念从无限向有限的延伸,使概率的知识更加完善,更有助于提高学生的全面系统的分析问题的能力。
3. 教学目标(1)知识与技能:①了解几何概型的两个基本特征②了解古典概型与几何概型的异同点③掌握几何概型的概率公式:(= 构成事件A的区域长度(面积或体积)p=试验的全部结果所构成__的区域长度(面积或体__积);④正确的计算几何概型概率(2)过程与方法:①采用发现法教学,通过师生共同探究,辨析古典概型与几何概型的异同,并引导学生发现概念,体会数学知识的形成。
②引导学生类比古典概型与几何概型的解决方法,促进学生吸收本节知识。
(3)情感、态度与价值观:①本节课的内容贴近生活,学生能体会概率在生活中的重要作用②随机试验多,有助学生养成严谨的思维习惯。
③培养学生的数学兴趣和逻辑思维能力,帮助学生树立辩证的思想4. 重点与难点4.1 教学重点:(1)几何概型的基本特征,几何概型的识别;(2)几何概型的计算公式及其应用4.2 教学难点:(1)如何将随机试验转化到几何区域上研究(2)几何概型的计算方法二、学情分析(以我带的辅导班为例)本班学生都是文科类的。
基础较薄弱。
前面学习随机事件的概率和古典概型,但是从有限到无限,从古典概型到几何概型的过度,要懂得将随机试验的实际背景转化为几何度量”此时学生会遇到一些困难。
故在创设问题情境和举例子都应恰当,尽量举与生活相关的例子。
并进行恰当的引导、合理的解释和明确的辨析。
三、教法分析采用发现法教学,师生共同探究,通过提出问题、分析问题、解决问题等教学过程, 引导学生观察对比、并概括归纳出几何概型的概念及其公式。
充分发挥教学过程中学生的主体性。
再通过一些实际问题学以致用,加深学生的理解。
人教版高中数学必修3第三章概率-《3.3.1几何概型》教案
3.3.1 几何概型整体设计教学分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X落到[0,1]区间内任何一点是等可能的,则称X为[0,1]区间上的均匀随机数.三维目标1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A ,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力.2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型,会进行简单的几何概率计算,培养学生从有限向无限探究的意识.重点难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.课时安排1课时教学过程导入新课思路1复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.思路2下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?为解决这个问题,我们学习几何概型.思路3在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.这就是我们要学习的几何概型.推进新课新知探究提出问题(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m 的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m 的概率有多大?试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括.讨论结果:(1)硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反).每种结果出现的概率相等,P (正,正)=P (正,反)=P (反,正)=P (反,反)=1/4.两次出现相同面的概率为214141=+. (2)经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点.第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点.在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解.考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A.把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的31, 于是事件A 发生的概率P(A)=31.第二个问题,如右图,记“射中黄心”为事件B,由于中靶心随机地落在面积为41×π×1222 cm 2的大圆内,而当中靶点落在面积为41×π×12.22 cm 2的黄心内时,事件B 发生,于是事件B 发生的概率P(B)=22122412.1241⨯⨯⨯⨯ππ=0.01.(3)硬币落地后会出现四种结果(正,正)、(正,反)、(反,正)、(反,反)是等可能的,绳子从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点,也是等可能的,射中靶面内任何一点都是等可能的,但是硬币落地后只出现四种结果,是有限的;而剪断绳子的点和射中靶面的点是无限的;即一个基本事件是有限的,而另一个基本事件是无限的.(4)几何概型.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中的每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability ),简称几何概型.几何概型的基本特点:a.试验中所有可能出现的结果(基本事件)有无限多个;b.每个基本事件出现的可能性相等.(5)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (6)古典概型和几何概型的联系是每个基本事件的发生都是等可能的;区别是古典概型的基本事件是有限的,而几何概型的基本事件是无限的,另外两种概型的概率计算公式的含义也不同.应用示例思路1例1 判断下列试验中事件A发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率.活动:学生紧紧抓住古典概型和几何概型的区别和联系,然后判断.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.活动:学生分析,教师引导,假设他在0—60之间的任一时刻,打开收音机是等可能的,但0—60之间有无数个时刻,不能用古典概型的公式来计算随机事件发生的概率,因为他在0—60之间的任一时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,所以可用几何概型的概率计算公式计算.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于[50,60]时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6.打开收音机的时刻X是随机的,可以是0—60之间的任何时刻,且是等可能的.我们称X服从[0,60]上的均匀分布,X 称为[0,60]上的均匀随机数.变式训练某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).解:可以认为人在任一时刻到站是等可能的.设上一班车离站时刻为a,则某人到站的一切可能时刻为Ω=(a,a+5),记A g ={等车时间少于3分钟},则他到站的时刻只能为g=(a+2,a+5)中的任一时刻,故P(A g )=53=Ω的长度的长度g . 点评:通过实例初步体会几何概型的意义.思路2例1 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于20分钟的概率.活动:假设他在0—60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[40,60]这一时间段内,因此由几何概型的概率公式,得P (A )=(60-40)/60=1/3. 即此人等车时间不多于10分钟的概率为1/3.点评:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.变式训练在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率.解:记“钻到油层面”为事件A,则P(A)=0.004.答:钻到油层面的概率是0.004.例2 小明家的晚报在下午5:30—6:30之间任何一个时间随机地被送到,小明一家人在下午6:00—7:00之间的任何一个时间随机地开始晚餐.则晚报在晚餐开始之前被送到的概率是多少?活动:学生读题,设法利用几何概型公式求得概率.解:建立平面直角坐标系,如右图中x=6,x=7,y=5.5,y=6.5围成一个正方形区域G .设晚餐在x (6≤x≤7)时开始,晚报在y (5.5≤y≤6.5)时被送到,这个结果与平面上的点(x,y )对应.于是试验的所有可能结果就与G 中的所有点一一对应.由题意知,每一个试验结果出现的可能性是相同的,因此,试验属于几何概型.晚报在晚餐开始之前被送到,当且仅当y<x,因此图中的阴影区域g 就表示“晚报在晚餐开始之前被送到”.容易求得g 的面积为87,G 的面积为1.由几何概型的概率公式,“晚报在晚餐开始之前被送到”的概率为P (A )=87 的面积的面积G g . 变式训练 在1升高产小麦种子中混入了一种带麦锈病的种子,从中随机取出10毫升,则取出的种子中含有麦锈病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫升种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A,则P(A)=0.01.所以取出的种子中含有麦锈病的种子的概率是0.01.知能训练1.已知地铁列车每10 min 一班,在车站停1 min,求乘客到达站台立即乘上车的概率. 解:由几何概型知,所求事件A 的概率为P(A)=111. 2.两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率.解:记“灯与两端距离都大于2 m”为事件A,则P(A)=62=31. 3.在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是( )A.0.5B.0.4C.0.004D.不能确定解析:由于取水样的随机性,所求事件A :“在取出2 mL 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004. 答案:C4.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM,垂足为M,如右图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P(A )=ar a a a r -=的长度的长度],0[],(.拓展提升1.约会问题两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.解:因为两人谁也没有讲好确切的时间,故样本点由两个数(甲、乙两人各自到达的时刻)组成.以8点钟作为计算时间的起点,设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x,y)|0≤x≤60,0≤y≤60},画成图为一正方形.以x,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20.这是一个几何概率问题,可能的结果全体是边长为60的正方形里的点,能会面的点的区域用阴影标出(如下图).所求概率为P=95604060222=-=的面积的面积G g .2.(蒲丰(Buffon)投针问题)平面上画很多平行线,间距为a.向此平面投掷长为l(l<a)的针,求此针与任一平行线相交的概率.解:以针的任一位置为样本点,它可以由两个数决定:针的中点与最接近的平行线之间的距离x,针与平行线的交角φ(见下图左).样本空间为Ω:{(φ,x),0≤φ≤π,0≤x≤a/2},为一矩形.针与平行线相交的充要条件是g:x≤2lsinφ(见下图右).所求概率是P=的面积的面积Ωgππφφπaladl22/sin)2/(0=∙∙=⎰.注:因为概率P可以用多次重复试验的频率来近似,由此可以得到π的近似值.方法是重复投针N次,(或一次投针若干枚,总计N枚),统计与平行线相交的次数n,则P≈n/N.又因a与l 都可精确测量,故从2l/aπ≈n/N,可解得π≈2lN/an.历史上有不少人做过这个试验.做得最好的一位投掷了3 408次,算得π≈3.141 592 9,其精确度已经达到小数点后第六位.设计一个随机试验,通过大量重复试验得到某种结果,以确定我们感兴趣的某个量,由此而发展的蒙特卡洛(Monte-Carlo)方法为这种计算提供了一种途径.课堂小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.作业课本习题3.3A组1、2、3.。
人教版高中数学必修三(教案)3.3几何概型(2课时)
第一课时 3.3.1 几何概型教学要求:结合已学过两种随机事件发生的概率的方法,更进一步研究试验结果为无穷多时的概率问题理解几何概型的定义与计算公式.教学重点:初步体会几何概型的意义.教学难点:对几何概型的理解.教学过程:一、复习准备:1. 回忆基本事件的两个特点:(1)任何两个基本事件是互斥的。
(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.回忆古典概型有两个特征:有限性和等可能性.3.提出问题:在现实生活中,常常遇到试验结果是无穷多的情况,那又怎样计算呢?二、讲授新课:1. 教学:几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型(geometric models of probability )简称为几何概型.在几何概型中,事件A 概率计算公式为:()()()A P A =构成事件的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积几何概型的特点:在一个区域内均匀分布,只与该区域的大小有关.几何概型与古典概型的区别:试验的结果不是有限个.例1 某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a, a+5),记A={等车时间少于3分钟},则他到站的时刻只能为g = (a+2, a+5)中的任一时刻,故3()5g P A ==Ω的长度的长度 例2.某个人午觉醒来,他打开收音机。
想听电台报时,求他等待的时间不多于10分钟的概率.分析:在0到60分钟任一时刻打开收音机是等可能的,但0到60分钟之间有无穷个时刻,不能用古典概型的公式计算,,因为是等可能的,所以他在哪一时段打开收音机的概率只与该时段的长度有关而与位置无关,这符合几何概型的要求.)3. 小结: 如何利用几何概型事件和随机模拟方法来求一些求知量?三、巩固练习:1.(会面问题)两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.求两人会面的概率.答案:592.猪八戒每天早上7点至9点之间起床,求它在7点半之前起床的概率.(将问题转化为时间长度)1. 作业:P137,A 组第1题第二课时 3.3.2均匀随机数的产生教学要求:让学生知道如何利用计算机Excel 软件产生均匀随机数关利用随机模拟方法估计求知量.教学重点:体会随机模拟中的统计思想.教学难点:如何把求未知量的问题转化为几何概型概率的问题.教学过程:一、复习准备:1. 回忆:几何概型的定义,以及相关的古典概型中的随机模拟方法.二、讲授新课:1.教学:均匀随机数的产生操作方法与整数值随机数产生的方法相同,前面学生有了基础这里易掌握只要老师在课堂是带学生操作一次就行。
高中数学 第三章 概率 33 几何概型导学案(无答案)新人教A版必修3 学案
3.3几何概型【学习目标】1.理解几何概型的定义,会用公式计算概率. 2.掌握几何概型的概率公式:P (A ) =【知识梳理】知识回顾:1.基本事件的两个特点:一是任何两个基本事件是 的;二是任何事件(除不可能事件)都可以表示为 .2.古典概型的两个重要特征:一是一次试验可能出现的结果只有 ;二是每种结果出现的可能性 .3.在古典概型中,)(A P = .新知梳理:1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的 ( )成比例,则称这样的概型为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有 . (2)每个基本事件出现的可能性 . 3.几何概型的概率公式)(A P = .对点练习:1.在500ml 的水中有一个草履虫,现从中随机取出2ml 水样放到显微镜下观察,则发现草履虫的概率是( ).(A )0.5 (B )0.4 (C )0.004 (D) 不能确定2.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( )(A )0.62 (B )0.38 (C )0.02 (D)0.683.在长为10 cm 的线段AB 上任取一点P ,并以线段AP 为边作正方形,这个正方形的面积介于25 cm 2与49 cm 2之间的概率为( ) (A )310(B )15(C )25 (D)454.已知地铁列车每10min 一班,在车站停1min .则乘客到达站台立即乘上车的概率为 . 【合作探究】典例精析例题1.取一根长3米的绳子,拉直后再任意位置剪断,那么剪得的两段的长都不少于1米的概率有多大?变式训练1.在半径为1的圆周上任取两点,连接两点成一条弦,求弦长超过此圆内接正三角形边长的概率.例题2.在圆012222=+--+y x y x 内随机投点,求点与圆心间的距离积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A变式训练2.在以()1,1为中心,边长为1的正方形内投点,求点与正方形的中心的距离小于31的概率.例题3.在棱长为3的正方体内任意取一点,求这个点到各面的距离均大于棱长的31的概率.变式训练3.在棱长为3的正方体内任意取一点,求这个点到各面的距离小于棱长的31的概率.【课堂小结】【当堂达标】1.一个红绿灯路口,红灯亮的时间为30秒,黄灯亮的时间是5秒,绿灯亮的时间是45秒.当你走到路口时,恰好看到黄灯亮的概率是( ) A.121 B.83 C.161D.652.面积为S 的ABC ∆中,D 是BC 的中点,向ABC ∆内部投一点,那么点落在ABD ∆内的概率是( ) A.21 B.31 C.41 D.613.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为( )A.0.002B.0.004C.0.005D.0.008【课时作业】1.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为( ).(A )116(B )216(C )316(D)142.如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( ).(A )34 (B )38 (C )14 (D)183.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则 求两人会面的概率为(A )13(B )49 (C )59 (D) 7104.如图,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ). (A )2π (B )1π(C )23 (D) 135.如图,有一圆盘其中的阴影部分的圆心角为45,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为( ).(A )18(B )14(C )12 (D) 346.现有100ml 的蒸馏水,假定有一个细菌,现从中抽取20ml ,则抽到细菌的概率为( ). (A )1100(B )120(C )110(D)157.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午5:00至6:00,则该船在一昼夜内可以进港的概率是( ). (A )41 (B )81 (C )101 (D) 1218.在区间[0,10]中任意取一个数,则它与4之和大于10的概率是( ). (A )51 (B )52 (C )53 (D) 729.若过正三角形ABC 的顶点A 任作一条直线L ,则L 与线段BC 相交的概率为( ). (A )21 (B )31 (C )61 (D) 12110.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率( ).(A )a r (B )a r2 (C )a r a - (D)ar a 2-11. 向面积为9的ABC ∆内任投一点P ,那么PBC ∆的面积小于3的概率为 .12.在区间(0,1)中随机地取出两个数,则两数之和小于56的概率是 .13.在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?14.飞镖随机地掷在下面的靶子上.(1)在靶子1中,飞镖投到区域A 、B 、C 的概率是多少?(2)在靶子1中,飞镖投在区域A 或B 中的概率是多少?在靶子2中,飞镖没有投在区 域C 中的概率是多少?AB CABC15.一只海豚在水池中游弋,水池为长30m ,宽20m 的长方形,求此刻海豚嘴尖离岸边不超过2m 的概率.。
人教版高中数学(必修3)导学案设计:3.3几何概型(无答案)
高二数学 SX-G2-B3-U3-L33.3《几何概型》导学案编写人: 审核:高二数学组 编写时间:【教学目标】1.知识与技能:了解几何概型的意义,会运用几何概型的概率计算公式,会求简单的几何概型事件的概率。
2.过程与方法:通过游戏、案例分析,学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。
3.情感、态度与价值观:通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。
【重点】几何概型的特点,几何概型的识别,几何概型的概率公式。
【难点】将现实问题转化为几何概型问题,从实际背景中找几何度量。
【教学过程】自主学习,合作探究,精讲点拨,巩固检测。
【知识链接】1. 古典概型的两个特征:(1)_______________________ . (2)_______________________ .2. 古典概型的概率计算公式_______________________3.回答下列问题(1)掷一颗骰子,观察掷出的点数,则掷得奇数点的概率是( )(2)在集合 A= {0,1,2,3,4,5,6,7,8,9}中任取一个元素a,则 a ≥3的概率为 .(3)若以连续掷两次骰子分别得到的点数m,n 作为点P 的坐标,求点P 落在圆x 2+y 2=16内的概率。
【课前预习】1、问题情境⑴、下图中有两个转盘,甲、乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?⑵、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1米的概率有多大?(演示绳子)3 51⑶、射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。
金色靶心叫“黄心”。
奥运会的比赛靶面直径为122cm,靶心直径为12.2cm。
假设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的概率有多大?122c m【自主学习】对以上三个试验做出分析⑴以上三个试验共同点:⑵三个试验的概率是怎样求得的?⑶我们把满足上述条件的试验称为【合作探究】1、几何概型的定义、计算公式与特征(1)定义(2)计算公式(3)特征2古典概型几何概型所有基本事件的个数每个基本事件发生的可能性概率的计算公式3、怎样求几何概型的概率4、说明:【实际应用】1、模型应用例1在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.例2:取一个边长为2a 的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.例3:某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率。
人教A版高中数学必修3《三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》优质课教案_0
课题3.3 几何概型(1)教案
一、教学目标
1.知识与技能:使学生理解几何概型的意义,掌握几何概型的计算公式,会求简单几何概型问题的概率。
2.过程与方法:通过求古典概率知识的迁移,运用转化、数形结合思想与方法解决问题。
3.情感态度价值观:通过对几何概型知识探索过程,体会数学思维的特点,感悟几何概型在实际生活的应用。
二、教材分析
1.教学重点:几何概型的概念与计算方法。
2.教学难点:几何概型中几何模型及几何度量。
三、学情分析
学生已有了求古典概型的认知,有几何度量(长度、面积、体积)的技能,以及生活中的经验,容易理解几何概型,但是对问题转化成几何概型的建模、以及分清基本事件的抽象、转化能力还欠缺。
四、教学方法
启发性、探究式引导教学法
五、教学手段
多媒体辅助教学
六、教学流程设计
问题引入------学生探究、活动---交流、归纳----实践与提高---总结与巩固
(师)(生)(生--师)(师--生)(生)
七、教学过程。
人教版高中数学必修三 第三章 概率 《几何概型》教案
《几何概型》教案教材分析:几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的.几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个.教材从两者的比较入手,通过分析简单的几何概型的例子入手引出几何概型的计算方法。
本节安排的例题和习题分别从一维的长度,二维的面积,三维的体积作为测度进行分析的.教学目标:知识与技能:1.学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型与古典概型;3、提高学生判断与选择几何概型的概率公式的能力;过程与方法:通过实例把几何概型与古典概型进行比较分析发掘几何概型的特点以及几何概型的概率计算方法;情感态度价值观:学生体会数学来源于实践,并且培养学生发现问题、分析问题进而解决问题的良好习惯.教学重点与难点:重点:几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择.教学方法:探究性学习,体现以“教师为主导,学生为主体”教学过程:一、知识回顾1.古典概型的特点2.概率公式:二、探索研究【对比研究】(骰子游戏):甲乙两人掷骰子,掷一次,规定谁掷出6点朝上则谁胜,请问甲、乙谁获胜的概率大?学生分析:掷骰子的结果是有限个,且掷得每个结果都是等可能性的,符合古典概型的特点,因而可以利用古典概型计算;学生求解:1;6p=甲16p=乙。
(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?①②师生共同分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而不是古典概型;2、利用B区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积【提出问题】⑴两个问题中,求概率的方法一样吗?若不一样,请问是什么原因? ⑵你是如何解决这些问题的?学生对比分析:⑴ 骰子游戏中色子的六个面上的数字是有限个的,且每次投掷都是等可能性的,因而是古典概型;转盘游戏中指针指向的每个方向都是等可能性的,但指针所指的方向却是无限个的,因而不是古典概型.⑵借助几何图形的长度、面积等计算概率;【问题探究】分析下列三个问题的概率,从中你能得出哪些求概率的结论?问题 1(绳子问题):某人在家门前相距6米的两棵树间系一条绳子,并在绳子上挂一个衣架,求衣架钩与两树的距离都大于2米的概率.学生分析:衣架钩与两树的距离都大于2米, 所以衣架钩应在图中B 、C 之间的任何一点都可以,结果有无数多种,而且等可能,所以不是古典概型;学生求解:记“衣架钩与两树的距离都大于2米”为事件A , 所以30P()0.650A == 学生归纳:1、该概率的特点不符合古典概型,不能利用古典概型;2、A P()A =构成事件的区域长度试验的全部结果构成的区域长度 问题2(撒豆子问题):如图,假设你在每个图形上随机撒一粒黄豆,计算它落到阴影部分的概率.学生分析:豆子撒在图形的每个位置的机会是等可能的,但豆子的位置却是无限多个的,因而不能利用古典概型。
人教版高中数学必修三第三章概率3.3几何概型教案
【难点】几何概型的应用
师生互认学习目标,引导学生带着目标进入新课学习,有的放矢。
新
课
讲
授
新
课
讲
授
新
课
讲
授
小组内讨论:参照古典概型的特点,上述试验的特点
是什么?
特点:(1)_________________________________;
(2)______________________________________。
3.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率。
巩固所学知识,提高课堂知识的运用能力。
课
堂
小
结
【反思小结】(没有总结,就没有提高!)
(1)请回顾本节课所学过的知识内容有哪些?
1、概念
2、特点
3、公式
具有上述特点的试验称为几何概型。
我们通过上面的试验,得出了几何概型的概念,明确了几何概型事件的两个基本特点。那么如何用数学表达式来解决几何概型事件的概率问题呢?
探究二:
问题1:从区间[1,6]中任取一个实数,求取到的数比3小的概率是多少?
问题2:下面是运动会射箭比赛的靶面,靶面半径为10cm,黄心半径为1cm.现一人随机射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,请问射中黄心的概率是多少?
引例2:取一个边长为2a的正方形(如图),随机地向正方形内丢一粒豆子。
思考:上述试验还是不是古典概型?为什么?
温故知新,类比正弦函数的图象和性质,研究余弦函数
展
示
目
标
齐读学习目标、学习重点、学习难点:
人教A版高中数学必修3《三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》优质课教案_3
《几何概型》教学设计一、教学目标(一)知识与技能1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.2.理解并掌握几何概型的概念.3.掌握几何概型的概率公式,会进行简单的几何概率计算.(二)过程与方法1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.(三)情感、态度、价值观1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.二、教学重点与难点教学重点:了解几何概型的基本特点及进行简单的几何概率计算.教学难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”.三、教学方法与教学手段教学方法:“自主、合作、探究”教学法教学手段:电子白板、实物投影、多媒体课件辅助四、教学过程(一)复习回顾问题.古典概型的特点及概率公式分别是什么?你熟悉常见的古典概型?你能举例吗?答:①基本事件发生的等可能性②基本事件只有有限个古典概型的概率公式:[处理方式]多媒体课件展示问题,简洁明了。
(利用电子白板文字展示功能)【设计意图】回顾古典概型的相关知识,为引出下面要学的几何概型作铺垫。
(二)问题情境取一根长度为3m的绳子,拉直后在任意位置剪断.要求剪得两段的长都不小于1m的概率有多大?问题(1)试验中一个基本事件是什么?答:试验:剪在绳子上的每一点都是一个基本事件.问题(2)基本事件有多少个?答:基本事件有无限个.问题(3)每个基本事件发生是否等可能?答:每个基本事件发生都是等可能的.[处理方式]多媒体课件展示,电子白板笔点击答案,这样与学生互动起来,清晰自然。
(利用电子白板文字、图片展示功能,作图功能)在这两个问题中,基本事件有无数多个,虽然类似于古典概型的“等可能性”还存在,但是显然不是古典概型,那它是什么概型呢?【设计意图】引发认知冲突,引入几何概型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率导学案3
3.3几何概型
课时目标 1.通过实例体会几何概型的含义,会区分古典概型和几何概型.2.掌握几何概型的概率计算公式,会求一些事件的概率.
1.几何概型的定义
设D是一个________的区域(例如线段、平面图形、立体图形等).每个基本事件可以视为从________内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点,这时,事件A发生的概率与d的测度(长度、________、________等)成正比,与d的形状和位置________.我们把满足这样条件的概率模型称为几何概型.
2.在几何概型中,事件A的概率计算公式为P(A)=____________________.
一、填空题
1.用力将一个长为3米的米尺拉断,假设该米尺在任何一个部位被拉断是等可能的,则米尺的断裂处恰在米尺的1米到2米刻度处的概率为________.
2.如图,边长为2的正方形内有一内切圆.在图形上随机撒一粒黄豆,则黄豆落到圆内的概率是
________.
3.在1 L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL,则含有麦锈病种子的概率是________.
4.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O 的距离大于1的概率为________.
5.在区间[-1,1]上任取两数x和y,组成有序实数对(x,y),记事件A为“x2+y2<1”,则P(A)=
______________________________________________________________.
6.有四个游戏盘,如下图所示,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖机会大,他应当选择的游戏盘为________.(填序号)
7.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时看到的是绿灯的概率是________.
8.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为________.
9.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为________.
二、解答题
10.过等腰Rt△ABC的直角顶点C在∠ACB内部随机作一条射线,设射线与AB相交于点D,求AD<AC 的概率.
11.如图,在墙上挂着一块边长为16 cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为
2 cm ,4 cm,6 cm ,某人站在
3 m 之外向此板投镖,设投镖击中线上或没有投中木板时都不算(可重投),问:
(1)投中大圆内的概率是多少?
(2)投中小圆与中圆形成的圆环的概率是多少?
(3)投中大圆之外的概率是多少?
能力提升
12.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5],使f (x 0)≤0的概率为________.
13.在转盘游戏中,假设有三种颜色红、绿、蓝.在转盘停止时,如果指针指向红色为赢,绿色为平,
蓝色为输,问若每种颜色被平均分成四块,不同颜色相间排列,要使赢的概率为15,输的概率为13
,则每个绿色扇形的圆心角为多少度?(假设转盘停止位置都是等可能的)
处理几何概型问题就要先计算基本事件总体与事件A 包含的基本事件对应的区域的长度(角度、面积或
体积),而这往往会遇到计算困难,这是本节难点之一.实际上本节的重点不在于计算,而在于如何利用几何概型把问题转化为各种几何概率问题.为此可参考如下办法:
(1)选择适当的观察角度;
(2)把基本事件转化为与之对应的几何区域;
(3)把随机事件A 转化为与之对应的几何区域;
(4)利用概率公式计算;
(5)如果事件A 对应的区域不好处理,可以用对立事件概率公式逆向思维.
同时要注意判断基本事件的等可能性,这需要严谨的思维,切忌想当然,需要从问题的实际背景出发去判断.
3.3 几何概型
知识梳理 1.可度量 区域D 面积 体积 无关
2.d 的测度D 的测度
作业设计
1.13
解析 P =2-13=13
. 2.π4
解析 由题意,P =S 圆S 正方形=π×122×2=π4
. 3.1100
解析 取出10 mL 麦种,其中“含有病种子”这一事件记为A ,则P(A)=取出种子的体积所有种子的体积=101 000=1100
. 4.1-π4
解析 当以O 为圆心,1为半径作圆,则圆与长方形的公共区域内的点满足到点O 的距离小于或等于
1,故所求事件的概率为P(A)=S 长方形-S 半圆S 长方形
=1-π4. 5.π4
解析 如图,集合S ={(x ,y)|-1≤x ≤1,-1≤y ≤1},则S 中每个元素与随机事件的结果一一对应,
而事件A 所对应的事件(x ,y)与圆面x 2+y 2<1内的点一一对应,∴P(A)=π4
. 6.① 解析 ①中P 1=38,②中P 2=26=13
, ③中设正方形边长2,则P 3=4-π×124=4-π4
,
④中设圆直径为2,则P 4=12×2×1π=1π
. 在P 1,P 2,P 3,P 4中,P 1最大.
7.815
解析 P(A)=4030+5+40=815
. 8.13
解析 由几何概型知所求的P =1-02-(-1)=13
. 9.
334π
解析 设圆面半径为R ,如图所示△ABC 的面积S △ABC =3·S △AOC
=3·12AC·OD =3·CD·OD =3·R sin 60°·R cos 60°=33R 2
4
, ∴P =S △ABC πR 2=33R 24πR 2=334π
. 10.
解 在AB 上取一点E ,使AE =AC ,连接CE(如图),则当射线CD 落在∠ACE 内部时,AD<AC.易知
∠ACE =67.5°,
∴AD<AC 的概率P =67.5°90°
=0.75. 11.解 整个正方形木板的面积,即基本事件所占的区域总面积为S =16×16=256 (cm 2).
记“投中大圆内”为事件A ,“投中小圆与中圆形成的圆环”为事件B ,“投中大圆之外”为事件C ,则事件A 所占区域面积为S A =π×62=36π(cm 2);事件B 所占区域面积为S B =π×42-π×22=12π(cm 2);事件C 所占区域面积为S C =(256-36π)cm 2.
由几何概型的概率公式,得(1)P(A)=S A S =964
π; (2)P(B)=S B S =364π;(3)P(C)=S C S =1-964
π. 12.310
解析 令x 2-x -2=0,得x 1=-1,x 2=2,f(x)的图象是开口向上的抛物线,与x 轴的交点为(-1,0),(2,0),图象在x 0轴下方,即f(x 0)≤0的x 0的取值范围为x 0∈[-1,2],
∴P =2-(-1)5-(-5)=310
. 13.解 由于转盘旋转停止位置都是等可能的,并且位置是无限多的,所以符合几何概型的特点,问
题转化为求圆盘角度或周长问题.因为赢的概率为15
, 所以红色所占角度为周角的15
,
即α1=360°5
=72°. 同理,蓝色占周角的13
, 即α2=360°3
=120°, 所以绿色所占角度α3=360°-120°-72°=168°. 将α3分成四等份,
得α3÷4=168°÷4=42°.
即每个绿色扇形的圆心角为42°.。